en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

叶海龙,男,1988年生。高级工程师,主要从事地热地质相关研究。E-mail:yhl_052062@126.com。

参考文献
Arnorsson S. 1975. Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. American Journal of Science, 275(7): 763~784.
参考文献
Bai Ximin, Ye Hailong. 2014. Discussion on the formation mode and exploration direction of geothermal water resources in Jiangxi Province. New Progress in Jiangxi Geology 2014—Monograph of Papers on the Academic Annual Meeting of the 50th Anniversary of the Founding of Jiangxi Geological Society, 73~80 (in Chinese with English abstract).
参考文献
Chen Qi, Guo Jinrong, Li Chao, Wang Hankun, Wu Chunsheng, Deng Wenping, Liu Yuanqiu, Ye Qing, Li Xiaodong. 2019. Characteristics of stable isotope changes in atmospheric precipitation in Lushan area. Journal of Natural Resources, 34(6): 1306~1316 (in Chinese with English abstract).
参考文献
Chu Xiaodong. 2016. Genesis mechanism and prospecting prediction of Shicheng geothermal field in Jiangxi Province. Master dissertation of Nanjing University (in Chinese with English abstract).
参考文献
Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702~1703.
参考文献
Fan Binghong, Bai Ximin, Zou Guoyao, Ye Hailong. 2020. Research on geothermal field characteristics of Shangwenliao geothermal water in Shicheng County, Jiangxi. New Progress in Jiangxi Geology 2020——the 10th Member Congress of Jiangxi Geological Society, Proceedings of the 2020 Academic Annual Meeting of the Jiangxi Geological Society, 55~60 (in Chinese with English abstract).
参考文献
Gao Jianfei, Ding Tiping, Luo Xurong, Tian Shihong, Wang Huaiba, Li Ming. 2011. Spatial variation characteristics of the hydrogen and oxygen isotopic compositions of the Yellow River and their environmental significance. Acta Geologica Sinica, 85(4): 596~602 (in Chinese with English abstract).
参考文献
Giggenbach W F, Goguel R L. 1989. Collection and analysis of geothermal and volcanic water and gas discharges. Report No. CD 2401. Chemistry Division, DSIR, Petone, New Zealand.
参考文献
Guo Jing, Mao Xumei, Tong Sheng, Feng Liang. 2016. Estimation of the heat exchange temperature of the deep geothermal system along the coast of western Guangdong with a hydrochemical thermometer. Earth Science, 41(12): 2075~2087 (in Chinese with English abstract).
参考文献
Guo Qinghai. 2020. Magma heat source type geothermal system and its hydrogeochemical criterion. Acta Geologica Sinica, 94(12): 3544~3554 (in Chinese with English abstract).
参考文献
Guo Zhangjun, Song Hanzhou. 2005. Existing forms of groundwater chemical components and calculation of SI value. Resources Environment and Engineering, 3: 200~202+219 (in Chinese with English abstract).
参考文献
Huang Changsheng, Hou Baoquan, Yi Chengyun, Li Long, Zhang Shengnan, Zhou Yun, Waseem Akram, Wang Fangting. 2021. Analysis of formation conditions of geothermal water in southern Jiangxi and delineation of geothermal water exploration target area in Ganxian district. South China Geology, 37(1): 64~74 (in Chinese with English abstract).
参考文献
Jiang Shu, Chen Guohui, Zhang Yuying, Zhang Luchuan, Kuang Jian, Li Chun, Cheng Wanqiang. 2021. Case analysis and method suitability evaluation of geothermal thermometers based on US national geothermal data. Geological Journal of Universities, 27(1) : 1~17 (in Chinese with English abstract).
参考文献
Lang Xujuan, Lin Wenjing, Liu Zhiming, Xing Linxiao, Wang Guiling. 2016. Hydrogeochemical characteristics of underground hot water in Guide basin. Earth Science, 41(10): 1723~1734 (in Chinese with English abstract).
参考文献
Li Changjiang, Jiang Xuliang. 1991. Metallogenic models of two types of fluorite deposits in southeastern China. Acta Geologica Sinica, 65(3): 263~274 (in Chinese with English abstract).
参考文献
Pang Zhonghe, Fan Zhicheng, Wang Jiyang. 1990. Hydrogen and oxygen stable isotopes in the hydrothermal system of Zhangzhou basin. Acta Petrologica Sinica, 4: 75~84 (in Chinese with English abstract).
参考文献
Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7): 1479~1492.
参考文献
Shan Xuanlong, Cai Zhuang, Hao Guoli, Zou Xintong, Zhao Rongsheng. 2019. Geochemical temperature scale to estimate the thermal storage temperature of the Changbai Mountain geothermal system. Journal of Jilin University (Earth Science Edition), 49(3): 662~672 (in Chinese with English abstract).
参考文献
Shen Yejie, Peng Xinhua. 2014. Characteristics of hydrogen and oxygen stable isotopes in atmospheric precipitation in Yingtan area. Journal of Ecological Environment, 23(1): 101~105 (in Chinese with English abstract).
参考文献
Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. 1993. Fundamentals of Hydrology and Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Sun Zhanxue, Liu Jinhui, Gao Bai. 2003. Isotopic hydrogeochemistry of carbonated hot springs in the Mojing area of southern Jiangxi. Proceedings of the 19th Annual Meeting of the Chinese Geophysical Society, 696~697 (in Chinese with English abstract).
参考文献
Wang Jiyang. 1993. Medium and Low Temperature Convective Geothermal System. Beijing: Science Press (in Chinese with English abstract).
参考文献
Wang Jiyang. 2008. Looking at my country's geothermal energy development and utilization from the world's geothermal energy. Proceedings of the High-level Symposium on Scientific Development of China's Geothermal Resources, 16~19 (in Chinese with English abstract).
参考文献
Wang Jiangsi, Ouyang Zhengping, Xu Zidong, Wang Wenmei, Yang Yongchang. 2018. Analysis of the origin of geothermal water based on hydrogeochemical information and environmental isotopes. Earth and Environment, 46(1): 7~14 (in Chinese with English abstract).
参考文献
Wang Jin, Xiao Zeyou, Hou Huaimin. 2020. Characteristics and genesis of convective geothermal system in fault-fold mountainous areas in southern Jiangxi——taking the geothermal system in Hashanli, Shicheng County as an example. East China Geology, 41(4): 381~386 (in Chinese with English abstract).
参考文献
White D E. 1968. Hydrology, activity, and heat flow of thesteamboat springs thermal system, Washoe County, Nevada. USA: US Government Printing Office.
参考文献
Xia Zhongzhi, Ma Zhenxing, Wang Xianguang, Zhan Tianwei, Li Yanhong. 2017. New progress in geothermal water exploration by Jiangxi Geological Exploration Fund. Journal of East China University of Technology (Natural Science Edition), 40(1): 71~78 (in Chinese with English abstract).
参考文献
Xiao Zeyou, Wang Jin, Hou Huaimin. 2018. Analysis of the characteristics and causes of geothermal water in the eastern part of Jiangxi. Journal of East China University of Technology (Natural Science Edition), 41(3): 255~261 (in Chinese with English abstract).
参考文献
Yan Xiaoxue, Gan Haonan, Yue Gaofan. 2019. Hydrogeochemical characteristics and genetic analysis of the typical geothermal field in Huizhou-Conghua, Guangdong. Geological Review, 65(3): 743~754 (in Chinese with English abstract).
参考文献
Yang Minggui, Ma Zhenxing, Yin Guosheng. 2018. The quaternary geological tectonic evolution and ecological geological resources in Jiangxi. The 2018 Paper Collection of the Geological Society of Jiangxi Province (4), 4~15 (in Chinese with English abstract).
参考文献
Ye Hailong, Fan Binghong, Bai Ximin, Yu Shengpin, Du Minghui. 2018. Discussion on the estimation of the mixing ratio of geothermal water. The 2018 Paper Collection of the Geological Society of Jiangxi Province (2), 70~75 (in Chinese with English abstract).
参考文献
Zhang Hongping, Liu Enkai, Wang Dongsheng, Jia Yankun, Sun Jichao. 1991. The stable isotopic composition of atmospheric precipitation in China and its influencing factors. The Collection of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences (7), 106~115 (in Chinese with English abstract).
参考文献
Zhang Meng, Lin Wenjing, Liu Zhao, Liu Zhiming, Hu Xiancai, Wang Guiling. 2014. Hydrogeochemical characteristics and genetic model of the high-temperature geothermal system in Gulu, Tibet. Journal of Chengdu University of Technology (Natural Science Edition), 41(3): 382~392 (in Chinese with English abstract).
参考文献
Zhang Weimin. 2001. Using SiO2 geothermal thermometer to estimate the temperature of geothermal storage──taking some hot springs in the Hengjing area of southern Jiangxi as an example. Acta Geosciences, (2): 185~188 (in Chinese with English abstract).
参考文献
Zhang Xu, Hao Hongbing, Liu Kanglin, Mao Wulin, Xiao Yao, Zhang Wen. 2020. Hydrogeochemical characteristics and formation mechanism of underground hot water in the Woka Graben, Tibet. Geology in China, 47(6): 1702~1714 (in Chinese with English abstract).
参考文献
Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. The chemical characteristics of geothermal fluid in the Rongcheng geothermal field in Xiong'an New Area. Acta Geology, 94(7): 1991~2001 (in Chinese with English abstract).
参考文献
Zheng Qianqiang, Zhong Ming, Deng Youping. 2009. Research on Jiangxi geothermal control factors. Journal of East China University of Technology (Natural Science Edition), 32(3): 261~264 (in Chinese with English abstract).
参考文献
Zhu Bingqiu, Zhu Lixin. 1992. Geochemical Exploration of Geothermal Field. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2021. Hydrogeochemical characteristics and significance of aquifers in the Jixian System of Taihang Mountain-Xiongan New Area. Earth Science, 46(7): 2594~2608 (in Chinese with English abstract).
参考文献
Zhuang Xiangui, Peng Linlin, Liu Qinghong, Yang Rui. 2017. Discussion on the geological characteristics and genesis of the fluorite deposit in Zhashanli, Shicheng, Jiangxi. Geology of Chemical Minerals, 39(2): 65~71 (in Chinese with English abstract).
参考文献
Zou Guoyao, Yang Qian. 2019. Analysis on the cause of formation of Shangwenliao geothermal water in Shicheng County, Jiangxi Province. Resources Information and Engineering, 34(5): 28~30 (in Chinese with English abstract).
参考文献
白细民, 叶海龙. 2014. 江西省地热水资源形成模式与勘查方向探讨. 江西地学新进展——江西省地质学会成立五十周年学术年会论文专集, 73~80.
参考文献
陈琦, 郭锦荣, 李超, 王翰琨, 吴春生, 邓文平, 刘苑秋, 叶清, 李晓东. 2019. 庐山地区大气降水中稳定同位素变化特征. 自然资源学报, 34(6): 1306~1316.
参考文献
储小东. 2016. 江西省石城地热田成因机制及找矿预测. 南京大学硕士学位论文.
参考文献
单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 2019. 地球化学温标估算长白山地热系统热储温度. 吉林大学学报(地球科学版), 49(3): 662~672.
参考文献
樊柄宏, 白细民, 邹国瑶, 叶海龙. 2020. 江西石城县上温寮地热水地温场特征研究. 江西地学新进展——-江西省地质学会第十次会员代表大会暨江西省地质学会2020年学术年会论文集, 55~60.
参考文献
高建飞, 丁悌平, 罗续荣, 田世洪, 王怀柏, 李明. 2011. 黄河水氢、氧同位素组成的空间变化特征及其环境意义. 地质学报, 85(4): 596~602.
参考文献
郭静, 毛绪美, 童晟, 冯亮. 2016. 水化学温度计估算粤西沿海深部地热系统热交换温度. 地球科学, 41(12): 2075~2087.
参考文献
郭清海. 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544~3554.
参考文献
郭张军, 宋汉周. 2005. 地下水化学组分存在形式及其SI值计算. 资源环境与工程, 3: 200~202+219.
参考文献
黄长生, 侯保全, 易秤云, 李龙, 张胜男, 周耘, Waseem Akram, 王芳婷. 2021. 赣南地热水形成条件分析与赣县区地热水勘查靶区圈定. 华南地质, 37(1): 64~74.
参考文献
蒋恕, 陈国辉, 张钰莹, 张鲁川, 旷健, 李醇, 程万强. 2021. 基于美国国家地热数据的地热温度计案例分析与方法适宜性评价. 高校地质学报, 27(1): 1~17.
参考文献
郎旭娟, 蔺文静, 刘志明, 邢林啸, 王贵玲. 2016. 贵德盆地地下热水水文地球化学特征. 地球科学, 41(10): 1723~1734.
参考文献
李长江, 蒋叙良. 1991. 中国东南部两类萤石矿床的成矿模式. 地质学报, 65(3): 263~274.
参考文献
庞忠和, 樊志成, 汪集旸. 1990. 漳州盆地水热系统的氢氧稳定同位素研究. 岩石学报, 4: 75~84.
参考文献
沈业杰, 彭新华. 2014. 鹰潭地区大气降水中氢氧稳定同位素特征研究. 生态环境学报, 23(1): 101~105.
参考文献
沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础. 北京: 地质出版社.
参考文献
孙占学, 刘金辉, 高柏. 2003. 赣南模迳地区碳酸温泉的同位素水文地球化学研究. 中国地球物理学会第十九届年会论文集, 696~697.
参考文献
汪集旸. 1993. 中低温对流型地热系统. 北京: 科学出版社.
参考文献
汪集旸. 2008. 从世界地热看我国地热能开发利用问题. 科学开发中国地热资源——科学开发中国地热资源高层研讨会论文集, 16~19.
参考文献
王江思, 欧阳正平, 徐子东, 王文梅, 杨勇昌. 2018. 基于水文地球化学信息和环境同位素的地下热水成因分析. 地球与环境, 46(1): 7~14.
参考文献
王进, 肖则佑, 侯怀敏. 2020. 赣南断褶山地对流型地热系统特征及成因——以石城县楂山里地热系统为例. 华东地质, 41(4): 381~386.
参考文献
夏中智, 马振兴, 王先广, 詹天卫, 李艳红. 2017. 江西省地勘基金地热水勘查新进展. 东华理工大学学报(自然科学版), 40(1): 71~78.
参考文献
肖则佑, 王进, 侯怀敏. 2018. 赣南东部地热水特征及成因分析. 东华理工大学学报(自然科学版), 41(3): 255~261.
参考文献
闫晓雪, 甘浩男, 岳高凡. 2019. 广东惠州-从化典型地热田水文地球化学特征及成因分析. 地质论评, 65(3): 743~754.
参考文献
杨明桂, 马振兴, 尹国胜. 2018. 江西第四纪地质构造演化与生态地质资源. 江西省地质学会2018年论文汇编(四), 4~15.
参考文献
叶海龙, 樊柄宏, 白细民, 余圣品, 杜明辉. 2018. 地热水混合比例估算探讨. 江西省地质学会2018年论文汇编(二), 70~75.
参考文献
张洪平, 刘恩凯, 王东升, 贾艳琨, 孙继朝. 1991. 中国大气降水稳定同位素组成及影响因素. 中国地质科学院水文地质工程地质研究所文集(7), 106~115.
参考文献
张萌, 蔺文静, 刘昭, 刘志明, 胡先才, 王贵玲. 2014. 西藏谷露高温地热系统水文地球化学特征及成因模式. 成都理工大学学报(自然科学版), 41(3): 382~392.
参考文献
张卫民. 2001. 应用SiO2地热温度计估算地热储温度——以赣南横泾地区若干温泉为例. 地球学报, (2): 185~188.
参考文献
章旭, 郝红兵, 刘康林, 毛武林, 肖尧, 张文. 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制. 中国地质, 47(6): 1702~1714.
参考文献
赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征. 地质学报, 94(7): 1991~2001.
参考文献
郑乾墙, 钟鸣, 邓有平. 2009. 江西地热控制因素研究. 东华理工大学学报(自然科学版), 32(3): 261~264.
参考文献
朱炳球, 朱立新. 1992. 地热田地球化学勘查. 北京: 地质出版社.
参考文献
朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594~2608.
参考文献
庄贤贵, 彭琳琳, 刘庆鸿, 杨锐. 2017. 江西石城楂山里萤石矿床地质特征及成因探讨. 化工矿产地质, 39(2): 65~71.
参考文献
邹国瑶, 杨倩. 2019. 江西省石城县上温寮地热水成因分析. 资源信息与工程, 34(5): 28~30.
目录contents

