-
全球锰矿床普遍在元古宙和显生宙时期形成,集中分布在早—中元古代和古近纪(Calvert et al.,1996; 阴江宁等,2014)。在我国,锰成矿时代相对较多,包括南华纪、泥盆纪和第四纪(杨瑞东,1991; 张飞飞等,2013; 朱祥坤等,2013; 阴江宁等,2014; 李启来等,2017; 李凤杰等,2019),而碳酸锰矿成矿时代集中于中—新元古代(Fan et al,1999)。国内锰矿集中在“泛扬子区”及周边的广西、湖南、贵州、云南、重庆、湖北和陕西,探明储量占全国的86%(阴江宁等,2014)。尽管近年在华北地区、东昆仑地区、新疆西天山地区探明锰矿储量位居前列,但总量仍旧较低(付勇等,2014; 高永宝等,2018; Xiang et al,2020; 赵静纯等,2020)。2020年我国锰矿石消费量4206.65×104 t,其中国内锰矿生产仅1031.9×104 t,而进口量则高达3166.55×104 t,对外依存度超过90%(中国矿产资源报告,2021)。锰矿的高需求量和国内锰矿低生产量的巨大差距,对锰矿的勘查提出了更高要求。
-
锰矿的成因多样,一直是锰矿床研究的重点与难点,概括起来包括生物化学成因(Polgári et al.,2016; Yu et al.,2019; Biondi et al.,2020)、海底热液成因(杨瑞东等,2010; 李启来等,2017; 高永宝等,2018)、洋流上升化学成因(杨瑞东,1991)、冷泉碳酸盐岩沉积(周琦,2008; 周琦等,2013; 杨克红等,2016)、古天然气渗漏成因(周琦等,2017)等。之所以出现如此之多的成因解释,究其原因,是因为锰是一种对氧化-还原环境变化极为敏感的元素,其地球化学特征受水体的氧化-还原条件的严格控制。锰元素在正常海水中通常以Mn2+形式存在,随着环境变为氧化和弱的碱性条件,开始转变为Mn3+和Mn4+的形式,形成锰的氧化物和氢氧化物沉淀,而水体变为还原环境时又会以Mn2+形式发生溶解(Calvert et al.,1996; 朱祥坤等,2013)。
-
目前针对三通沟地区万宝沟群锰矿的研究甚少,仅见赵静纯等(2020)对该锰矿的地质特征进行了初步的研究,认为该锰矿体位于万宝沟群碎屑岩群组内,锰矿石以菱锰矿为主,矿体受地层控制,属海相沉积型碳酸锰矿床,但是缺乏对该锰矿床沉积环境、成矿机制的系统认识。另外在与研究区同处东昆仑构造带上的洪水河—清水河地区中元古代蓟县系狼牙山组的变质砂岩中,发现有中型的沉积变质型铁锰矿床(刘世宝等,2016)。在甘肃与新疆交界地区也探明多处沉积变质型锰矿带(张凤霞等,2016),且这些含矿层位均位于中元古代地层内,也证实在阿尔金东部地区中元古代的含锰层位是稳定存在的。此类前寒武纪形成的锰矿之前仅在华北地区有过发现,近些年来勘探领域正在向西部地区拓展,更进一步表明开展三通沟地区锰矿的研究的时效性和必要性。本文根据野外实测剖面以及丰富的钻孔岩芯资料,结合前人对该区域的地质调查研究,深入分析三通沟地区万宝沟群锰矿床的地质特征、成矿环境、成矿机理和成矿物质来源,总结锰矿成矿规律,旨在为后期周边地区锰矿勘查工作及找矿思路提供理论指导。
-
1 区域地质背景与矿床地质
-
1.1 区域地质背景
-
青海省都兰县三通沟地区万宝沟群位于柴达木盆地南缘的东昆仑造山带南构造带内(图1a)。东昆仑造山带属于中央造山系的重要部分,经历了复杂的地质构造演化史,地层、岩性组合类型多样,构造变形作用及变质作用复杂,大区域受岩浆侵入影响,多金属矿产极为富集。
-
东昆仑周缘大陆块体主要由前寒武纪变质基底和新元古代—古生代以来的沉积盖层组成,分布在早古生代缝合带之间,被称之为“微陆块”或“地块”,如阿拉善地块、中祁连地块、柴达木地块、东昆北地块等。中元古代晚期—新元古代早期(约1300~900 Ma),Rodinia超大陆经Grenville造山运动逐渐成型。晋宁运动后,东昆仑周缘阿拉善、中祁连、柴达木等地块聚合成一个统一陆块,称“西域板块”。新元古代中晚期(约750~550 Ma),Rodinia超大陆大规模解体,裂谷盆地广泛发育于全球范围内,“西域板块”裂解成众多小地块并从Rodinia超大陆分离出来,原特提斯洋于东昆仑地区开始形成,沿秦岭—祁连—天山裂解,出现了南北两大构造域,东昆仑地区呈现出复杂的多岛洋体系,而后进入造山阶段,并于早古生代晚期随着扬子陆块一同拼接至古冈瓦纳大陆(陆松年,1998; 王国灿等,2007; Li et al.,2008; 陆松年等,2016; 潘桂棠等,2016; 张克信等,2018; 张建新等,2021)。
-
图1 三通沟地区构造位置(a)(据王兴等,2019修改)和三通沟地区地质简图(b)
-
Fig.1 Tectonic location (a) (modified from Wang Xing et al., 2019) and geological map of the Santonggou area (b)
-
因其复杂的大地构造地质演化史,在整个研究区内部发育较多的断裂构造。野外露头上可见在断裂周围的岩石显示出强烈的挤压破碎现象,沉积砂体受压应力作用形成断续的构造透镜砂体,连续性差,大小不均一,在透镜体周围发育大量的劈理构造。
-
1.2 矿区地质特征
-
矿区主要出露地层为中—新元古界万宝沟群、上三叠统八宝山组和第四系(图1b)。根据锰矿化特征,三通沟地区万宝沟群的碎屑岩系探明5条较大型锰矿带,呈条带状分布(图1b),自南向北、由老到新依次为Ⅰ~Ⅴ号矿带(图2),其中Ⅰ、Ⅱ和Ⅲ号矿带锰矿石品位10.0%~28.5%,平均15.1%,达到锰矿带级次; Ⅳ和Ⅴ号矿带锰矿石品位8.5%~20.7%,平均11.5%,为锰矿化带级次。根据锰矿所处位置的不同,将Ⅰ、Ⅱ和Ⅲ号称为下锰矿层,Ⅳ和Ⅴ号称为上锰矿层。
-
1.3 沉积相特征
-
根据野外实测及室内镜下薄片观察,万宝沟群主要发育一套大陆边缘的陆棚相和深水盆地相的组合。包括盆地相、陆源碎屑陆棚相、碳酸盐岩陆棚相3种沉积相(图3)。
-
(1)盆地相:由灰黑色薄层状深海硅质岩和碳质泥岩呈互层状组成(图3a),夹薄层状粉砂岩和含砾细砂岩,为下锰矿层赋存沉积相类型。深海盆地中可见由浊流形成的浊积扇,主要发育浊积水道,可进一步识别出由含砾细砂岩组成的浊积水道和以细砂岩为主的浊流水道两种类型。含砾细砂岩中砾石成分复杂,多以火山岩砾石为主,直径1~30 mm,具定向性,分选磨圆均较差(图3b),而浊流细砂岩主要发育块状层理构造(图3c),直接沉积于含锰硅质岩、粉砂质泥岩之上,岩性突变,碎屑颗粒分选、磨圆差,岩屑含量较高且成分复杂(图3d)。
-
(2)陆源碎屑陆棚相:进一步细分为浅水陆棚、深水陆棚和局限深水陆棚3种亚相。浅水陆棚:由细砂岩、粉砂岩与泥质粉砂岩、碳质泥岩交替变化组成。该沉积环境中夹多套英安岩,其中发育火山角砾和气孔构造(图3e)。深水陆棚:主要由灰黑色薄层状碳质泥岩、粉砂质泥岩组成,二者呈互层状产出,地层中上部夹3 m厚的球粒状硅质岩(图3f),该类型的硅质岩稀少,仅见于西秦岭地区太阳顶群(曾允孚等,1993)。局限深水陆棚:由灰黑色硅质岩及硅质泥岩组成,夹薄层灰黑色粉砂质泥岩和粉砂岩(图3g),岩石中富含有机质纹层(图3h),局部夹有凝灰质(图3i),是上锰矿层的主要赋存沉积相类型。
-
(3)碳酸盐岩陆棚相:岩性主要为中—细晶白云岩,白云石呈半自形—他形晶。
-
从沉积环境来看,三通沟地区万宝沟群的上、下锰矿层的沉积环境存在着差别,下锰矿层的Ⅰ、Ⅱ和Ⅲ号锰矿带发育于深海盆地相中(图3j、k),而上锰矿层的Ⅳ和Ⅴ号锰矿带形成于局限深水陆棚环境(图3l)。
-
2 样品采集及测试方法
-
本文分析测试样品采于三通沟地区野外剖面及4口钻孔岩芯。磨制显微薄片35件(钻孔岩芯7件,野外剖面28件)、电子探针薄片10件(均取自于野外剖面)。镜下薄片鉴定和电子探针测试均在成都理工大学沉积地质研究院实验室完成。主微量元素和稀土元素分析22件样品,其中下部锰矿层8件(Ⅰ号锰矿体2件、Ⅱ号锰矿体3件、Ⅲ号锰矿体3件),上部锰矿层6件(Ⅳ号锰矿体3件、Ⅴ号锰矿体3件),围岩8件,样品的前期处理以及测试工作均由武汉上谱分析科技有限责任公司完成。主量元素采用波长色散X射线荧光光谱仪(型号ZSX Primus Ⅱ)进行测试分析,检测依据为GB/T14506.28—2010; 微量元素和稀土元素利用电感耦合等离子体质谱仪(型号Agilent 7700e)进行测试分析,分析质量RSD优于10%。碳氧同位素分析10件,其中上部锰矿层3件、下部锰矿层3件、围岩4件,由中科院西北生态环境资源研究院地球化学分析测试中心完成,测试仪器为稳定同位素质谱计(型号MAT253),采用GasBench II连续流法测试,检测依据为DZ/T0184.17—1997,测试精度均优于0.1‰。
