en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王红燕,女,1998年生。博士研究生,构造地质学专业。E-mail:2438569643@qq.com。

通讯作者:

周建波,男,1966年生。博士,教授,大地构造学专业。E-mail:zhoujianbo@jlu.edu.cn。

参考文献
Atherton M P, Petford N. 1993. Ceneration of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144~146.
参考文献
Bi Junhui, Ge Wenchun, Yang Hao, Zhao Guochun, Xu Wenliang, Wang Zhihui. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi massif, NE China: petrogenesis and tectonic implications. Lithos, 234: 27~46.
参考文献
Cameron W E, McCulloch M T, Walker D A. 1983. Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters, 65(1): 75~89.
参考文献
Cao Jialin, Zhou Jianbo, Li Long. 2020. The tectonic evolution of the Changchun-Yanji suture zone: constraints of zircon U-Pb ages of the Yantongshan accretionary complex (NE China). Journal of Asian Earth Sciences, 194: 104110.
参考文献
Chen Yuejun, Hua Yanqiu, Li Linshan, Huang Xianyu, Liu Yuewen, Li Rui. 2005. Establishment and geological significance of Zhangsangou Formation-complex in Xiaopuchaihe area of Dunhua, Jilin Province. Global Geology, 24(2): 144~148 (in Chinese with English abstract).
参考文献
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyuan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesiticl/dioritic rocks (MA): two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).
参考文献
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Meng Fei, Ma Shuai, Yao Tu. 2015. Magmaticarc and ocean-continent transition: discussion. Geological Review, 61(3): 473~484 (in Chinese with English abstract).
参考文献
Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.
参考文献
Drummond M S, Defant M J. 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503~21521.
参考文献
Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recyclinglower continental Crust in the North China Craton. Nature, 432: 892~897.
参考文献
Gomez-Tuena A, Langmuir C H, Goldstein S, Straub S M, Ortega-Gutierrez F. 2007. Geochemical evidence for slab melting in the Trans-Mexican volcanic belt. Journal of Petrology, 48(3): 537~562.
参考文献
Gribble R F, Stern R J, Newman S, Bloomer S H, O'Hearn T. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magma genesis in back-arc basins. Journal of Petrology, 39(1): 125~154.
参考文献
Hickey R L, Frey F A. 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta, 46: 2099~2115.
参考文献
Hirose K. 1997. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25(1): 42~44.
参考文献
Ishizuka O, Tani K, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10(2): 115~120.
参考文献
Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magma, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75(3): 359~371.
参考文献
Kay R W. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117~132.
参考文献
Kelemen P B. 1995. Genesis of high Mg-number andesites and the continental-crust. Contributions to Mineralogy and Petrology, 120(1): 1~19.
参考文献
Kushiro I. 1969. The system forsterite-diopside-silica with and without water at high pressures. American Journal of Science, 267: 269~294.
参考文献
Li Chengdong, Xu Yawen, Zhang Qinghong, Zhou Hongying, Peng Shuhua, Chen Junqiang, Zhang Kuo, Zhao Ligang, Li Shengyin. 2014. Neoarchean high-Mg andesites and its geological significance in southern Jilin Province. Journal of Jilin University (Earth Science Edition), 44(1): 186~197 (in Chinese with English abstract).
参考文献
Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Xu Yawen. 2007a. Zircon SHRMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area, Jilin Province, China. Acta Petrologica Sinica, 23(4): 767~776 (in Chinese with English abstract).
参考文献
Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Hua Yanqiu, Xu Yawen. 2007b. Reconsideration of the Seluohe Group in Seluohe area, Jilin Province. Journal of Jilin University (Earth Science Edition), (37)5: 841~847 (in Chinese with English abstract).
参考文献
Li Jinyi. 2006. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207~224.
参考文献
Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California.
参考文献
Lü Linsu, Mao Jingwen, Li Hongbo, Pirajno F, Zhang Zuoheng, Zhou Zhenhua. 2011. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China. Ore Geology Reviews, 43(1): 106~119.
参考文献
Manya S, Masboko M A H, Nakamura E. 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Maragreenstone belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction? Precambrian Research, 159(3-4): 241~259.
参考文献
Mukasa S B, Blatter D L, Andronikov A V. 2007. Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexicanvolcanic belt: isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc. Earth and Planetary Science Letters, 260(1-2): 37~55.
参考文献
Mysen B O, Boettcher A L. 1975. Melting of a hydrous mantle; II, Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. Journal of Petrology, 16(3): 549~593.
参考文献
Peng Yujin, Qi Chengdong, Zhou Xiaodong, Lu Xingbo, Dong Hongcheng, Li Zhuang. 2012. Transition from Paleo-Asian Ocean domain to Circum-Pacific ocean domain for the Ji-Hei composite orogenic belt: time mark and relationship to Global tectonics. Geology and Resources, 21(3): 261~265 (in Chinese with English abstract).
参考文献
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.
参考文献
Rogers G, Saunders A D, Terrell D J, Verma S P, Marriner G F. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315(6018): 389~392.
参考文献
Saunders A D, Rogers G, Marriner G F, Terrell D J, Verma S P. 1987. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: implications for the petrogenesis of post-subduction magmas. Journal of Volcanology and Geothermal Research, 32(1-3): 223~245.
参考文献
Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377(6550): 595~600.
参考文献
Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn B M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3-4): 479~492.
参考文献
Shiraki K, Kuroda N, Urano H, Manuyama S. 1980. Clinoenstatite in boninites from the Bonin Islands, Japan. Nature, 285(5759): 31~32.
参考文献
Smithies R H, Champion D C, Cassidy K F. 2003. Formation of earth's Early Archaean continental crust. Precambrian Research, 127(1-3): 89~101.
参考文献
Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle-derived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in south-western superior province. Canadian Journal of Earth Sciences, 26(9): 1688~1712.
参考文献
Straub S M, Gomez-Tuena A, Stuart F M, Zellmer G F, Espinasa-Perena R, Cai Y, Iizuka Y. 2011. Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters, 303(3-4), 337~347.
参考文献
Tang Gongjian, Wang Qiang. 2010. High-Mg andesites and their geodynamic implications. Acta Petrologica Sinica, 26(8): 2495~2512 (in Chinese with English abstract).
参考文献
Tang Kedong. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249~260.
参考文献
Tatsumi Y. 1981. Melting experiments on a high-magnesian andesite. Earth and Planetary Science Letters, 54(2): 357~365.
参考文献
Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth and Planetary Science Letters, 60(2): 305~317.
参考文献
Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanicbelt, southwest Japan. Geology, 29: 323~326.
参考文献
Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review of Earth and Planetary Sciences, 34(1): 467~499.
参考文献
Tatsumi Y. 2008. Making continental crust: the sanukitoid connection. Chinese Science Bulletin, 53(11): 1620~1633.
参考文献
Tatsumi Y, Ishizaka K. 1981. Existence of andesitic primary magma: an example from southwest Japan. Earth and Planetary Science Letters, 53(1): 124~130.
参考文献
Tatsumi Y, Ishizaka K. 1982a. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60(2): 293~304.
参考文献
Tatsumi Y, Ishizaka K. 1982b. Magnesian andesite and basalt from Shodo-Shima island, southwest Japan, and their bearing on the genesis of calc-alkaline andesites. Lithos, 15(2): 161~172.
参考文献
Tatsumi Y, Shukuno H, Sato K, Shibata T, Yoshikawa M. 2003. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi volcanic belt, SW Japan. Journal of Petrology, 44(9): 1561~1578.
参考文献
Taylor R N, Nesbitt R W, Vidal P, Harmon R S, Auvray B, Croudace I W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin-Islands, Japan. Journal of Petrology, 35(3): 577~617.
参考文献
Umino S. 1986. Magma mixing in boninite sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research, 29(1-4): 125~157.
参考文献
van Achterbergh E, Ryan C, Jackson S E, Griffin W L. 2001. Appendix 3 data reduction software for LA-ICPMS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences. Mineralogical Association of Canada, 239~243.
参考文献
Wan Yusheng, Xie Hangqiang, Wang Huichu, Liu Shoujie, Chu Hang, Xiao Zhibin, Li Yuan, Hao Guangming, Li Pengchuan, Dong Chunyan, Liu Dunyi. 2021a. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(2): 277~291 (in Chinese with English abstract).
参考文献
Wan Yusheng, Xie Hangqiang, Wang Huichu, Li Pengchuan, Chu Hang, Xiao Zhibin, Dong Chunyan, Liu Shoujie, Li Yuan, Hao Guangming, Liu Dunyi. 2021b. Discovery of ~3. 8 Ga TTG rocks in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(5): 1321~1333 (in Chinese with English abstract).
参考文献
Wang Hongyan, Zhou Jianbo, Li Gongyu. Transition from the Paleo-Asian Ocean to Paleo-Pacific accretion in central Jilin (NE China): constraints from early Mesozoic high-Mg andesites. Gondwana Research, under revision.
参考文献
Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2020. Late Carboniferous intraoceanic subduction of the Paleo-Asian Ocean: new evidences from the Zagayin high-Mg andesite in the Meilaotewula SSZ ophiolite. Geological Review, 66(2): 289~306 (in Chinese with English abstract).
参考文献
Wang Qiang, Zhao Zhenhua, Xu Jifeng, Wyman D A, Xiong Xiaolin, Zi Feng, Bai Zhenhua. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in thenorthern Tianshan area: implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11~30 (in Chinese with English abstract).
参考文献
Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1~23.
参考文献
Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459~469.
参考文献
Wood B J, Turner S P. 2009. Origin of primitive high-Mg andesite: constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4), 59~66.
参考文献
Wu Fuyuan, Zhao Guochun, Sun Deyou, Wilde S A, Yang Jinhui. 2007. The Hulan Group: its role in the evolution of the Central Asian orogenic belt of NE China. Journal of Asian Earth Sciences, 30(3): 542~556.
参考文献
Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of thewestern part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2): 253~273.
参考文献
Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500~504.
参考文献
Zhai Mingguo. 2011. Cratonization and the Ancient North China Continent: a summary and review. Science China: Earth Sciences, 54(8): 1110~1120.
参考文献
Zhang Chunyan, Zhang Xingzhou, Xia Qinghe. 2009. Zircon U-Pb age of siliceous rock from the central Jilin and its geological significance. Geoscience, 23(2): 256~261 (in Chinese with English abstract).
参考文献
Zhang Jiongfei. 1993. The geological age of the Seluohe group. Jilin Geology, 12(1): 51~52 (in Chinese with English abstract).
参考文献
Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Shi Jianrong, Chang Qingsong, Xiang Zhenqun, Chu Hang, Wang Jiasong. 2019. Geochemistry of the Neoarchean and Paleoproterozoic Al-rich metamorphic supracrustal rocks in the Huai'an complex, North China craton and its tectonic significances. Acta Geologica Sinica, 93(7): 1618~1638 (in Chinese with English abstract).
参考文献
Zhang Qi, Qian Qing, Zhai Mingguo, Jin Heijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications ofsanukite. Acta Petrologica et Mineralogica, 24(2): 117~125 (in Chinese with English abstract).
参考文献
Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1~1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2005. Late Archaean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136(2): 177~202.
参考文献
Zhou Jianbo, Wilde S A, Zhang Xingzhou, Zhao Guochun, Zheng Changqing, Wang Yuejun, Zhang Xiaohui. 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 487(3): 230~246.
参考文献
Zhou Jianbo, Wilde S A. 2013a. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian orogenic belt. Gondwana Research, 23(4): 1365~1377.
参考文献
Zhou Jianbo, Han Jie, Wilde S A, Guo Xiaodan, Zeng Weishun, Cao Jialin. 2013b. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: evidence and tectonic implications. Acta Petrologica Sinica, 29(2): 386~398 (in Chinese with English abstract).
参考文献
Zhou Jianbo, Shi Aiguo, Jing Yan. 2016. Combined NE Chinablocks: tectonic evolution and supercontinent reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042~1055 (in Chinese with English abstract).
参考文献
Zhou Jianbo, Cao Jialin, Han Wei, Li Gongyu. 2020. The Changchun-Yanjisuture zone: nature and tectonic implications. Acta Petrologica Sinica, 36(3): 635~643 (in Chinese with English abstract).
参考文献
陈跃军, 花艳秋, 李林山, 黄贤玉, 刘跃文, 李睿. 2005. 吉林敦化小蒲柴河地区张三沟岩组的建立. 世界地质, 24(2): 144~148.
参考文献
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.
参考文献
邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.
参考文献
吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社.
参考文献
李承东, 许雅雯, 张庆红, 周红英, 彭树华, 陈军强, 张阔, 赵利刚, 李省印. 2014. 吉南新太古代高镁安山岩及其地质意义. 吉林大学学报(地球科学版), 44(1): 186~197.
参考文献
李承东, 张福勤, 苗来成, 颉航强, 许雅雯. 2007a. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征. 岩石学报, 23(4): 767~776.
参考文献
李承东, 张福勤, 苗来成, 颉航强, 花艳秋, 许雅雯. 2007b. 吉林色洛河群的重新认识. 吉林大学学报(地球科学版), 37(5): 841~847.
参考文献
彭玉鲸, 齐成栋, 周晓东, 卢兴波, 董红辰, 李壮. 2012. 吉黑复合造山带古亚洲洋向滨古太平洋构造域转换: 时间标志与全球构造的联系. 地质与资源, 21(3): 261~265.
参考文献
唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495~2512.
参考文献
唐守贤, 宋振海. 1986. 色洛河群地质特征及建群依据. 吉林地质科技情报, 9: 2~9.
参考文献
万渝生, 颉颃强, 王惠初, 刘守偈, 初航, 肖志斌, 李源, 郝光明, 李鹏川, 董春艳, 刘敦一. 2021a. 冀东地区始太古代早期—冥古宙锆石的发现. 地质学报, 95(2): 277~291.
参考文献
万渝生, 颉颃强, 王惠初, 李鹏川, 初航, 肖志斌, 董春艳, 刘守偈, 李源, 郝光明, 刘敦一. 2021b. 冀东地区~3. 8 Ga TTG 岩石发现. 地质学报, 95(5): 1321~1333.
参考文献
王金芳, 李英杰, 李红阳, 董培培. 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质评论, 66(2): 289~306.
参考文献
王强, 赵振华, 许继峰, Wyman D A, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11~30.
参考文献
张春艳, 张兴洲, 夏庆贺. 2009. 吉林中部硅质岩中锆石U-Pb年龄及其地质意义. 现代地质, 23(2): 256~261.
参考文献
张炯飞. 1993. 色洛河群的地质时代. 吉林地质, 12(1): 51~52.
参考文献
张家辉, 王惠初, 田辉, 任云伟, 施建荣, 常青松, 相振群, 初航, 王家松. 2019. 华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义. 地质学报, 93(7): 1618~1638.
参考文献
张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.
参考文献
周建波, 韩杰, Wilde S A, 郭晓丹, 曾维顺, 曹嘉麟. 2013b. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报, 29(2): 386~398.
参考文献
周建波, 石爱国, 景妍. 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042~1055.
参考文献
周建波, 曹嘉麟, 韩伟, 李功宇. 2020. 长春-延吉缝合带: 性质与意义. 岩石学报, 36(3): 635~643.
目录contents