    摘要

    石城地热带蕴藏着丰富的地热资源,从水文地球化学角度系统研究其地热水演化机理,对支撑地热带盲区靶区优选和隐伏型地热水的发掘,对推动地热资源的可持续规模化开发利用具有重要意义。本文在充分分析石城地热带地热地质条件的基础上,根据地热水与冷水水化学分析结果,采用Piper三线图、溶质间相关分析、地球化学温标法等手段,对地热水化学特征、矿物元素来源、热储温度与埋藏条件、浅层冷水的混合机制等进行了讨论分析。结果表明,石城地热带所有地热田同属一个地热系统,大气降水在北东部牙梳山中低山区自然入渗补给,深部循环获取幔源大地热流的供热,并与营上岩体富钾花岗岩充分水-岩作用富集K+、SiO2等矿物元素,遇石城断裂阻水后转向南西侧向径流和浅部排泄。地热水水质由HCO3-Ca型向SO4-Na型、SO4·HCO3-Na·Ca型、HCO3-Na·Ca型转化,这种分带性是受深部地热水径流距离、浅部冷水混合比例、上涌途经地层与矿体特征等联合控制的结果。

    Abstract

    Shicheng is rich in geothermal resources. From the perspective of hydrogeochemistry, we systematically study the evolution mechanism of geothermal water, optimize the target area supporting the blind zone of the geotropics and excavate hidden geothermal water, and promote the sustainable scale of geothermal resources. Development and utilization are of great significance. Based on a full analysis of the geothermal geological conditions of the Shicheng geo-tropical zone, the results of the geothermal and cold water chemical analysis, the Piper three-line diagram, the correlation analysis between solutes, and the geochemical temperature scale method are used to analyze the chemical characteristics and the sources of mineral elements of geothermal water. The source, thermal storage temperature and burial conditions, and the mixing mechanism of shallow cold water were discussed and analyzed. The results show that all the geothermal fields in the Shicheng subtropical zone belong to the same geothermal system. Atmospheric precipitation naturally infiltrates and replenishes in the middle and low mountainous areas of the Yasu Mountain in the northeast. The water-rock interaction enriches mineral elements such as K+, SiO2, and turns to the southwest side to runoff and shallow discharge after encountering the Shicheng fault that blocks water. The quality of geothermal water changes from HCO3-Ca type to SO4-Na type, SO4·HCO3-Na·Ca type, HCO3-Na·Ca type. This zoning is affected by the deep geothermal runoff distance and shallow cold water mixing. The result of joint control of ratio, upwelling path, strata and ore body characteristics.