-
图2 三通沟地区万宝沟群综合地层柱状图
-
Fig.2 Comprehensive stratigraphic column of Wanbaogou Group in Santonggou area
-
3 结果
-
3.1 矿石特征
-
3.1.1 矿物组分特征
-
三通沟地区锰矿石以钙菱锰矿为主,其次是原生碳酸锰矿物后期氧化所形成的氧化锰矿物,偶见锰方解石、铁菱锰矿。在露头上可见碳酸锰矿石,氧化锰矿物相对较少,且基本分布在地表至地表以下4 m范围内。伴生矿物为石英、黏土矿物、草莓状黄铁矿、有机质、方解石、菱铁矿等。
-
图3 三通沟地区万宝沟群沉积相特征图
-
Fig.3 Sedimentary facies characteristics of Wanbaogou Group in Santonggou area
-
(a)—薄层状粉砂岩与泥质粉砂岩互层,盆地相;(b)—含砾细砂岩,砾石具定向性,浊积水道;(c)—块状细砂岩,浊积水道,红色圆圈内为地质锤;(d)—细粒岩屑石英砂岩,(正交光);(e)—深灰色英安岩,含大量的火山角砾和气孔构造;(f)—球粒状硅质岩,圆球状;(g)—灰黑色硅质岩、粉砂质泥岩夹粉砂岩,局限深水陆棚;(h)—黑色条纹状有机质纹层,(单偏光),局限深水陆棚;(i)—凝灰质泥岩,(正交光),局限深水陆棚;(j)—Ⅰ号锰矿体宏观特征;(k)—Ⅲ号锰矿体宏观特征;(l)—Ⅴ号锰矿体宏观特征
-
(a) —thin bedded siltstones interbedded with argillaceous siltstones, basin facies; (b) —pebbly fine sandstone with directional gravel, turbidity channel facies; (c) —massive fine sandstone, turbidity channel facies, in the red circle is the geological hammer; (d) —fine grained lithic quartz sandstone (cross polarized light) ; (e) —dark grey dacite with abundant volcanic breccia and vesicular structure; (f) —spherulite siliceous rocks, chondrule; (g) —greyblack siliceous rock, silty mudstone siltstone is intercalated with siltstone, restricted deep shelf facies; (h) —black banded organic lamination (plane-polarized light) , restricted deep shelf facies; (i) —tuffaceous mudstone (cross polarized light) , restricted deep shelf facies; (j) —macroscopic characteristics of manganese ore block Ⅰ; (k) —macroscopic characteristics of manganese ore block Ⅲ; (l) —macroscopic characteristics of manganese ore block Ⅴ
-
钙菱锰矿:粒径较大(图4a~f),部分聚集成团簇状(图4b、f),有的钙菱锰矿包裹自生的细小石英颗粒(图4c)。偶见细小的石英脉纵向切穿锰矿层(图4d)。
-
铁菱锰矿:该矿物多为细—中粒自形较好的菱面体,零星分布于黏土岩中(图4g)。锰方解石:通常呈他形亮晶粒状分布在球粒状菱锰矿内部,或是分布于团簇状菱锰矿的空隙中,也见菱锰矿包裹锰方解石(图4h)。
-
黄铁矿:存在于下部锰矿层,主要以草莓状的显微团粒、链环状聚合在一起,呈现顺层发育的纹层状或是条带状,或是呈单个草莓状零星分布(图4e)。粒径1~10 μm,大部分大于6 μm(图4f)。
-
图4 三通沟地区锰矿层中典型矿物显微镜下及电子显微照片
-
Fig.4 Microscopic photos and electron image of typical minerals in manganese deposits in Santonggou area
-
(a)—钙菱锰矿,呈放射状球粒分散于黏土矿物中,(正交光);(b)—钙菱锰矿层,含大量有机质,菱锰矿间隙内伴生大量黄铁矿和绿色黏土矿物,(单偏光);(c)—钙菱锰矿与石英不均匀镶嵌分布,(正交光);(d)—钙菱锰矿层与黏土层呈韵律分布,后期发育的石英脉体切穿,且钙菱锰矿层具粒序层理,(正交光);(e)—球状钙菱锰矿包裹黄铁矿(扫描电镜背散射照片);(f)—草莓状黄铁矿顺层分布,位于钙菱锰矿层之间(扫描电镜背散射照片);(g)—黏土岩内发育自形好的菱形铁菱锰矿(扫描电镜背散射照片);(h)—菱锰矿颗粒包含锰方解石(扫描电镜背散射照片)
-
(a) —calcium rhodochrosite dispersed in the clay minerals as radial chondrules (cross polarized light) ; (b) —calcium rhodochrosite bed, containing a lot of organic matter, and a large amount of pyrite and green clay minerals are associated in the rhodochrosite gap (plane-polarized light) ; (c) —calcium rhodochrosite and quartz uneven inlaid distribution (cross polarized light) ; (d) —the calcium rhodochrosite and clay layers are distributed rhythmically and cut through by quartz veins developed later, and the calcium rhodochrosite has graded bedding (cross polarized light) ; (e) —pelletal calcium rhodochrosite is coated with pyrite (scattered electron image) ; (f) —pyrite framboids is distributed along layers, sandwiched between calcium rhodochrosite layers (backscattered electron image) ; (g) —the euhedral rhombohedral capillitite is developed in the clay (backscattered electron image) ; (h) —the rhodochrosite grains contain manganese calcite (backscattered electron image)
-
黏土矿物:呈纹层状,与钙菱锰矿层呈韵律间互产出,单偏光镜下可见为一些绿色的黏土质(图4b),呈丝状、棒状或球状大量紧密编织在一起,伴有纹层状黑色有机质。
-
3.1.2 矿石组构特征
