-
经过近年页岩油的勘探实践表明,咸化湖相沉积环境形成的细粒混合沉积岩已成为我国陆相页岩油勘探的热点层系,并在多个地区获得了重大勘探突破(赵贤正等,2018; 支东明等,2019; 赵文智等,2020; 鲍云杰等,2021)。酒泉盆地酒西坳陷青西凹陷下白垩统下沟组、准噶尔盆地玛湖凹陷下二叠统风城组、吉木萨尔凹陷中二叠统芦草沟组、三塘湖盆地芦草沟组、柴达木盆地古近系下干柴沟组等都不同程度地发育有机质丰度高、类型好,处于成熟生油阶段的咸化湖相页岩(李新宁等,2015; Gao Gang et al.,2016; 吴因业等,2019; 王剑等,2020a; 支东明等,2021; Liu Shiju et al.,2021)。不同地区咸化湖相烃源岩的母质赋存形态都可以划分出层状藻与结构藻两种类型。有关烃源岩生烃特征,前人已从温度、地层压力、矿物催化作用、地层水介质等影响方面做了大量卓有成效的研究工作(陈建平等,2014; 李剑等,2018),然而对于含有层状藻与结构藻咸化湖相烃源岩的成烃演化特征及其差异性对比研究还缺乏深入的认识。准噶尔盆地吉木萨尔凹陷芦草沟组作为我国第一个页岩油勘探开发示范区,对其页岩油源岩有机质来源、优质储层形成条件与甜点预测等方面已经做了大量的工作(匡立春等,2014; 曲长胜等,2017; 王剑等,2020b; Liu Shiju et al.,2022)。本文基于有机岩石学、生烃动力学与密闭容器加水热模拟生烃实验等,对准噶尔盆地吉木萨尔凹陷芦草沟组咸化湖相含有典型层状藻和结构藻的烃源岩的成烃特征进行了对比研究,以明确两种不同赋存状态母质烃源岩的成烃特征差异性及其对油源对比的启示意义。
-
1 样品的选取与实验分析方法
-
用于实验分析的烃源岩样品采自吉木萨尔凹陷JHBE井芦草沟组岩芯。所选的两个烃源岩样品的母质分别以结构藻和层状藻为主,其基础信息见表1,其中的S1样品富含结构藻,S2样品富含层状藻。总有机碳(TOC)和热解参数S2(热解烃)指示了两个样品均属于好—极好烃源岩(表1),高氢指数(HI)(>600 mg HC/g TOC)指示了样品为I型倾油干酪根,镜质体反射率(Ro=0.77%)表明样品目前正处于较低的热演化阶段。
-
注:HI=S2/TOC×100; 烃指数HCI=S1/TOC×100; EOM为氯仿沥青“A”含量。
-
将样品垂直于层理切割成块,在Buehler自动研磨抛光机上进行抛光,获得光滑的表面在徕卡显微镜的油浸镜头(50X和20X)下进行荧光和反射光特征观察。在显微镜观察之后,切割小块样品进行氩离子抛光,然后在扫描电镜下进行观察。
-
惰性开放体系有机质生烃实验采用的是Rock-Eval-II型热解仪器,主要用于生烃动力学分析。样品量为40 mg,具体设置为样品在 200℃恒温加热5 min除去吸附烃,然后由200℃以不同的升温速率下恒速升温至600℃; 对这两个样品采用了20℃/min、30℃/min、40℃/min、50℃/min 的升温速率方案。化学动力学模型采用平行反应动力学模型(Burnham et al.,1988)。
-
热模拟实验采用金属密闭容器加水热模拟法,实验时间为24 h,样品粉碎成米粒大小,用量为30 g,加水量为刚好淹没过样品,实验温度依次为300℃、335℃和370℃。实验产物主要有液态和气态两种,其中在样品表面、釜壁和管道收集的液态产物视为排出油,样品粉碎抽提得到的为残余油。收集的气态产物进行气相色谱分析,依据气体真实状态方程对产气量进行计算,最终得到样品的生烃总量。
-
2 样品的有机岩石学特征对比
-