  • 地热是新能源大家族中最为现实和最具竞争力的新型清洁能源之一(汪集旸,2008)。近年来,我国大力开发地热资源,广泛应用于发电、供暖、旅游疗养等方面,在调整能源结构、发展低碳经济等方面成效显著。石城县位于江西省东南部、寻乌-石城地热带北端,通过长期地热勘查,探明地热水14937 m3/d,地热资源丰富。开展地热水成因研究对支撑当地地热资源合理勘查开发利用具有重要作用。

  • 前人在研究区开展过大量地热研究工作。郑乾墙等(2009)白细民等(2014)通过分析区域地质构造特点、比对全省地热赋存特征,认为研究区属对流型地热系统,寻乌-石城深断裂主要起控热、导热作用。肖则佑等(2018)王进等(2020)通过分析寻乌-石城深断裂规模、沿线地热分布特征,对比钻孔不同深度的地热水水温与放射元素含量,认为楂山里等地热田是因冷热水比重差异而在控热断裂带内自循环的小型对流型地热系统,热储为发育于白垩系与震旦系之间或花岗岩内部的硅化破碎带,盆地东缘山体接受大气降水补给,热对流和放射性元素衰变增温。邹国瑶等(2019)樊柄宏等(2020)对上温寮地热田的地质构造、热储与地温场特征等进行了分析,认为地热田属对流型地热系统,但地热成因机制有待进一步研究。储小东等(2016)以石城地热带为分析对象从地热地质角度分析了地热水成因机制,认为地热水补给于红层盆地东侧变质岩区,存在对流和传导两种热传导模式,并以热传导为主,同时接受深部岩浆热源的供热。研究区以往的地热研究工作侧重于单个地热田的地热地质研究,主要依据White(1968)中低温对流地热系统开展地热成因分析。对整个地热带的地热水演化机制缺乏宏观认识,热储温度计算方法的选择缺乏对比分析。不同地热井测温曲线、地温梯度与出水水温差异较大,部分井抽水孔口水温与降深反相关等问题的解释尚缺乏有力证据。

  • 水文地球化学研究可用于分析地热水成因机制,评价深部找热前景。汪集旸等(1993)对中低温对流型地热系统利用地热地球化学法划分地热系统成因类型、估算热储温度、计算热水年龄、研究水热-化学作用进行了全面阐述; 张卫民等(2001)探讨了石英-焓图、传导冷却的石英地热温度计等方法在估算中低温地热系统热储温度中的适用性; 郎旭娟等(2016)通过水化学研究查明贵德盆地地热水大气降水补给,1800 m与3200 m分别存在一层热储,估算热储温度133~222℃; 张萌等(2014)叶海龙等(2018)采用Na-K-Mg三角图、混合模型等方法分别估算了西藏谷露高温地热系统、江西左安-丰洲低温地热系统的冷水混合比例与热储温度。文章对石城地热带大气降水、地表水、浅层地下水以及地热水的水化学性质开展系统研究,结合测温与现场试验数据,对地热流体补径排条件进行分析,以揭示地热水演化机制,为地热带增温扩储以及规模化开发利用提供参考。

  • 1 地质背景

  • 研究区位于武夷山隆起带西翼中低山丘陵区,年均降水量1749 mm。地势起伏较大,北东高南西低,最高海拔1387.3 m(北东端牙梳山),最低海拔约200 m(南西部屏山盆地)。北部发育加里东期与燕山期花岗岩,中南部广泛出露震旦系中下统变质砂岩、千枚状板岩,白垩系泥岩、砂岩等。发育由震旦系地层构成的武夷山复式背斜,形态破碎、复杂; 由白垩系紫红色砂岩构成的构造盆地,岩层完整、平缓(图1)。断裂以北东向、北北东向为主,以寻乌-石城深断裂规模最大,控制了山脉走势、水系流向、红盆结构、温泉分布,是石城地热带的控热构造(黄长生等,2021)。断裂属挽近期活动性断裂,多期次活动,沿线地震频发,最大震级6.4级。断裂走向北东,倾向北西,倾角45°~60°,由2~4条近于平行的断层组成,宽约1~5 km。地表以发育硅化破碎带、挤压片理、构造透镜体、断层崖或断层三角面等为主要特征,厚50~180 m。电磁法物探多表现为单斜条状低阻带。钻孔多揭露硅化带、断层角砾岩、糜棱岩、断层泥,上下盘常有石英脉。断裂带特征相似、易识别。

  • 2 地热资源特征

  • 地热带已发现6处地热田(天然温泉4处,隐伏型2处,均自流),呈北北东向线性间断式分布于石城断裂带西侧。杨明桂等(2018)夏中智等(2017)认为其分布具等距性,地热密度2.5 km/点。各地热田水温28~59℃,出水量431.22~4401.46 m3/d,差异性显著。图2测温数据显示,各地热田平面地温表现为长轴平行北东向控热构造的椭圆形,最高温位于控热断裂带内。垂向测温曲线有“7”式和“\\” 式两类,地温梯度2.16~41.05℃/100 m,热储温度收敛于40~60℃区间。上温寮等4处显式地热田为“7”式曲线,测温拐点即为涌水、漏水、裂隙密集带、晶洞发育段,九礤出水水温高于孔内最高温度,具典型对流型地热特征,表明地热田热能主要来自地热水的深部热对流。通天寨、沔坊2处地热田6口地热井测温曲线呈“\\” 式,增温率较低(2.16~3.68℃/100 m),推测是由于热储裂隙率低、上覆红层覆盖阻碍地热水排泄,造成对流地热水量少,赋存在浅部地热水与周围岩体热传导而同温。

  • 图1 石城地热带地热地质图

  • Fig.1 Geothermal geological map of Shicheng geothermal belt

  • 1 —第四系全新统; 2—白垩系赣州组; 3—侏罗系打鼓顶组; 4—震旦系中统; 5—震旦系下统; 6—燕山期岩浆岩; 7—加里东期岩浆岩; 8—花岗斑岩脉; 9—压性断层; 10—压扭性断层; 11—温泉(R1九礤温泉、R3楂山里温泉、R5烧湖里温泉、R6上温寮温泉); 12—隐伏地热田(R2通天寨地热田、R4沔坊地热田)

  • 1 —Quaternary Holocene; 2—Cretaceous Ganzhou Formation; 3—Jurassic Daguding Formation; 4—Middle Sinian; 5—Lower Sinian; 6—Yanshanian magmatic rock; 7—Caledonian magmatic rock; 8—granite-porphyry dyke; 9—compressive fault; 10—transpressive fault; 11—hot springs (R1 Jiuca, R3 Zhashanli, R5 Shaohuli, R6 Shangwenliao) ; 12— buried geothermal fields (R2 Tongtianzhai and R4 Mianfang)

  • 楂山里、上温寮、烧湖里、九礤等温泉出露于溪流沿岸,抽水试验造成地表水体水位下降或干枯。多数地热井增大降深抽水,出水水温并不增高。烧湖里部分地热井增大降深时水温反而下降,如ZK6降深增大3 m,水量增大5.5倍、水温降低11℃。这一现象与对流型地热水来自深部,增大降深可加快深部地热水上涌流速,减少热量损耗,水温增高不相符。同时,楂山里一个水文年动态监测显示,ZK1孔自流量737~968 m3/d,变幅达31%,水温变幅1.5℃,丰水期显著低于枯水期。

  • 图2 石城地热带代表井垂向测温曲线图

  • Fig.2 Vertical temperature measurement curve of representative wells in Shicheng geothermal belt

  • 从水文地质学角度推断,地热带九礤等显式地热田半开放式热储将深部热对流地热水与浅层冷水相混合。丰水期丰富降水增大了冷水直接补给能力,增大自流水量的同时降低了水温。在垂向裂隙发育不均衡区,降深增大时深部地热水垂直上涌不充分,冷锋面向钻孔推移,冷水混合比例进一步增大,造成水温大幅降低、地表水体被吸空。

  • 3 地热地球化学特征

  • 3.1 样品采集与测试

  • 本次研究对地热带采集水样53组,包括地热水、地表水、冷泉、雨水等不同水源丰平枯不同时期全分析与同位素分析样品。水样严格根据《地热资源地质勘查规范》(GB/T11615—2010)采集与处理。全分析与微量元素分析样品送至“国土资源部南昌矿产资源监督检测中心”按照《饮用天然矿泉水检验方法》(GB 8538—2016)检测,测试环境温度20~35℃,湿度45%~65%,精度5%(表1); 氢氧同位素样品送至“国土资源部岩溶地质资源环境监督检测中心”按照《水中氢同位素的锌还原法测定》(DZ/T 0184.19—1997)与《天然水中氧同位素的二氧化碳水平衡法测定》(DZ/T 0184.21—1997)检测,测试环境温度25℃,湿度60%,δD精度2‰,δ18O精度0.2‰。

  • 3.2 地热流体化学组分特征

  • 3.2.1 水化学类型

  • 研究区地表水与冷泉水pH值7.13~9.22,TDS含量67.57~152.55 mg/L,为弱碱性低矿化水。地表水水化学类型HCO3-Ca型,冷泉水为HCO3·SO4-Ca·Na型。地热水pH值6.57~8.3,TDS含量158.84~1014.48 mg/L,平均429.9 mg/L,主要为弱碱性低矿化水,水化学类型主要为SO4·HCO3-Na·Ca型。