-
研究区原生碳酸锰矿石的结构类型多样,包括:① 细晶—粉晶结构:锰矿石多由粒径10~40 μm的显微小球粒状钙菱锰矿颗粒构成,同时伴生大量草莓状黄铁矿、有机质、黏土矿物及细小的石英颗粒(图4a); ② 泥晶—微晶结构:与细晶—粉晶结构相类似,但菱锰矿颗粒多小于10 μm,呈微球粒状密集分布; ③ 显微凝块结构:由细晶—粉晶的球粒状钙菱锰矿相互聚集凝合呈豆荚状或长条状,粒径50~300 μm,且矿石的品位越高,所成集合体堆积越密集,粒径越大(图4c); ④ 砂屑泥晶结构:由泥晶—微晶的钙菱锰矿组成不规则状的砂屑,内部结构较为均一,直径约50~150 μm,砂屑内部含少量有机质及细粒石英(图4b); ⑤ 条带状纹层构造:存在于下锰矿层,钙菱锰矿层与黏土层呈韵律状交替出现,分界线呈密集排列的平直纹层,具有明显的定向性,一个钙菱锰矿及黏土层厚约1~2 mm(图4d)。
-
3.2 地球化学特征
-
3.2.1 主量元素
-
样品的主量元素测试结果如表1所示。下部锰矿层中MnO、P2O5、TFe2O3含量相对高于上部锰矿层,而上部锰矿层的TiO2和Al2O3含量明显高于下部锰矿层。围岩的SiO2、TiO2含量高于锰矿层,CaO、P2O5含量低于锰矿层。锰矿整体属于高硅、低铁、低磷型锰矿。
-
主量元素的相关性关系图解如图5所示。结果表明:上部锰矿层中Al2O3只与TiO2之间具有较高的正相关性。下部锰矿层中Al2O3与TiO2、MnO、MgO显示出强烈的正相关,而与SiO2、CaO、P2O5负相关。围岩中Al2O3与MgO、K2O、TFe2O3显示出强烈的正相关,而与SiO2负相关。
-
3.2.2 微量元素特征
-
三通沟地区锰矿含锰岩系的微量元素测试结果见表2。锰矿层和围岩在不同的微量元素含量之间存在显著的差异,泥岩中的微量元素总量普遍较高,部分元素的含量差异也十分明显,对此,本文针对含锰岩系的微量元素进行了PAAS标准化(图6),标准化值参见McLennan(1989)。
-
图5 三通沟地区锰矿主量元素相关关系图(a中分区底图据Crerar et al.,1982)
-
Fig.5 Correlation diagrams of major elements of manganese ore in Santonggou area (partition in a is modified after Crerar et al., 1982)
-
从配分模式图(图6)中可以看出,不论上下锰矿层,Co、Sr、Pb、U元素明显富集(上部锰矿层Sr不明显富集),Ni、Cu、Zn元素则少量富集,V、Zr、Nb、Ba元素含量相对较低(上部锰矿层Ba含量相对高),Cr、Rb、Th元素明显亏损。在围岩中,硅质泥岩Co、Ni、Cu、Zn、Pb、U元素明显富集,V、Cr、Rb、Zr、Nb元素中等富集,Cr、Sr、Ba、Th元素明显亏损; 硅质岩样品整体特征与硅质泥岩相类似,但Co、Sr、Ba元素存在相反的状态,表现为Co严重亏损,Sr、Ba富集。
-
3.2.3 稀土元素特征
-
研究区含锰岩系的稀土元素测试结果如表2所示。采用保守方法计算Ce异常,(Ce/Ce*)PAAS=[Ce/(Pr2/Nd)]PAAS,以避免邻近La正异常的干扰(Lawrence and Kamber,2006; Zhang et al.,2020)。锰矿石和围岩的∑REE+Y的总含量相差较大,硅质泥岩样品总量普遍较高。
-
从稀土元素的PAAS标准化配分模式图(图7)显示,上、下锰矿层轻稀土和重稀土元素均无分馏现象((Nd/Yb)PAAS平均值分别为0.95与1.05)。下部锰矿层Ce均显著正异常,大部分样品Eu与Y正异常。上部锰矿层Ce正异常,Eu与Y无异常。围岩中,硅质岩的配分图明显靠下,表明稀土元素总量较低,轻稀土和重稀土元素无明显分馏((Nd/Yb)PAAS平均值为0.88),存在较弱的Ce负异常,轻微的Y正异常; 泥岩样品的配分图靠上,轻稀土和重稀土元素也无分馏现象((Nd/Yb) PAAS平均值为0.97),Ce、Eu、Y无异常。
-
3.2.4 碳氧同位素特征
-
研究区碳同位素测试分析结果如表3所示。锰矿石δ13C均值为-11.08‰,而围岩δ13C均值为-4.69‰。
-
相较于围岩而言锰矿石的δ13C负偏程度明显更大(图8a),上部锰矿层均值-10.21‰,下部锰矿层均值-11.95‰,介于无机碳值和有机碳值之间(0‰~-28‰),并且很接近两者混合的平均值(-14‰),研究区锰矿石的δ13C值与Mn含量存在显著的负相关,相关系数R2=0.8; 另外,通过对比其他锰矿床的δ13C值与Mn含量之间的关系,同样显示出相同的负相关性(图8b)。
-
图6 三通沟地区锰矿微量元素PAAS标准化配分模式图(标准化值参见McLennan,1989)
-
Fig.6 PAAS-normalized trace elements distribution patterns of manganese ore in Santonggou area (PAAS after Mclennan, 1989)
-
图7 三通沟地区锰矿稀土元素PAAS标准化配分模式图(标准化值参见McLennan,1989)
-
Fig.7 PAAS-normalized rare elements distribution patterns of manganese ore in Santonggou area (PAAS after McLennan, 1989)
-
4 讨论
-
4.1 氧化还原环境分析
-
研究区含锰岩系多为硅质岩、碳质泥岩等“黑色岩系”。在上部锰矿层见有机质纹层(图4h),表明水动力较弱; 下部锰矿层的硅质岩内含黄铁矿颗粒,都反映了锰沉积时较为缺氧的还原环境(李娟等,2013; 何志威等,2014)。
-
(1)Mn/Fe值法:彻底的Fe-Mn分离是形成较高工业价值锰矿的先决条件,岩石中的Mn/Fe值能直观地反映出成矿过程中Mn和Fe的分离程度(Roy,2006; Maynard,2021)。Mn/Fe值较大时,水体完全氧化或是完全还原,Mn和Fe难以分离; Mn/Fe值较小时,水体适度氧化,则Mn和Fe利于分离(Naeher et al.,2013; 朱祥坤等,2013; 史富强等,2016)。三通沟地区上锰矿层的Mn/Fe比值在1~2之间,与辽宁瓦房子锰矿床相同(Fan et al.,1999); 下锰矿层Mn/ Fe比值在1~6之间,均值为3.13,更接近于大塘坡式锰矿床(4~5)(Yu et al.,2016),二者Mn/Fe值均较低,表明Fe在Mn沉积之前就已经沉淀完全,锰矿沉积时水体已经处于适度氧化的状态,且下锰矿层较上锰矿层更为氧化。
-
(2)稀土元素分析:研究表明,无论从哪方面考虑,碳酸盐岩的REE+Y配分模式和Ce异常均与现代含氧海水相似。浅海碳酸盐岩中的Ce异常不受成岩蚀变的影响,能够保存海洋中过去环境条件的记录,可用于研究古海相氧化还原(Liu et al.,2019)。但在进行稀土元素的异常值分析之前需排除陆源碎屑的影响。陆源碎屑物质通常含有稳定的Al、Zr、Th等元素,若稀土元素主要是碎屑输入,则REE+Y的总含量与Zr、Th、Al之间应该存在较强的正相关关系(Frimmel,2009; Liu et al.,2019)。三通沟地区下锰矿层中∑REE+Y含量与Al、Zr、Th显示相关性很低(图9a~c),且锰矿石中Al2O3与各种REE+Y元素(包括(Nd/Yb)PAAS、Y/Y*、Y/Ho、Eu/Eu*)大部分负相关或不相关(图9d~g),表明下锰矿层基本不受陆源碎屑物质的影响。而上锰矿层的REE+Y的总含量与Al、Th强正相关,与Zr弱正相关。所以稀土元素异常值不能用于上锰矿层氧化还原环境的分析。稀土元素中Ce元素对氧化还原环境的变化十分敏感。在氧化水体中Ce3+会被Fe-Mn氧化物所吸附,迅速被转化为不溶的Ce4+(即CeO2),导致表层氧化水体呈现强烈Ce负异常; 而在低氧或缺氧环境下,不溶的Ce4+则被还原为可溶的Ce3+进入水体中,导致海水呈现Ce的弱异常(Bau and Koschinsky,2009; Tostevin et al.,2016)。因此,在含氧海洋环境下形成的锰氧化物,尤其是水成Fe-Mn结核,通常具有明显的Ce正异常(Bau et al.,2014)。许多大型的沉积碳酸锰矿床都显示出明显的Ce正异常(图10a),并且其REE+Y配分模式与海底水成Fe-Mn结核/结壳具有高度相似性(图10b),在本研究中下锰矿层的REE+Y配分模式亦是如此(图10a)。表明下锰矿层锰最初被氧化成不溶的锰氧化物或氢氧化物,在沉积时通过吸附较多含量Ce进而沉淀至含氧化水体中而呈现Ce异常。即下锰矿层的Mn是在较氧化的环境下,以氧化物或氢氧化物形式沉淀富集的。