利用全岩光片和扫描电镜的观察,结构藻类体在荧光条件下呈层状孤立分布,具有特殊的荧光性质,主要表现为藻类中间的荧光呈橙红色,四周呈黄色(图1a),镜质体含量低,可见黄铁矿(图1b)。层状藻类体在显微镜下并没有可分辨的生物结构和轮廓,荧光颜色均一,呈黄—绿色(图1c),样品中陆源有机质含量低(图1d)。可见,两者的荧光特征具有明显的差异性。依据有机质荧光特点,可以对有机质的热演化程度进行大致判别,随着演化程度的增加,有机质荧光特征依次为绿色、黄绿色、黄色、红褐色、黑色(傅家谟等,1975)。从荧光特征上看,结构藻的生烃转化率要高于层状藻,且荧光的不均一性暗示了结构藻不同部位生化组分的差异。结构藻类体长度为20~50 μm左右,层状藻水平延伸较长,垂向上呈书页状叠置(图2)。
-
3 结构藻和富含层状藻烃源岩的生烃动力学特征
-
为进一步比较样品不同升温速率的成烃特征,对升温实验数据进行归一化(图3)。可见,同一样品慢速升温速率要比快速升温速率更提前获得相同的成烃转化率(图3a、b)。这种现象与地质的时-温补偿原理相一致。对于以结构藻为主的烃源岩样品,累计转化率与温度关系相对平缓,并且在较低温度便已经开始转化为烃,尤其在20℃/min的升温速率下。以层状藻为主的样品在油气大量生成阶段时,转化率与温度的斜率高,暗示了层状藻快速生烃的特点,并且在不同升温速率实验条件下,在温度为350℃之前,累计生烃率低,指示了其集中生烃的特点。将10%转化率视为有效生烃下限,90%转化率视为有效生烃终点,以50%转化率为转化中轴来研究其生烃特征(表2)。从表2可以看出,富含结构藻烃源岩开始生烃的温度比富含层状藻烃源岩的低。富含结构藻烃源岩终止生烃的温度要稍微比富含层状藻烃源岩样品终止生烃的温度高些。结构藻有效生烃的温度跨度要比层状藻有效生烃的温度跨度大。从图3c和3d中可以看出,富含结构藻烃源岩的活化能分布比较离散,主要分布在120~390 kJ/mol,平均活化能为259 kJ/mol,而富含层状藻烃源岩的活化能分布比较集中,主要分布在255~315 kJ/mol,平均活化能为245 kJ/mol,说明了结构藻初始生烃活化能虽低,但生烃跨度较大,活化能分布较宽,后期反应活化能高,反应速率慢; 层状藻虽然开始生烃温度高,但生烃速率快,说明其初始生烃活化能高,活化能分布窄,反应速率快。
-
图1 准噶尔盆地吉木萨尔凹陷芦草沟组结构藻(a、b)和富含层状藻(c、d)烃源岩样品的有机岩石学特征
-
Fig.1 Organic petrological characteristics of the source rock samples dominated by telalginite (a, b) and lamalginite (c, d) in the Lucaogou Formation, Jimusaer sag, Junggar basin
-
图2 准噶尔盆地吉木萨尔凹陷芦草沟组结构藻(a)和层状藻(b)在扫描电镜下的微观特征
-
Fig.2 Microscopic characteristics of telalginite (a) and lamalginite (b) under scanning electron microscope in the Lucaogou Formation, Jimusaer sag, Junggar basin
-
4 不同母质赋存特征烃源岩的热模拟成烃特征对比
-
加水热模拟实验样品的排出油、残余油、烃气、生油总量和生烃总量见表3。在不同的模拟温度下,富含结构藻和富含层状藻的烃源岩样品均是以生油为主,只有在模拟温度为370℃下,才有少量的烃类气体产生。不同结构母质为主的烃源岩在不同模拟温度下,产烃率不尽相同。富含结构藻烃源岩样品在300℃模拟温度下,就已经有大量的烃类生成,且随着模拟温度继续升高,生烃量逐步增加,增加量相对缓慢,与结构藻活化能分布宽相一致。富含层状藻烃源岩在300℃和335℃模拟温度条件下,产烃率低于富含结构藻烃源岩,尤其在300℃。说明了在低演化阶段,结构藻比层状藻更容易生烃(表3,图4)。富含层状藻烃源岩在370℃模拟温度下,产烃率高达811 mg/g TOC,说明了此时的层状藻大量生烃,暗示层状藻集中生烃的特点,这与活化能分布窄相一致。随着模拟温度的增加,富含结构藻和富含层状藻烃源岩样品的排出油产量均逐渐增加。但两个样品的残余油量变化呈现相反的趋势。富含结构藻烃源岩的残余油量随模拟实验温度增加,逐渐降低,而富含层状藻的烃源岩残余油量却依次增加,暗示了富含结构藻烃源岩的排烃效率相对高于富含层状藻烃源岩(图4)。