    摘要

    高镁安山岩主要产出于板块会聚边缘的大洋俯冲消减带岛弧环境,是岛弧岩浆作用的代表性产物,研究其相关构造属性,对示踪板块俯冲时限、俯冲带构造背景、大洋俯冲作用过程中岩石圈地幔演化等方面至关重要。长春-延吉缝合带位于佳木斯-兴凯地块和华北板块之间,为古亚洲洋的闭合和古太平洋的启动过程提供了关键的信息,但有关缝合带位置与俯冲方式仍然存在很大的争议。本文对采自长春-延吉缝合带吉东地区的色洛河群绿片岩样品进行了主量和微量元素分析以及锆石U-Pb年龄测定,结果表明这套样品原岩为一套赞岐质高镁安山岩,具有富Mg、低Al、低Ti、高Cr、Ni等特征,与日本Setouchi火山岩带中的赞岐岩具可比性,由俯冲板片(洋壳+上覆沉积物)部分熔融的流体与地幔发生混合而成,形成于华北板块北部边缘之上的陆缘岛弧环境,由吉林-黑龙江洋的俯冲所致。锆石U-Pb定年结果表明其形成时代为中三叠世(246±2 Ma)。本文证据显示原定义为中元古代的色洛河群时代可能为早中生代,并非元古宙或者晚古生代增生杂岩,而应该为华北板块上形成于早中生代的陆缘岛弧安山岩。区域构造分析显示,长春-延吉缝合带不是天山-索伦-西拉木伦-长春缝合带的东延部分,而是吉林-黑龙江高压变质带的南延部分,形成于三叠纪前后古太平洋板块的西向俯冲作用导致的佳木斯-兴凯地块与华北板块之间的拼合。

    Abstract

    High-Mg andesites are mainly exposed in island arc environment along subduction zone of oceanic plate, which is a representative product of island arc magmatism. Detailed studies on the tectonic affinities of high-Mg andesites are of great significance for tracing the timing, tectonic setting, and evolution of lithospheric mantle during the oceanic plate subduction. The Changchun-Yanji suture lies between the Jiamusi-Khanka Block and the North China Craton, which provides crucial information on the closure of the Paleo-Asian Ocean and the commencement of the westward subduction of the Paleo-Pacific. However, the location of the suture between these two blocks and the subduction mode of the Paleo-Pacific are still controversial. In this study, we collected seven green schists from the Seluohe Group along the Changchun-Yanji suture and report the major and trace elements and zircon U-Pb age of these samples.The results show that they are a suite of high-Mg andesites with higher MgO, Cr and Ni, and lower Al2O3, TiO2, which are similar to the Sanukite in the Setouchi volcanic belt in Japan. They were formed by the interaction between the mantle wedge and the fluids from subducted slab (oceanic crust and overlying sediments), and were formed in a continental marginal arc on the North China Craton, which was subducted by the Jilin-Heilongjiang Ocean in the Middle Triassic, with zircon U-Pb age of 246±2 Ma. The evidence in this study suggests that the formation time of the Seluohe Group may be Early Mesozoic, and it is not an accretionary complex formed in the Proterozoic or the Late Paleozoic, but a suite of early Mesozoic continental marginal arc andesites.Regional tectonic analyses show that the Changchun-Yanji suture is not the eastern extension of the Tianshan-Solonker-Xar Moron-Changchun suture, but the southern margin of the Jilin-Heilongjiang high-pressure metamorphic belt, which was formed during the collision between the Jiamusi-Khanka Block and North China Craton caused by the westward subduction of the Paleo-Pacific plate.