-
图8 三通沟地区锰矿δ13C与δ18O(a)和碳酸锰矿床中δ13C值与Mn含量散点图(b)(数据引自Zhang et al.,2020)
-
Fig.8 Correlation between δ13C and δ18O in Santonggou area (a) , and scatter plots of δ13C value and Mn content in manganese carbonate deposits (b) (data cited from Zhang et al., 2020)
-
图9 三通沟地区锰矿主量、微量和稀土元素的相关关系图
-
Fig.9 Correlation of major, trace and rare earth elements of manganese ore in Santongou area
-
(3)草莓状黄铁矿粒径:沉积岩中的草莓状黄铁矿的相关特征已被广泛用于沉积古环境的推断(常晓琳等,2020)。草莓状黄铁矿的平均粒径为3~5 μm,反映水体硫化缺氧; 平均粒径为4~6 μm,且零星出现粒径>10 μm时,反映水体缺氧; 平均粒径为 6~10 μm,且部分粒径>10 μm,并形成自形晶较好的黄铁矿,反映水体次氧化; 而草莓状黄铁矿的最大粒径>20 μm时,反映水体处于氧化—次氧化状态(Wilkin and Arthur,2001; Bond and Wignall,2010)。三通沟地区下锰矿层中发育大量的草莓状黄铁矿,尽管黄铁矿的粒度分布不均,绝大部分大于6 μm(图4e),甚至少量粒径可达15 μm,零星见有半自形的黄铁矿,表明菱锰矿形成于氧化—次氧化的水体环境中。
-
(4)碳同位素分析:碳同位素可以用于沉积的氧化还原环境的分析中。研究表明,在较还原环境下,Mn2+与CO2-3直接结合而沉淀形成的锰碳酸盐矿物,继承了海水中无机碳储库的同位素组成; 而通过沉淀和转化机制形成的锰碳酸盐矿物,其碳同位素组成则同时受无机碳储库和有机碳储库的同位素组成的影响(安正泽等,2014)。研究区锰矿石的δ13C值与Mn含量存在显著的负相关,表明碳酸锰并非Mn2+与 CO2-3直接结合而沉淀形成,而是受成岩期岩石的孔隙水中有机酸的影响所形成,其反应式为:
-
通过这一反应,能够将沉积物中的Mn4+还原为Mn2+,进而为Mn2+与 CO2-3结合形成菱锰矿提供大量的Mn2+(Calvert et al.,1996; Algeo and Ingall,2007; Maynard,2021)。同时,三通沟地区万宝沟群上、下锰矿层的锰矿石的δ13C负偏明显,分别为-10.21‰和-11.95‰,均接近于无机碳值和有机碳值两者混合的平均值(-14‰),这表明锰矿石中的碳主要来源于沉积物中呈亏损的δ13C的有机质中所含的CO2-3,并与海水中所溶解的无机碳有一定程度的混合(Okita and Shanks,1992; Kuleshov and Bych,2002; 朱祥坤等,2013; Wu et al.,2016; 高永宝等,2018; Fang et al.,2020; Zhang et al.,2020),由此可以判断,三通沟地区万宝沟群锰矿石中的锰碳酸矿物是转化机制作用所形成的。
-
图10 具有明显Ce正异常的碳酸锰矿床(a)和现代Fe-Mn结核/结壳REE+Y配分模式(b)(据董志国等,2020; Zhang et al.,2020)
-
Fig.10 Manganese carbonate deposit with obvious Ce positive anomaly (a) and REE+Y pattern of modern Fe-Mn nodules/crusts (b) (after Dong Zhiguo et al., 2020; Zhang et al., 2020)
-
以上分析表明,三通沟地区万宝沟群上、下锰矿层形成时的氧化还原条件经历了成锰期海水含氧→黑色页岩沉积时期缺氧的两阶段演化过程。锰矿形成初期,是以锰氧化物或氢氧化物的形式进行锰的富集; 随后,在早成岩阶段的较还原环境中,伴随有机物质的参与,早期锰的氧化物或氢氧化物中的Mn4+被还原并释放出Mn2+,而有机物质则被氧化释放出大量CO2-3,二者结合、沉淀出菱锰矿,并富集成锰矿床。
-
4.2 成矿物质来源
-
锰矿的成矿物质来源,是沉积型锰矿研究的主要内容。沉积型锰矿床中Mn质的来源主要包括陆源碎屑输入和海底热液来源两种,其中以海底热液占主导(Polgári et al.,2016; Yu et al.,2016; 董志国等,2020)。上锰矿层中发育的凝灰质成分(图4i),下部锰矿层含砾细砂岩中可见火山岩岩屑,砂岩成分成熟度低(图4d),这些特征均表明,成锰期海底热液活动强烈(董志国等,2020)。
-
(1)主量元素判识:锰矿石的SiO2/Al2O3比值,远高于正常的陆源比值3.6,反映出含锰岩系受到了热水沉积作用影响。从SiO2与Al2O3图解显示:三通沟地区万宝沟群下锰矿层绝大多数落在热液沉积区域(图5a),而且Boström(1983)针对现代海底表层沉积物中的主量元素研究提出判断沉积物受热水喷流影响:即Al/(Al+Fe+Mn)值<0.35、(Fe+Mn)/Ti值>20±5、Fe/Ti 值>20时,属热水沉积典型特征。三通沟地区万宝沟群下锰矿层样品的Al/(Al+Fe+Mn)值介于0.09~0.16之间;(Fe+Mn)/Ti值介于106.3~266.85之间; Fe/Ti值在13~98.6之间,均值为57.1,这些特征也反映其热液的成因。上锰矿层则处于正常沉积及其与热液沉积的过渡区域(图5a)。主量元素反映上锰矿层并不具有明显的热液成因特征,且上锰矿层中,可作为陆源输入代替指标的Al2O3及TiO2含量明显高于下锰矿层,甚至接近围岩,反映其明显受到陆源碎屑输入的影响,即Mn可能来源于硅酸盐风化。但是上锰矿层沉积期火山活动强烈,深部热液很可能沿着区域断裂上升至沉积盆地,伴随热液而来的Mn质,在盆地边缘沉积下来。三通沟地区万宝沟群上锰矿层的Mn含量低于下部,很可能与陆源碎屑锰质稀少以及热液来源的锰质不足有关。
-
(2)稀土元素判识:稀土元素中Eu的正异常通常是指示高温热液流体或是热液来源的沉积物(Bau and Dulski,1995; Douville et al.,1999)。虽然也有人指出,在非热液环境中,Eu2+存在于缺氧碱性的孔隙水中,参与硫酸盐或碳酸盐矿物晶格也可导致Eu出现正异常,这与早成岩过程中硫酸盐还原和有机质降解作用密切相关(Martinez-Ruiz et al.,1999; Xiong et al.,2012)。但是在三通沟地区万宝沟群下锰矿层中Eu/Eu*值与MnO+CaO+MgO的含量表现出无相关性特征(图9i),表明Eu正异常并非Eu2+参与矿物晶格取代Mn、Ca和Mg离子富集而成,而是海底热液的产物(Bau and Dulski,1995,1996; Bau et al.,2014; Surya Prakash et al.,2012)。
-
综上来看,三通沟地区万宝沟群上、下锰矿层Mn矿物质的来源存在着明显的差别,下锰矿层Mn质主要来源于海底热液,而上锰矿层受陆源碎屑及火山活动双重的影响,表现出正常沉积与热液沉积的结合,即陆源碎屑与热液都提供了锰质来源。
-
4.3 成矿构造环境
-
