en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张贵山,男,1971年生。教授,从事岩石、矿床地球化学研究。E-mail:zygszh@chd.edu.cn。

通讯作者:

张磊,男,1987年生。助理研究员,从事矿床地球化学研究。E-mail:753350595@qq.com。

参考文献
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.
参考文献
Basuki N I, Taylor B E, Spooner E T C. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103(4): 783~799.
参考文献
Beuchat S, Moritz R, Pettke T. 2004. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chemical Geology, 210(1): 201~224.
参考文献
Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).
参考文献
Chen Xiaolei, Yan Yongfeng, Ye Lei, Su Changxue. 2012. Characteristics of ore-forming liquid of Damajianshan Co-As deposit in Lüchun, Honghe of Yunnan. Mineral Resources and Geology, 26(2): 148~152 (in Chinese with English abstract).
参考文献
Chen X C, Hu R Z, Bi X W, Zhong H, Lan J B, Zhao C H, Zhu J J. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212: 93~110.
参考文献
Deng Jun, Hou Zengqian, Mo Xuanxue, Yang Liqiang, Wang Qingfei, Wang Changming. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37~42 (in Chinese with English abstract).
参考文献
Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihail, He Wenyan, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).
参考文献
Ding Kangle, Li Shuyuan, Yue Changtao, Zhong Ningning. 2005. Review of thermochemical sulfate reduction. Journal of China University of Petroleum (Edition of Natural Science), 29(1): 150~155 (in Chinese with English abstract).
参考文献
Foster R P. 1977. Solubility of scheelite in hydrothermal chloride solutions. Chemical Geology, 20: 27~43.
参考文献
Ghazban F, Schwarcz H P, Ford D C. 1990. Carbon and sulfur isotope evidence for in situ reduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85(2): 360~375.
参考文献
Goldstein R H, Reynolds T J. 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Society for Sedimentary Geology, 31: 199.
参考文献
Gao Rui, XiaoLong, He Qi, Yuan Jing, Ni Pingze, Du Jingxia. 2010. Geochronology, geochemistry and petrogenesis of granites in Weixi-Deqin, West Yunnan. Earth Science-Journal of China University of Geosciences Earth Science, 35(2): 186~200 (in Chinese with English abstract).
参考文献
Higgins N C. 1980. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Canadian Journal of Earth Sciences, 17(7): 823~830.
参考文献
Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197~202.
参考文献
Hou Z Q, Zaw K, Pan G T, Mo X X, Xu Q, Hu Y Z, Li X Z. 2007. Sanjiang Tethyan metallogenesis in S. W. China: tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48~87.
参考文献
He Xinghua, Gu Shangyi. 2017. Distribution characteristics of tungsten in the granite magma system and impact on mineralization. Mineral Exploration, 8(4): 631~643 (in Chinese with English abstract).
参考文献
Luo Zhenkuan, Guan Kang, Wang Zhiman, Wang Chuantai. 1993. Introduction of China's Gold Deposits. Tianjin: Tianjin Science and Technology Press, 122~277 (in Chinese).
参考文献
Li Yanhe. 1998. Some apllications of isotope-tracing in geology. Earth Science Frontiers, 2: 106~112 (in Chinese with English abstract).
参考文献
Liu Bin, Shen Kun. 1999. Thermodynamics of Fluid Inclusions. Beijing: Geological Publishing House, 29~137 (in Chinese).
参考文献
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 132~138 (in Chinese).
参考文献
Li Rongxi, Dong Shuwen, Zhang Shaoni, Zhu Ruijing, Xia Bin. 2012. Features and formation of organic fluids during Dabashan orogenesis. Journal of Nanjing University (Natural Science), 48(3): 295~307 (in Chinese with English abstract).
参考文献
Liao Shiyong, Wang Dongbing, Tang Yuan, Yin Fuguang, Sun Zhiming, Sun Jie. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450~462 (in Chinese with English abstract).
参考文献
Lü Pengrui, Yao Wenguang, Zhang Huishan, Zhang Haidi, Hong Jun, Liu Shengrong. 2020. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain. Acta Geologica Sinica, 94(8): 2291~2310 (in Chinese with English abstract).
参考文献
Machel H G. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1): 143~175.
参考文献
Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329~2338 (in Chinese with English abstract).
参考文献
Mao Jingwen, Wu Shenghua, Song Shiwei, Dai Pan, Xie Guiqing, Su Qiangwei, Liu Peng, Wang Xianguang, Yu Zhongzhen, Chen Xiangyun, Tang Weixin. 2020. The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin, 65(33): 3746~3762 (in Chinese with English abstract).
参考文献
Ni P, Wang X D, Wang G G, Hung J B, Pan J Y, Wang T G. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062~1077.
参考文献
Peng Ningjun. 2020. Fluid evolution and genetic mechanisms for the giant Dahutang tungsten deposit in northern Jiangxi Province, South China. PhD dissertation of China University of Geosciences (Wuhan), 94~100 (in Chinese with English abstract).
参考文献
Rodder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineral Soc. Amer. , 12: 1~644.
参考文献
Ramboz C, Schnapper D, Dubessy J. 1985. The P- V--T-X-fO2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: reconstruction from fluid inclusion studies. Geochimica et Cosmochimica Acta, 49: 205~219.
参考文献
Shao Jielian, Mei Jianming. 1986. On the study of typomorphic characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Mineralogy and Petrology, 6(3): 103~111 (in Chinese with English abstract).
参考文献
Song Shengqiong, Hu Ruizhong, Bi Xianwu, Wei Wenfeng, Shi Shaohua. 2011. Fluid inclusion geochemistry of the Taoxikeng tungsten deposit in southern Jiangxi Province, China. Geochimica, 40(3): 237~248 (in Chinese with English abstract).
参考文献
Sun Wei, Wei Zhao, Han Haisheng, Gao Zhiyong, Wang Jianjun, Wang Ruolin. 2021. Flotation chemistry of tungsten ore and its practice. Metal Mine, 1: 24~41 (in Chinese with English abstract).
参考文献
Tan Yunjin. 1999. Tungsten mineral composition characteristics and controlling factors of endophytic tungsten deposits in South China. China Tungsten Industry, 14(5-6): 85~90 (in Chinese with English abstract).
参考文献
Tang Y, Ellis G S, Zhang T, Jin Y. 2005. Effect of aqueous chemistry on the thermal stability of hydrocarbons in petroleum reservoirs. Geochmica et Cosmochimica Acta, 69(10): 559.
参考文献
Vallance J, Cathelineau M, Marignac C, Boiron M C, Fourcade S, Martineau F, Fabre C. 2001. Microfracturing and fluid mixing in granites: W-Sn ore deposition at Vaulry (NW French Massif Central). Tectonophysics, 336(1-4): 43~61.
参考文献
Wang Dianzuo, Hu Yuehua. 1988. Solution Chemistry of Flotation. Changsha: Hunan Science and Technology Press, 180~207 (in Chinese).
参考文献
Worden R H, Smalley P C, Oxtoby N H. 1995. Gas scouring by thermochemical sulfate reduction at 140℃. AAPG Bulletin, 79(6): 854~863.