  • 高镁安山岩通常指与典型的岛弧安山岩相比具有更高的MgO(>5%),更低的TFeO/MgO(<1.5),以及Al2O3(<16%)和CaO(<10%)的安山岩(Tatsumi,2001),也有部分学者将其定义为SiO2=54%~65%,Mg#>45(Mg#=100×Mg/(Mg+Fe2+))的安山岩(Kelemen,1995)。20世纪60~70年代,部分橄榄岩-水体系的熔融实验表明,地幔橄榄岩可在含水的情况下部分熔融产生富镁安山岩(Kushiro,1969; Mysen et al.,1975)。20世纪70年代末,针对“含水地幔是否可以直接熔融形成原始安山质岩浆”这一问题,地质学家们开始对高镁安山岩进行研究,近几十年来高镁安山岩的研究受到了广泛的关注(Kay,1978; Tatsumi,19812001; Saunders et al.,1987; Defant et al.,1990; Schiano et al.,1995; Kelemen,1995; Hirose,1997; Gao Shan et al.,2004; 李承东等,2007a; 唐功建等,2010; 邓晋福等,20102015; 王金芳等,2020)。高镁安山岩主要形成于板块会聚边缘的大洋俯冲消减带岛弧环境,是岛弧岩浆作用的重要岩石类型。研究高镁安山岩的形成时代、成因以及构造背景,对示踪板块俯冲时限、俯冲带构造背景、大洋俯冲作用过程中岩石圈地幔演化等方面至关重要(Shiraki et al.,1980; Schiano et al.,1995; Yogodzinski et al.,2001; Kamei et al.,2004; 张旗等,2005; 王强等,2006; Tatsumi,2006; 邓晋福等,20102015; 唐功建等,2010; Ishizuka et al.,2014)。

  • 长春-延吉缝合带(长春-延吉增生杂岩带)位于佳木斯-兴凯地块与华北板块之间(图1a、 b),关于其成因与形成时代目前存在两种相反的观点。传统观点认为,长春-延吉缝合带是天山-索伦-西拉木伦-长春缝合带的东部延伸(Tang Kedong,1990; Li Jinyi,2006; Xiao Wenjiao et al.,2010),为古生代古亚洲洋闭合的产物(Li Jinyi,2006; Wu Fuyuan et al.,2007); 另一种观点认为,长春-延吉缝合带形成于三叠纪前后佳木斯-兴凯地块与华北板块之间的拼贴,与黑龙江杂岩带一起构成了吉林-黑龙江高压变质带(吉-黑高压带,Zhou Jianbo et al.,2009; 周建波等,2013b)。长春-延吉缝合带位于古亚洲洋与古太平洋两大构造域叠加与转换的关键部位,记录了古亚洲洋闭合和古太平洋启动的过程(彭玉鲸等,2012; Zhou Jianbo et al.,2013a; 周建波等,20162020)。但截至目前的研究来看,长春-延吉缝合带的形成时代和岩石组成上具有很大的争议,构造属性也不够明确,需要进一步的专项研究来解决这些争论。本次研究的地区(图1a),前人曾定义为色洛河群,指沿华北板块北缘发育的一套中元古代地层(唐守贤等,1986; 吉林省地质矿产局,1988),后期研究表明其为一套增生杂岩(李承东等,2007b; 周建波等,2013b2020),是沿长春-延吉缝合带分布的重要地质单元,其形成时代,构造属性的研究对于解决以上争议具有重要的意义。

  • 本文通过对长春-延吉缝合带金银别地区色洛河群绿片岩的岩石学、地球化学以及地质年代学方面的研究,探讨了其岩石组成、地球化学特征、形成时代以及构造背景,为判定长春-延吉缝合带的形成时代以及构造属性,古亚洲洋和古太平洋转换时间与机制提供了关键证据。

  • 1 地质背景及样品特征

  • 长春-延吉缝合带自西向东包括吉林-红旗岭段、桦甸-两江段以及华集岭-开山屯段三部分(图1a; 周建波等,2013b2020)。以延边地区的开山屯杂岩为代表,自西向东发育石头口门-烟筒山高压红帘石片岩,以及原定义为“呼兰群”、“色洛河群”、“青龙村群”等一系列沿该缝合带分布的构造杂岩(Wu Fuyuan et al.,2007; 周建波等,2013b)。

  • 研究区位于吉林省中部桦甸—两江一带,大地构造位置上处于华北克拉通东北缘的龙岗地块和中国东北地区佳木斯-兴凯地块的连接处(图1a),主要出露沿长春-延吉缝合带中部发育的色洛河群(唐守贤等,1986; 吉林省地质矿产局,1988; 李承东等,2007a2007b; 周建波等,2020),其南部发育太古宙TTG岩系(周建波等,2020),北部则发育大量的中生代花岗岩以及古生代和中生代地层(李承东等,2007b)。

  • 色洛河群最早由唐守贤等(1986)创建,为沿着华北地台北缘发育的中元古代变质火山-沉积岩系。同期报道的侵入该套地层中的花岗伟晶岩中白云母K-Ar年龄为1654 Ma(唐守贤等,1986)。吉林省地质矿产局(1988)同样认为色洛河群形成于中元古代,并将其划分为上下两段,认为上段为酸性火山岩,下段则以中基性-中性火山岩为主。张炯飞等(1993)对色洛河群中大量的小壳化石进行了定年研究,并将其与邻区相同层位(辽宁开原地区的清河镇群)进行了对比,认为色洛河群形成于早古生代寒武纪时期。周建波等(2013b)测定了色洛河群板庙子地区的砂岩和板岩中锆石U-Pb年龄,分别为255±3 Ma和264±3 Ma,将该地区中砂岩的形成年龄255±3 Ma作为色洛河群的形成时代下限年龄,认为色洛河群的形成时代为晚二叠世末期甚至可能为早三叠世。近期的野外地质调查和样品定年研究表明,色洛河群由不同时代、不同成因、不同构造样式以及不同变质程度的变质地层和变形的花岗岩组成(李承东等,2007b),因此被认为是长春-延吉缝合带内的增生杂岩(李承东等,2007b; 周建波等,2013b2020)。李承东等(2007b)将其划分为4个部分,分别为:① 新太古代(2534~2517 Ma)变质火山-沉积地层; ② 晚古生代变质火山-沉积地层,其中高镁英安岩的锆石SHRIMP年龄为252±5 Ma; ③ 二叠纪(~260 Ma)片麻状杂岩体; ④ 侏罗纪(~168 Ma)糜棱岩化花岗岩。不同地带的色洛河群在岩石组合上有所不同:在色洛河一带,色洛河群主要为一套变质火山-沉积岩系; 在金银别-清茶馆一带,色洛河群主要为变质碎屑岩-安山岩组合; 在板庙子-采炝子地区,色洛河群主要为一套变质砂岩-板岩组合; 而在海沟-两江一带的色洛河群则主要为一套变质碎屑岩-大理岩组合(周建波等,2020)。

  • 色洛河群作为研究区内最广泛分布的地质单元,是研究长春-延吉缝合带构造属性、形成时代等关键地质问题的直接载体。本文在色洛河群金银别一带共采集了7件绿片岩样品(图1a),野外可见明显的片理,样品呈暗绿色,片状构造,主要组成矿物为绿泥石(30%~40%)、黑云母(5%~20%)、斜长石(10%~20%)以及石英(10%~15%),多数矿物被定向拉长呈条带状分布,显示强烈的变形作用改造。

  • 2 测试方法

  • 自然资源部东北亚矿产资源评价重点实验室对样品进行了地球化学测试。主量元素氧化物含量使用X射线荧光光谱仪进行了测定,所采用的分析方法是X射线荧光玻璃熔片法,选用国家标准物质中心的07105(玄武岩)和07103(花岗岩)作为标准参照物质,分析的准确度和精度优于5%。微量元素分析采用的是电感耦合等离子质谱法(即ICP-MS),采用混合酸溶样法制备需要分析的样品,测试误差<10%(其中稀土元素含量的测试误差<7%)。

  • 图1 吉东地区长春-延吉缝合带构造简图(修改自周建波等,2013b

  • Fig.1 The tectonic map of the Changchun-Yanji suture in eastern Jilin Province (modified from Zhou Jianbo et al., 2013b)

  • 锆石同位素年代学样品的前期粉碎处理以及锆石的挑选工作在河北省廊坊市晨硕地质服务公司完成,样品粉碎后进行磁选以及重液分选,最后在双目显微镜下进行手工取样。挑选晶形较好,无色透明,表面光洁平整,并且没有明显裂痕和包裹体的锆石,将其粘贴在双面胶上,采用环氧树脂进行固定,等环氧树脂固化以后对其打磨使其中心部位暴露出来,抛光之后镀上碳膜。锆石阴极发光图像(CL图像)的拍摄在武汉上谱分析科技有限责任公司完成,所采用的仪器是高真空扫描电子显微镜(JSM-IT100),配备GATAN MINICL系统。

  • 锆石U-Pb同位素测年分析是在中国科学技术大学壳幔物质与环境重点实验室完成的。测试过程所采用的仪器是激光剥蚀电感耦合等离子体质谱仪(LA-ICPMS),该仪器由质谱仪系统(Agilent 7500a)和激光剥蚀系统(GeoLas 2005)组成。在测试的过程中,以He作为剥蚀载气,以Ar气作为补偿气体,为了改善分析精密度、提高仪器灵敏度,在等离子体中心气流(Ar+He)中加入少量的N2。本次测试以标准锆石91500作为外标,其U-Th-Pb同位素比值为Wiedenbeck et al.(1995)推荐值,以NIST610作为内标,每个测点的分析时间包括大约20~30 s的空白信号(载气测量)和50 s的样品信号。采用Glitter软件对锆石测定进行离线处理(van Achterbergh et al.,2001),包括对仪器灵敏度漂移校正、样品信号的选择、元素含量矫正以及U-Th-Pb同位素比值和年龄计算。样品加权平均年龄的计算以及U-Pb年龄谐和图的绘制采用Isoplot/Ex_ver3软件(Ludwig,2003)完成。

  • 3 测试结果

  • 3.1 主量和微量元素

  • 本文样品的主量元素氧化物和微量元素(包括稀土元素)含量均为去掉烧失量(1.9%~3.0%)后重新计算的结果(数据见Wang et al.,under revision)。样品中SiO2含量为57.2%~59.6%,Al2O3含量为14.2%~17.0%,MgO含量为5.5%~8.3%,Mg#为66~73,TFeO/MgO为0.67~0.94,TiO2含量为0.8%~0.9%,Na2O含量为3.0%~5.0%,K2O含量为1.3%~2.3%。在Zr/TiO2×10-4-Nb/Y图中(图2a),所有样品投影点均落在安山岩区。从K2O-SiO2图(图2b)中可以看出,多数样品属于中钾钙碱性系列安山岩,仅一个样品落在高钾钙碱性系列区。MgO-SiO2和SiO2-TFeO/MgO分类图显示,所有的样品均属于高镁安山岩,且落在Setouchi高镁安山岩范围内(图2c、d)。