岩石的主量元素和稀土元素可以用于构造环境的分析。Murray(1994)提出用Al2O3/(Al2O3+Fe2O3)比值区分沉积物的构造背景,其比值范围为0.5~0.9之间时,属大陆边缘沉积区。三通沟地区万宝沟群上锰矿层Al2O3/(Al2O3+Fe2O3)值为0.63~0.69,属于大陆边缘沉积区。而下部锰矿层值为0.23~0.61,均值0.34,反映其远离大陆边缘的沉积特征。其次,SiO2-K2O/Na2O图解可以判别沉积岩的构造背景(Roser and Korsch,1986)。从样品的SiO2-K2O/Na2O投影点所示(图11a),三通沟地区万宝沟群上锰矿层、围岩以及少量下锰矿层样品投影点落在了被动大陆边缘背景区。而La/Ce-Al2O3/(Al2O3+Fe2O3)图解也反映三通沟地区万宝沟群锰矿层沉积于大陆边缘的构造背景(图11b)(Murray,1994)。
-
以上结果表明,三通沟地区万宝沟群上、下锰矿层在成矿构造背景上也存在差异,下锰矿层位于水体深度较深的较远离陆源的盆地内或盆地边缘,而上锰矿层则更靠近大陆边缘。
-
4.4 锰矿床成矿模式
-
有关碳酸锰矿的形成,目前主要存在两种观点:一是Mn2+在还原环境中迁移富集,通过置换碳酸盐矿物直接沉淀形成碳酸锰矿; 二是Mn2+在还原性海水中迁移富集,随着环境变为强氧化环境,以锰氧化物或氢氧化物沉积埋藏在缺氧带之下,通过成岩过程中和有机物反应最终形成碳酸锰矿沉淀(Roy,2006; Johnson et al.,2016; Herndon et al.,2018; 董志国等,2020)。
-
前述综合分析认为三通沟地区万宝沟群上、下锰矿层在矿物质来源和成矿构造环境两方面存在着差异:下锰矿层中的Mn2+以海底热液为主要来源,沉积于水体深度较深的远离陆源的盆地边缘; 上锰矿层成矿物质既有热液来源也有陆源碎屑来源,沉积更靠近大陆边缘环境。二者在成矿的氧化-还原环境变化过程上是一致的,最初均是在次氧化条件下锰元素以氧化物或是氢氧化物的形式沉淀,在埋藏过程的早成岩阶段,成岩转变为较还原条件,锰氧化物或氢氧化物被还原成Mn2+,并与有机质被氧化时释放出的CO2-3结合,以碳酸锰形式沉淀,逐渐富集形成锰矿床。据此,本文建立了三通沟地区万宝沟群锰矿的2种成矿模式:局限深水陆棚相锰成矿模式和盆地相锰成矿模式(图12)。
-
图11 三通沟地区锰矿构造背景图解(a据Roser and Korsch,1986; b底图据Murray,1994)
-
Fig.11 Tectonic setting diagrams of manganese ore in Santonggou area ( (a) after Roser and Korsch, 1986; (b) after Murray, 1994)
-
图12 三通沟地区万宝沟群锰矿成矿模式图
-
Fig.12 Metallogenic model of Wanbaogou Group manganese deposit in Santonggou area
-
(a)—盆地相锰成矿模式;(b)—局限深水陆棚相锰成矿模式
-
(a) —basin manganese metallogenic model; (b) —restricted deep shelf manganese metallogenic model
-
4.4.1 盆地相锰成矿模式
-
新元古代之前,全球构造背景较为稳定,海洋底层长期处于缺氧状态,海底热液带来的锰质在海水中聚集,为锰的沉积提供了先决条件。新元古代中晚期,Rodinia超大陆开始解体,东昆仑构造带这时处于伸展拉张构造背景,原特提斯于东昆仑周缘开始扩张,东昆仑南部地区处于初始洋盆环境,为锰沉积提供了场所。“雪球地球”事件后,大量陆源风化磷酸盐等营养成分进入海洋系统,海洋氧含量增加,在海水逐步氧化的过程中,Mn和Fe发生分离,为锰矿形成提供便利(Xu et al.,2021)。三通沟地区万宝沟群下锰矿层位于该水体较深的盆地边缘,距离深海热液喷口相对更近,水体深度较大,海底热液提供了大量的锰质来源及有机质。而此时若有密度流将浅部含氧水体幕式灌入深水盆地中去,则会造成海水底部短暂的氧化,迅速沉淀出锰氧化物颗粒,而后埋藏进入底部沉积物中造成沉积物中孔隙水出现Mn2+过饱和状态,同时将海水浅层有机质带入深水盆地,加之本身有机质含量较高,与有机质在早成岩阶段发生化学作用导致大量次生碳酸锰沉淀下来(图12a)。
-
在现代的波罗的海,北大西洋带来的含氧地表水频繁注入盆地(Sternbeck and Sohlenius,1997)。高盐度的表层水迅速下沉到波罗的海微咸水柱的底部为深海盆地通风,直至溶解的氧被氧化还原反应完全消耗。Yu(2016)将其命名为“幕式充氧”模型。在研究中,根据岩性特征识别出的盆地浊积扇沉积,野外观察其细砂岩无明显的沉积构造(图3c),直接沉积于含锰硅质岩、粉砂质泥岩之上,岩性突变明显,镜下观察显示其组分中岩屑含量较高且成分复杂,石英基本无分选和磨圆(图3d),表现为快速沉积特点,为砂质碎屑流沉积。而在其下的含锰岩系中见含砾细砂岩,砾石成分复杂,多以火山岩岩屑为主,具定向性,分选磨圆均较差。值得注意的是,在薄片下还可见1~2 cm厚的菱锰矿层与深水黏土岩呈现互层状出现,且菱锰矿层具粒序层(图4d),这些特征指示频繁有浊流砂体带入。表明此时水体的氧化还原环境变化频繁且剧烈,与前人研究的深水盆地内成锰矿特征极为相似(Yu et al.,2016; Planavsky et al.,2018)。本研究表明,下锰矿层沉积时期,超大陆裂解背景下较为强烈的构造活动使得研究区深海浊流频繁发生,将含氧水体带入深水盆地中,盆地底部形成暂时的氧化—次氧化环境,使得锰氧化富集,形成了由深水浊流引起的幕式充氧锰成矿模型。
-
4.4.2 局限深水陆棚相锰成矿模式
-
万宝沟群沉积中晚期,随着东昆仑周缘地块进一步裂解,地块周缘陆内裂谷盆地、陆缘裂陷盆地发育,原特提斯继续扩张,强烈的构造运动使得洋盆差异性沉降,靠近陆缘的一侧海底隆起,形成次级洼陷及若干相对水体较深的局限台地。由硅酸盐风化产生的Mn2+随陆源碎屑输入海水中,海底深部热液排放出的Mn2+,也在成矿早期沿海洋底流或是浓度梯度上涌运移至盆地边缘的浅海陆棚环境中,由于次级洼陷的存在,Mn2+进入富集阶段,浓度能达到较高的水平。海侵时,海水中溶解的Mn2+上涌至氧化还原界面与斜坡交界地带,并且成矿水介质变为弱氧化态,此时首先在该界面附近沉淀出锰氧化物。进一步海侵时最初沉淀的锰氧化物的周围孔隙水环境变为弱还原状态,锰氧化物发生部分溶解提高孔隙水中Mn2+浓度,伴随海侵的上升流还会带来丰富的有机质,从而提高初级生产力,导致水体中有机物的总量增加和消耗掉较多溶解氧,碎屑物质的供应也相应减少,这时有机质和锰氧化物会被迅速下沉掩埋,两者在早成岩阶段发生相互作用创造碱性环境,极大地促使碳酸锰矿的形成(图12b)(Algeo and Ingall,2007; 夏国清等,2010; 杨胜堂等,2016; 高永宝等,2018; Duan et al.,2020; Zhang et al.,2020)。Roy(2006)将该成矿模式称为“浴缸边”模式。本研究中碳质泥岩以及硅质泥岩夹层的出现,表明该局限深水陆棚亚相中锰含量整体不高。
-
5 结论
-
(1)三通沟地区万宝沟群锰矿的锰矿石类型主要为原生沉积的钙菱锰矿,其次是在近地表原生碳酸锰矿物经后期氧化所形成的氧化锰矿物,偶见少量的锰方解石、铁菱锰矿。锰矿石具有条带状纹层构造,泥晶—细晶结构、显微凝块结构、砂屑泥晶结构。
-
(2)下锰矿层的Ce正异常、菱锰矿层相伴生的草莓状黄铁矿粒度特征,以及上下锰矿层的Mn/ Fe值、碳同位素负偏值等特征都说明,锰矿的形成经历了锰质先氧化富集、后还原成矿的过程。
-
(3)下锰矿层的主量元素特征分析、稀土元素Eu和Y的正异常,均表明其锰质主要来源于海底热液; 上锰矿层的SiO2/Al2O3图解、高Al2O3和TiO2含量以及频繁的火山活动,表明上锰矿层锰质具有陆源和热液输入双重来源。
-
(4)下锰矿层沉积于远离陆源的深水盆地边缘; 上锰矿层则更靠近于被动大陆边缘。
-
(5)三通沟地区万宝沟群锰矿发育局限深水陆棚相锰成矿和盆地相锰成矿两种模式。
-
参考文献
-
Algeo T J, Ingall E. 2007. Sedimentarycorg: P ratios, paleocean ventilation, and Phanerozoic atmospheric po2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3~4): 130~155.