  • 将地热水、地表水、冷泉以及大气降水投在Piper图中,可以良好反映地热水的混合作用(沈照理等,1993)。从图3可以看出,地表水、冷泉水与大气降水分布于三线图左下方(A区),阴离子以HCO-3占优势,阳离子以Ca2+为主。三类水TDS含量相近(45.1~94.8 mg/L),除SiO2外的K+、Na+、Cl-、F-等其他离子含量也无显著差异。表明本次采集的地表水与冷泉水径流途径短,水循环快,溶滤的物质少,水化学特征与大气降水相近。通天寨隐伏型地热水位于三线图最右方(E区),得益于数百米厚红层覆盖以及控热构造浅部裂隙不发育,地下水环境相对封闭,浅层冷水混入程度低,地热井单位涌水量小于0.5 L/(s·m)。阴离子以SO42-为主导,阳离子以Na+占优势,TDS最高1014.48 mg/L,SiO2、Sr、Ba、Mn等含量也为全地热带最高。A、E区之间为混合地热水,地热水化学类型多样,可进一步分为三个区。左侧(B区)由一处冷泉和丰水期采集的烧湖里ZK3与ZK6孔地热水组成,TDS含量152.55~263 mg/L,阴离子中HCO3-、SO42-占比相近,阳离子以Ca2+为主。烧湖里ZK3孔、ZK6孔水温33.8~44.2℃,单位涌水量达26.8 L/(s·m),SiO2含量32.1~32.6 mg/L,为全地热带最低,ZK3孔水中F-含量还低于冷泉,表现出低矿化、低水温、大水量特征。表明此两井位于控热构造的浅部裂隙发育区,丰水期丰富降水增大了浅层水的混入比例。右侧(C区)密集分布着九礤、楂山里等地热水,阴离子以SO42- 为主,HCO3-为次,阳离子转为由Na+占主导,F、SiO2、Sr、Li等理疗元素含量较高。表明深部断裂裂隙起主导作用,矿物元素主要来自深部地热水。但一般发育的浅部裂隙也为冷水直接混入提供了条件,表现出水量丰富、水温较高的特点。下侧(D区)偏离了A区与E区的连线,由未揭露主要热储通道的楂山里ZK2、上温寮ZK2地热水组成,阴离子中HCO3-为主,阳离子以Na+为主,TDS小于210 mg/L。抽水试验显示,地热井出水量不及同类井2%,水温低于35℃,与其他井无直接水力联系。推测水源是深部地热水排泄在浅部松散层中的混合水。因此,A→E→C→B区是地热带地热水补给、径流、混合、排泄的水化学反映(图4)。

  • 表1 石城地热带流体主要水化学组分测试结果

  • Table1 Analytical results of main water chemical components of fluids in Shicheng geothermal belt

  • 图3 石城地热带水体Piper三线图

  • Fig.3 Piper of the water body in Shicheng geothermal belt

  • 图4 石城地热带水体宏量组分含量变化趋势图

  • Fig.4 The change trend diagram of the macro component content of the water body in Shicheng geothermal belt

  • 3.2.2 溶质来源分析

  • 溶质间相关分析可帮助认识地下水演化规律。地热水中的F、SiO2、Sr、Li等微量元素显著高于冷水,尤其在封闭环境的通天寨地热水中最为富集。Li主要来自于花岗岩的水-岩作用,或直接来自于高温热水,在地热水上升过程中浓度几乎不改变(朱炳球等,1992; 郭清海等,2020)。表1显示,浅层地下水混入显著的A、B、D区地热水中Li含量0.1 mg/L,显著低于C、E区,表明Li来自深部。SiO2主要来自于石英、铝硅酸岩、黏土矿物,其溶解度与水温呈正相关。因此,本次选取Li、SiO2作示踪指标通过相关分析判断其他元素的来源。

  • 从图5可以看出,研究区地热水矿物具有多种来源。其中,围岩为红层与变质岩的九礤等5处地热水K+与Li显著相关,含量均表现为自北东向南西逐步增高,K+与SiO2中度相关。围岩为花岗岩的上温寮地热水K+显著高于其他地热水,且分布零散。表明K+、Li具有相同的物质来源。同时,由于自北东向南西地热水TDS逐步增大、静止水位标高由365.7 m逐渐下降至257.8 m,推测地热水由北东部中低山区补给,向南西部径流,K+与Li主要来自于地热水循环过程中与深部隐伏花岗岩体的水-岩作用。南西部地热水由于在控热断裂内横向径流途径更长,高温高压环境下与隐伏酸性岩浆岩水-岩作用更强,造成K+与Li更富集。北东部上温寮地热田由于发育于营上岩体富钾花岗岩中,高温地热水向上运移、浅部风化裂隙存储过程中,大范围、长时间溶滤花岗岩中相关矿物而富集K+与Li离子。

  • 九礤等4处显式地热田以及沔坊隐伏地热田Na+、Sr、SO42-分别与Li、SiO2中度相关,SO42-与Na+高度相关,HCO3-与Ca2+中度相关。通天寨隐伏地热田Na+、Ca2+、Sr、SO42-显著高于其他地热水,且Sr与Li、Na+与SiO2显著相关。表明九礤等5处地热水中Na+、Sr、SO42-主要来自深部热液上涌,而红层中芒硝、石膏等矿物溶解是径流缓慢的通天寨地热水Na+、Ca2+、Sr、SO42-的另一重要来源。沔坊地热水水质特征显著异于通天寨,而与九礤的4处显式地热田相似,Piper图中更靠近B区,TDS小于300 mg/L。结合ZK1孔、ZK2孔的盖层——红层浅部(59~62 m、109~128 m)发育裂隙,钻进过程均出现水位大幅上升并涌水,抽水水温低于29℃,水量欠丰富。推测沔坊地热水是浅循环红层裂隙水与楂山里导热断裂上涌的少量深部地热水的混合水。

  • 研究区F-与Li、SiO2等矿物相关性差,九礤等5处地热水F-含量相近,中位数为4.51 mg/L,显著低于楂山里的10.16 mg/L。研究表明,花岗岩的黑云母中F-含量达40%~70%,对萤石等氟矿物的形成起到重要作用(李长江等,1991; 庄贤贵等,2017)。同时,楂山里与沔坊地热田位于燕山晚期中低温热液充填型萤石矿床周边,钻探均揭露萤石石英脉。利用Phreeqc软件计算得楂山里与沔坊萤石饱和指数大于0,处于过饱和状态(郭张军,2005)。因此,研究区地热水F-离子有两类来源,一是地热水深循环过程中与深部隐伏花岗岩淋滤作用; 二是高温地热水上涌时溶解萤石矿床。

  • 图5 石城地热带水体溶质含量关系图(a~i)

  • Fig.5 Relation diagram of solute content of the water body in Shicheng geothermal belt (a~i)

  • 3.3 同位素化学特征

  • 热水的起源可以通过氢、氧同位素与大气降水线的关系判断(庞忠和等,1990)。Craig(1961)首次提出全球降水线方程δD=8δ18O+10,孙占学等(2003)高建飞等(2011)王江思等(2018)根据江西寻乌横迳冷泉氢、氧同位素拟合出寻乌大气降水线方程为δD=8.33δ18O+8.52; 沈业杰等(2014)通过对江西鹰潭地区2012~2013年一个水文年的大气降水氢氧稳定同位素进行系统采样分析获得鹰潭雨水线方程为δD=8.61δ18O+18.34; 陈琦等(2019)通过对庐山西北面莲花镇、山顶牯岭镇、东南面海会镇3个雨水监测点2016~2017年一个水文年的氢氧稳定同位素数据的线性回归分析得出庐山大气降水线方程为δD=7.45δ18O+8.36。

  • 降水同位素随着纬度增高而降低(张洪平等,1991)。研究区位于鹰潭与寻乌之间,本次将地热水、浅层地下水、地表水等各类水体的δD、δ18O测试结果与全球雨水线、寻乌雨水线、鹰潭雨水线等联合绘制成图6。研究区地热水落在全球雨水线两侧,寻乌雨水线与鹰潭雨水线之间,无明显18O漂移,δD、δ18O值低于浅层地下水,表明研究区地热水来自大气降水,且径流环境较好、径流时间较长。

  • 3.4 热储温度计算

  • 热储温度是分析地热成因类型与勘查开发潜力的重要参数,地球化学温标是对流型地热田热储温度估算的主要手段。目前主要的地球化学温标法有阳离子温标、硅温标、多矿物平衡温标、气体温标和同位素温标等(章旭等,2020)。

  • 3.4.1 阳离子温标

  • 利用阳离子温标估算热储温度需分析热水上涌过程中水-岩反应和混合作用的影响程度。Giggenbach(1989)郎旭娟等(2016)赵佳怡等(2020)利用K-Na-Mg三角图解法判断地热流体平衡状态与阳离子温标的可靠性。将研究区地热水投入Na-K-Mg三角图中可知(图7),仅通天寨地热水属部分平衡水,其他均为未成熟水,这印证了前述通天寨地下水环境封闭,浅层冷水混入程度低的结论。因此,利用阳离子温标估算热储温度可能会形成较大误差。

  • 图6 石城地热带水体δD-δ18O关系图

  • Fig.6 The δD-δ18O plot of the water body in Shicheng geothermal belt

  • 图7 石城地热带地热水Na-K-Mg三角图

  • Fig.7 Na-K-Mg diagram of geothermal water in Shicheng geothermal belt

  • 3.4.2 硅温标

  • SiO2具有不易形成络合物、不受其他离子影响、浓度随温度下降而沉淀的速度慢等特点,利用SiO2温标法估算热储温度精度较高,已成为目前常用的热储温度估算方法。SiO2温标法主要有石英温标和玉髓温标(郭静等,2016; 蒋恕等,2021)。

  • 石英温标公式为 :T=13095.19-lgC-273.15

  • 玉髓温标公式为 :T=10324.69-lgC-273.15

  • 依据石英温标和玉髓温标计算得研究区热储温度分别为85~114℃、54~85℃(表2)。

  • 表2 石城地热带地热水地球化学温标计算结果表

  • Table2 The calculation result table of the geochemical temperature scale in Shicheng geothermal belt