-
图3 准噶尔盆地吉木萨尔凹陷芦草沟组富含结构藻(a、c)和富含层状藻(b、d)烃源岩Rock-Eval 实验成烃转化率与温度关系图和活化能分布直方图
-
Fig.3 Correlation diagram of hydrocarbon generation conversion and temperature and histogram of activation energy distribution in Rock-Eval experiment of source rock samples dominated by telalginite (a, c) and lamalginite (b, d) in the Lucaogou Formation, Jimusaer sag, Junggar basin
-
图4 准噶尔盆地吉木萨尔凹陷芦草沟组富含结构藻(a)和富含层状藻(b)烃源岩单位质量有机碳的气、液态产物产率与模拟温度关系图
-
Fig.4 Relationship between simulated temperature and gas and liquid product yields of organic carbon per unit mass of telalginite-rich (a) and lamalginite-rich (b) source rock samples in the Lucaogou Formation, Jimusaer sag, Junggar basin
-
热解参数(Rock-Eval)S1一般代表烃源岩中已经生成的残留烃量,在未发生排烃的烃源岩中,S1可以近似代表已生烃量; 通过氯仿抽提得到的氯仿沥青“A”含量(EOM)是直接代表烃含量(Peters,1986; Gao Gang et al.,2016)。模拟实验指示了结构藻的排烃效率要高于层状藻,说明了结构藻样品的S1损失量相对更大,而结构藻样品的热解参数S1、烃指数(HCI)以及EOM和EOM/TOC等参数均高于富含层状藻烃源岩样品(表1),进一步指示了富含结构藻烃源岩可以早期生烃。
-
富含结构藻和富含层状藻烃源岩的生烃特点在全球不同盆地中均被提到。例如绿河盆地绿河组油页岩中就富含大量的层状藻(Katz,1995),绿河组页岩全岩和干酪根的活化能分布都极为集中(Behar et al.,1997; Dieckmann et al.,2006; 表4)。指示了层状藻普遍具有集中生烃的特点。California盆地的Monterey组源岩中含有大量的结构藻(Rahman et al.,2017),研究发现其具有较宽的活化能,并且其开始生烃的活化能也比较低(Behar et al.,1997; Romero-Sarmiento et al.,2016; 表4)。对于大多数源岩来说,石油开始生成时的镜质体反射率值大约为0.6%(Dow,1977; Peters,1986)。然而,Monterey组的源岩在Ro值为0.3%时,显然已经生成了大量的可溶有机质抽提物(Isaacs et al.,2001),而对于绿河页岩,Ro值在接近0.7%时所生石油的量才达到这种水平(Tissot et al.,1978)。层状藻和结构藻之间的生烃差异应该在很多盆地中都是具有普遍性的。从本质上来说,有机质的生烃行为取决于其本身的化学结构和物质组成(Rullkotter et al.,1987)。Abarghani et al.(2020)利用原子力-红外光谱(AFM-IR)研究,表明单个结构藻具有很强的化学异质性。有机岩石学也从侧面反映出层状藻的化学结构比较单一,结构藻的化学结构的非均质性比较强,所以,结构藻的活化能分布比较宽,生油窗长,能够早期生烃; 层状藻的活化能会比较集中,体现其集中生烃的特点(图5)。