-
An Zhengze, Zhang Renbiao, Chen Jiacai, Qin Ying, Pan Wen, Wu Guiwu, Peng Ganyun, Zheng Chao, Zhang Feifei, Zhu Xiangkun, Wang Haibin. 2014. Geological and geochemical characteristics of Daotuo superlarge manganese ore deposit in Songtao County of Guizhou Province: Constraint on formation mechanism of Mn-carbonate ores. Mineral Deposits, 33(4): 870~884 (in Chinese with English abstract).
-
Bau M, Dulski P. 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2~3): 213~223.
-
Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79: 37~55.
-
Bau M, Koschinsky A. 2009. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemistry Journal, 43(1): 37~47.
-
Bau M, Schmidt K, Koschinsky A, Hein J, Kuhn T, Usui A. 2014. Discriminating between different genetic types of marine ferromanganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381: 1~9.
-
Biondi J C, Polgári M, Gyollai I, Fintor K, Mojzsis S J. 2020. Biogenesis of the Neoproterozoic kremydilite manganese ores from Urucum (Brazil)—a new manganese ore type. Precambrian Research, 340: 105624.
-
Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geological Society of America Bulletin, 122(7~8): 1265~1279.
-
Boström K. 1983. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. In: Rona P A, Boström K, Laubier L, Smith K L Jr, eds. Hydrothermal Processes at Seafloor Spreading Centers. Boston, MA: Springer, 473~489.
-
Calvert S E, Pedersen T F. 1996. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales. Economic Geology, 91(1): 36~47.
-
Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, Hou Mingcai. 2020. The microscopic analysis of pyrite framboids and application in pale-oceanography. Acta Sedimentologica Sinica, 38(1): 150~165 (in Chinese with English abstract).
-
Crerar D A, Namson J, Chyi M S, Williams L, Feigenson M D. 1982. Manganiferous cherts of the franciscan assemblage: I, general geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers. Economic Geology, 77(3): 519~540.
-
Dong Zhiguo, Zhang Lianchang, Wang Changle, Zhang Banglu, Peng Zidong, Zhu Mingtian, Feng Jing, Xie Yueqiao. 2020. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237~255 (in Chinese with English abstract).
-
Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo I. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627~643.
-
Duan J B, Fu Y Z, Zhang Z W, Xiao J F, Wu C Q. 2020. Genesis of the Dounan manganese deposit of southeast Yunnan, China: Constraints from the mineralogy and geochemistry of micronodules. Journal of Geochemical Exploration, 214: 106541.
-
Fan D L, Yang P J. 1999. Introduction to and classification of manganese deposits of China. Ore Geology Reviews, 15: 1~15.
-
Fang H, Tang D J, Shi X Y, Lechte M, Shang M, Zhou X Q, Yu W C. 2020. Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation (ca. 1. 58 Ga), North China Platform: Genesis and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966.
-
Frimmel H E. 2009. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology, 258: 338~353.
-
Fu Yong, Xu Zhigang, Pei Haoxiang, Jiang Ran. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 88(12): 2192~2207 (in Chinese with English abstract).
-
Gao Yongbao, Teng Jianxin, Li Wenyuan, Chen Denghui, Sui Qinglin, Jing Delong, He Yongkang, Bai Jianke. 2018. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, northwest China. Acta Petrologica Sinica, 34(8): 2341~2358 (in Chinese with English abstract).
-
He zhiwei, Yang Ruidong, Gao Junbo, Cheng Wei, Zhang Renbiao, Zhang Pingyi. 2013. Sedimentary geochemical characteristics of manganese deposit in Xixibao, Songtao County, Guizhou Province. Geochemistry, 42(6): 576~588 (in Chinese with English abstract).
-
Johnson J E, Webb S M, Ma C, Fischer W W. 2016. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochimica et Cosmochimica Acta, 173: 210~231.
-
Kuleshov V N, Bych A F. 2002. Isotopic composition (δ13C, δ18O) and origin of manganese carbonate ores of the USA deposit (Kuznetskii Alatau). Lithology Mineral Resources, 37(4): 330~343.
-
Lawrence M G, Kamber B S. 2006. The behavior of the rare earth elements during estuarine mixing-revisited. Marine Chemistry, 100: 147~161.
-
Li Fengjie, Lei Yulong, Gong Guanglin, Zhang Hao, Shen Fan, Jing Xigui, Cheng Xiaoyu. 2019. Geochemical characteristics and sedimentary environment analysis from Datangpo Formation in Neoproterozoic Nanhua System, southwestern Hunan Province—an example from Zhaodong manganese ore deposits in Jingzhou County, Hunan Province, China. Earth Science, 44(10): 3484~3494 (in Chinese with English abstract).
-
Li Juan, Yu Bingsong, Guo Feng. 2013. Depositional setting and tectonic background analysis on lower Cambrian black shales in the northern of Guizhou Province. Acta Sedimentologica Sinica, 31(1): 20~31 (in Chinese with English abstract).
-
Li Qilai, Yi Haisheng, Xia Guoqing, Ji Changjun, Jin Feng. 2017. Characteristics and implication of carbon and oxygen isotopes in Ga-rich manganese-bearing rock series in Dongping, Guangxi. Earth Science, 42(9): 1508~1518 (in Chinese with English abstract).
-
Liu Shibao, Zhang Aikui, Liu Guanglian, Zhou Qinglu, Zhang Daming, Wang Shengming, Liu Yongle. 2016. Geological characteristics of the Hongshuihe iron-manganese deposit in eastern Kunlun metallogenic belt and its discovery significance. Northwest Geology, 49(1): 197~205 (in Chinese with English abstract).
-
Liu X M, Hardisty D S, Lyons T W, Swart P K. 2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta, 248: 25~42.
-
Li Z X, Bogdanova S V, Collins A S, Davidson A, Waele B D, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179~210.
-
Lu Songnian. 1998. A review of advance in the research on the Neoproterozoic Rodinia supercontinent. Geological Review, 44(5): 489~495 (in Chinese with English abstract).
-
Lu Songnian, Hao Guojie, Xiang Zhenqun. 2016. Precambrian major geological events. Earth Science Frontiers, 23(6): 140~155 (in Chinese with English abstract).
-
Martinez-Ruiz F, Ortega-Huertas M, Palomo I. 1999. Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): Implications for trace-element remobilization. Terra Nova, 11(6): 290~296.
-
Maynard J B. 2021. Bedded manganese deposits. In: David A, Scott A E, eds. Encyclopedia of Geology (Second Edition). Academic Press: Elsevier, 931~944.
-
McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(8): 169~200.
-
Ministry of Natural Resources, PRC. 2021. China Mineral Resources Report 2021. Beijing: Geological Publishing House(in Chinese with English abstract).
-
Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimenlary Geology, 90(3-4): 213~232.
-
Naeher S, Gilli A, North R P, Hamann Y, Schubert C J. 2013. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology, 352: 125~133.
-
Okita P M, Shanks W C. 1992. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico and Taojiang, China. Chemical Geology, 99(1): 139~163.
-
Pan Guitang, Lu Songnian, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Hao Guojie, Luo Mansheng, Ren Fei, Yuan Sihua. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1~23 (in Chinese with English abstract).
-
Planavsky N J, Slacka J F, Cannon W F, Connell B O, Isson T T, Asael D, Jackson J C, Hardisty D S, Lyons T W, Bekker A. 2018. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chemical Geology, 403: 581~594.
-
Polgári M, Hein James R, Bíró L, Gyolla i, Németh T, Sajgó C, Fekete J, Schwark L, Pál-Molnár E, Hámor-Vidó M, Vigh T. 2016. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (rkút, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 99~120.
-
Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94(8): 635~650.
-
Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the earth system. Earth Science Reviews, 77(4): 273~305.
-
Shi Fuqiang, Zhu Xiangkun, Yan Bin, Liu Yanqun, Zhang Feifei, Zhao Nina, Chu Mingkai. 2016. Geochemical characteristics and metallogenic mechanism of the Xiangtan manganese ore deposit in Hunan Province. Acta Petrologica et Mineralogica, 35(3): 443~456 (in Chinese with English abstract).
-
Sternbeck J, Sohlenius G. 1997. Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chemical Geology, 135: 55~73.
-
Surya Prakash L, Ray D, Paropkari A L, Mudholkar A V, Satyanarayanan M, Sreenivas B, Chandrasekharam D, Dalayya Kota, Kamesh Raju K A, Sujata Kaisary, Balaram V, Tripti Gurav. 2012. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chemical Geology, 312~313: 127~137.
-
Tostevin R, Shields G, Tarbuck G, He T C, Clarkson M, Wood R. 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438: 146~162.
-
Wang Guocan, Wei Qirong, Jia Chunxing, Zhang Kexin, Li Dewei, Zhu Yunhai, Xiang Shuyuan. 2007. Some ideas of Precambrian geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929~937 (in Chinese with English abstract).