  • 3.4.3 多矿物平衡温标

  • Reed et al.(1984)单玄龙等(2019)利用log(Q/K)-T图解法研究矿物-流体温度之间的化学平衡,确定热储温度。研究区浅部出露砂岩、千枚状板岩等地层,深部广泛隐伏花岗岩。本次利用Phreeqc软件计算石英、钾长石、黑云母等各矿物饱和指数,其中硬石膏、天青石、玉髓、温石棉、斜辉石、方石英、萤石、石英等八种矿物接近平衡时收敛于同一较小温度范围内。将其饱和指数与温度绘制成图8。玉髓、石英、方石英等矿物与平衡系数(SI)=0交点温度23~74℃(玉髓最低,石英最高),硬石膏、斜辉石、天青石等矿物与SI=0交点温度133~178℃,温度变化区间较大,部分还低于实际出水水温,偏离实际情况。但八种矿物较好地在未饱和状态下相交于一点,交点SI在-1~0之间,温度113~141℃,推测是由于冷热水混合作用导致矿物交点处饱和指数下移(赵佳怡等,2020)。因此,研究区热储温度为113~141℃,表现为北东高、南西低特征。结合前文推测,在上温寮北东部已完成地热水的深循环过程,上温寮-九礤区段的深部地热水主要是在石城断裂进行南西侧向径流,并由于向岩石热传导而造成热储温度下降。

  • 3.4.4 硅-焓温标

  • 研究区地热水属部分平衡水或未成熟水,表明地热水上升过程与浅层地下水发生了不同程度的混合作用。利用硅-焓温标法可求取地热水中冷水混合份额,提高热储估算精度(朱喜等,2021)。

  • 图8 石城地热带地热水中各矿物SI-T图(a~f)

  • Fig.8 SI-T diagrams of various minerals of geothermal water in Shicheng geothermal belt (a~f)

  • Scx+Sh (1-x) =Ss

  • SiO2cx+SiO2h (1-x) =SiO2s

  • 式中,ScShSs分别为近地表冷水焓、深部热水初焓、地热水终焓(J/g); SiO2c、SiO2h、SiO2s分别为近地表冷水SiO2含量、深部热水SiO2初始含量、地热水SiO2含量(mg/L); x为冷水混合比例。本次冷水温度和SiO2含量取地表水与冷泉水的均值19℃和15.8 mg/L。

  • 计算结果显示,研究区地热水冷水混合比例以沔坊最高,达79.9%,印证了上述沔坊地热水是浅循环红层裂隙水与楂山里导热断裂上涌的少量深部地热水的混合水的推测; 其他地热田为24.3%~48.5%,符合K-Na-Mg三角图解法的判断。6处地热田热储温度71.1~71.7℃,表明研究区各地热田发生冷热水混合前的地热水同源。

  • 3.4.5 热储温度讨论

  • 本次利用石英温标、玉髓温标、多矿物平衡温标、硅-焓温标计算的热储温度分别为85~114℃、54~85℃、113~141℃、71.1~71.7℃。研究区地热水在SiO2-lg(K2/Mg)图(图9)中均坐落于石英与玉髓之间,表明地热水同时受玉髓和石英共同控制(Giggenbach et al.,1989)。因此,按照石英与玉髓温标均值求得热储温度68~99℃,这与排除冷水混合作用的硅-焓温标法计算结果相近。表明研究区深部地热水与浅层地下水混合前的温度为68~99℃。

  • Arnorsson(1975)研究认为110℃以下温度,SiO2浓度由玉髓控制,110~180℃由玉髓和石英共同控制,180℃以上由石英控制。多矿物平衡温标计算的热储温度位于受玉髓和石英共同控制的温度范围内。因此,多矿物平衡温标计算结果113~141℃代表深部热储温度,在上升过程中发生传导冷却而降低至68~99℃,再经与浅层地下水混合作用成最终地热水的水温(闫晓雪等,2019)。如地热带地温梯度取通天寨ZK4井的3.15℃/100 m,采用热循环深度计算公式算得研究区地热循环深度为3100~4000 m。

  • 4 地热水成因分析

  • 水文地球化学分析结果显示,地热带各地热田同属一个地热系统(图10)。大气降水在北东部牙梳山中低山区自然入渗,沿区域性断裂向深部径流,在长距离径流过程中不断接受幔源大地热流的供热形成113~141℃的深部地热水,并在径流过程中与营上岩体富钾花岗岩发生充分的水-岩作用,逐步富集K+、SO42-、SiO2、F-等矿物元素。深部地热水约在3100~4000 m深处遇石城断裂(F1)阻水后改道沿F1侧向(南西向)径流、浅部排泄。侧向径流的地热水在传导冷却作用下逐步降低至68~99℃。向浅部排泄的地热水与赋存于浅部不同规模裂隙中的HCO3-Ca型冷水混合,构成45~57℃的混合水,同时稀释了水中矿物元素的含量。还有部分地热水在浅部遇楂山里断裂(F2)等后期形成的导热断裂后再改道,顺沿导热断裂排泄,地热水途径之处又与形成于晚白垩系、富集在F2断裂中的萤石矿发生溶解作用,最终在浅部低洼地带出露富F-型地热水。因此,研究区地热水水质受深部地热水径流距离、浅部冷水混合比例、上涌途经地层与矿体特征等综合控制。

  • 图9 石城地热带地热水SiO2-lg(K2/Mg)图

  • Fig.9 SiO2-lg (K2/Mg) diagram of geothermal water in Shicheng geothermal belt

  • 图10 石城地热带地热成因模式图

  • Fig.10 The origin model of geothermal in Shicheng geothermal belt

  • 5 结论与建议

  • (1)石城地热带6处地热田水化学类型差异性显著。深部地热水以通天寨为代表,表现为TDS 545~1014.48 mg/L的SO4-Na型; 向浅部受冷水混合作用影响,地热水中Na+、SO42-大幅下降,转变为TDS 187.15~817.47 mg/L的SO4·HCO3-Na·Ca型、TDS 158.84~207.74 mg/L的HCO3-Na·Ca型。地热水中Li-K+、SiO2-Na+等表现出良好的正相关性,说明Na+、K+、SO42-、F、SiO2、Sr、Li等主要来自深部热液。各地热水中矿物元素与TDS自北东向南西逐步增大,以及上温寮、楂山里分别局部富集K+、F,说明地热水水质还受深部地热水径流距离、上涌途经地层与矿体影响。

  • (2)石城地热带地热水δD、δ18O落在全球雨水线两侧,寻乌雨水线与鹰潭雨水线之间,表明地热水来源于大气降水。

  • (3)石英与玉髓温标均值与硅-焓温标法计算结果相近,表明研究区深部地热水与浅层地下水混合前的热储温度为68~99℃。多矿物平衡温标计算结果113~141℃代表深部热储温度,地热循环深度3100~4000 m。深部热储温度表现为北东高、南西低,说明深部地热水自北东向南西径流排泄。在此过程中,深部地热水发生传导冷却、冷水混入冷却两重降温。

  • (4)石城地热带所有地热田同属一个地热系统,大气降水在北东部牙梳山中低山区自然入渗补给,深部循环获取幔源大地热流的供热,并与营上岩体富钾花岗岩充分水-岩作用富集K+、SiO2等矿物元素,遇石城断裂阻水后转向南西侧向径流和浅部排泄。上温寮-九礤区段的深部地热水主要进行侧向径流与纵向排泄,因此,石城断裂上温寮南西方向的沟谷区,尤其是石城断裂与其他方向断裂的“Y”型节点处,具备进一步勘查隐伏地热水的前景。

  • 参考文献

    • Arnorsson S. 1975. Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. American Journal of Science, 275(7): 763~784.

    • Bai Ximin, Ye Hailong. 2014. Discussion on the formation mode and exploration direction of geothermal water resources in Jiangxi Province. New Progress in Jiangxi Geology 2014—Monograph of Papers on the Academic Annual Meeting of the 50th Anniversary of the Founding of Jiangxi Geological Society, 73~80 (in Chinese with English abstract).

    • Chen Qi, Guo Jinrong, Li Chao, Wang Hankun, Wu Chunsheng, Deng Wenping, Liu Yuanqiu, Ye Qing, Li Xiaodong. 2019. Characteristics of stable isotope changes in atmospheric precipitation in Lushan area. Journal of Natural Resources, 34(6): 1306~1316 (in Chinese with English abstract).

    • Chu Xiaodong. 2016. Genesis mechanism and prospecting prediction of Shicheng geothermal field in Jiangxi Province. Master dissertation of Nanjing University (in Chinese with English abstract).

    • Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702~1703.

    • Fan Binghong, Bai Ximin, Zou Guoyao, Ye Hailong. 2020. Research on geothermal field characteristics of Shangwenliao geothermal water in Shicheng County, Jiangxi. New Progress in Jiangxi Geology 2020——the 10th Member Congress of Jiangxi Geological Society, Proceedings of the 2020 Academic Annual Meeting of the Jiangxi Geological Society, 55~60 (in Chinese with English abstract).

    • Gao Jianfei, Ding Tiping, Luo Xurong, Tian Shihong, Wang Huaiba, Li Ming. 2011. Spatial variation characteristics of the hydrogen and oxygen isotopic compositions of the Yellow River and their environmental significance. Acta Geologica Sinica, 85(4): 596~602 (in Chinese with English abstract).

    • Giggenbach W F, Goguel R L. 1989. Collection and analysis of geothermal and volcanic water and gas discharges. Report No. CD 2401. Chemistry Division, DSIR, Petone, New Zealand.

    • Guo Jing, Mao Xumei, Tong Sheng, Feng Liang. 2016. Estimation of the heat exchange temperature of the deep geothermal system along the coast of western Guangdong with a hydrochemical thermometer. Earth Science, 41(12): 2075~2087 (in Chinese with English abstract).

    • Guo Qinghai. 2020. Magma heat source type geothermal system and its hydrogeochemical criterion. Acta Geologica Sinica, 94(12): 3544~3554 (in Chinese with English abstract).

    • Guo Zhangjun, Song Hanzhou. 2005. Existing forms of groundwater chemical components and calculation of SI value. Resources Environment and Engineering, 3: 200~202+219 (in Chinese with English abstract).

    • Huang Changsheng, Hou Baoquan, Yi Chengyun, Li Long, Zhang Shengnan, Zhou Yun, Waseem Akram, Wang Fangting. 2021. Analysis of formation conditions of geothermal water in southern Jiangxi and delineation of geothermal water exploration target area in Ganxian district. South China Geology, 37(1): 64~74 (in Chinese with English abstract).