-
图5 准噶尔盆地吉木萨尔凹陷芦草沟组富含结构藻和富含层状藻烃源岩生烃模式图
-
Fig.5 Hydrocarbon generation modelplot of the source rock samples dominated by telalginite (a) and Lamalginite (b) in the Lucaogou Formation, Jimusaer sag, Junggar basin
-
5 对油气地质研究的意义
-
层状藻和结构藻是咸水湖相沉积环境烃源岩中两种最为重要的生烃母质类型,在淡水沉积环境中形成的烃源岩也普遍不同程度地含有结构藻和层状藻(Chen Guo,2019; Ding et al.,2019)。对于不同盆地的烃源岩来说,由于沉降、沉积、构造演化与热演化历史的差异,烃源岩所处的成熟演化阶段不同,由此,就会造成富含结构藻和富含层状藻的烃源岩的生烃量、排烃量,甚至生标物分子组成也不同。
-
对于较低热演化程度的烃源岩来说,富含层状藻的烃源岩虽然可能具有较高的有机质丰度,但其该阶段生成的烃类比较有限,对于油气藏的贡献不如结构藻。所以,该演化阶段的烃源岩有机质丰度并不能作为判别源岩是否有效的绝对条件,还需要充分考虑其母质组成差异。
-
烃源岩排出油和残留油量是评价页岩油勘探方向的关键,由于结构藻和层状藻烃源岩生排烃效率具有明显的差异。对于富含结构藻烃源岩来说,从低到高演化阶段,页岩油勘探目标应从烃源岩内部向烃源岩邻近的储集岩转变。对于富含层状藻烃源岩,在低演化阶段时的勘探价值不高,页岩油勘探目标应当在埋藏更深的烃源岩。
-
6 结论
-
依据有机岩石学、生烃动力学和密闭容器加水热模拟实验等研究方法,对结构藻和富含层状藻烃源岩的成烃特征有以下几点认识:
-
(1)在低成熟—成熟阶段,烃源岩中的结构藻比层状藻具有更高的成烃转化率。
-
(2)富含结构藻和层状藻烃源岩的活化能分布以及藻类的荧光特点表明,层状藻具有集中生烃的特点,且起始生烃活化能分布较高; 结构藻具有生油窗宽特点,并能够早期生烃。
-
(3)热模拟实验结果表明,在相同的热演化阶段,结构藻的具有相对高的排烃效率,层状藻的排烃效率较低。
-
参考文献
-
Abarghani A, Gentzis T, Shokouhimehr M, Mohammadreza S, Liu Bo, Mehdi O. 2020. Chemical heterogeneity of organic matter at nanoscale by AFM-based IR spectroscopy. Fuel, 261: https: //doi. org/10. 1016/j. fuel. 2019. 116454.
-
Bao Yunjie, Li Zhiming, Cao Tingting, Li Wenmao, Qian Menhui, Jiang Qigui, Liu Peng, Xu Ershe, Tao Guoliang, Liu Xinwei, Wu Shiqiang. 2021. The controlling factors on shale oil enrichment of intersalt fine grained sedimentary rocks in Wangchang anticline of Qianjiang depression, Jianghan basin: A case of Eq34-10 rhythm of Qianjiang Formation. Journal of China University of Mining & Technology, 50(6): 1~15 (in Chinese with English abstract).