参考文献
Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl. Economic Geology, 95(1): 143~182.
参考文献
Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.
参考文献
Wang Xudong, Ni Pei, Jiang Shaoyong, Huang Jianbao, Sun Liqiang. 2008. Fluid inclusion study on the Piaotang tungsten deposit, southern Jiangxi Province, China. Acta Petrologica Sinica, 24(9): 2163~2170 (in Chinese with English abstract).
参考文献
Wang Xudong, Ni Pei, Yuan Shunda, Wu Shenghua. 2013. Fluid inclusion studies of Dajishan tungsten deposit in Jiangxi Province. Mineral Deposits, 32(2): 308~322 (in Chinese with English abstract).
参考文献
Wei Wenfeng, Hu Ruizhong, Bi Xianwu, Su Wenchao, Song Shengqiong, Shi Shaohua. 2011. Fluid evolution in Xihuashan tungsten deposit, southern Jiangxi Province, China. Acta Mineralogica Sinica, 31(2): 201~210 (in Chinese with English abstract).
参考文献
Wang Caiyan, Ren Tao, Wang Die, Xu Saihua. 2020. Fluid inclusion and hydrogen-oxygen isotope study of the Nanyangtian super large tungsten deposit, southeastern Yunnan Province. Geotectonica et Metallogenia, 44(1): 103~118.
参考文献
Wu Fan, Li Hao, LiDong. 2020. The distribution rule of main mineral resources and a preliminary analysis of prospecting direction of SE Yunnan. Yunnan Geology, 39(4): 447~452 (in Chinese with English abstract).
参考文献
Wu Datian, Sun Wei, Zhao Yuandong, Xu Fengming, Xu Tao, Wang Kuiliang. 2021. Characteristics of fluid inclusions and mineralization of lode gold deposits in the greenstone belt of northern Madagascar. Acta Geologica Sinica, 95(4): 1231~1244 (in Chinese with English abstract).
参考文献
Xie Yang, Li Yingshu, Guo Ningning, Lou Xi, Cheng Xiyin, Chen Nan, Wang Lun. 2011. Research on ore-controlling factors for one copper-gold polymetallic deposit in Lüchun County, Yunnan Province. Nonferrous Metals (Mining Section), 63(3): 47~50 (in Chinese with English abstract).
参考文献
Xiong Suofei, Yao Shuzhen, Gong Yongjun, Tan Mantang, Zeng Guoping, Wang Wei. 2013. Ore forming fluid and thermochemical sulfate reduction in the Wusihe lead-zinc deposit, Sichuan Province, China. Earth Science, 41(1): 105~120 (in Chinese with English abstract).
参考文献
Yang Y F, Li N, Chen Y J. 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews, 46: 83~94.
参考文献
Zhang Ligang, Chen Zhensheng, Liu Jingxiu, Yu Guixiang. 1995. Hydrogen isotope kinetic fractionation in water-rock interaction system. Bulletin of Mineralogy, Petrology and Geochemistry, 1: 3~6 (in Chinese with English abstract).
参考文献
Zhu J J, Hu R Z, Bi X W, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248~264.
参考文献
Zhang Shuichang, Shuai Yanhua, He Kun, Mi Jingkui. 2012. Research on the initiation mechanism of thermochemical sulfate reduction (TSR). Acta Petrologica Sinica, 28(3): 739~748 (in Chinese with English abstract).
参考文献
Zhao Bo. 2013. A study on metallogenic depths of Piaotang quartz vein type wolframite deposits in Jiangxi Province. Master dissertation of China University of Geosciences (Beijing), 44~57 (in Chinese with English abstract).
参考文献
Zhang L, Wen H J, Qin C J, Du S J, Zhu C W, Fan H F, Zhang J R. 2015. The geological significance of Pb-Bi-and Pb-Sb-sulphosalts in the Damajianshan tungsten polymetallic deposit, Yunnan Province, China. Ore Geology Reviews, 71: 203~214.
参考文献
Zhang Lei, Wen Hanjie, Zhang Guishan, Qin Chaojian. 2017. Chronology of quartz porphyry and its tectonic setting of the Damajianshan tungsten polymetallic deposit, Luchun, Yunnan. Abstract of the 8th National Symposium on Metallogenic Theory and Prospecting Methods, 641~642 (in Chinese with English abstract).
参考文献
Zhang L, Zhang G S, Wen H J, Qin C J, Li R X, Zhu C W, Du S J. 2018. Genetic implications for the Damajianshan W-Cu-As polymetallic deposit in Lüchun, Southwest China: constraints from H-O, He-Ar, S, and Pb isotopes. Geological Journal, 53(S2): 384~394.
参考文献
陈晓磊, 燕永锋, 叶雷, 苏昌学. 2012. 云南红河绿春大马尖山铜砷矿床成矿液体特征. 矿产与地质, 26(2): 148~152.
参考文献
陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.
参考文献
丁康乐, 李术元, 岳长涛, 钟宁宁. 2005. 硫酸盐热化学还原反应的研究进展. 石油大学学报(自然科学版), 29(1): 150~155.
参考文献
邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37~42.
参考文献
邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.
参考文献
高睿, 肖龙, 何琦, 袁静, 倪平泽, 杜景霞. 2010. 滇西维西-德钦一带花岗岩年代学, 地球化学和岩石成因. 地球科学(中国地质大学学报), 35(2): 186~200.
参考文献
何兴华, 顾尚义. 2017. 钨在花岗岩岩浆体系中的分配特征以及对成矿作用的影响. 矿产勘查, 8(4): 631~643.
参考文献
罗镇宽, 关康, 王曼祉, 王传泰. 1993. 中国金矿床概论. 天津: 天津科学技术出版社, 122~277.
参考文献
李延河. 1998. 同位素示踪技术在地质研究中的某些应用. 地学前缘, (2): 106~112.
参考文献
刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社, 29~137.
参考文献
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 132~138.
参考文献
李荣西, 董树文, 张少妮, 朱瑞静, 夏彬. 2012. 大巴山造山过程有机流体研究. 南京大学学报(自然科学版), 48(3): 295~307.
参考文献
吕鹏瑞, 姚文光, 张辉善, 张海迪, 洪俊, 刘生荣. 2020. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程. 地质学报, 94(8): 2291~2310.
参考文献
廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. “三江”云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450~462.
参考文献
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 10: 2329~2338.
参考文献
毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746~3762.
参考文献
彭宁俊. 2020. 赣北大湖塘超大型钨矿床成矿流体与成因机制研究. 中国地质大学(武汉)博士学位论文, 94~100.
参考文献
邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~111.
参考文献
宋生琼, 胡瑞忠, 毕献武, 魏文凤, 石少华. 2011. 赣南淘锡坑钨矿床流体包裹体地球化学研究. 地球化学, 40(3): 237~248.
参考文献
孙伟, 卫召, 韩海生, 高志勇, 王建军, 王若林. 2021. 钨矿浮选化学及其实践. 金属矿山, 1: 24~41.
参考文献
谭运金. 1999. 华南地区内生钨矿床的钨矿物成分特征及其控制因素. 中国钨业, 14(5-6): 85~90.
参考文献
王淀佐, 胡岳华. 1988. 浮选溶液化学. 长沙: 湖南科学技术出版社, 180~207.
参考文献
王旭东, 倪培, 蒋少涌, 黄建宝, 孙立强. 2008. 赣南漂塘钨矿流体包裹体研究. 岩石学报, 24(9): 2163~2170.
参考文献
王旭东, 倪培, 袁顺达, 吴胜华. 2013. 江西大吉山钨多金属矿床流体包裹体研究. 矿床地质, 32(2): 308~322.
参考文献
魏文凤, 胡瑞忠, 毕献武, 苏文超, 宋生琼, 石少华. 2011. 赣南西华山钨矿床成矿流体演化特征. 矿物学报, 31(2): 201~210.
参考文献
王彩艳, 任涛, 王蝶, 许赛华. 2020. 滇东南南秧田超大型钨矿床流体包裹体及H、O同位素研究. 大地构造与成矿学, 44(1): 103~118.
参考文献
吴帆, 李昊, 李栋. 2020. 滇东南地区主要矿产分布规律及找矿方向简析. 云南地质, 39(4): 447~452.
参考文献
吴大天, 孙巍, 赵院冬, 许逢明, 徐涛, 王奎良. 2021. 马达加斯加北部绿岩带石英脉型金矿流体包裹体特征及成矿作用分析. 地质学报, 95(4): 1231~1244.
参考文献
谢阳, 黎应书, 郭宁宁, 罗曦, 程细音, 陈楠, 王伦. 2011. 云南绿春某铜金多金属矿床控矿因素分析. 有色金属(矿山部分), 63(3): 47~50.
参考文献
熊索菲, 姚书振, 宫勇军, 谭满堂, 曾国平, 王伟. 2016. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探. 地球科学, 41(1): 105~120.
参考文献
张理刚, 陈振胜, 刘敬秀, 于桂香. 1995. 水-岩交换体系氢同位素动力分馏. 矿物岩石地球化学通讯, (1): 3~6.
参考文献
张水昌, 帅燕华, 何坤, 米敬奎. 2012. 硫酸盐热化学还原作用的启动机制研究. 岩石学报, 28(3): 739~748.
参考文献
赵波. 2013. 江西漂塘石英脉型黑钨矿床成矿深度估算. 中国地质大学(北京)硕士学位论文, 44~57.
参考文献
张磊, 温汉捷, 张贵山, 秦朝建. 2017. 云南绿春“大马尖山”钨多金属矿床石英斑岩年代学及其构造背景研究. 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集, 641~642.
目录contents