    • Jiang Shu, Chen Guohui, Zhang Yuying, Zhang Luchuan, Kuang Jian, Li Chun, Cheng Wanqiang. 2021. Case analysis and method suitability evaluation of geothermal thermometers based on US national geothermal data. Geological Journal of Universities, 27(1) : 1~17 (in Chinese with English abstract).

    • Lang Xujuan, Lin Wenjing, Liu Zhiming, Xing Linxiao, Wang Guiling. 2016. Hydrogeochemical characteristics of underground hot water in Guide basin. Earth Science, 41(10): 1723~1734 (in Chinese with English abstract).

    • Li Changjiang, Jiang Xuliang. 1991. Metallogenic models of two types of fluorite deposits in southeastern China. Acta Geologica Sinica, 65(3): 263~274 (in Chinese with English abstract).

    • Pang Zhonghe, Fan Zhicheng, Wang Jiyang. 1990. Hydrogen and oxygen stable isotopes in the hydrothermal system of Zhangzhou basin. Acta Petrologica Sinica, 4: 75~84 (in Chinese with English abstract).

    • Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7): 1479~1492.

    • Shan Xuanlong, Cai Zhuang, Hao Guoli, Zou Xintong, Zhao Rongsheng. 2019. Geochemical temperature scale to estimate the thermal storage temperature of the Changbai Mountain geothermal system. Journal of Jilin University (Earth Science Edition), 49(3): 662~672 (in Chinese with English abstract).

    • Shen Yejie, Peng Xinhua. 2014. Characteristics of hydrogen and oxygen stable isotopes in atmospheric precipitation in Yingtan area. Journal of Ecological Environment, 23(1): 101~105 (in Chinese with English abstract).

    • Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. 1993. Fundamentals of Hydrology and Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Sun Zhanxue, Liu Jinhui, Gao Bai. 2003. Isotopic hydrogeochemistry of carbonated hot springs in the Mojing area of southern Jiangxi. Proceedings of the 19th Annual Meeting of the Chinese Geophysical Society, 696~697 (in Chinese with English abstract).

    • Wang Jiyang. 1993. Medium and Low Temperature Convective Geothermal System. Beijing: Science Press (in Chinese with English abstract).

    • Wang Jiyang. 2008. Looking at my country's geothermal energy development and utilization from the world's geothermal energy. Proceedings of the High-level Symposium on Scientific Development of China's Geothermal Resources, 16~19 (in Chinese with English abstract).

    • Wang Jiangsi, Ouyang Zhengping, Xu Zidong, Wang Wenmei, Yang Yongchang. 2018. Analysis of the origin of geothermal water based on hydrogeochemical information and environmental isotopes. Earth and Environment, 46(1): 7~14 (in Chinese with English abstract).

    • Wang Jin, Xiao Zeyou, Hou Huaimin. 2020. Characteristics and genesis of convective geothermal system in fault-fold mountainous areas in southern Jiangxi——taking the geothermal system in Hashanli, Shicheng County as an example. East China Geology, 41(4): 381~386 (in Chinese with English abstract).

    • White D E. 1968. Hydrology, activity, and heat flow of thesteamboat springs thermal system, Washoe County, Nevada. USA: US Government Printing Office.

    • Xia Zhongzhi, Ma Zhenxing, Wang Xianguang, Zhan Tianwei, Li Yanhong. 2017. New progress in geothermal water exploration by Jiangxi Geological Exploration Fund. Journal of East China University of Technology (Natural Science Edition), 40(1): 71~78 (in Chinese with English abstract).

    • Xiao Zeyou, Wang Jin, Hou Huaimin. 2018. Analysis of the characteristics and causes of geothermal water in the eastern part of Jiangxi. Journal of East China University of Technology (Natural Science Edition), 41(3): 255~261 (in Chinese with English abstract).

    • Yan Xiaoxue, Gan Haonan, Yue Gaofan. 2019. Hydrogeochemical characteristics and genetic analysis of the typical geothermal field in Huizhou-Conghua, Guangdong. Geological Review, 65(3): 743~754 (in Chinese with English abstract).

    • Yang Minggui, Ma Zhenxing, Yin Guosheng. 2018. The quaternary geological tectonic evolution and ecological geological resources in Jiangxi. The 2018 Paper Collection of the Geological Society of Jiangxi Province (4), 4~15 (in Chinese with English abstract).

    • Ye Hailong, Fan Binghong, Bai Ximin, Yu Shengpin, Du Minghui. 2018. Discussion on the estimation of the mixing ratio of geothermal water. The 2018 Paper Collection of the Geological Society of Jiangxi Province (2), 70~75 (in Chinese with English abstract).

    • Zhang Hongping, Liu Enkai, Wang Dongsheng, Jia Yankun, Sun Jichao. 1991. The stable isotopic composition of atmospheric precipitation in China and its influencing factors. The Collection of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences (7), 106~115 (in Chinese with English abstract).

    • Zhang Meng, Lin Wenjing, Liu Zhao, Liu Zhiming, Hu Xiancai, Wang Guiling. 2014. Hydrogeochemical characteristics and genetic model of the high-temperature geothermal system in Gulu, Tibet. Journal of Chengdu University of Technology (Natural Science Edition), 41(3): 382~392 (in Chinese with English abstract).

    • Zhang Weimin. 2001. Using SiO2 geothermal thermometer to estimate the temperature of geothermal storage──taking some hot springs in the Hengjing area of southern Jiangxi as an example. Acta Geosciences, (2): 185~188 (in Chinese with English abstract).

    • Zhang Xu, Hao Hongbing, Liu Kanglin, Mao Wulin, Xiao Yao, Zhang Wen. 2020. Hydrogeochemical characteristics and formation mechanism of underground hot water in the Woka Graben, Tibet. Geology in China, 47(6): 1702~1714 (in Chinese with English abstract).

    • Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. The chemical characteristics of geothermal fluid in the Rongcheng geothermal field in Xiong'an New Area. Acta Geology, 94(7): 1991~2001 (in Chinese with English abstract).

    • Zheng Qianqiang, Zhong Ming, Deng Youping. 2009. Research on Jiangxi geothermal control factors. Journal of East China University of Technology (Natural Science Edition), 32(3): 261~264 (in Chinese with English abstract).

    • Zhu Bingqiu, Zhu Lixin. 1992. Geochemical Exploration of Geothermal Field. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2021. Hydrogeochemical characteristics and significance of aquifers in the Jixian System of Taihang Mountain-Xiongan New Area. Earth Science, 46(7): 2594~2608 (in Chinese with English abstract).

    • Zhuang Xiangui, Peng Linlin, Liu Qinghong, Yang Rui. 2017. Discussion on the geological characteristics and genesis of the fluorite deposit in Zhashanli, Shicheng, Jiangxi. Geology of Chemical Minerals, 39(2): 65~71 (in Chinese with English abstract).

    • Zou Guoyao, Yang Qian. 2019. Analysis on the cause of formation of Shangwenliao geothermal water in Shicheng County, Jiangxi Province. Resources Information and Engineering, 34(5): 28~30 (in Chinese with English abstract).

    • 白细民, 叶海龙. 2014. 江西省地热水资源形成模式与勘查方向探讨. 江西地学新进展——江西省地质学会成立五十周年学术年会论文专集, 73~80.

    • 陈琦, 郭锦荣, 李超, 王翰琨, 吴春生, 邓文平, 刘苑秋, 叶清, 李晓东. 2019. 庐山地区大气降水中稳定同位素变化特征. 自然资源学报, 34(6): 1306~1316.

    • 储小东. 2016. 江西省石城地热田成因机制及找矿预测. 南京大学硕士学位论文.

    • 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 2019. 地球化学温标估算长白山地热系统热储温度. 吉林大学学报(地球科学版), 49(3): 662~672.

    • 樊柄宏, 白细民, 邹国瑶, 叶海龙. 2020. 江西石城县上温寮地热水地温场特征研究. 江西地学新进展——-江西省地质学会第十次会员代表大会暨江西省地质学会2020年学术年会论文集, 55~60.

    • 高建飞, 丁悌平, 罗续荣, 田世洪, 王怀柏, 李明. 2011. 黄河水氢、氧同位素组成的空间变化特征及其环境意义. 地质学报, 85(4): 596~602.

    • 郭静, 毛绪美, 童晟, 冯亮. 2016. 水化学温度计估算粤西沿海深部地热系统热交换温度. 地球科学, 41(12): 2075~2087.

    • 郭清海. 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544~3554.

    • 郭张军, 宋汉周. 2005. 地下水化学组分存在形式及其SI值计算. 资源环境与工程, 3: 200~202+219.

    • 黄长生, 侯保全, 易秤云, 李龙, 张胜男, 周耘, Waseem Akram, 王芳婷. 2021. 赣南地热水形成条件分析与赣县区地热水勘查靶区圈定. 华南地质, 37(1): 64~74.

    • 蒋恕, 陈国辉, 张钰莹, 张鲁川, 旷健, 李醇, 程万强. 2021. 基于美国国家地热数据的地热温度计案例分析与方法适宜性评价. 高校地质学报, 27(1): 1~17.

    • 郎旭娟, 蔺文静, 刘志明, 邢林啸, 王贵玲. 2016. 贵德盆地地下热水水文地球化学特征. 地球科学, 41(10): 1723~1734.

    • 李长江, 蒋叙良. 1991. 中国东南部两类萤石矿床的成矿模式. 地质学报, 65(3): 263~274.

    • 庞忠和, 樊志成, 汪集旸. 1990. 漳州盆地水热系统的氢氧稳定同位素研究. 岩石学报, 4: 75~84.

    • 沈业杰, 彭新华. 2014. 鹰潭地区大气降水中氢氧稳定同位素特征研究. 生态环境学报, 23(1): 101~105.