  • 样品中轻稀土元素非常富集,重稀土元素相对亏损(LREE/HREE=7.12~9.66),Eu异常不明显(δEu=0.89~1.06)。所有样品中Nb、Ta等高场强元素相对亏损,而Rb、Ba和Sr等大离子亲石元素则相对富集。

  • 3.2 LA-ICP-MS锆石U-Pb测年

  • 从来自色洛河群的3个样品中一共获得了86个分析结果(数据见Wang et al.,under revision)。锆石均为无色透明,半自形至他形,CL图像中多数锆石颗粒可见较清晰的振荡环带(图3a、c、e)。

  • (1)绿片岩(17HLJ-65):从该样品的16颗锆石中获得了16次分析,测试结果中存在4个不谐和的数据,其余的谐和年龄为2515~246 Ma,5个太古宙锆石的加权平均年龄为2504±23 Ma(图3b; MSWD=0.049),3个较老的锆石年龄分别为450±7 Ma(17HLJ-65-1)、450±12 Ma(17HLJ-65-2)和504±6 Ma(17HLJ-65-14)。最年轻的4颗锆石加权平均年龄为 247±4 Ma(图3b; MSWD=0.027),其Th/U值分别为0.24、0.13、0.42和2.53,表明为岩浆锆石,因此247±4 Ma代表该绿片岩的原岩年龄。

  • (2)绿片岩(17HLJ-72):从该样品的50颗锆石中共获得了50次分析,结果中存在5个不谐和的数据,其余数据的年龄为2543~245 Ma。39个太古宙锆石的加权平均年龄为2500±10 Ma(图3d; MSWD=0.16)。最年轻的6颗锆石确定的加权平均年龄为246±4 Ma(图3d; MSWD=0.038),Th/U值均大于0.1,表明为岩浆锆石,因此246±4 Ma代表该绿片岩的原岩年龄。

  • (3)绿片岩(17HLJ-75):共从该样品的20颗锆石中获得了20次分析,测试结果中存在5个不谐和的数据,其余数据的年龄为2582~245 Ma。1个较老的锆石年龄为1809±84 Ma(17HLJ-75-9),11个太古宙锆石的加权平均年龄为2515±20 Ma(图3f; MSWD=1.5)。最年轻的3颗锆石的加权平均年龄为246±5 Ma(图3f; MSWD=0.028),其Th/U值均分别为0.86、0.51和1.03,表明为岩浆成因的锆石,故246±5 Ma代表该绿片岩的原岩年龄。

  • 4 讨论

  • 4.1 色洛河群的形成时代

  • 色洛河群的形成时代,一直以来都存在争议,目前主要存在中元古代(唐守贤等,1986; 吉林省地质矿产局,1988)、中元古代—早古生代寒武纪(张炯飞等,1993; 陈跃军等,2005)以及晚古生代二叠纪(李承东等,2007a; 周建波等,2013b)等几种不同的观点。

  • 从所采集的三个色洛河群高镁安山岩样品中,共获得了72个谐和锆石U-Pb年代学测试结果,范围为2582~245 Ma,主要显示两个峰期年龄,分别为247 Ma和2506 Ma(图4a)。较年轻的一组锆石年龄范围为249~245 Ma,加权平均年龄为 246±2 Ma(n =13,MSWD=0.031; 图4b),代表了该套绿片岩原岩的形成时间,说明色洛河群形成于中三叠世,并非晚二叠世末期或更早。

  • 4.2 原岩成因和构造背景

  • 主微量元素分析结果表明,色洛河群绿片岩原岩为安山岩(图2a),结合相关的岩石地球化学分类图解(图2c、d),则属于高镁安山岩。

  • 新近的研究表明,经典的高镁安山岩类主要包括四类,分别是日本西南四国东北部赞岐地区的Sanukite(赞岐岩)和日本西南Setouchi火山岩带的Sanukitoid(赞岐岩类)、日本南部玻安岛的Boninite(玻安岩)、美国西北部阿留申群岛中埃达克岛的Adakite(埃达克岩)以及墨西哥西北部巴哈半岛的Bajaite(巴哈岩)(Kay,1978; Defant et al.,1990; Kamei et al.,2004; 唐功建等,2010; 邓晋福等,2010)。Kamei et al.(2004)将地球化学成分与赞岐岩、玻安岩、埃达克岩和巴哈岩相近的高镁安山岩划分为赞岐质高镁安山岩(sanukitic HMAs)、玻安质高镁安山岩(boninitic HMAs)、埃达克质高镁安山岩(adakitic HMAs)和巴哈质高镁安山岩(bajaitic HMAs)。

  • 图2 吉东地区色洛河群绿片岩Zr/TiO2×10-4-Nb/Y图(a)(据Winchester et al.,1976)、K2O-SiO2图(b)(据Rickwood,1989)、MgO-SiO2图(c)(据邓晋福等,2010修改)和SiO2-TFeO/MgO图(d)(据邓晋福等,2010修改)

  • Fig.2 Zr/TiO2×10-4-Nb/Y diagram (a) (after Winchester et al., 1976) , K2O-SiO2 diagram (b) (after Rickwood, 1989) , MgO-SiO2 diagram (c) (modified from Deng Jinfu et al., 2010) and SiO2-TFeO/MgO diagram (d) (modified from Deng Jinfu et al., 2010) for green schists from the Seluohe Group in eastern Jilin Province

  • HMA—高镁安山岩; PQ—高镁安山岩的边界; LT-HMA—低温高镁安山岩; MT-HMA—中温高镁安山岩; HT-HMA—高温高镁安山岩; LF-CA—低铁钙碱性系列; CA—钙碱性系列; TH—拉斑系列

  • HMA—High-Mg andesites; PQ—the boundary of high-Mg andesites; LT-HMA—low temperature high-Mg andesites; MT-HMA—medium temperature high-Mg andesites; HT-HMA—high temperature high-Mg andesites; LF-CA—low iron calc-alkaline series; CA—calc-alkaline series; TH—tholeiitic series

  • 色洛河群高镁安山岩Sr平均值为779.16×10-6,(La/Yb)N平均值为9.68,低于埃达克质高镁安山岩的相关指标(Kay,1978); 其TiO2(平均值0.8%)、Sr、Ba(平均值470.83×10-6)、La(平均值17.76×10-6)与典型的玻安质高镁安山岩相比也明显偏高(Shiraki et al.,1980; Hickey et al.,1982; Cameron et al.,1983; Umino,1986; Taylor et al.,1994); La含量和(La/Yb)N值与墨西哥地区的巴哈岩相比较低(Rogers,1985; Saunders et al.,1987)。进一步对比显示,色洛河群高镁安山岩的地球化学元素含量与日本Setouchi火山岩带中的赞岐岩(SiO2=52.9%~64.2%,MgO=3.2%~11.8%,Al2O3=14.1%~18.5%,Mg#=61~79,TFeO/MgO=0.56~1.15,Cr=332×10-6~752×10-6,Ni=126×10-6~312×10-6,La=8.65×10-6~18.10×10-6,(La/Yb)N=5.14~10.13; Tatsumi et al.,19811982a1982b2003; Shimoda et al.,1998; Tatsumi,2006)相似,岩石地球化学分类图中,样品落入Setouchi高镁安山岩区(图2c、d),因此,我们认为色洛河群高镁安山岩属于赞岐质高镁安山岩。

  • 图3 吉东地区色洛河群绿片岩样品17HLJ-65、17HLJ-72、17HLJ-75的锆石CL图像(a、c、e)和U-Pb谐和图(b、d、f)

  • Fig.3 Representative cathodoluminescence (CL) images (a, c, e) and concordia diagrams (b, d, f) of zircons from green schist samples 17HLJ-65, 17HLJ-72 and 17HLJ-75 within the Seluohe Group in eastern Jilin Province

  • 高镁安山岩的成因主要有以下几种观点:① 含水地幔橄榄岩的直接熔融(Stern et al.,1989; Wood et al.,2009; Straub et al.,2011); ② 俯冲大洋板片(洋壳+上覆沉积物)部分熔融的熔体或流体与地幔发生混合(Tatsumi,20062008; 唐功建等,2010); ③ 拆沉的下地壳发生部分熔融产生的熔体与地幔橄榄岩之间的相互作用(Gao Shan et al.,2004)。

  • 低绿片岩相变质作用元素的迁移较少,因此样品中主要元素的特征可以用来反映原始岩浆的特征。色洛河群高镁安山岩具有高MgO、Mg#、Cr(平均值326.66×10-6)和Ni(平均值209.97×10-6)等特征,表明它不太可能是由基性下地壳铁镁质岩石部分熔融(Mg#<40,Atherton et al.,1993)产生的,而很可能与地幔有关。实验表明,含水条件下地幔橄榄岩可以部分熔融产生高镁安山质岩浆(Kushiro,1969; Mysen et al.,1975; Tatsumi,1981),样品中较低的La/Yb(11.77~18.24,平均值13.5)和Sr/Y(44.44~72.96,平均值53.22)同样指示含水流体的参与,而排除了板片熔体的作用(Drummond et al.,1990; Manya et al.,2007)。色洛河群高镁安山岩与日本Setouchi火山岩带中的赞岐岩具有相似的地球化学元素组成,而赞岐岩因富含MgO(Mg#>60)、Cr和Ni,富集大离子亲石元素,亏损高场强元素,通常被认为是由于俯冲板片(洋壳+上覆沉积物)释放的含水流体加入地幔楔后,促使地幔橄榄岩部分熔融形成的(Tatsumi,1982; Smithies et al.,2003; Mukasa et al.,2007; Manya et al.,2007; 唐功建等,2010)。色洛河群高镁安山岩中较高含量的Th(4.68×10-6~5.72×10-6)和Nd(16.32×10-6~19.9×10-6),同样指示俯冲板片(洋壳+上覆沉积物)流体的贡献(Gomez-Tuena et al.,2007)。与赞岐岩不同的是,样品中存在较高含量的Sr(721.3×10-6~943.4×10-6),暗示含水流体可能更多地来源于俯冲洋壳(李承东等,2007a2014)。