    摘要

    为探究三江南段钨多金属矿床的成矿流体特征、演化及矿床成因,选取了云南绿春大马尖山钨多金属矿床为研究对象,对其512 m中段至889 m中段的铜矿化和钨矿化石英脉中的原生流体包裹体进行包裹体测温、激光拉曼等研究。研究结果表明,该矿床中主要发育气液两相型包裹体(Ⅰ型),另有少量的含子晶包裹体(Ⅱ型)、富甲烷包裹体(Ⅲ型),未见纯气相、纯液相包裹体;铜矿化石英中流体包裹体均一温度为165~335℃,盐度为4.2%~16.7%NaCleq;钨矿化石英中流体包裹体均一温度为199~265℃,盐度为2.6%~23.7%NaCleq,有少量以石盐为主的子晶矿物,流体盐类溶质从NaCl、KCl、MgCl2为主逐步演化为CaCl2为主,成矿压力为17.85~48.90 MPa,深度为0.67~1.85 km;激光拉曼光谱分析结果表明,大马尖山钨多金属矿床各中段成矿流体成分相似,以H2O、CH4为主,伴有少量N2及微量的CO2。在同一中段内两种矿化流体包裹体的均一温度相近,盐度相差较大,CH4、CO2含量也有较大的差异,这可能由于铜矿化流体经热化学硫酸盐还原反应(TSR)演化过程造成的,与钨矿化流体演化存在明显差异。氯化物的参与是大马尖山钨多金属矿床中W元素的运移和富集的主导因素,同时也受F-、Ca2+含量以及锰方解石、黑钨矿活度积的控制,形成了“上白(钨)下黑(钨)”且以白钨矿为主的钨矿体。从矿体的深部到浅部,成矿流体中的H、O同位素组成发生了显著变化(呈弱负相关),根据水岩反应中H、O同位素组成演化趋势,推测成矿流体与围岩之间发生了水岩反应。基于以上研究成果,认为大马尖山钨多金属矿床成矿流体是由岩浆水、大气降水构成,同时发生了水岩交换反应,成矿流体在迁移演化过程中,由于温度、压力、挥发份等物理化学条件的改变,以石英斑岩为中心,向外依次形成W、Cu-As、Pb-Zn等矿化带,形成钨多金属矿床。

    Abstract

    To investigate the ore-forming fluid characteristics, evolution and genesis of the tungsten polymetallic deposits in the southern part of Sanjiang Tethyan, the Damajianshan tungsten polymetallic deposit in Lvchun, Yunnan, southwest China were selected as the research object. We carried out a detailed petrographic, microthermomertic and laser Raman spectroscopy study of the primary fluid inclusions in the copper mineralization and tungsten mineralization quartz veins from 512 m to 889 m level of the Damajianshan deposit. The results indicate that (i) the types of fluid inclusions are mainly gas-liquid phase inclusions (type Ⅰ), with a few subcrystal-bearing inclusions (type Ⅱ), and methane-rich inclusions (type Ⅲ), without pure gas-phase or pure liquid-phase inclusions; (ii) the homogenization temperature of fluid inclusions in copper mineralized quartz ranges from 165~335℃, and salinity from 4.2%~16.7% NaCleq;(iii) the homogeneous temperature of fluid inclusions in tungsten mineralized quartz veins ranges from 199 to 265℃, and salinity from 2.6%~23.7% NaCleq; (iv) there are a few daughter minerals dominated by stone salts; (v) the fluid solutes evolved gradually from NaCl, KCl, MgCl2 to CaCl2 with mineralization pressure of 17.85~48.90 MPa and depth of 0.67~1.85 km. The laser Raman spectroscopy indicates that the composition of the ore-forming fluid in each level of the Damajianshan deposit is similar, which are mainly H2O and CH4, with a small amount of N2 and trace amount of CO2. The homogeneous temperature of fluid inclusions is similar within the two kinds of mineralization at the same level, but the difference in salinity is large, and the CH4 and CO2 contents also differ significantly, which may have been caused by the evolution of copper mineralized fluids through the thermochemical sulfate reduction reaction (TSR) process, which is significantly different from the evolution of tungsten mineralized fluids. The participation of chloride plays a major role in the migration and enrichment of W elements in the Damajianshan tungsten polymetallic deposit; at the same time, it is controlled by the content of F- and Ca2+ as well as the activity product of manganocalcite and wolframite to form a scheelite-dominated tungsten body with scheelite above and wolframite below. From the deep to the shallow part of the orebody, the H and O isotope composition of the ore-forming fluid has changed significantly (showing a weak negative correlation). According to the evolutionary trend of H and O isotope composition during the process of water-rock reaction, it is inferred that the water-rock reaction is involved in the evolution of ore-forming fluid. Based on the above research results, it is concluded that the ore-forming fluid of the Damajianshan tungsten polymetallic deposit is composed of magmatic water and meteoric water, and the water-rock interaction occurred during the evolution process. During the migration and evolution of the ore-forming fluid, due to the change of temperature and pressure, the ore-forming fluid migrated outward with quartz porphyry as the main body, forming mineralization zones such as W and Cu-As around the rock body, the ore-forming materials precipitated to form tungsten polymetallic deposits.