-
Behar F, Vandenbroucke M, Tang Y, Marquis F, Espitalie J. 1997. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26: 321~339.
-
Burnham A K, Braun R L, Samoun A M. 1988. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Organic Geochemistry, 3(4-6): 839~845.
-
Chen Guo. 2019. Study on organic matter enrichment mechanism of fine-grained source rocks in coastal shallow lake. Doctoral dissertation of China University of Petroleum (Beijing) (in Chinese with English abstract).
-
Chen Jianping, Sun Yongge, Zhong Ningning, Huang Zhenkai, Deng Chunping, Xie Liujuan, Han Hui. 2014. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame. Acta Geologica Sinica, 88(11): 2005~2032 (in Chinese with English abstract).
-
Dieckamnn V, Ondrak R, Cramer B, Brian H. 2006. Deep basin gas: New insights from kinetic modelling and isotopic fractionation in deep-formed gas precursors. Marine and Petroleum Geology, 23(2): 183~199.
-
Ding Xiujian, Qu Jiangxiu, Ablimit I, Zha Ming, Su Yang, Jiang Zhongfa, Jiang Hang. 2019. Organic matter origin and accumulation in tuffaceous shale of the lower Permian Lucaogou Formation, Jimsar sag. Journal of Petroleum Science and Engineering, 179: 696~706.
-
Dong Yan, Xiao Dianshi, Peng Shouchang, Li Yingyan, Wang Meng, Gao Yang, Zhang Fang. 2021. Heterogeneity of microscopic pores in shale oil reservoir and its controlling factors: Taking the Lucaogou Formation in the Jimusaer sag as an example. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 115~123 (in Chinese with English abstract).
-
Dow W G. 1977. Petroleum source beds on continental slopes and rises. AAPG Bulletin, 62(9): 1584~1606.
-
Fu Jiamo, Shi Jiyang. 1975. Petroleum evolution theory and practice (Ⅰ)—the mechanism and stages of petroleum evolution. Geochimica, (2): 87~110+159 (in Chinese with English abstract).
-
Gao Gang, Zhang Weiwei, Xiang Baoli, Liu Guangdi, Ren Jiangling. 2016. Geochemistry characteristics and hydrocarbon—generating potential of lacustrine source rock in Lucaogou Formation of the Jimusaer sag, Junggar basin. Journal of Petroleum Science and Engineering, 145: 168~182.
-
Guo Xuguang, He Wenjun, Yang Sen, Wang Jiangtao, Feng Youlun, Jia Xiyu, Zou Yang, Wang Xiatian, Huang Liliang. 2019. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar basin: A case study of Permian Lucaogou Formation in Jimusaer sag. Natural Gas Geoscience, 30(8): 1168~1179 (in Chinese with English abstract).
-
Han Wenzhong, Zhao Xianzheng, Jin Fengming, Pu Xiugang, Chen Shiyue, Mou Liangang, Zhang Wei, Shi Zhannan, Wang Hu. 2021. Sweet spots evaluation and exploration of lacustrine shale oil of the 2nd Member of Paleogene Kongdian Formation in Cangdong sag, Dagang oilfield, China. Petroleum Exploration and Development, 48 (4): 777~786 (in Chinese with English abstract)
-
Hu Jingjie, Tang Youjun, He Daxiang, Fu Ning, Li Meijun. 2020. Comparison and exploration of hydrocarbon expulsion patterns of different types of source rocks. Journal of Geomechanics, 26(6): 941~951(in Chinese with English abstract).
-
Isaacs C M, Rullkötter J. 2001. The Monterey Formation—From Rocks to Molecules. New York: Columbia University Press.
-
Katz B J. 1995. The green river shale: An eocene carbonate lacustrine source rock. Petroleum Source Rocks, 309~324.
-
Kuang Lichun, Gao Gang, Xiang Baoli, Wang Xulong, Wang Chengyun, Liu Guangdi. 2014. Lowest limit of organic carbon content in effective source rocks from Lucaogou Formation in Jimusaer sag. Petroleum Geology & Experiment, 36(2): 224~229 (in Chinese with English abstract).