  • 图4 吉东地区色洛河群绿片岩谐和年龄分布直方图(a)和三叠纪锆石年龄加权平均统计图(b)

  • Fig.4 Relative age probability plot for concordant analyses (a) and weighted mean age plot of the Triassic zircon data (b) of green schists from the Seluohe Group in eastern Jilin Province

  • 高镁安山岩形成的构造背景,也是目前广泛关注的话题,普遍认为高镁安山岩主要形成于板块会聚边缘的俯冲消减带环境或洋内岛弧环境(Kay,1978; Tatsumi,1982; Rogers et al.,1985; Kelemen,1995; Shimoda et al.,1998)。K2O-SiO2图中(图2b),色洛河群高镁安山岩样品多数落在中钾钙碱性系列区域,少数落在高钾钙碱性系列区域,与岛弧环境形成的钙碱性安山岩相似。同时,样品具有明显亏损Nb、Ta、Ti元素,且Zr和Hf元素无明显正异常等特征,同样表明其形成于岛弧环境(Bi Junhui et al.,2015; Gribble et al.,1998)。样品中存在大量太古宙的锆石,这些年龄被广泛报道于华北克拉通的前寒武纪变质基底中(Zhao Guochun et al.,20022005; 张春艳等,2009; 张家辉等,2019; 万渝生等,2021a2021b),在中亚造山带内几乎没有发现(Zhao Guochun et al.,2002; 张春艳等,2009; Zhai Mingguo,2011),因此我们认为这一年龄区间的锆石来自于华北板块前寒武纪变质基底。近期的研究表明,华北板块与佳木斯-兴凯地块之间的吉林-黑龙江洋在270~230 Ma期间存在南向俯冲(Cao Jialin et al.,2020),因此我们认为色洛河群高镁安山岩形成于吉林-黑龙江洋在三叠纪期间向华北板块俯冲所导致的陆缘岛弧环境(图5a)。本次野外工作中未见特征性的增生杂岩出露,由此表明,色洛河群不是晚古生代前后的增生杂岩(李承东等,2007b; 周建波等,2013b),而应该是一套形成于早中生代的陆缘岛弧安山岩。

  • 4.3 构造意义

  • 长春-延吉缝合带形成的大地构造背景,长期以来都备受争议。前人多认为长春-延吉缝合带为天山-索伦-西拉木伦-长春缝合带的东延部分,是古亚洲洋于古生代期间闭合的产物(Tang Kedong,1990; Li Jinyi,2006; Xiao Wenjiao et al.,2010); 与之相反的观点认为长春-延吉缝合带是吉-黑高压带的南延组成部分,形成于三叠纪前后华北板块与佳木斯-兴凯地块之间的碰撞拼贴(Zhou Jianbo et al.,2013a; 周建波等,2013b2020)。

  • 图5 华北板块北缘东段中二叠世—早侏罗世构造演化模型

  • Fig.5 Tectonic evolution model for the eastern part of northern margin of the North China Craton during the middle Permian-early Jurassic

  • (a)—吉林-黑龙江洋向南俯冲到华北板块之下,形成色洛河群的高镁安山岩;(b)—佳木斯-兴凯地块向西漂移,与华北板块北缘发生碰撞拼贴,形成长春-延吉缝合带;(c)—佳木斯-兴凯地块与西边的松辽地块发生碰撞,形成吉黑高压带西缘组成部分

  • (a) —The Jilin-Heilongjiang Oceanic plate subducted beneath the North China Craton, which formed high-Mg andesites within the Seluohe Group; (b) —Jiamusi-Khanka block drift westward collided with the North China Craton, and formed the Changchun-Yanji suture; (c) —Jiamusi-Khanka block collided with the Songliao block, and formed the western part of the Jilin-Heilongjiang high-pressure metamorphic belt

  • 前人曾将长春-延吉缝合带内呼兰群、色洛河群以及青龙村群的形成时代分别置于早古生代、中元古代和新元古代(吉林省地质矿产局,1988)。最新的年龄结果表明:呼兰群变质杂岩中碎屑沉积物的形成时间为 287±6~239±11 Ma(Wu Fuyuan et al.,2007; 张春艳等,2009; Lü Linsu et al.,2011); 色洛河群变质杂岩中高镁安山岩的形成时间为 252±5 Ma(李承东等,2007a),本文最新研究表明其形成于中三叠世(246±2 Ma),变质碎屑岩的年龄为 255±3 Ma(周建波等,2013b); 青龙村群变质杂岩中黑云斜长片麻岩以及变质辉长岩的年龄分别为 250±3.7 Ma和 248±1 Ma(周建波等,2013b); 开山屯杂岩中碎屑锆石的峰期年龄在292±2~234±4 Ma之间(周建波等,2013b)。以上研究表明,长春-延吉缝合带主体形成时代为二叠纪到三叠纪之间(292~234 Ma),多数位于二叠纪—三叠纪界线附近,有大量杂岩形成于三叠纪(Cao Jialin et al.,2020; 周建波等,2020)。周建波等(2020)指出,长春-延吉增生杂岩带的变质年龄区间为240~220 Ma,峰期年龄~230 Ma最有可能代表该区高级变质的时代,同时代表佳木斯-兴凯地块与华北板块的最终拼合时代,这比天山-北山-索伦-西拉木伦河-长春断裂带的形成时间晚了30~20 Ma。我们的研究表明长春-延吉缝合带与佳木斯-兴凯地块西缘的增生杂岩带具有成因联系(Zhou Jianbo et al.,2009; 周建波等,2013b2020; Cao Jialin et al.,2020),佳木斯-兴凯地块西缘的增生杂岩带原岩年龄为270~200 Ma,变质时代为210~180 Ma(周建波等,2013b),显示与长春-延吉缝合带相似的原岩年龄和变质年龄,且二者均发育高压变质矿物,如烟筒山地区红帘石片岩中的多硅白云母(Cao Jianlin et al.,2020)和黑龙江蓝片岩中的蓝闪石(周建波等,2013b)。更为重要的是,佳木斯-兴凯地块在三叠纪前后的拼贴与古太平洋板块的西向俯冲有关,无关华北板块与西伯利亚板块之间的俯冲(Zhou Jianbo et al.,2009)。因此,我们认为长春-延吉增生杂岩带形成的构造背景与佳木斯-兴凯地块西缘的增生杂岩带相同,均为佳木斯-兴凯地块自东向西俯冲-拼贴而成(Zhou Jianbo et al.,2009),二者属于同一构造单元,将它们统称为“吉林-黑龙江高压变质带”(简称“吉黑高压带”,周建波等,2013b)。吉黑高压带的形成与三叠纪前后古太平洋板块向西俯冲有着密切的关系(Zhou Jianbo et al.,2009; 周建波等,2013b; Cao Jialin et al.,2020)。

  • 根据以上分析,笔者重建了华北板块北缘东段晚古生代以来的构造演化历史,大致分为三个阶段:① 270~240 Ma,吉林-黑龙江洋南向俯冲(Cao Jialin et al.,2020)导致在华北板块上形成陆缘岛弧(图5a),色洛河群高镁安山岩形成于该陆缘岛弧环境; ② 240~220 Ma,古太平洋板块的西向俯冲开启,佳木斯-兴凯地块向西漂移,沿长春—延吉一线与华北板块率先发生碰撞,形成了吉黑高压带南缘的长春-延吉增生杂岩带(图5b; 周建波等,2020); ③ 220~180 Ma,由于古太平洋板块的持续俯冲,佳木斯-兴凯地块与西边的松辽地块发生剪刀式闭合,形成吉黑高压带西缘的增生杂岩带(图5c; 周建波等,2020)。

  • 5 结论

  • (1)地球化学特征表明吉林中部色洛河群为一套赞岐质高镁安山岩,由俯冲板片(洋壳+上覆沉积物)部分熔融产生的流体交代地幔导致地幔部分熔融形成,形成于陆缘岛弧环境。

  • (2)原定义的色洛河群并非中元古代地层或晚古生代增生杂岩,而应该是一套位于华北板块上的陆缘岛弧安山岩,形成时代为中三叠世(246±2 Ma)。

  • (3)长春-延吉缝合带属于吉黑高压带的南延部分,形成于三叠纪前后古太平洋板块的俯冲作用导致的佳木斯-兴凯地块向华北板块北缘的俯冲与拼合过程。

  • 致谢:本文的测试工作得到了自然资源部东北亚矿产资源评价重点实验室及中国科学技术大学壳幔物质与环境重点实验室的支持。论文得到了主编及审稿专家的良好建议,在此表示感谢。

  • 参考文献

    • Atherton M P, Petford N. 1993. Ceneration of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144~146.

    • Bi Junhui, Ge Wenchun, Yang Hao, Zhao Guochun, Xu Wenliang, Wang Zhihui. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi massif, NE China: petrogenesis and tectonic implications. Lithos, 234: 27~46.

    • Cameron W E, McCulloch M T, Walker D A. 1983. Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters, 65(1): 75~89.

    • Cao Jialin, Zhou Jianbo, Li Long. 2020. The tectonic evolution of the Changchun-Yanji suture zone: constraints of zircon U-Pb ages of the Yantongshan accretionary complex (NE China). Journal of Asian Earth Sciences, 194: 104110.

    • Chen Yuejun, Hua Yanqiu, Li Linshan, Huang Xianyu, Liu Yuewen, Li Rui. 2005. Establishment and geological significance of Zhangsangou Formation-complex in Xiaopuchaihe area of Dunhua, Jilin Province. Global Geology, 24(2): 144~148 (in Chinese with English abstract).

    • Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyuan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesiticl/dioritic rocks (MA): two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).

    • Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Meng Fei, Ma Shuai, Yao Tu. 2015. Magmaticarc and ocean-continent transition: discussion. Geological Review, 61(3): 473~484 (in Chinese with English abstract).

    • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.

    • Drummond M S, Defant M J. 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503~21521.

    • Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recyclinglower continental Crust in the North China Craton. Nature, 432: 892~897.

    • Gomez-Tuena A, Langmuir C H, Goldstein S, Straub S M, Ortega-Gutierrez F. 2007. Geochemical evidence for slab melting in the Trans-Mexican volcanic belt. Journal of Petrology, 48(3): 537~562.

    • Gribble R F, Stern R J, Newman S, Bloomer S H, O'Hearn T. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magma genesis in back-arc basins. Journal of Petrology, 39(1): 125~154.

    • Hickey R L, Frey F A. 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta, 46: 2099~2115.

    • Hirose K. 1997. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25(1): 42~44.

    • Ishizuka O, Tani K, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10(2): 115~120.

    • Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magma, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75(3): 359~371.

    • Kay R W. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117~132.

    • Kelemen P B. 1995. Genesis of high Mg-number andesites and the continental-crust. Contributions to Mineralogy and Petrology, 120(1): 1~19.

    • Kushiro I. 1969. The system forsterite-diopside-silica with and without water at high pressures. American Journal of Science, 267: 269~294.

    • Li Chengdong, Xu Yawen, Zhang Qinghong, Zhou Hongying, Peng Shuhua, Chen Junqiang, Zhang Kuo, Zhao Ligang, Li Shengyin. 2014. Neoarchean high-Mg andesites and its geological significance in southern Jilin Province. Journal of Jilin University (Earth Science Edition), 44(1): 186~197 (in Chinese with English abstract).

    • Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Xu Yawen. 2007a. Zircon SHRMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area, Jilin Province, China. Acta Petrologica Sinica, 23(4): 767~776 (in Chinese with English abstract).

    • Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Hua Yanqiu, Xu Yawen. 2007b. Reconsideration of the Seluohe Group in Seluohe area, Jilin Province. Journal of Jilin University (Earth Science Edition), (37)5: 841~847 (in Chinese with English abstract).

    • Li Jinyi. 2006. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207~224.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California.

    • Lü Linsu, Mao Jingwen, Li Hongbo, Pirajno F, Zhang Zuoheng, Zhou Zhenhua. 2011. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China. Ore Geology Reviews, 43(1): 106~119.

    • Manya S, Masboko M A H, Nakamura E. 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Maragreenstone belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction? Precambrian Research, 159(3-4): 241~259.

    • Mukasa S B, Blatter D L, Andronikov A V. 2007. Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexicanvolcanic belt: isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc. Earth and Planetary Science Letters, 260(1-2): 37~55.

    • Mysen B O, Boettcher A L. 1975. Melting of a hydrous mantle; II, Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. Journal of Petrology, 16(3): 549~593.

    • Peng Yujin, Qi Chengdong, Zhou Xiaodong, Lu Xingbo, Dong Hongcheng, Li Zhuang. 2012. Transition from Paleo-Asian Ocean domain to Circum-Pacific ocean domain for the Ji-Hei composite orogenic belt: time mark and relationship to Global tectonics. Geology and Resources, 21(3): 261~265 (in Chinese with English abstract).

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rogers G, Saunders A D, Terrell D J, Verma S P, Marriner G F. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315(6018): 389~392.

    • Saunders A D, Rogers G, Marriner G F, Terrell D J, Verma S P. 1987. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: implications for the petrogenesis of post-subduction magmas. Journal of Volcanology and Geothermal Research, 32(1-3): 223~245.

    • Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377(6550): 595~600.

    • Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn B M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3-4): 479~492.

    • Shiraki K, Kuroda N, Urano H, Manuyama S. 1980. Clinoenstatite in boninites from the Bonin Islands, Japan. Nature, 285(5759): 31~32.

    • Smithies R H, Champion D C, Cassidy K F. 2003. Formation of earth's Early Archaean continental crust. Precambrian Research, 127(1-3): 89~101.

    • Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle-derived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in south-western superior province. Canadian Journal of Earth Sciences, 26(9): 1688~1712.

    • Straub S M, Gomez-Tuena A, Stuart F M, Zellmer G F, Espinasa-Perena R, Cai Y, Iizuka Y. 2011. Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters, 303(3-4), 337~347.

    • Tang Gongjian, Wang Qiang. 2010. High-Mg andesites and their geodynamic implications. Acta Petrologica Sinica, 26(8): 2495~2512 (in Chinese with English abstract).

    • Tang Kedong. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249~260.

    • Tatsumi Y. 1981. Melting experiments on a high-magnesian andesite. Earth and Planetary Science Letters, 54(2): 357~365.

    • Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth and Planetary Science Letters, 60(2): 305~317.

    • Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanicbelt, southwest Japan. Geology, 29: 323~326.

    • Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review of Earth and Planetary Sciences, 34(1): 467~499.

    • Tatsumi Y. 2008. Making continental crust: the sanukitoid connection. Chinese Science Bulletin, 53(11): 1620~1633.

    • Tatsumi Y, Ishizaka K. 1981. Existence of andesitic primary magma: an example from southwest Japan. Earth and Planetary Science Letters, 53(1): 124~130.

    • Tatsumi Y, Ishizaka K. 1982a. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60(2): 293~304.

    • Tatsumi Y, Ishizaka K. 1982b. Magnesian andesite and basalt from Shodo-Shima island, southwest Japan, and their bearing on the genesis of calc-alkaline andesites. Lithos, 15(2): 161~172.

    • Tatsumi Y, Shukuno H, Sato K, Shibata T, Yoshikawa M. 2003. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi volcanic belt, SW Japan. Journal of Petrology, 44(9): 1561~1578.

    • Taylor R N, Nesbitt R W, Vidal P, Harmon R S, Auvray B, Croudace I W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin-Islands, Japan. Journal of Petrology, 35(3): 577~617.

    • Umino S. 1986. Magma mixing in boninite sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research, 29(1-4): 125~157.

    • van Achterbergh E, Ryan C, Jackson S E, Griffin W L. 2001. Appendix 3 data reduction software for LA-ICPMS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences. Mineralogical Association of Canada, 239~243.

    • Wan Yusheng, Xie Hangqiang, Wang Huichu, Liu Shoujie, Chu Hang, Xiao Zhibin, Li Yuan, Hao Guangming, Li Pengchuan, Dong Chunyan, Liu Dunyi. 2021a. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(2): 277~291 (in Chinese with English abstract).

    • Wan Yusheng, Xie Hangqiang, Wang Huichu, Li Pengchuan, Chu Hang, Xiao Zhibin, Dong Chunyan, Liu Shoujie, Li Yuan, Hao Guangming, Liu Dunyi. 2021b. Discovery of ~3. 8 Ga TTG rocks in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(5): 1321~1333 (in Chinese with English abstract).

    • Wang Hongyan, Zhou Jianbo, Li Gongyu. Transition from the Paleo-Asian Ocean to Paleo-Pacific accretion in central Jilin (NE China): constraints from early Mesozoic high-Mg andesites. Gondwana Research, under revision.

    • Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2020. Late Carboniferous intraoceanic subduction of the Paleo-Asian Ocean: new evidences from the Zagayin high-Mg andesite in the Meilaotewula SSZ ophiolite. Geological Review, 66(2): 289~306 (in Chinese with English abstract).

    • Wang Qiang, Zhao Zhenhua, Xu Jifeng, Wyman D A, Xiong Xiaolin, Zi Feng, Bai Zhenhua. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in thenorthern Tianshan area: implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11~30 (in Chinese with English abstract).

    • Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1~23.

    • Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459~469.

    • Wood B J, Turner S P. 2009. Origin of primitive high-Mg andesite: constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4), 59~66.

    • Wu Fuyuan, Zhao Guochun, Sun Deyou, Wilde S A, Yang Jinhui. 2007. The Hulan Group: its role in the evolution of the Central Asian orogenic belt of NE China. Journal of Asian Earth Sciences, 30(3): 542~556.

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of thewestern part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2): 253~273.

    • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500~504.

    • Zhai Mingguo. 2011. Cratonization and the Ancient North China Continent: a summary and review. Science China: Earth Sciences, 54(8): 1110~1120.

    • Zhang Chunyan, Zhang Xingzhou, Xia Qinghe. 2009. Zircon U-Pb age of siliceous rock from the central Jilin and its geological significance. Geoscience, 23(2): 256~261 (in Chinese with English abstract).

    • Zhang Jiongfei. 1993. The geological age of the Seluohe group. Jilin Geology, 12(1): 51~52 (in Chinese with English abstract).

    • Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Shi Jianrong, Chang Qingsong, Xiang Zhenqun, Chu Hang, Wang Jiasong. 2019. Geochemistry of the Neoarchean and Paleoproterozoic Al-rich metamorphic supracrustal rocks in the Huai'an complex, North China craton and its tectonic significances. Acta Geologica Sinica, 93(7): 1618~1638 (in Chinese with English abstract).

    • Zhang Qi, Qian Qing, Zhai Mingguo, Jin Heijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications ofsanukite. Acta Petrologica et Mineralogica, 24(2): 117~125 (in Chinese with English abstract).

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1~1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2005. Late Archaean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136(2): 177~202.

    • Zhou Jianbo, Wilde S A, Zhang Xingzhou, Zhao Guochun, Zheng Changqing, Wang Yuejun, Zhang Xiaohui. 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 487(3): 230~246.

    • Zhou Jianbo, Wilde S A. 2013a. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian orogenic belt. Gondwana Research, 23(4): 1365~1377.

    • Zhou Jianbo, Han Jie, Wilde S A, Guo Xiaodan, Zeng Weishun, Cao Jialin. 2013b. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: evidence and tectonic implications. Acta Petrologica Sinica, 29(2): 386~398 (in Chinese with English abstract).