  • 三江特提斯地处青藏高原东侧,是我国最重要的成矿带之一,是全球特提斯喜马拉雅成矿域的重要组成部分,大量研究表明,三江特提斯经历了晚古生代特提斯构造演化向新生代大陆碰撞造山的叠加过渡,并伴随着大量多期成矿作用和金属矿床的形成(Zhang et al., 2018; Deng Jun et al., 2020)。三江特提斯成矿带内发生了多幕式的大规模成矿作用,孕育了金、银、铜、铅、锌等优势矿产,显示出极佳的成矿地质条件和巨大成矿潜力(Hou et al., 2007; Deng Jun et al., 2020; Lü Pengrui et al., 2020)。随着找矿勘查工作的深入,三江地区也陆续发现一些钨多金属矿床,丰富了三江地区的矿产资源类型与成矿规律(Liao Shiyong et al., 2013; Wang Caiyan et al.,2020; Mao Jingwen et al., 2020)。

  • 钨是一种有色金属元素,常用于高精尖装备制造业,如电子元件、医疗器械、航天军工等诸多领域,是一种重要的战略资源。钨矿作为我国的优势矿产资源,主要集中分布于华南地区,成矿时代以燕山期为主。近年来,随着地质找矿、矿业开发的进一步开展,三江地区陆续发现了一批印支期钨多金属矿床,显示出较大的钨多金属成矿潜力,该地区有望成为我国另一个重要的钨成矿区(Wu Fan et al., 2020)。大马尖山钨多金属矿床位于三江南段绿春县境内,为与印支期石英斑岩有关的多金属矿床,赋存W、Cu、Pb、Zn等多种矿产资源,伴生元素Mo、Bi、Ag等均达到工业品位,具有综合利用价值,为大型钨多金属矿床。与华南钨成矿带相比较,大马尖山钨多金属矿床成矿时代为印支晚期(228.7±3.8Ma) (Zhang Lei et al., 2017),不同于赣北-皖南钨成矿带(150~130Ma)与南岭钨矿带(165~150Ma) (Mao Jingwen et al., 2007; Peng Ningjun, 2020);成矿作用上也存在显著差异,大马尖山钨多金属矿床显示出极为复杂的成矿元素组合(W-Cu-As-Pb-Zn-Mo-Bi-Ag),尤其As元素超常富集现象是极为罕见的,钨矿中常见的伴生有益元素如Be、Nb、Ta等含量极低,通常作为钨矿找矿标志的萤石脉也不发育,矿石矿物分布呈“上白(钨)下黑(钨)”的特点;显示出大马尖山钨多金属矿床成矿的特殊性,这与成矿流体的演化、成矿物理化学条件、岩浆作用等密切相关,成矿流体的演化在成矿过程中起到重要作用(Wu Datian et al., 2021)。关于大马尖山成矿流体的研究还很少,陈晓磊等(2012)曾对大马尖山钨多金属矿的流体特征进行了初步探讨,关于大马尖山钨多金属矿的成矿流体的性质、演化过程、来源等研究还很薄弱,尤其是成矿流体演化过程对成矿作用的机理还不是非常清楚。因此,对大马尖山钨多金属矿床开展详细的流体包裹体研究,厘清成矿流体性质和演化,对研究其钨多金属成矿机制具有重要启示意义。

  • 为探究大马尖山钨多金属矿床的成矿流体性质、演化及其对成矿作用的影响,本文选取大马尖山钨多金属矿床硫化物-氧化物阶段512m、541m、588m、687m、726m、889m等中段的原生流体包裹体为研究对象,对矿床各中段不同矿化类型的石英脉开展了系统的流体包裹体显微测温、激光拉曼光谱分析,结合前人同位素研究对大马尖山钨多金属矿床成矿流体特征、演化及成矿机制进行探讨,以期为西南三江地区矿产资源的寻找和开发提供新的方向。

  • 1 区域地质背景

  • 西南三江地区处于欧亚板块与印度板块结合的特提斯构造域东段,经历了自早古生代以来强烈的构造演化,造成了多期次构造-岩浆-成矿作用的发生,形成了三江北段与南段独特的构造格架和成矿系列(Deng Jun et al., 2020)。研究区位于中国西南部云南省绿春县境内,沿NW向发育印支期侵入岩带,在构造岩浆带上位于江达-维西-绿春晚古生代末—早中生代岩浆带最南端,东北紧邻哀牢山-红河深大断裂带(图1),区内地层出露不完整,以古生界及中生界为主,除第四系外,均遭受不同程度的变质作用。下志留统区域浅变质岩系和三叠系陆相沉积为主的碎屑岩系是该区出露的主要地层,下志留统浅变质岩系是本区重要的赋矿层位。区域构造格局总体为:以北西走向为主,由一系列NW向的褶皱、断裂带、岛弧岩浆组成了碰撞造山构造体系,具有形态规模大、延伸远、伴有岩浆侵入、后期构造破坏与改造的特征。区域构造总体格局是在加里东运动早期形成,经华力西期、印支期、燕山期构造运动的改造,使其复杂化。矿区内岩浆活动较频繁,从华力西期至喜马拉雅期均有发育,形成了多期的火山-侵入岩,且具有多旋回性,以印支期的岩浆侵入和华力西期、印支期的火山喷发较为强烈。印支期岩浆侵入活动与成矿关系最为密切,岩石类型以花岗岩类为主,中—基性岩次之;华力西期侵入岩以基性岩为主,常呈岩脉、岩床或岩枝产出,喜马拉雅期岩浆活动以碱性岩浆侵入为主,一般沿断裂带分布,呈小岩株或岩脉产出(Xie Yang et al., 2011)。

  • 2 矿床地质特征

  • 大马尖山矿区出露的地层以下志留统浅变质岩系为主,岩性为变质石英粉—细砂岩,绢云母板岩、砂质板岩及硅质板岩,矿体主要受石英斑岩与断裂带控制,产于石英斑岩与下志留统浅变质岩的内外接触带,呈线型蚀变,矿化类型为岩浆热液石英脉型。大马尖山矿床早期被认为是热液型铜砷矿,随着研究工作的深入,发现该矿床为与印支期石英斑岩有关的石英脉型W-Cu-As多金属矿床。已发现钨矿体10个(图1c),主要赋存在近东西向展布的印支期石英斑岩与板岩的内外接触带内。钨矿体垂直延伸约60~430m,厚3.5~18m,储量达0.09Mt,平均品位0.35%,WO3(0.15%~1.2%),为大型钨矿床。该矿床铜和砷的金属储量分别为0.42Mt和0.12Mt,品位分别为0.37%~3.18%和2.73%~27.70%,此外,伴生元素Mo、Bi、Ag等均达到工业品位,具有综合利用价值。岩浆活动以印支期石英斑岩侵入和少量煌斑岩的贯入为主,在时空上,大马尖山钨多金属矿床的形成与印支期石英斑岩的侵入密切相关(Zhang et al., 2015)。矿石矿物类型繁多,以白钨矿、毒砂、黄铜矿为主(图2),伴生有铅-铋-锑等硫盐矿物,非金属矿物有石英、白云石、锰方解石、绢云母、绿泥石等。矿物间互相交代、溶蚀或穿插现象较为普遍,通过矿物共生及穿插关系,可将矿物生成顺序从早到晚分为四个阶段,依次为硅酸盐阶段、石英-硫化物阶段、硫化物-氧化物阶段、碳酸盐阶段。其中,硅酸盐阶段生成矿物主要为石英及少量绢云母,且石英、绢云母的生成贯穿硅酸盐阶段至硫化物-氧化物阶段;石英-硫化物阶段主要为黄铜矿、毒砂、黄铁矿等硫化物矿物的生成阶段;硫化物-氧化物阶段主要为钨矿的生成阶段,同时有毒砂、黄铜矿、辉钼矿、闪锌矿,以及有铅-铋-锑等伴生硫盐矿物等生成;碳酸盐阶段主要为白云石、锰方解石、绿泥石的生成阶段。

  • Fig.1 Geological map of the study area (after Hou et al., 2007; Deng Jun et al., 2010; Zhang et al., 2015)

  • (a)—三江特提斯构造格架;(b)—大马尖山钨多金属矿床区域地质图;(c)—矿床剖面;1—第四系;2—下志留统上段第四层;3—下志留统上段第三层;4—下志留统上段第二层;5—下志留统上段第一层;6—下志留统下段第二层;7—下志留统下段第一层;8—志留系板岩;9—石英斑岩;10—钨-铜矿体;11—钨矿体;12—断层;Ⅰ—甘孜-理塘结合带;Ⅱ—德格-乡城火山-岩浆弧带;Ⅲ—中咱-香格里拉地块;Ⅳ—金沙江-哀牢山缝合带;Ⅴ—江达-维西-绿春火山-岩浆弧带;Ⅵ—昌都-兰坪-普洱地块