-
Li Jian, Ma Wei, Wang Yifeng, Wang Dongliang, Xie Zengye, Li Zhisheng, Ma Chenghua. 2018. Modeling of the whole hydrocarbon-generating process of sapropelic source rock. Petroleum Exploration and Development, 45(3): 445~454 (in Chinese with English abstract).
-
Li Xinning, Ma Qiang, Liang Hui, Zhang Pin, Zhang Qi, Jia Xueli, Pu Zhenshan, Yan Ligang, Meng Yuanlin. 2015. Geological characteristics and exploration potential of diamictite tight oil in the Second Member of the Permian Lucaogou Formation, Santanghu basin, NW China. Petroleum Exploration and Development, 42(6): 763~771+793(in Chinese with English abstract).
-
Liu Bo, Bechtel A, Sachsenhofer R F, Gross D, Gratzer R, Chen Xuan. 2017. Depositional environment of oil shale within the Second Member of Permian Lucaogou Formation in the Santanghu basin, Northwest China. Internation Journal of Coal Geology, 175: 10~25.
-
Liu Shiju, Gao Gang, Gang Wenzhe, Xiang Baoli, Wang Ming, Wang Chengyun. 2021. Comparison of formation conditions of source rocks of Fengcheng and Lucaogou Formations in the Junggar basin, NW China: Implications for organic matter enrichment and hydrocarbon potential. Journal of Earth Science: 1~34.
-
Liu Shiju, Gao Gang, Jin Jun, Gang Wenzhe, Xiang Baoli. 2022. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar basin, China. Journal of Petroleum Science and Engineering, 208: https: //doi. org/10. 1016/j. petrol. 2021. 109670.
-
Maria-Fernanda R S, Tristan E, Sébastien R, Jiang Chunqing, Ralf L. 2016. Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig Formations in the western Canada sedimentary basin. Organic Geochemistry, 97: 148~162.
-
Peters K E. 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 70: 318~329.
-
Qu Changsheng, Qiu Longwei, Cao Yingchang, Yang Yongqiang, Chen Cheng, Yu Kuanhong, Wan Min, Du Rui. 2017. Organic petrology characteristics and occurrence of source rocks in Permian Lucaogou Formation, Jimsar sag. Journal of China University of Petroleum, 41(2): 30~38 (in Chinese with English Abstract).
-
Rahman H M, Kennedy M, Löhr S, Dewhurst D N. 2017. Clay-organic association as a control on hydrocarbon generation in shale. Organic Geochemistry, 105: 42~55.
-
Romero-Sarmiento M F, Euzen T, Rohais S, Jiang C, Littke R. 2016. Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig Formations in the western Canada sedimentary basin. Organic Geochemistry, 97: 148~162.
-
Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller P J, Radke M, Schaefer R G, Schenk H J, Schwochau K, Witte E G, Welte D H. 1987. Organic matter maturation under the influence of a deep intrusive heat source: A natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian Shale, northern Germany). Organic Geochemistry, 13: 847~856.
-
Tissot B, Deroo G, Hood A. 1978. Geochemical study of the Uinta basin: Formation of petroleum from the Green River Formation. Pergamon, 42(10): 1469~1485.
-
Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020a. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimusaer sag, Junggar basin. Geological Review, 66(3): 755~764 (in Chinese with English abstract).
-
Wang Jian, Zhou Lu, Liu Jin, Zhang Xinji, Zhang Fan, Zhang Baozhen. 2020b. Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusaer sag, Junggar basin, NW China. Petroleum Exploration and Development, 47(5): 898~912 (in Chinese with English abstract).