    • Zhou Jianbo, Shi Aiguo, Jing Yan. 2016. Combined NE Chinablocks: tectonic evolution and supercontinent reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042~1055 (in Chinese with English abstract).

    • Zhou Jianbo, Cao Jialin, Han Wei, Li Gongyu. 2020. The Changchun-Yanjisuture zone: nature and tectonic implications. Acta Petrologica Sinica, 36(3): 635~643 (in Chinese with English abstract).

    • 陈跃军, 花艳秋, 李林山, 黄贤玉, 刘跃文, 李睿. 2005. 吉林敦化小蒲柴河地区张三沟岩组的建立. 世界地质, 24(2): 144~148.

    • 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.

    • 邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.

    • 吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社.

    • 李承东, 许雅雯, 张庆红, 周红英, 彭树华, 陈军强, 张阔, 赵利刚, 李省印. 2014. 吉南新太古代高镁安山岩及其地质意义. 吉林大学学报(地球科学版), 44(1): 186~197.

    • 李承东, 张福勤, 苗来成, 颉航强, 许雅雯. 2007a. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征. 岩石学报, 23(4): 767~776.

    • 李承东, 张福勤, 苗来成, 颉航强, 花艳秋, 许雅雯. 2007b. 吉林色洛河群的重新认识. 吉林大学学报(地球科学版), 37(5): 841~847.

    • 彭玉鲸, 齐成栋, 周晓东, 卢兴波, 董红辰, 李壮. 2012. 吉黑复合造山带古亚洲洋向滨古太平洋构造域转换: 时间标志与全球构造的联系. 地质与资源, 21(3): 261~265.

    • 唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495~2512.

    • 唐守贤, 宋振海. 1986. 色洛河群地质特征及建群依据. 吉林地质科技情报, 9: 2~9.

    • 万渝生, 颉颃强, 王惠初, 刘守偈, 初航, 肖志斌, 李源, 郝光明, 李鹏川, 董春艳, 刘敦一. 2021a. 冀东地区始太古代早期—冥古宙锆石的发现. 地质学报, 95(2): 277~291.

    • 万渝生, 颉颃强, 王惠初, 李鹏川, 初航, 肖志斌, 董春艳, 刘守偈, 李源, 郝光明, 刘敦一. 2021b. 冀东地区~3. 8 Ga TTG 岩石发现. 地质学报, 95(5): 1321~1333.

    • 王金芳, 李英杰, 李红阳, 董培培. 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质评论, 66(2): 289~306.

    • 王强, 赵振华, 许继峰, Wyman D A, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11~30.

    • 张春艳, 张兴洲, 夏庆贺. 2009. 吉林中部硅质岩中锆石U-Pb年龄及其地质意义. 现代地质, 23(2): 256~261.

    • 张炯飞. 1993. 色洛河群的地质时代. 吉林地质, 12(1): 51~52.

    • 张家辉, 王惠初, 田辉, 任云伟, 施建荣, 常青松, 相振群, 初航, 王家松. 2019. 华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义. 地质学报, 93(7): 1618~1638.

    • 张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.

    • 周建波, 韩杰, Wilde S A, 郭晓丹, 曾维顺, 曹嘉麟. 2013b. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报, 29(2): 386~398.

    • 周建波, 石爱国, 景妍. 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042~1055.

    • 周建波, 曹嘉麟, 韩伟, 李功宇. 2020. 长春-延吉缝合带: 性质与意义. 岩石学报, 36(3): 635~643.

  • 参考文献

    • Atherton M P, Petford N. 1993. Ceneration of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144~146.

    • Bi Junhui, Ge Wenchun, Yang Hao, Zhao Guochun, Xu Wenliang, Wang Zhihui. 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern margin of the Jiamusi massif, NE China: petrogenesis and tectonic implications. Lithos, 234: 27~46.

    • Cameron W E, McCulloch M T, Walker D A. 1983. Boninite petrogenesis: chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters, 65(1): 75~89.

    • Cao Jialin, Zhou Jianbo, Li Long. 2020. The tectonic evolution of the Changchun-Yanji suture zone: constraints of zircon U-Pb ages of the Yantongshan accretionary complex (NE China). Journal of Asian Earth Sciences, 194: 104110.

    • Chen Yuejun, Hua Yanqiu, Li Linshan, Huang Xianyu, Liu Yuewen, Li Rui. 2005. Establishment and geological significance of Zhangsangou Formation-complex in Xiaopuchaihe area of Dunhua, Jilin Province. Global Geology, 24(2): 144~148 (in Chinese with English abstract).

    • Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyuan. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesiticl/dioritic rocks (MA): two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112~1118 (in Chinese with English abstract).

    • Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Meng Fei, Ma Shuai, Yao Tu. 2015. Magmaticarc and ocean-continent transition: discussion. Geological Review, 61(3): 473~484 (in Chinese with English abstract).

    • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.

    • Drummond M S, Defant M J. 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503~21521.

    • Gao Shan, Rudnick R L, Yuan Hongling, Liu Xiaoming, Liu Yongsheng, Xu Wenliang, Ling Wenli, Ayers J, Wang Xuanche, Wang Qinghai. 2004. Recyclinglower continental Crust in the North China Craton. Nature, 432: 892~897.

    • Gomez-Tuena A, Langmuir C H, Goldstein S, Straub S M, Ortega-Gutierrez F. 2007. Geochemical evidence for slab melting in the Trans-Mexican volcanic belt. Journal of Petrology, 48(3): 537~562.

    • Gribble R F, Stern R J, Newman S, Bloomer S H, O'Hearn T. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: implications for magma genesis in back-arc basins. Journal of Petrology, 39(1): 125~154.

    • Hickey R L, Frey F A. 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta, 46: 2099~2115.

    • Hirose K. 1997. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25(1): 42~44.

    • Ishizuka O, Tani K, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10(2): 115~120.

    • Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magma, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos, 75(3): 359~371.

    • Kay R W. 1978. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117~132.

    • Kelemen P B. 1995. Genesis of high Mg-number andesites and the continental-crust. Contributions to Mineralogy and Petrology, 120(1): 1~19.

    • Kushiro I. 1969. The system forsterite-diopside-silica with and without water at high pressures. American Journal of Science, 267: 269~294.

    • Li Chengdong, Xu Yawen, Zhang Qinghong, Zhou Hongying, Peng Shuhua, Chen Junqiang, Zhang Kuo, Zhao Ligang, Li Shengyin. 2014. Neoarchean high-Mg andesites and its geological significance in southern Jilin Province. Journal of Jilin University (Earth Science Edition), 44(1): 186~197 (in Chinese with English abstract).

    • Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Xu Yawen. 2007a. Zircon SHRMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area, Jilin Province, China. Acta Petrologica Sinica, 23(4): 767~776 (in Chinese with English abstract).

    • Li Chengdong, Zhang Fuqin, Miao Laicheng, Xie Hangqiang, Hua Yanqiu, Xu Yawen. 2007b. Reconsideration of the Seluohe Group in Seluohe area, Jilin Province. Journal of Jilin University (Earth Science Edition), (37)5: 841~847 (in Chinese with English abstract).

    • Li Jinyi. 2006. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 26(3-4): 207~224.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California.

    • Lü Linsu, Mao Jingwen, Li Hongbo, Pirajno F, Zhang Zuoheng, Zhou Zhenhua. 2011. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China. Ore Geology Reviews, 43(1): 106~119.

    • Manya S, Masboko M A H, Nakamura E. 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Maragreenstone belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction? Precambrian Research, 159(3-4): 241~259.

    • Mukasa S B, Blatter D L, Andronikov A V. 2007. Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexicanvolcanic belt: isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc. Earth and Planetary Science Letters, 260(1-2): 37~55.

    • Mysen B O, Boettcher A L. 1975. Melting of a hydrous mantle; II, Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. Journal of Petrology, 16(3): 549~593.

    • Peng Yujin, Qi Chengdong, Zhou Xiaodong, Lu Xingbo, Dong Hongcheng, Li Zhuang. 2012. Transition from Paleo-Asian Ocean domain to Circum-Pacific ocean domain for the Ji-Hei composite orogenic belt: time mark and relationship to Global tectonics. Geology and Resources, 21(3): 261~265 (in Chinese with English abstract).

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rogers G, Saunders A D, Terrell D J, Verma S P, Marriner G F. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315(6018): 389~392.

    • Saunders A D, Rogers G, Marriner G F, Terrell D J, Verma S P. 1987. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: implications for the petrogenesis of post-subduction magmas. Journal of Volcanology and Geothermal Research, 32(1-3): 223~245.

    • Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377(6550): 595~600.

    • Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn B M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters, 160(3-4): 479~492.

    • Shiraki K, Kuroda N, Urano H, Manuyama S. 1980. Clinoenstatite in boninites from the Bonin Islands, Japan. Nature, 285(5759): 31~32.

    • Smithies R H, Champion D C, Cassidy K F. 2003. Formation of earth's Early Archaean continental crust. Precambrian Research, 127(1-3): 89~101.

    • Stern R A, Hanson G N, Shirey S B. 1989. Petrogenesis of mantle-derived, LILE-enriched Archaean monzodiorites and trachyandesites (sanukitoids) in south-western superior province. Canadian Journal of Earth Sciences, 26(9): 1688~1712.

    • Straub S M, Gomez-Tuena A, Stuart F M, Zellmer G F, Espinasa-Perena R, Cai Y, Iizuka Y. 2011. Formation of hybrid arc andesites beneath thick continental crust. Earth and Planetary Science Letters, 303(3-4), 337~347.

    • Tang Gongjian, Wang Qiang. 2010. High-Mg andesites and their geodynamic implications. Acta Petrologica Sinica, 26(8): 2495~2512 (in Chinese with English abstract).

    • Tang Kedong. 1990. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton. Tectonics, 9(2): 249~260.

    • Tatsumi Y. 1981. Melting experiments on a high-magnesian andesite. Earth and Planetary Science Letters, 54(2): 357~365.