    • 沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础. 北京: 地质出版社.

    • 孙占学, 刘金辉, 高柏. 2003. 赣南模迳地区碳酸温泉的同位素水文地球化学研究. 中国地球物理学会第十九届年会论文集, 696~697.

    • 汪集旸. 1993. 中低温对流型地热系统. 北京: 科学出版社.

    • 汪集旸. 2008. 从世界地热看我国地热能开发利用问题. 科学开发中国地热资源——科学开发中国地热资源高层研讨会论文集, 16~19.

    • 王江思, 欧阳正平, 徐子东, 王文梅, 杨勇昌. 2018. 基于水文地球化学信息和环境同位素的地下热水成因分析. 地球与环境, 46(1): 7~14.

    • 王进, 肖则佑, 侯怀敏. 2020. 赣南断褶山地对流型地热系统特征及成因——以石城县楂山里地热系统为例. 华东地质, 41(4): 381~386.

    • 夏中智, 马振兴, 王先广, 詹天卫, 李艳红. 2017. 江西省地勘基金地热水勘查新进展. 东华理工大学学报(自然科学版), 40(1): 71~78.

    • 肖则佑, 王进, 侯怀敏. 2018. 赣南东部地热水特征及成因分析. 东华理工大学学报(自然科学版), 41(3): 255~261.

    • 闫晓雪, 甘浩男, 岳高凡. 2019. 广东惠州-从化典型地热田水文地球化学特征及成因分析. 地质论评, 65(3): 743~754.

    • 杨明桂, 马振兴, 尹国胜. 2018. 江西第四纪地质构造演化与生态地质资源. 江西省地质学会2018年论文汇编(四), 4~15.

    • 叶海龙, 樊柄宏, 白细民, 余圣品, 杜明辉. 2018. 地热水混合比例估算探讨. 江西省地质学会2018年论文汇编(二), 70~75.

    • 张洪平, 刘恩凯, 王东升, 贾艳琨, 孙继朝. 1991. 中国大气降水稳定同位素组成及影响因素. 中国地质科学院水文地质工程地质研究所文集(7), 106~115.

    • 张萌, 蔺文静, 刘昭, 刘志明, 胡先才, 王贵玲. 2014. 西藏谷露高温地热系统水文地球化学特征及成因模式. 成都理工大学学报(自然科学版), 41(3): 382~392.

    • 张卫民. 2001. 应用SiO2地热温度计估算地热储温度——以赣南横泾地区若干温泉为例. 地球学报, (2): 185~188.

    • 章旭, 郝红兵, 刘康林, 毛武林, 肖尧, 张文. 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制. 中国地质, 47(6): 1702~1714.

    • 赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征. 地质学报, 94(7): 1991~2001.

    • 郑乾墙, 钟鸣, 邓有平. 2009. 江西地热控制因素研究. 东华理工大学学报(自然科学版), 32(3): 261~264.

    • 朱炳球, 朱立新. 1992. 地热田地球化学勘查. 北京: 地质出版社.

    • 朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594~2608.

    • 庄贤贵, 彭琳琳, 刘庆鸿, 杨锐. 2017. 江西石城楂山里萤石矿床地质特征及成因探讨. 化工矿产地质, 39(2): 65~71.

    • 邹国瑶, 杨倩. 2019. 江西省石城县上温寮地热水成因分析. 资源信息与工程, 34(5): 28~30.

  • 参考文献

    • Arnorsson S. 1975. Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. American Journal of Science, 275(7): 763~784.

    • Bai Ximin, Ye Hailong. 2014. Discussion on the formation mode and exploration direction of geothermal water resources in Jiangxi Province. New Progress in Jiangxi Geology 2014—Monograph of Papers on the Academic Annual Meeting of the 50th Anniversary of the Founding of Jiangxi Geological Society, 73~80 (in Chinese with English abstract).

    • Chen Qi, Guo Jinrong, Li Chao, Wang Hankun, Wu Chunsheng, Deng Wenping, Liu Yuanqiu, Ye Qing, Li Xiaodong. 2019. Characteristics of stable isotope changes in atmospheric precipitation in Lushan area. Journal of Natural Resources, 34(6): 1306~1316 (in Chinese with English abstract).

    • Chu Xiaodong. 2016. Genesis mechanism and prospecting prediction of Shicheng geothermal field in Jiangxi Province. Master dissertation of Nanjing University (in Chinese with English abstract).

    • Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465): 1702~1703.

    • Fan Binghong, Bai Ximin, Zou Guoyao, Ye Hailong. 2020. Research on geothermal field characteristics of Shangwenliao geothermal water in Shicheng County, Jiangxi. New Progress in Jiangxi Geology 2020——the 10th Member Congress of Jiangxi Geological Society, Proceedings of the 2020 Academic Annual Meeting of the Jiangxi Geological Society, 55~60 (in Chinese with English abstract).

    • Gao Jianfei, Ding Tiping, Luo Xurong, Tian Shihong, Wang Huaiba, Li Ming. 2011. Spatial variation characteristics of the hydrogen and oxygen isotopic compositions of the Yellow River and their environmental significance. Acta Geologica Sinica, 85(4): 596~602 (in Chinese with English abstract).

    • Giggenbach W F, Goguel R L. 1989. Collection and analysis of geothermal and volcanic water and gas discharges. Report No. CD 2401. Chemistry Division, DSIR, Petone, New Zealand.

    • Guo Jing, Mao Xumei, Tong Sheng, Feng Liang. 2016. Estimation of the heat exchange temperature of the deep geothermal system along the coast of western Guangdong with a hydrochemical thermometer. Earth Science, 41(12): 2075~2087 (in Chinese with English abstract).

    • Guo Qinghai. 2020. Magma heat source type geothermal system and its hydrogeochemical criterion. Acta Geologica Sinica, 94(12): 3544~3554 (in Chinese with English abstract).

    • Guo Zhangjun, Song Hanzhou. 2005. Existing forms of groundwater chemical components and calculation of SI value. Resources Environment and Engineering, 3: 200~202+219 (in Chinese with English abstract).

    • Huang Changsheng, Hou Baoquan, Yi Chengyun, Li Long, Zhang Shengnan, Zhou Yun, Waseem Akram, Wang Fangting. 2021. Analysis of formation conditions of geothermal water in southern Jiangxi and delineation of geothermal water exploration target area in Ganxian district. South China Geology, 37(1): 64~74 (in Chinese with English abstract).

    • Jiang Shu, Chen Guohui, Zhang Yuying, Zhang Luchuan, Kuang Jian, Li Chun, Cheng Wanqiang. 2021. Case analysis and method suitability evaluation of geothermal thermometers based on US national geothermal data. Geological Journal of Universities, 27(1) : 1~17 (in Chinese with English abstract).

    • Lang Xujuan, Lin Wenjing, Liu Zhiming, Xing Linxiao, Wang Guiling. 2016. Hydrogeochemical characteristics of underground hot water in Guide basin. Earth Science, 41(10): 1723~1734 (in Chinese with English abstract).

    • Li Changjiang, Jiang Xuliang. 1991. Metallogenic models of two types of fluorite deposits in southeastern China. Acta Geologica Sinica, 65(3): 263~274 (in Chinese with English abstract).

    • Pang Zhonghe, Fan Zhicheng, Wang Jiyang. 1990. Hydrogen and oxygen stable isotopes in the hydrothermal system of Zhangzhou basin. Acta Petrologica Sinica, 4: 75~84 (in Chinese with English abstract).

    • Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7): 1479~1492.

    • Shan Xuanlong, Cai Zhuang, Hao Guoli, Zou Xintong, Zhao Rongsheng. 2019. Geochemical temperature scale to estimate the thermal storage temperature of the Changbai Mountain geothermal system. Journal of Jilin University (Earth Science Edition), 49(3): 662~672 (in Chinese with English abstract).

    • Shen Yejie, Peng Xinhua. 2014. Characteristics of hydrogen and oxygen stable isotopes in atmospheric precipitation in Yingtan area. Journal of Ecological Environment, 23(1): 101~105 (in Chinese with English abstract).

    • Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. 1993. Fundamentals of Hydrology and Geochemistry. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Sun Zhanxue, Liu Jinhui, Gao Bai. 2003. Isotopic hydrogeochemistry of carbonated hot springs in the Mojing area of southern Jiangxi. Proceedings of the 19th Annual Meeting of the Chinese Geophysical Society, 696~697 (in Chinese with English abstract).

    • Wang Jiyang. 1993. Medium and Low Temperature Convective Geothermal System. Beijing: Science Press (in Chinese with English abstract).

    • Wang Jiyang. 2008. Looking at my country's geothermal energy development and utilization from the world's geothermal energy. Proceedings of the High-level Symposium on Scientific Development of China's Geothermal Resources, 16~19 (in Chinese with English abstract).

    • Wang Jiangsi, Ouyang Zhengping, Xu Zidong, Wang Wenmei, Yang Yongchang. 2018. Analysis of the origin of geothermal water based on hydrogeochemical information and environmental isotopes. Earth and Environment, 46(1): 7~14 (in Chinese with English abstract).

    • Wang Jin, Xiao Zeyou, Hou Huaimin. 2020. Characteristics and genesis of convective geothermal system in fault-fold mountainous areas in southern Jiangxi——taking the geothermal system in Hashanli, Shicheng County as an example. East China Geology, 41(4): 381~386 (in Chinese with English abstract).

    • White D E. 1968. Hydrology, activity, and heat flow of thesteamboat springs thermal system, Washoe County, Nevada. USA: US Government Printing Office.

    • Xia Zhongzhi, Ma Zhenxing, Wang Xianguang, Zhan Tianwei, Li Yanhong. 2017. New progress in geothermal water exploration by Jiangxi Geological Exploration Fund. Journal of East China University of Technology (Natural Science Edition), 40(1): 71~78 (in Chinese with English abstract).