-
Wang Xing, Pei Xianzhi, Li Ruibao, Liu Chengjun, Chen Youxin, Li Zuochen, Zhang Yu, Hu Chenguang, Yan Quanzhi, Peng Sizhong. 2019. Conglomerate source and source area property of Lower Hongshuichuan Formation in the East Kunlun Mountains: Evidence from conglomerate characteristics and U-Pb dating. Geology in China, 46(1): 155~177 (in Chinese with English abstract).
-
Wilkin R T, Arthur M A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta, 65(9): 1399~1416.
-
Wu C Q, Zhang Z W, Xiao J F, Fu Y Z, Shao S X, Zheng C F, Yao J H, Xiao C Y. 2016. Nanhuan manganese deposits within restricted basins of the southeastern Yangtze Platform, China: Constraints from geological and geochemical evidence. Ore Geology Reviews, 75: 75~99.
-
Xia Guoqing, Yi Haisheng, Li Shengjun, Wu Xiangfeng. 2010. Research on manganese-accumulation features in Middle Triassic Ladinian sedimentary system and sequence stratigraphic framework, southeastern Yunnan. Geological Review, 56(5): 703~709 (in Chinese with English abstract).
-
Xiang J, Chen J P, Bagas L, Li S, Wei H T, Chen B H. 2020. Southern China's manganese resource assessment: An overview of resource status, mineral system, and prediction model. Ore Geology Reviews, 116.
-
Xiong Z, Li T, Algeo T, Chang F M, Yin X B, Xu Z K. 2012. Rare earth element geochemistry of laminated diatom mats from tropical West Pacific: Evidence for more reducing bottom waters and higher primary productivity during the Last Glacial Maximum. Chemical Geology, 296: 103~118.
-
Xu Z, Wu C, Zhang Z, Xu J, Li X, Jin Z. 2021. Separation of Fe from Mn in the Cryogenian sedimentary Mn deposit, South China: Insights from ore mineral chemistry and S isotopes from the Dawu deposit. Minerals, 11(5): 446.
-
Yang Kehong, Yu Xiaoguo, Chu Fengyou, Dong Yanhui. 2016. Environmental changes in methane seeps recorded by carbon and oxygen isotopes in the northern South China sea. Earth Science, 41(7): 1206~1215 (in Chinese with English abstract).
-
Yang Ruidong. 1991. Sinian sea level fluctuation and ore-controlling processes in the Yangtze area. Sedimentary Facies and Palaeogeography, 11(4): 11~16 (in Chinese with English abstract).
-
Yang Ruidong, Gao Junbo, Cheng Mali, Wei Huirui, Xu Licqun, Wen Xuefeng, Wei Xiao. 2010. Sedimentary geochemistry of manganese deposit of the Neoproterozoic Datangpo Formation in Guizhou Province, China. Acta Geologica Sinica, 84(12): 1781~1790 (in Chinese with English abstract).
-
Yang Shengtang, Zhou Xizhun, Chen Xiaoshuai, Zhao Shuang, Hong Wanhua. 2016. Ore-controlling factors of rhodochrosite ore bed from Datangpo Formation in northeast Guizhou. Mineral Deposits, 35(5): 1062~1072 (in Chinese with English abstract).
-
Yin Jiangning, Xiao Keyan. 2014. Resource potential analysis and metallogenic prospect of Mn resources in China. Geology in China, 41(5): 1424~1437 (in Chinese with English abstract).
-
Yu W C, Algeo T J, Du Y S, Maynard B, Guo H, Zhou Q, Peng T P, Wang P, Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321~337.
-
Yu W C, Polgári M, Gyollai I, Fintor K, Szabó M, Kovács I, Fekete J, Du Y S, Zhou Q. 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122~135.
-
Zeng Yunfu, Yi Haisheng, Wen Jinming. 1993. Petrology and geochemistry of siliceous rocks in the Yangyangding Group, West Qinling Mountains. Journal of Mineralogy and Petrology, 13(3): 12~20.
-
Zhang B L, Wang C L, Robbins L J, Zhang L C, Konhauser O K, Dong Z G, Li W J, Peng Z D, Zheng M T. 2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the western Kunlun Mountains, Xinjiang Province, China: Implications for the depositional environment and the origin of mineralization. Economic Geology, 115(7): 1559~1588.
-
Zhang Feifei, Yan Bin, Guo Yueling, Zhu Xiangkun, Zhou Qi, Yang Dezhi. 2013. Precipitation form of manganese ore deposits in Gucheng, Hubei Province, and its paleoenvironment implication. Acta Geologica Sinica, 87(2): 245~258 (in Chinese with English abstract).
-
Zhang Fengxia, Zhao Baoqing, Yuan Bo, Bian Chenghui. 2016. Potential analysis and geological characteristics of Kushuiquan Mn deposit in Aksai of Gansu. China Manganese Industry, 34(2): 12~16 (in Chinese with English abstract).
-
Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei, Guo Qi. 2021. Revisiting the Precambrian micro-continent blocks within the early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~102 (in Chinese with English abstract).
-
Zhang Kexin, Xu Yadong, He Weihong, Yu Yang, Wang Lijun, Wang Jiaxuan, Kou Xiaohu, Luo Mansheng. 2018. Oceanic and continental blocks distribution during Neoproterozoic Early Qingbaikou Period (1000~820 Ma) in China. Earth Science, 43(11): 3837~3852 (in Chinese with English abstract).
-
Zhao Jingchun, Dai Wei, Qu Guangju, Li Youlu. 2020. Geological characteristics and prospecting prospect of north Santonggou manganese deposit in Dulan County, Qinghai Province. Mineral Exploration, 11(7): 1372~1378 (in Chinese with English abstract).
-
Zhou Qi. 2008. Geological and geochemical characteristics of cold seep carbonates of Neoproterozoic Nanhua Period and their significance for manganese ore deposits in eastern Guizhou. Doctor's thesis of China University of Geosciences (Wuhan)(in Chinese with English abstract).
-
Zhou Qi, Du Yuansheng, Qin Ying. 2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of “Datangpo type” manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area. Mineral Deposits, 32(3): 457~466 (in Chinese with English abstract).
-
Zhou Qi, Du Yuansheng, Yuan Liangjun, Zhang Sui, Yang Bingnan, Pan Wen, Yu Wenchao, Wang Ping, Xu Yuan, Qi Liang, Liu Yu, Qin Yongjun, Xie Xiaofeng. 2017. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: A case study of Nanhua Period “Datangpo” type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing. Acta Geologica Sinica, 91(10): 2285~2298 (in Chinese with English abstract).
-
Zhu Xiangkun, Peng Ganyun, Zhang Renbiao, An Zhengze, Zhang Feifei, Yan Bin, Li Jin, Gao Zhaofu, Qin Ying, Pan Wen. 2013. Geological and geochemical characteristics of the Daotuo super-large manganese ore deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87(9): 1335~1348 (in Chinese with English abstract).
-
安正泽, 张仁彪, 陈甲才, 覃英, 潘文, 吴桂武, 彭乾云, 郑超, 张飞飞, 朱祥坤, 王海宾. 2014. 贵州省松桃县道坨超大型锰矿床的发现及其成因探讨. 矿床地质, 33(4): 870~884.
-
常晓琳, 黄元耕, 陈中强, 侯明才. 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用. 沉积学报, 38(1): 150~165.
-
董志国, 张连昌, 王长乐, 张帮禄, 彭自栋, 朱明田, 冯京, 谢月桥. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237~255.
-
付勇, 徐志刚, 裴浩翔, 江冉. 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192~2207.
-
高永宝, 滕家欣, 李文渊, 陈登辉, 隋清霖, 荆德龙, 贺永康, 白建科. 2018. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因. 岩石学报, 34(8): 2341~2358.
-
何志威, 杨瑞东, 高军波, 程伟, 张仁彪, 张平壹. 2013. 贵州松桃西溪堡锰矿沉积地球化学特征. 地球化学, 42(6): 576~588.
-
李凤杰, 雷玉龙, 龚光林, 张昊, 沈凡, 荆锡贵, 成晓雨. 2019. 湘西南南华系大塘坡组锰矿地球化学特征与沉积环境分析: 以湖南靖州照洞锰矿床为例. 地球科学, 44(10): 3484~3494.
-
李娟, 于炳松, 郭峰. 2013. 黔北地区下寒武统底部黑色页岩沉积环境条件与源区构造背景分析. 沉积学报, 31(1): 20~31.