-
Wu Yinye, Lv Jialei, Fang Xiang, Yang Zhi, Wang Lan, Ma Dade, Tao Shizhen. 2019. Analysis of faveorable facies belts in reservoir of lacustrine caobonate rocks-hybrid sediments: A case study of Paleogene in Qaidam basin. Natural Gas Geoscience, 30(8): 1150~1157 (in Chinese with English abstract).
-
Xiao Dianshi, Gao Yang, Peng Shouchang, Wang Meng, Wang Jingming, Lu Shuangfang. 2021. Classification and control factors of pore-throat systems in hybrid sedimentary rocks of Jimusaer sag. Petroleum Exploration and Development, 48(4): 1~13 (in Chinese with English abstract).
-
Zhao Wenzhi, Hu Suyun, Hou Lianhua, Yang Tao, Li Xin, Guo Bincheng, Yang Zhi. 2020. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1~10 (in Chinese with English abstract).
-
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Jin Fengming, Han Wenzhong, Xiao Dunqing, Chen Shiyue, Shi Zhannan, Zhang Wei, Yang Fei. 2018. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag, Bohai Bay basin, China. Petroleum Exploration and Development, 45(3): 361~372 (in Chinese with English abstract).
-
Zhi Dongming, Tang Yong, Zheng Menglin, Xu Yang, Cao Jian, Ding Jing, Zhao Changyong. 2019. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 615~623 (in Chinese with English abstract).
-
Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zhen Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 38~51 (in Chinese with English abstract).
-
鲍云杰, 李志明, 曹婷婷, 黎茂稳, 钱门辉, 蒋启贵, 刘鹏, 徐二社, 陶国亮, 刘伟新, 吴世强. 2021. 潜江凹陷王场构造区盐间细粒沉积页岩油富集控制因素——以潜3~4-10韵律为例. 中国矿业大学学报, 50(6): 1~15.
-
陈果. 2019. 滨浅湖细粒沉积烃源岩有机质富集机理研究. 中国石油大学(北京)博士学位论文. 陈建平, 孙永革, 钟宁宁, 黄振凯, 邓春萍, 谢柳娟, 韩辉. 2014. 地质条件下湖相烃源岩生排烃效率与模式. 地质学报, 88(11): 2005~2032.
-
董岩, 肖佃师, 彭寿昌, 李映艳, 王锰, 高阳, 张方. 2021. 页岩油层系储集层微观孔隙非均质性及控制因素——以吉木萨尔凹陷芦草沟组为例. 矿物岩石地球化学通报, 40(1): 115~123.
-
傅家谟, 史继扬. 1975. 石油演化理论与实践(Ⅰ)——石油演化的机理与石油演化的阶段. 地球化学, (2): 87~110+159.
-
郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 2019. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例. 天然气地球科学, 30(8): 1168~1179.
-
韩文中, 赵贤正, 金凤鸣, 蒲秀刚, 陈世悦, 牟连刚, 张伟, 时战楠, 汪虎. 2021. 渤海湾盆地沧东凹陷孔二段湖相页岩油甜点评价与勘探实践. 石油勘探与开发, 48(4): 777~786.
-
胡锦杰, 唐友军, 何大祥, 傅宁, 李美俊. 2020. 不同类型烃源岩排烃模式对比及差异性探究. 地质力学学报, 26(6): 941~951.
-
匡立春, 高岗, 向宝力, 王绪龙, 王成云, 柳广弟. 2014. 吉木萨尔凹陷芦草沟组有效源岩有机碳含量下限分析. 石油实验地质, 36(2): 224~229.
-
李剑, 马卫, 王义凤, 王东良, 谢增业, 李志生, 马成华. 2018. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式. 石油勘探与开发, 45(3): 445~454.
-
李新宁, 马强, 梁辉, 张品, 张琪, 贾雪丽, 蒲振山, 闫立纲, 孟元林. 2015. 三塘湖盆地二叠系芦草沟组二段混积岩致密油地质特征及勘探潜力. 石油勘探与开发, 42(6): 763~771+793.