    • Xiao Zeyou, Wang Jin, Hou Huaimin. 2018. Analysis of the characteristics and causes of geothermal water in the eastern part of Jiangxi. Journal of East China University of Technology (Natural Science Edition), 41(3): 255~261 (in Chinese with English abstract).

    • Yan Xiaoxue, Gan Haonan, Yue Gaofan. 2019. Hydrogeochemical characteristics and genetic analysis of the typical geothermal field in Huizhou-Conghua, Guangdong. Geological Review, 65(3): 743~754 (in Chinese with English abstract).

    • Yang Minggui, Ma Zhenxing, Yin Guosheng. 2018. The quaternary geological tectonic evolution and ecological geological resources in Jiangxi. The 2018 Paper Collection of the Geological Society of Jiangxi Province (4), 4~15 (in Chinese with English abstract).

    • Ye Hailong, Fan Binghong, Bai Ximin, Yu Shengpin, Du Minghui. 2018. Discussion on the estimation of the mixing ratio of geothermal water. The 2018 Paper Collection of the Geological Society of Jiangxi Province (2), 70~75 (in Chinese with English abstract).

    • Zhang Hongping, Liu Enkai, Wang Dongsheng, Jia Yankun, Sun Jichao. 1991. The stable isotopic composition of atmospheric precipitation in China and its influencing factors. The Collection of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences (7), 106~115 (in Chinese with English abstract).

    • Zhang Meng, Lin Wenjing, Liu Zhao, Liu Zhiming, Hu Xiancai, Wang Guiling. 2014. Hydrogeochemical characteristics and genetic model of the high-temperature geothermal system in Gulu, Tibet. Journal of Chengdu University of Technology (Natural Science Edition), 41(3): 382~392 (in Chinese with English abstract).

    • Zhang Weimin. 2001. Using SiO2 geothermal thermometer to estimate the temperature of geothermal storage──taking some hot springs in the Hengjing area of southern Jiangxi as an example. Acta Geosciences, (2): 185~188 (in Chinese with English abstract).

    • Zhang Xu, Hao Hongbing, Liu Kanglin, Mao Wulin, Xiao Yao, Zhang Wen. 2020. Hydrogeochemical characteristics and formation mechanism of underground hot water in the Woka Graben, Tibet. Geology in China, 47(6): 1702~1714 (in Chinese with English abstract).

    • Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. The chemical characteristics of geothermal fluid in the Rongcheng geothermal field in Xiong'an New Area. Acta Geology, 94(7): 1991~2001 (in Chinese with English abstract).

    • Zheng Qianqiang, Zhong Ming, Deng Youping. 2009. Research on Jiangxi geothermal control factors. Journal of East China University of Technology (Natural Science Edition), 32(3): 261~264 (in Chinese with English abstract).

    • Zhu Bingqiu, Zhu Lixin. 1992. Geochemical Exploration of Geothermal Field. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2021. Hydrogeochemical characteristics and significance of aquifers in the Jixian System of Taihang Mountain-Xiongan New Area. Earth Science, 46(7): 2594~2608 (in Chinese with English abstract).

    • Zhuang Xiangui, Peng Linlin, Liu Qinghong, Yang Rui. 2017. Discussion on the geological characteristics and genesis of the fluorite deposit in Zhashanli, Shicheng, Jiangxi. Geology of Chemical Minerals, 39(2): 65~71 (in Chinese with English abstract).

    • Zou Guoyao, Yang Qian. 2019. Analysis on the cause of formation of Shangwenliao geothermal water in Shicheng County, Jiangxi Province. Resources Information and Engineering, 34(5): 28~30 (in Chinese with English abstract).

    • 白细民, 叶海龙. 2014. 江西省地热水资源形成模式与勘查方向探讨. 江西地学新进展——江西省地质学会成立五十周年学术年会论文专集, 73~80.

    • 陈琦, 郭锦荣, 李超, 王翰琨, 吴春生, 邓文平, 刘苑秋, 叶清, 李晓东. 2019. 庐山地区大气降水中稳定同位素变化特征. 自然资源学报, 34(6): 1306~1316.

    • 储小东. 2016. 江西省石城地热田成因机制及找矿预测. 南京大学硕士学位论文.

    • 单玄龙, 蔡壮, 郝国丽, 邹欣彤, 赵容生. 2019. 地球化学温标估算长白山地热系统热储温度. 吉林大学学报(地球科学版), 49(3): 662~672.

    • 樊柄宏, 白细民, 邹国瑶, 叶海龙. 2020. 江西石城县上温寮地热水地温场特征研究. 江西地学新进展——-江西省地质学会第十次会员代表大会暨江西省地质学会2020年学术年会论文集, 55~60.

    • 高建飞, 丁悌平, 罗续荣, 田世洪, 王怀柏, 李明. 2011. 黄河水氢、氧同位素组成的空间变化特征及其环境意义. 地质学报, 85(4): 596~602.

    • 郭静, 毛绪美, 童晟, 冯亮. 2016. 水化学温度计估算粤西沿海深部地热系统热交换温度. 地球科学, 41(12): 2075~2087.

    • 郭清海. 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544~3554.

    • 郭张军, 宋汉周. 2005. 地下水化学组分存在形式及其SI值计算. 资源环境与工程, 3: 200~202+219.

    • 黄长生, 侯保全, 易秤云, 李龙, 张胜男, 周耘, Waseem Akram, 王芳婷. 2021. 赣南地热水形成条件分析与赣县区地热水勘查靶区圈定. 华南地质, 37(1): 64~74.

    • 蒋恕, 陈国辉, 张钰莹, 张鲁川, 旷健, 李醇, 程万强. 2021. 基于美国国家地热数据的地热温度计案例分析与方法适宜性评价. 高校地质学报, 27(1): 1~17.

    • 郎旭娟, 蔺文静, 刘志明, 邢林啸, 王贵玲. 2016. 贵德盆地地下热水水文地球化学特征. 地球科学, 41(10): 1723~1734.

    • 李长江, 蒋叙良. 1991. 中国东南部两类萤石矿床的成矿模式. 地质学报, 65(3): 263~274.

    • 庞忠和, 樊志成, 汪集旸. 1990. 漳州盆地水热系统的氢氧稳定同位素研究. 岩石学报, 4: 75~84.

    • 沈业杰, 彭新华. 2014. 鹰潭地区大气降水中氢氧稳定同位素特征研究. 生态环境学报, 23(1): 101~105.

    • 沈照理, 朱宛华, 钟佐燊. 1993. 水文地球化学基础. 北京: 地质出版社.

    • 孙占学, 刘金辉, 高柏. 2003. 赣南模迳地区碳酸温泉的同位素水文地球化学研究. 中国地球物理学会第十九届年会论文集, 696~697.

    • 汪集旸. 1993. 中低温对流型地热系统. 北京: 科学出版社.

    • 汪集旸. 2008. 从世界地热看我国地热能开发利用问题. 科学开发中国地热资源——科学开发中国地热资源高层研讨会论文集, 16~19.

    • 王江思, 欧阳正平, 徐子东, 王文梅, 杨勇昌. 2018. 基于水文地球化学信息和环境同位素的地下热水成因分析. 地球与环境, 46(1): 7~14.

    • 王进, 肖则佑, 侯怀敏. 2020. 赣南断褶山地对流型地热系统特征及成因——以石城县楂山里地热系统为例. 华东地质, 41(4): 381~386.

    • 夏中智, 马振兴, 王先广, 詹天卫, 李艳红. 2017. 江西省地勘基金地热水勘查新进展. 东华理工大学学报(自然科学版), 40(1): 71~78.

    • 肖则佑, 王进, 侯怀敏. 2018. 赣南东部地热水特征及成因分析. 东华理工大学学报(自然科学版), 41(3): 255~261.

    • 闫晓雪, 甘浩男, 岳高凡. 2019. 广东惠州-从化典型地热田水文地球化学特征及成因分析. 地质论评, 65(3): 743~754.

    • 杨明桂, 马振兴, 尹国胜. 2018. 江西第四纪地质构造演化与生态地质资源. 江西省地质学会2018年论文汇编(四), 4~15.

    • 叶海龙, 樊柄宏, 白细民, 余圣品, 杜明辉. 2018. 地热水混合比例估算探讨. 江西省地质学会2018年论文汇编(二), 70~75.

    • 张洪平, 刘恩凯, 王东升, 贾艳琨, 孙继朝. 1991. 中国大气降水稳定同位素组成及影响因素. 中国地质科学院水文地质工程地质研究所文集(7), 106~115.

    • 张萌, 蔺文静, 刘昭, 刘志明, 胡先才, 王贵玲. 2014. 西藏谷露高温地热系统水文地球化学特征及成因模式. 成都理工大学学报(自然科学版), 41(3): 382~392.

    • 张卫民. 2001. 应用SiO2地热温度计估算地热储温度——以赣南横泾地区若干温泉为例. 地球学报, (2): 185~188.

    • 章旭, 郝红兵, 刘康林, 毛武林, 肖尧, 张文. 2020. 西藏沃卡地堑地下热水水文地球化学特征及其形成机制. 中国地质, 47(6): 1702~1714.

    • 赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征. 地质学报, 94(7): 1991~2001.

    • 郑乾墙, 钟鸣, 邓有平. 2009. 江西地热控制因素研究. 东华理工大学学报(自然科学版), 32(3): 261~264.

    • 朱炳球, 朱立新. 1992. 地热田地球化学勘查. 北京: 地质出版社.

    • 朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594~2608.

    • 庄贤贵, 彭琳琳, 刘庆鸿, 杨锐. 2017. 江西石城楂山里萤石矿床地质特征及成因探讨. 化工矿产地质, 39(2): 65~71.

    • 邹国瑶, 杨倩. 2019. 江西省石城县上温寮地热水成因分析. 资源信息与工程, 34(5): 28~30.