-
李启来, 伊海生, 夏国清, 季长军, 金峰. 2017. 广西东平富Ga含锰岩系碳、氧同位素特征及意义. 地球科学, 42(9): 1508~1518.
-
刘世宝, 张爱奎, 刘光莲, 周青禄, 张大明, 王生明, 刘永乐. 2016. 东昆仑洪水河铁锰矿床特征及发现意义. 西北地质, 49(1): 197~205.
-
陆松年. 1998. 新元古时期Rodinia超大陆研究进展述评. 地质论评, 44(5): 489~495.
-
陆松年, 郝国杰, 相振群. 2016. 前寒武纪重大地质事件. 地学前缘, 23(6): 140~155.
-
潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 1~23.
-
史富强, 朱祥坤, 闫斌, 刘燕群, 张飞飞, 赵妮娜, 褚明恺. 2016. 湖南湘潭锰矿的地球化学特征及成矿机制. 岩石矿物学杂志, 35(3): 443~456.
-
王国灿, 魏启荣, 贾春兴, 张克信, 李德威, 朱云海, 向树元. 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929~937.
-
王兴, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 张玉, 胡晨光, 颜全治, 彭思钟. 2019. 东昆仑东段下三叠统洪水川组砾岩源区研究: 来自砾岩特征及锆石U-Pb年龄的证据. 中国地质, 46(1): 155~177.
-
夏国清, 伊海生, 李盛俊, 武向峰. 2010. 滇东南中三叠世拉丁期沉积体系与层序地层格架下的聚锰特征. 地质论评, 56(5): 703~709.
-
杨克红, 于晓果, 初凤友, 董彦辉. 2016. 南海北部甲烷渗漏系统环境变化的碳、氧同位素记录. 地球科学, 41(7): 1206~1215.
-
杨瑞东. 1991. 扬子区震旦纪海平面波动与控矿作用. 岩相古地理, 11(4): 11~16.
-
杨瑞东, 高军波, 程玛莉, 魏怀瑞, 许利群, 文雪峰, 魏晓. 2010. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征. 地质学报, 84(12): 1781~1790.
-
杨胜堂, 禚喜准, 陈骁帅, 赵爽, 洪万华. 2016. 黔东北大塘坡组菱锰矿矿床控矿因素研究. 矿床地质, 35(5): 1062~1072.
-
阴江宁, 肖克炎. 2014. 中国锰矿资源潜力分析及成矿预测. 中国地质, 41(5): 1424~1437.
-
曾允孚, 伊海生, 文锦明. 1993. 西秦岭太阳顶群硅质岩的岩石学及地球化学特征. 矿物岩石, 13(3): 12~20.
-
张飞飞, 闫斌, 郭跃玲, 朱祥坤, 周琦. 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245~258.
-
张凤霞, 赵保青, 袁博, 边成辉. 2016. 甘肃阿克塞苦水泉锰矿地质特征及找矿潜力分析. 中国锰业, 34(2): 12~16.
-
张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~102.
-
张克信, 徐亚东, 何卫红, 于洋, 王丽君, 王嘉轩, 寇晓虎, 骆满生. 2018. 中国新元古代青白口纪早期(1000~820 Ma)洋陆分布. 地球科学, 43(11): 3837~3852.
-
赵静纯, 代威, 屈光菊, 李有录. 2020. 青海都兰县三通沟北地区锰矿地质特征及找矿前景. 矿产勘查, 11(7): 1372~1378.
-
中华人民共和国自然资源部. 2021. 中国矿产资源报告. 北京: 地质出版社.
-
周琦. 2008. 黔东新元古代南华纪早期冷泉碳酸盐岩地质地球化学特征及其对锰矿的控矿意义. 中国地质大学(武汉)博士学位论文.
-
周琦, 杜远生, 覃英. 2013. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式——以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例. 矿床地质, 32(3): 457~466.
-
周琦, 杜远生, 袁良军, 张遂, 杨炳南, 潘文, 余文超, 王萍, 徐源, 齐靓, 刘雨, 覃永军, 谢小峰. 2017. 古天然气渗漏沉积型锰矿床找矿模型——以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例. 地质学报, 91(10): 2285~2298.
-
朱祥坤, 彭乾云, 张仁彪, 安正泽, 张飞飞, 闫斌, 李津, 高兆富, 覃英, 潘文. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征. 地质学报, 87(9): 1335~1348.
-
摘要
在青海东昆仑三通沟地区中—新元古界万宝沟群发现的沉积型碳酸锰矿床,是近年来青海地区锰矿勘查的重要突破。矿区内自下而上发现5条锰矿体,其中Ⅰ~Ⅲ号锰矿体位于万宝沟群下部(称为下锰矿层),Ⅳ~Ⅴ号锰矿体位于上部(称为上锰矿层),平均品位为15%,矿体厚度大,延伸远,具有较大的勘查开发潜力。为了查明其成矿控制因素及成因机理,本文基于野外剖面实测、含锰岩系岩石学和地球化学的分析认为:万宝沟群锰矿层表现出Ce正异常、发育草莓状黄铁矿颗粒且粒度基本大于6 μm、Mn/Fe值小于6、碳同位素负偏,这些特征反映锰矿床的形成过程:锰质最初以氧化物或氢氧化物的形式在富氧水体中率先沉淀并富集,在早成岩阶段的富含有机质的还原条件下被还原成Mn2+,并与有机质分解产生的CO2-3结合形成碳酸锰矿。下锰矿层表现出Eu和Y正异常,其Al/(Al+Fe+Mn)值<0.35、(Fe+Mn)/Ti值>20±5、Fe/Ti 值>20,显示出热水沉积特征,表明其锰质主要来源于热液;而上锰矿层SiO2与Al2O3图解投点处于正常沉积与热液沉积的过渡区,可作为陆源输入代替指标的Al2O3与TiO2含量很高,且同期火山活动强烈,分析认为其锰质由陆源和液热共同提供。依据SiO2-K2O/Na2O和La/Ce-Al2O3/(Al2O3+Fe2O3)图解,结合沉积相及构造演化史分析,认为三通沟地区万宝沟群下锰矿层处于拉张背景下的初始洋盆环境,上锰矿层处于拉张背景下的局限深水陆棚环境。建立了局限深水陆棚相锰成矿和盆地相锰成矿两种模式。
Abstract
The sedimentary manganese carbonate deposit discovered in the Meso-Neoproterozoic Wanbaogou Group in the Santonggou area, East Kunlun, Qinghai Province is an important breakthrough in manganese exploration in Qinghai Province in recent years. Five proven manganese ore bodies were documented in the mining area from bottom to top, among which No.Ⅰ-Ⅲ manganese ore bodies are located in the lower part of the Wanbaogou Group (called the lower manganese deposit), and No. Ⅳ-Ⅴ manganese ore bodies are located in the upper part (called the upper manganese deposit), with an average grade of about 15%, large thickness and wide extent, and have great exploration and development potential. Field measurements, petrology and geochemical analysis of manganese-bearing rock series were undertaken to discover the metallogenic controlling factors and genesis mechanism of mineralization. The results indicate that the manganese deposits in the Wanbaogou Group show positive Ce anomaly, developing strawberry pyrite particles with particle size greater than 6 μm, Mn/Fe value less than 6 and negative δ13C excursion. All these characteristics reflect the formation of manganese deposit: manganese was firstly precipitated and enriched as oxides or hydroxides in oxygen-rich water. In the early diagenesis stage, manganese was reduced to Mn2+ under reducing conditions with rich organic matter, and combined with CO2-3 produced by decomposition of organic matter to form manganese carbonate. The lower manganese deposits show positive Eu and Y anomalies, with Al/(Al+Fe+Mn)<0.35, (Fe+Mn)/Ti>20±5, and Fe/Ti>20, showing hydrothermal deposition characteristics, indicating that the manganese is mainly derived from hydrothermal solutions. The SiO2 and Al2O3 diagram placement of the upper manganese deposit is in the transition zone between normal deposition and hydrothermal deposition. The contents of Al2O3 and TiO2 used as proxies for terrigenous input are very high and the volcanic activity is strong in the same period. The analysis suggests that both terrigenous and hydrothermal sources provide the manganese in the upper manganese deposit. According to SiO2-K2O/Na2O and La/Ce-Al2O3/(Al2O3+Fe2O3) diagrams, combined with the analysis of sedimentary facies and tectonic evolution history, it is concluded that the lower manganese deposits of the Wanbaogou Group in the Santonggou area were formed in aninitial ocean basin environment under an extensional background and the upper manganese deposits in arestricted deep shelf environment. Restricted deep shelf and basin, two manganese metallogenic models have been established in the study area.