  • (a)—Tectonic framework in the Sanjiang Tethys; (b)—regional geological map of Damajianshan deposit; (c)—profile of Damajianshan deposit; 1—Quaternary; 2—the fourth layer in upper section of Lower Silurian; 3—the third layer in upper section of Lower Silurian; 4—the second layer in upper section of Lower Silurian; 5—the first layer in upper section of Lower Silurian; 6—the second layer in lower section of Lower Silurian; 7—the first layer in lower section of Lower Silurian; 8—Silurian slate; 9—quartz porphyry; 10—tungsten-copper orebody; 11—tungsten orebody; 12—fault;Ⅰ—Garze-Litang suture zone; Ⅱ—Dege-Xiangcheng volcanic belt; Ⅲ—Zhongzan-Shangrila block; Ⅳ—Jinshajiang-Ailaoshan suture zone; Ⅴ—Jomda-Weixi-Lüchun volcanic belt; Ⅵ—Changdu-Lanping-Puer block

  • 矿区地层岩石和石英斑岩由于受蚀变作用改造,致使原岩构造遭到不同程度破坏,不同期次蚀变作用相互叠加,使区内围岩蚀变类型复杂,主要有钾化、硅化、绢云母化、毒砂化、电气石化、绿泥岩化等,与成矿关系密切的蚀变类型为硅化、绢云母化、毒砂化。断裂是研究区的主要构造样式,断层、节理、构造裂隙也较为发育,这些构造系统控制了矿区内的成岩成矿作用,成矿期节理与矿体走向大致平行,主要被毒砂-石英脉充填,同时伴随有大量次级断层,为成矿流体的运移和沉积提供了有利的赋矿空间。

  • 3 样品采集与分析方法

  • 本文研究样品取自大马尖山钨多金属矿床海拔512~889m各中段硫化物-氧化物阶段与成矿作用相关的石英脉,共计95件。将各中段样品磨制成厚度约0.2mm、双面抛光的包裹体片,在4×、10×、20×、50×物镜的Leitz显微镜下进行岩相学和流体包裹体观察,然后挑选有代表性的包裹体样品进行显微测温及激光拉曼分析。流体包裹体测定在中国科学院矿床地球化学国家重点实验室的流体包裹体室完成,显微测温采用仪器为Linkam THMSG 600型冷热台,测温控制范围为-196~600℃,冰点温度和均一温度测定精度分别为±0.1℃和±2℃,加热过程中控温速率保持在2~5℃/min,在靠近相变点时,升温速率控制在0.5~1℃/min。单个流体包裹体激光拉曼分析采用Renishaw公司生产的inVia Reflex型显微共焦激光拉曼光谱仪,激光波长514.5nm,激光功率20mW,三维空间分辨率为1~2 μm,计数时间为30s,扫描范围为150~4500cm-1,通过激光拉曼分析对流体包裹体内的子矿物和挥发份成分进行分析。依据冰点温度,利用NaCl-H2O体系的经验公式计算包裹体的盐度。盐度单位换算为NaCl的重量百分含量(%NaCleq)表示,温度单位为摄氏度(℃)。

  • 图2 大马尖山钨多金属矿床石英斑岩、矿石和矿物组合的照片和显微照片

  • Fig.2 Photographs and micrographs of quartz porphyry, ores and mineral assemblages in the Damajianshan deposit

  • (a)—含钨石英脉(Qz);(b)—黄铜矿(Ccp);(c)—板岩中石英脉(Qz);(d)—石英斑岩黄铜矿(Ccp);(e)—石英;(f)—荧光灯下含钨石英脉(Sch)

  • (a)—W-bearing quartz veins (Qz); (b)—chalcopyrite (Ccp); (c)—quartz vein in slate (Qz); (d)—quartz porphyry chalcopyrite (Ccp); (e)—quartz; (f)—W-bearing quartz veins (Sch) under fluorescent light

  • 图3 大马尖山钨多金属矿床不同中段流体包裹体显微照片

  • Fig.3 Microscopic characteristics diagram of fluid inclusions of Damajianshan deposit

  • (a)~(f)分别为512m、541m、588m、687m、726m、889m中段的气液两相包裹体

  • (a)~(f): the gas-liquid phase fluid inclusions of 512m, 541m, 588m, 687m, 726m, 889m level

  • 4 测试结果

  • 4.1 流体包裹体岩相学特征

  • 根据Rodder (1984)Lu Huanzhang et al.(2004)提出的流体包裹体分类方案准则,研究区内的流体包裹体可分为3种类型(图3、表1):①Ⅰ型包裹体:为富液相气液两相包裹体,该矿床主要的包裹体类型,在各个中段均有分布,气液比为2%~10%,大小约3~20 μm,呈较规则的椭圆状、多边形状,孤立或成群分布;②Ⅱ型包裹体:为含子晶矿物包裹体,由气相(V)、液相(L)、一种或者多种子晶(S)组成,气液比为5%~10%,大小为4~18 μm,仅在541m中段铜矿化和726m中段钨矿化的石英中流体包裹体内发现子矿物,且数量较少,呈孤立状分布,主要为方解石、硫化物矿物和石盐;③ Ⅲ型包裹体:为富甲烷包裹体,数量少,仅在687m中段石英脉中发现。各中段未见纯气相、纯液相包裹体。

  • 表1 大马尖山钨多金属矿床流体包裹体显微测温结果

  • Table1 Microthermometric analysis results of inclusions in Damajianshan deposit

  • 注:T m,ice—冰点温度;T m—初熔温度;T h,hot—均一温度;括号内为相应数值的平均值。

  • 4.2 均一温度和盐度

  • 在包裹体岩相学特征观察的基础上,对大马尖山硫化物-氧化物阶段512~889m各中段不同矿化类型的原生包裹体进行显微测温分析。测试过程中,将选定的包裹体降温-100℃以下,当冷冻状态下的包裹体达到相变点时,记录其冰点温度,持续加热包裹体至均一状态,记录其均一温度及子矿物熔化温度,测定结果及参数见表1,均一温度及盐度分布见图4。对气液两相包裹体测温结果进行整理,依据盐度计算公式计算其盐度大小(Bodnar, 1993):

  • S=0.00+1.78θ-0.0442θ2+0.000557θ3

  • 式中:S为盐度(%NaCleq),θ为冰点温度(℃)。含子矿物包裹体盐度采用子晶熔化温度和盐度的关系式计算(Hall et al., 1988):

  • WNaCl=26.242+0.4948ψ+1.42ψ2-0.223ψ3+0.04129ψ4+0.006295ψ5-0.001967ψ6+0.000111257ψ7

  • 其中ψ=T/100(T为NaCl子矿物熔化温度),应用范围为0.1℃≤T ≤801℃。

  • 通过对不同中段流体包裹体均一温度和冰点温度结果的分析,发现包裹体均一温度变化在165~335℃之间,盐度变化于2.6%~23.7%NaCleq之间,具有较宽广的变化区间。