-
曲长胜, 邱隆伟, 操应长, 杨勇强, 陈程, 余宽宏, 万敏, 杜蕊. 2017. 吉木萨尔凹陷二叠系芦草沟组烃源岩有机岩石学特征及其赋存状态. 中国石油大学学报(自然科学版), 41(2): 30~38.
-
王剑, 李二庭, 陈俊, 米巨磊, 马聪, 雷海艳, 谢礼科. 2020a. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究. 地质论评, 66(3): 755~764.
-
王剑, 周路, 刘金, 张欣吉, 张帆, 张宝真. 2020b. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组酸碱交替成岩作用特征及对页岩储集层的影响. 石油勘探与开发, 47(5): 898~912.
-
吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 2019. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例. 天然气地球科学, 30(8): 1150~1157.
-
肖佃师, 高阳, 彭寿昌, 王猛, 王璟明, 卢双舫. 2021. 吉木萨尔凹陷混积岩孔喉系统分类及控制因素. 石油勘探与开发, 48(4): 1~13.
-
赵文智, 胡素云, 侯连华, 杨涛, 李欣, 郭彬程, 杨智. 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1~10.
-
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 韩文中, 肖敦清, 陈世悦, 时战楠, 张伟, 杨飞. 2018. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例. 石油勘探与开发, 45(3): 361~372.
-
支东明, 唐勇, 郑孟林, 徐洋, 曹剑, 丁靖, 赵长永. 2019. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615~623.
-
支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 38~51.
-
摘要
咸化湖相沉积条件下形成的细粒沉积岩是我国页岩油勘探的热点层系。本文依据有机岩石学、扫描电镜、生烃动力学和高温高压加水热模拟实验,对准噶尔盆地吉木萨尔凹陷芦草沟组咸化湖相含有典型层状藻和结构藻的烃源岩的成烃特征进行对比研究。有机岩石学及扫描电镜观察表明两种藻类的赋存形式差异明显,结构藻的赋存形式主要为孤立分布特征,长度约为20~50 μm;层状藻垂向上呈书页状叠置,水平延伸长。生烃动力学及高温高压热模拟实验结果指示了两种有机质的成烃过程具有明显的差异性,其中结构藻为主的烃源岩在较低成熟度就可以生成一定量烃类,随着演化程度的增加,生油速率缓慢,生油范围宽;层状藻为主烃源岩的生烃特征表现为集中生烃,生油窗范围窄且主要生烃活化能较高。该认识对于有效烃源岩评价和页岩油勘探层段与甜点区的选择均具有重要的启示和指导意义。
Abstract
The fine grained sedimentary rocks formed under saline lacustrine conditions are a hot topic of shale oil exploration in China. In this study, based on organic petrology, scanning electron microscopy, hydrocarbon-generation kinetics and high-temperature and high-pressure thermal simulation experiments, the hydrocarbon generation characteristics of source rocks containing typical telalginite and lamalginite in the Lucaogou Formation in Jimusaer slag, Junggar basin were compared. The results of organic petrology and scanning electron microscopy showed that the form of occurrence the two kinds of algae is obviously different. Telalginite occurs as mainly isolated with a length of about 20~50 μm. The lamalginite are stacked vertically, similar to pages, with longer horizontal length. Hydrocarbon generation kinetics and high temperature and high pressure thermal simulation experiments indicate that the hydrocarbon generation processes of the two kinds of organic matter are different to some extent. The source rock dominated by telalginite can have a certain hydrocarbon generation conversion rate at a lower maturity. With the increase in the degree of evolution, the oil generation rate is slow and the range of oil generation window is wide. The hydrocarbon generation characteristics of the source rocks dominated by lamalginite are concentrated hydrocarbon generation with narrow oil generation window and high distribution of main hydrocarbon generation activation energy. This work has important implications and guiding significance for the evaluation of effective hydrocarbon source rocks and the selection of shale oil exploration intervals and sweet spots.