    • Tatsumi Y. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth and Planetary Science Letters, 60(2): 305~317.

    • Tatsumi Y. 2001. Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanicbelt, southwest Japan. Geology, 29: 323~326.

    • Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review of Earth and Planetary Sciences, 34(1): 467~499.

    • Tatsumi Y. 2008. Making continental crust: the sanukitoid connection. Chinese Science Bulletin, 53(11): 1620~1633.

    • Tatsumi Y, Ishizaka K. 1981. Existence of andesitic primary magma: an example from southwest Japan. Earth and Planetary Science Letters, 53(1): 124~130.

    • Tatsumi Y, Ishizaka K. 1982a. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60(2): 293~304.

    • Tatsumi Y, Ishizaka K. 1982b. Magnesian andesite and basalt from Shodo-Shima island, southwest Japan, and their bearing on the genesis of calc-alkaline andesites. Lithos, 15(2): 161~172.

    • Tatsumi Y, Shukuno H, Sato K, Shibata T, Yoshikawa M. 2003. The petrology and geochemistry of high-magnesium andesites at the western tip of the Setouchi volcanic belt, SW Japan. Journal of Petrology, 44(9): 1561~1578.

    • Taylor R N, Nesbitt R W, Vidal P, Harmon R S, Auvray B, Croudace I W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin-Islands, Japan. Journal of Petrology, 35(3): 577~617.

    • Umino S. 1986. Magma mixing in boninite sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research, 29(1-4): 125~157.

    • van Achterbergh E, Ryan C, Jackson S E, Griffin W L. 2001. Appendix 3 data reduction software for LA-ICPMS. In: Sylvester P, ed. Laser-Ablation-ICPMS in the Earth Sciences. Mineralogical Association of Canada, 239~243.

    • Wan Yusheng, Xie Hangqiang, Wang Huichu, Liu Shoujie, Chu Hang, Xiao Zhibin, Li Yuan, Hao Guangming, Li Pengchuan, Dong Chunyan, Liu Dunyi. 2021a. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(2): 277~291 (in Chinese with English abstract).

    • Wan Yusheng, Xie Hangqiang, Wang Huichu, Li Pengchuan, Chu Hang, Xiao Zhibin, Dong Chunyan, Liu Shoujie, Li Yuan, Hao Guangming, Liu Dunyi. 2021b. Discovery of ~3. 8 Ga TTG rocks in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(5): 1321~1333 (in Chinese with English abstract).

    • Wang Hongyan, Zhou Jianbo, Li Gongyu. Transition from the Paleo-Asian Ocean to Paleo-Pacific accretion in central Jilin (NE China): constraints from early Mesozoic high-Mg andesites. Gondwana Research, under revision.

    • Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2020. Late Carboniferous intraoceanic subduction of the Paleo-Asian Ocean: new evidences from the Zagayin high-Mg andesite in the Meilaotewula SSZ ophiolite. Geological Review, 66(2): 289~306 (in Chinese with English abstract).

    • Wang Qiang, Zhao Zhenhua, Xu Jifeng, Wyman D A, Xiong Xiaolin, Zi Feng, Bai Zhenhua. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in thenorthern Tianshan area: implications for Phanerozoic crustal growth in the Central Asia orogenic belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11~30 (in Chinese with English abstract).

    • Wiedenbeck M, Allé P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1~23.

    • Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3): 459~469.

    • Wood B J, Turner S P. 2009. Origin of primitive high-Mg andesite: constraints from natural examples and experiments. Earth and Planetary Science Letters, 283(1-4), 59~66.

    • Wu Fuyuan, Zhao Guochun, Sun Deyou, Wilde S A, Yang Jinhui. 2007. The Hulan Group: its role in the evolution of the Central Asian orogenic belt of NE China. Journal of Asian Earth Sciences, 30(3): 542~556.

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of thewestern part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2): 253~273.

    • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409(6819): 500~504.

    • Zhai Mingguo. 2011. Cratonization and the Ancient North China Continent: a summary and review. Science China: Earth Sciences, 54(8): 1110~1120.

    • Zhang Chunyan, Zhang Xingzhou, Xia Qinghe. 2009. Zircon U-Pb age of siliceous rock from the central Jilin and its geological significance. Geoscience, 23(2): 256~261 (in Chinese with English abstract).

    • Zhang Jiongfei. 1993. The geological age of the Seluohe group. Jilin Geology, 12(1): 51~52 (in Chinese with English abstract).

    • Zhang Jiahui, Wang Huichu, Tian Hui, Ren Yunwei, Shi Jianrong, Chang Qingsong, Xiang Zhenqun, Chu Hang, Wang Jiasong. 2019. Geochemistry of the Neoarchean and Paleoproterozoic Al-rich metamorphic supracrustal rocks in the Huai'an complex, North China craton and its tectonic significances. Acta Geologica Sinica, 93(7): 1618~1638 (in Chinese with English abstract).

    • Zhang Qi, Qian Qing, Zhai Mingguo, Jin Heijun, Wang Yan, Jian Ping, Wang Yuanlong. 2005. Geochemistry, petrogenesis and geodynamic implications ofsanukite. Acta Petrologica et Mineralogica, 24(2): 117~125 (in Chinese with English abstract).

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1~1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2005. Late Archaean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136(2): 177~202.

    • Zhou Jianbo, Wilde S A, Zhang Xingzhou, Zhao Guochun, Zheng Changqing, Wang Yuejun, Zhang Xiaohui. 2009. The onset of Pacific margin accretion in NE China: evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 487(3): 230~246.

    • Zhou Jianbo, Wilde S A. 2013a. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian orogenic belt. Gondwana Research, 23(4): 1365~1377.

    • Zhou Jianbo, Han Jie, Wilde S A, Guo Xiaodan, Zeng Weishun, Cao Jialin. 2013b. A primary study of the Jilin-Heilongjiang high-pressure metamorphic belt: evidence and tectonic implications. Acta Petrologica Sinica, 29(2): 386~398 (in Chinese with English abstract).

    • Zhou Jianbo, Shi Aiguo, Jing Yan. 2016. Combined NE Chinablocks: tectonic evolution and supercontinent reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042~1055 (in Chinese with English abstract).

    • Zhou Jianbo, Cao Jialin, Han Wei, Li Gongyu. 2020. The Changchun-Yanjisuture zone: nature and tectonic implications. Acta Petrologica Sinica, 36(3): 635~643 (in Chinese with English abstract).

    • 陈跃军, 花艳秋, 李林山, 黄贤玉, 刘跃文, 李睿. 2005. 吉林敦化小蒲柴河地区张三沟岩组的建立. 世界地质, 24(2): 144~148.

    • 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112~1118.

    • 邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.

    • 吉林省地质矿产局. 1988. 吉林省区域地质志. 北京: 地质出版社.

    • 李承东, 许雅雯, 张庆红, 周红英, 彭树华, 陈军强, 张阔, 赵利刚, 李省印. 2014. 吉南新太古代高镁安山岩及其地质意义. 吉林大学学报(地球科学版), 44(1): 186~197.

    • 李承东, 张福勤, 苗来成, 颉航强, 许雅雯. 2007a. 吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征. 岩石学报, 23(4): 767~776.

    • 李承东, 张福勤, 苗来成, 颉航强, 花艳秋, 许雅雯. 2007b. 吉林色洛河群的重新认识. 吉林大学学报(地球科学版), 37(5): 841~847.

    • 彭玉鲸, 齐成栋, 周晓东, 卢兴波, 董红辰, 李壮. 2012. 吉黑复合造山带古亚洲洋向滨古太平洋构造域转换: 时间标志与全球构造的联系. 地质与资源, 21(3): 261~265.

    • 唐功建, 王强. 2010. 高镁安山岩及其地球动力学意义. 岩石学报, 26(8): 2495~2512.

    • 唐守贤, 宋振海. 1986. 色洛河群地质特征及建群依据. 吉林地质科技情报, 9: 2~9.

    • 万渝生, 颉颃强, 王惠初, 刘守偈, 初航, 肖志斌, 李源, 郝光明, 李鹏川, 董春艳, 刘敦一. 2021a. 冀东地区始太古代早期—冥古宙锆石的发现. 地质学报, 95(2): 277~291.

    • 万渝生, 颉颃强, 王惠初, 李鹏川, 初航, 肖志斌, 董春艳, 刘守偈, 李源, 郝光明, 刘敦一. 2021b. 冀东地区~3. 8 Ga TTG 岩石发现. 地质学报, 95(5): 1321~1333.

    • 王金芳, 李英杰, 李红阳, 董培培. 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质评论, 66(2): 289~306.

    • 王强, 赵振华, 许继峰, Wyman D A, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11~30.

    • 张春艳, 张兴洲, 夏庆贺. 2009. 吉林中部硅质岩中锆石U-Pb年龄及其地质意义. 现代地质, 23(2): 256~261.

    • 张炯飞. 1993. 色洛河群的地质时代. 吉林地质, 12(1): 51~52.

    • 张家辉, 王惠初, 田辉, 任云伟, 施建荣, 常青松, 相振群, 初航, 王家松. 2019. 华北克拉通怀安杂岩新太古代和古元古代富铝变质表壳岩的地球化学特征及构造意义. 地质学报, 93(7): 1618~1638.

    • 张旗, 钱青, 翟明国, 金惟浚, 王焰, 简平, 王元龙. 2005. Sanukite(赞岐岩)的地球化学特征、成因及其地球动力学意义. 岩石矿物学杂志, 24(2): 117~125.

    • 周建波, 韩杰, Wilde S A, 郭晓丹, 曾维顺, 曹嘉麟. 2013b. 吉林-黑龙江高压变质带的初步厘定: 证据和意义. 岩石学报, 29(2): 386~398.

    • 周建波, 石爱国, 景妍. 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042~1055.

    • 周建波, 曹嘉麟, 韩伟, 李功宇. 2020. 长春-延吉缝合带: 性质与意义. 岩石学报, 36(3): 635~643.