  • 889m中段铜矿化流体包裹体的均一温度主要分布于210~220℃,频率峰值为217℃;726m中段的样品分为钨矿化与铜矿化两个部分,钨矿化流体包裹体的均一温度主要分布于200~230℃,频率峰值为282℃,铜矿化流体包裹体的均一温度主要分布在200~230℃范围内,频率峰值为226℃,该段含有以石盐为主的子晶矿物,子晶熔化温度为254℃;687m中段为铜矿化流体包裹体,均一温度介于200~230℃,峰值为240℃,出现了富甲烷包裹体,富甲烷包裹体三相点温度为-187℃,均一温度为-126.8℃;588m中段钨矿化流体包裹体均一温度分布于150~210℃,其频率峰值为270℃,铜矿化流体包裹体均一温度分布于210~240℃,频率峰值为265℃;541m中段的钨矿化流体包裹体均一温度主要分布于280~300℃之间,频率峰值为265℃,铜矿化流体包裹体均一温度主要分布在240~270℃范围内,频率峰值为296℃;512m中段为铜矿化流体包裹体,其均一温度分布范围主要为290~330℃,频率峰值为335℃。

  • 大马尖山流体包裹体的盐度为2.6%~23.7%NaCleq,变化范围较大,相同中段的铜矿化和钨矿化的盐度也有较大的差异。889m中段铜矿化的流体包裹体的盐度为13.1%~16.7%NaCleq;726m中段钨矿化带盐度为22.2%~23.7%NaCleq,铜矿化带盐度为4.2%~14.4%NaCleq,主要集中在8%~10%NaCleq之间,比钨矿化的盐度低,该中段盐度总体较高,出现了以石盐为主的子晶矿物;687m中段为钨矿化带,盐度12.9%~14.8%NaCleq;588m中段钨矿化带盐度为15.3%~19.1%NaCleq,铜矿化带盐度较钨矿化带低,盐度为13.7%~15.2%NaCleq,主要分布在14.2%~15.2%NaCleq,该中段发育一些含有子矿物的高盐度包裹体,可能代表了不混溶作用的高盐度流体组分端元;541m中段钨矿化带盐度为2.6%~7.2%NaCleq (该段流体盐度过低,机制尚未查清),铜矿化带盐度为12.6%~13.9%NaCleq,该段含有方解石、铁白云石、黄铜矿等子晶矿物;512m中段为铜矿化带流体包裹体,其盐度为10.9%~15.4%NaCleq,主要分布于12%~15%NaCleq之间。

  • 各中段流体包裹体流体溶质类型发生变化。流体包裹体的初熔温度从512m中段的-33~-38℃逐渐降低到889m中段的-44~-51℃,显示盐类溶质类型从NaCl、KCl、MgCl2逐步演化到以CaCl2为主。测温结果显示,大马尖山钨多金属矿床的成矿流体,经历了从中温(200~220℃)到高温(290~320℃),流体盐度从低盐度到中高盐度(10.8%~23.7%NaCleq)的演化过程。从889m中段至512m中段,温度峰值分布由200~220℃变化至290~320℃,随着海拔高度降低逐渐升高,而盐度从512m中段至889m中段,由10.9%NaCleq变化至23.37%NaCleq,随着海拔高度的增加逐渐增加,并出现以石盐为主的子晶,盐类溶质从NaCl、KCl、MgCl2逐步演化到以CaCl2为主。同时,同一中段的铜矿化与钨矿化包裹体的均一温度相差不大,而盐度较钨矿化低。

  • 图4 大马尖山钨多金属矿床各中段铜矿化和钨矿化均一温度和盐度直方图

  • Fig.4 Histograms of homogenization temperatures and salinities for fluid inclusions in Damajianshan deposit

  • 4.3 成矿压力与深度估算

  • 富甲烷包裹体形成于不混溶两相系统,为等体积(密度)条件下发生热力学变化的等容体系,常用来作为研究成矿压力的工具(Goldstein et al., 1994; Zhao Bo, 2013)。通过富甲烷包裹体的密度和均一温度数据可以获得包裹体的等容线,选用与富甲烷包裹体共生的气液两相盐水包裹体的均一温度最低值及平均值代表甲烷包裹体的捕获温度,捕获温度在等容线上对应的压力即为捕获压力(Zhao Bo, 2013)。根据富甲烷包裹体均一温度的测定结果,采用以下公式(Liu Bin et al., 1999)算得其密度:

  • ρ=0.1620506(0.288)r

  • 式中,r=1-Th+273.15190.60.2857;T h为甲烷包裹体的均一温度(℃);ρ为富甲烷包裹体密度(g/cm3)。

  • 687m中段发现富甲烷包裹体,其三相点温度为-187℃,甲烷气液相部分均一温度为-126.8℃,与富甲烷包裹体共生的流体包裹体均一温度为200~240℃,平均温度为220℃,在等容线上相对应的捕获压力为20.99~18.13MPa(图5),采用静岩压力(26.5MPa/km)进行深度换算,包裹体形成的深度为0.68~0.79km。

  • 图5 大马尖山钨多金属矿床687m中段富甲烷流体包裹体形成温度和压力关系图

  • Fig.5 Mineralizing temperature and pressure of methane fluid inclusions at 687m elevation of Damajianshan deposit

  • 对于盐水流体包裹体,Shao Jielian et al.(1986)提出了根据温度和盐度计算成矿压力的经验公式。成矿压力计算公式如下:

  • T0=374+920×N×10
    (1)
  • P0=219+262×N
    (2)
  • P=P0×Tt/T0
    (3)
  • 式中:T 0为初始温度;T t为实测成矿温度;N为成矿流体盐度;P 0为初始压力;P为成矿压力。均一温度与实际成矿温度之间的关系为:T t=T hT;式中ΔT=T t-T h,为压力对温度的校正值,是压力和密度的函数(Lu Huanzhang et al., 2004)。由上文流体包裹体测温计算结果可知,687m中段处于889~512m中段中部,成矿压力较低,且大马尖山成矿流体密度也较小,因此将包裹体均一温度可以近似地视为矿床的成矿温度(Luo Zhenkuan et al., 1993)。成矿深度的换算采用静岩压力(26.5MPa/km),各中段成矿压力计算结果见表1、图6。

  • 图6 大马尖山钨多金属矿512m中段至889m中段成矿压力(a)与成矿深度(b)变化图

  • Fig.6 Variation of mineralization pressure (a) and mineralization depth (b) from the elevation of 512m to 889m level in Damajianshan deposit

  • 结合表1、图6可知,自512m中段到889m中段,大马尖山钨多金属矿的成矿压力介于17.85~48.90MPa,成矿深度介于0.67~1.85km,随着海拔升高,矿床的成矿压力与深度呈降低趋势。

  • 4.4 显微激光拉曼探针成分

  • 利用激光拉曼光谱仪对大马尖山成矿流体成分分析(图7),分析结果表明,从512m中段到889m中段,各中段流体成分相似,以H2O、CH4为主,伴有少量N2及微量的CO2,铜矿化带的流体包裹体中,CO2成分从无到有,且其挥发份中CH4的含量不断增加。铜矿化与钨矿化流体成分相似,只是含量上有所差异,结合上文所述各中段中铜矿化与钨矿化流体包裹体的均一温度相近,二者应为相同的成矿流体来源,有不同的演化过程。

  • 5 讨论

  • 5.1 成矿物理化学条件

  • 流体包裹体测温与成分分析结果表明,大马尖山钨多金属矿床成矿流体的温度、压力、挥发组份含量随着海拔升高呈现规律性变化,这些流体包裹体记录了成矿流体的物理化学变化。

  • 从512m中段到889m中段,随着海拔升高,成矿流体的温度由(290~320℃)降至(200~220℃);盐度由10.8%NaCleq升至23.7%NaCleq,呈现出温度随海拔升高而降低,盐度逐渐增高的趋势;成矿压力介于48.90~17.85MPa,成矿深度为1.85~0.67km,随着海拔升高,矿床的成矿压力与深度呈降低趋势,各中段挥发份主要以H2O、CH4为主,少量N2及微量的CO2

  • 图7 大马尖山钨多金属矿床各中段铜矿化(a、c、d)和钨矿化(b)流体包裹体的激光拉曼图谱

  • Fig.7 Laser Raman spectroscopy of fluid inclusions of copper mineralization (a, c, d) and tungsten mineralization (b) in Damajianshan deposit

  • 综上所述,大马尖山钨多金属矿床成矿流体体系随着海拔的升高,成矿条件从初始的高温、较低盐度,向低温、较高盐度转变,且具有成矿压力较低的特点。

  • 5.2 流体来源

  • 根据大马尖山钨多金属矿床的H-O同位素组成研究(Zhang et al., 2018),认为其成矿流体为岩浆水与大气降水混和形成。本文通过对该矿床H-O同位素组成重新梳理发现,随着海拔升高,H-O同位素含量的变化呈弱负相关,随着海拔增加,δ18O逐渐趋于亏损,而δD值反而逐渐升高,与大气降水中H同位素组成演化趋势不相符,推测受到了脱羟基作用的影响。水岩交换反应通常影响氧同位素组成,若周围岩石中存在含羟基矿物,或水-岩比值很小时,它的氢同位素也会因为交换作用而发生变化(Zhang Ligang et al., 1995)。将大马尖山钨多金属矿床的H-O同位素组成投于大气降水和岩浆水在水-岩交换过程中氢氧同位素组成演化简图上,数据点位于大气降水与壳源花岗岩(δ18O=11.3‰,δD=-80‰)在350℃和150℃条件下交换后H、O同位素组成的变化曲线上(图8),显示出628m中段以下成矿热液是在水-岩比值较低(0.005附近)的条件下形成的;随着海拔升高(628~1026m中段),成矿热液在水-岩比值较高条件下形成,反映出随海拔升高水岩反应程度增强,表明大马尖山钨多金属矿床成矿热液演化过程中有水岩反应参与。

  • 在成矿期构造活动等因素影响下,大马尖山矿床中富含成矿物质的成矿流体在运移过程中从面型蚀变带汇聚到成矿裂隙中,并沿着构造裂隙运移上升,在上升过程中有大气降水加入,与围岩发生氢、氧同位素交换反应,随着海拔的升高,热液与围岩同位素交换程度逐渐增大,使大马尖山矿床H-O同位素组合随着海拔升高,δ18O值呈现升高后下降的特征。Li Yanhe (1998)研究发现,当成矿热液的δ18O值降低幅度大于因温度下降导致的水-岩氧同位素分馏增加的幅度时,沉淀矿物和蚀变围岩的δ18O值开始下降,结果造成含矿石英脉或蚀变围岩的δ18O值从下至上逐渐升高,至最大值后又逐渐下降,这与大马尖山钨多金属矿床H-O同位素分析结果吻合。随着海拔上升,温度逐渐降低,水-岩之间同位素分馏幅度增大,角闪石、绢云母等含羟基矿物的氢元素进入到流体中,流体中的δD值随之增加,同时流体中成矿元素沉淀成矿,其络合的盐离子析出,导致流体的盐度变大,这可能是大马尖山钨多金属矿床的盐度比一般石英脉型矿床盐度高的原因。因此,认为大马尖山钨多金属矿床H-O同位素含量的变化呈弱负相关趋势,是由于流体与围岩经水-岩反应造成的,成矿流体组分由岩浆水、大气降水及水岩交换共同演化形成。

  • 图8 大马尖山钨多金属矿床水岩反应过程中氢、氧同位素组成演化模式图 (底图据Chen Zhensheng et al., 1992;H-O同位素数据引自Zhang et al., 2018)

  • Fig.8 Evolution curves of H and O isotope composition during water-rock interaction in Damajianshan deposit(modified after Chen Zhensheng et al., 1992; H-O isotope data from Zhang et al., 2018)

  • 岩浆水:δ18O=11.0‰,δD=-70‰;壳源花岗岩:δ18O=11‰,δD=-80‰;大气降水Ⅰ:δ18O=-6.3‰,δD=-40‰;大气降水Ⅱ:δ18O=-11.3‰,δD=-80‰;大气降水Ⅲ:δ18O=-16.3‰,δD=-120‰;交换时的温度:曲线A, B, C为150℃,曲线D, E, F为250℃,曲线G, H, I, J为350℃

  • Magmatic water: δ18O=11.0‰,δD=-70‰; crustal drived granite: δ18O=11‰,δD=-80‰; meteoric water Ⅰ: δ18O=-6.3‰,δD=-40‰; meteoric water Ⅱ: δ18O=-11.3‰,δD=-80‰; meteoric water Ⅲ: δ18O=-16.3‰,δD=-120‰; temperature at interaction: curve A, B, C is 150℃; curve D, E, F is 250℃; curve G, H, I, J is 350℃

  • 5.3 流体演化与成矿物质沉淀

  • 大马尖山钨多金属矿床铜矿化相关流体的挥发组分中CH4含量较高,并具有随深度增加逐渐增加的特点,反映出成矿作用过程中CH4与铜矿化流体的演化有着密切的关系。

  • 有机流体对某些金属元素的络合、运移、卸载及聚集过程等起着重要作用(Li Rongxi et al., 2012)。热化学硫酸盐还原反应(TSR)是SO42-在烃类的作用下被还原生成H2S等还原态硫的同时相关有机组分被氧化的过程,是一些硫化物矿床形成的重要机制(Ghazban et al., 1990; Basuki et al., 2008; Machel, 2001)。TSR反应一般在140℃即可发生(Worden et al., 1995),当热化学还原反应(TSR)作用发生时,有机质充当还原剂,将SO42-转变为还原硫(Ghazban et al., 1990; Ding Kangle et al., 2005),可以发生以下反应:

  • CH4+SO42-=H2S+CO32-+H2O 140C

  • CH4+2H++SO42-=CO2+H2S+2H2O300450C

  • 前文述及本矿床铜矿化流体均一温度主要集中在220~290℃,铜矿化流体具备TSR反应发生温度条件,含矿流体为TSR反应提供所需的SO42-且流体中的Mg2+所具有的催化作用能够加速启动TSR反应(Tang et al., 2005; Zhang Shuichang et al., 2012)。TSR作用表现出一些判别标志(如反应生成H2S、CO2、N2等),在成矿流体中也会存在记录(Machel, 2001; Xiong Suofei et al., 2013)。根据大马尖山钨多金属矿床流体包裹体测温和拉曼分析显示,海拔由高到低铜矿化流体包裹体挥发份中N2、CO2组分从无到有,未发现H2S,可能因为流体中大量Fe、Pb、Zn等过渡金属离子的存在限制了硫化氢的聚集,使硫化氢在合适位置转化为硫化物的形式消耗了(Ding Kangle et al., 2005)。两种反应过程中都有H2O生成,是低盐度流体形成的直接原因,随着硫化物的结晶与成矿流体温度的降低,TSR作用减弱,导致流体中盐度逐渐升高。TSR过程可能是同中段铜矿化流体的盐度低于钨矿化的原因。因此,铜矿化流体可能经历TSR作用造成硫化物沉淀。

  • 前人通过对钨矿床沉淀机制的研究,认为热液型钨矿沉淀机制主要有流体不混溶作用(Wilkinson, 2001; Yang et al., 2012)、流体混合作用(Beuchat et al., 2004; Yang et al., 2012)及自然冷却等(Ni et al., 2015)。当高温、高盐度流体与低温、低盐度流体混合时,流体的物理化学条件发生改变,使金属络合物遭到破坏、分解,在有利构造地带沉淀成矿。大马尖山矿床成矿流体是由岩浆水、大气降水构成,同时发生了水岩交换反应,温度逐渐降低等因素造成了物理化学体系的改变,故认为主导大马尖山钨矿床沉淀的机制可能为流体混合作用。

  • CO2常被认为在W的沉淀过程中扮演重要的角色,在高温高压下,富含CO2的流体使W可能以碳酸盐、重碳酸盐的形式迁移(Higgins,1980; Wang Xudong et al., 2013),且不同程度地含有CO2组分成为大多数钨矿床的流体特征(Wei Wenfeng et al., 2011; Wang Xudong et al., 2013),但同时国内外学者对钨矿床含矿石英脉中的流体包裹体进行岩相学观察和分析测试发现,在某些钨矿床中也存在不含CO2或含很少量的CO2的包裹体(Wood et al., 2000; Vallance et al., 2001; Beuchat et al., 2004; Wang Xudong et al., 2008; Song Shengqiong et al., 2011),因此有学者认为CO2对热液钨矿床流体运移起到的作用可忽略不计(Ramboz et al., 1985; Wood et al., 2000)。Higgins (1980)认为与花岗岩有关的流体早期倾向于富集氯化物或二氧化碳,其比例取决于它们在熔体中的初始浓度和压力,高压相时形成的流体相倾向于富二氧化碳和贫卤族元素,而低压流体倾向于富卤族元素和贫CO2。综上所述,在不同的流体中与W运移相关的络合物是不同的,CO2不是W运移绝对条件之一。试验结果表明,在一定浓度范围内氯化物的加入可明显提高W的分配系数,使W活化,并使钨的溶解度增大,进而有助于钨在流体中富集(Foster, 1977; Wood et al., 2000; He Xinghua et al., 2017)。大马尖山钨多金属矿床成矿压力为47.34~17.85MPa,具有低压成矿的特点,流体包裹体显示盐类溶质主要为NaCl、MgCl2、CaCl2等氯化物,含有少量的CO2,故认为卤族元素在大马尖山钨多金属矿床W元素运移和富集中起主要作用。

  • 大马尖山钨多金属矿床钨矿石矿物以白钨矿为主,少量黑钨矿呈现与白钨矿混构的现象。在钨矿床空间分布上,黑钨矿仅在678m中段及其以下出现,528m中段可以观察到白钨矿细脉穿插黑钨矿的现象,镜下可见早期黑钨矿被晚期白钨矿穿插的现象,由此推测黑钨矿形成较早,后期白钨矿交代了黑钨矿,形成以白钨矿为主的钨矿体。

  • 内生矿床白钨矿和黑钨矿含量的差别,主要与成矿流体的F-、Ca2+的含量有关,而F对钨矿床成分的影响主要通过与Ca2+的结合形成萤石来控制钨矿的晶出,当F含量高时与之有联系的钨矿物主要为黑钨矿,F含量降低、Ca含量高时与之有成因联系的主要为白钨矿(Tan Yunjin, 1999; Sun Wei et al., 2021)。大马尖山地区发育的石英斑岩体属壳源高钙碱性花岗岩,具有高CaO含量,矿床中萤石不发育,流体包裹体也显示,成矿流体中F含量低,且随着海拔升高流体中的盐类溶质类型从以NaCl、KCl、MgCl2为主逐步演化到以CaCl2为主。由此可知,成矿流体中钙质充足,F-含量较少,且随着流体向上运移过程中,当F-、Ca2+与WO42-共存时Ca2+首先与F-结合(Tan Yunjin, 1999),F-被消耗殆尽,剩余丰富的Ca2+与WO42-结合形成白钨矿,这与大马尖山钨多金属矿床中钨矿以白钨矿体为主的特征是相符的。大马尖山钨多金属矿床仅下部中段发育少量的黑钨矿,上部中段几乎无黑钨矿出现,具有白钨矿穿插、交代黑钨矿的现象,白钨矿体周围发育大量锰方解石脉,常见白钨矿与锰方解石交生现象,说明白钨矿、锰方解石与黑钨矿在成因上存在密切联系。通常情况下,锰方解石的活度积小于钨酸锰(黑钨矿)(Wang Dianzuo, 1988),当成矿流体中CO32-、WO42-和Mn2+共存时,锰方解石首先结晶,导致Mn、CO2大量消耗,同时受流体中F-含量的控制,抑制了Mn与钨酸根结合形成黑钨矿,是大马尖山黑钨矿较少且仅在下部出现的原因之一。由于锰方解石的产出,消耗了成矿流体中的CO2,成矿流体的压力随之降低,物理化学条件的改变,促进了钨的络合离子分解与白钨矿的形成。随着锰方解石的生成,热液中的CO2含量降得更低,仅在经历TSR反应的铜矿化流体中留存有少量CO2,这与流体包裹体分析结果相符。

  • 因此,认为大马尖山钨矿床的形成机制主要为流体混合作用,在成矿过程中大量氯化物参与了W的运移和富集,由F-和Ca2+含量控制白钨矿和黑钨矿的形成,大马尖山钨矿床流体中F-少Ca2+多的特点,以及锰方解石大量的生成,造就了钨矿体以白钨矿为主的特征。

  • 5.4 成矿机制

  • 伴随着大马尖山地区的区域构造-岩浆作用,在印支中晚期后碰撞拉张裂陷-裂谷的构造背景下(Gao Rui et al., 2010; Zhu et al., 2011; Chen et al., 2015),花岗质岩浆经由深大断裂上涌,在超浅层形成大量的石英斑岩体,随着花岗质岩浆不断结晶分异,岩浆热液型成矿流体携带大量成矿元素上涌侵入,与地层和围岩发生物质交代,随着岩浆的持续演化及流体的出溶和水岩反应,形成了与石英斑岩-热液成矿系统密切相关的不同金属元素组合的多金属矿床。

  • 在成矿作用早期,岩浆中的含矿汽水热液处于高温临界状态,含矿热液沿不同岩性之间的构造裂隙向外扩展,随着流体与围岩的相互作用,在石英斑岩与板岩的内外接触带内发生一系列反应,形成硅化、绢云母化、毒砂化等与成矿密切相关的围岩蚀变。成矿中期,随着流体向上运移,环境改变、大气降水的混入及水岩交换反应,使得成矿流体温度、压力降低,成矿流体体系的物理化学平衡被打破,致使成矿流体携带的大量W、Cu、As等成矿金属元素沿构造断裂及裂隙沉淀析出,形成多金属矿床(图9)。早期石英-硫化物阶段,毒砂、黄铜矿、少量白钨矿、石英沿断裂充填成矿,硫化物-氧化物阶段白钨矿、黑钨矿、黄铜矿等矿物交代、充填成矿。此后,随着温度、压力的进一步降低,形成闪锌矿、方铅矿,最终析出大量碳酸盐矿物而结束成矿。

  • 综上所述,在大马尖山钨多金属矿床中,温度、压力、挥发份、离子浓度等物理化学环境的改变是促使W、Cu、As等多金属矿质沉淀的主要原因。结合矿区的区域构造背景和成矿流体来源、演化,大马尖山钨多金属矿床的形成与石英斑岩-热液成矿系统密切相关,是该成矿系统含矿流体运移演化过程中,在不同部位发生钨多金属矿化沉淀作用,聚集形成钨多金属矿床。

  • 图9 大马尖山钨多金属矿床成矿模式图(未按比例制图)

  • Fig.9 Metallogenic model of Damajianshan tungsten polymetallic deposit (not to scale cartography)

  • 1 —志留纪地层;2—变质砂岩;3—变质石英砂岩;4—绢云母板岩;5—千枚状绢云板岩;6—硅质板岩;7—石英斑岩;8—硅化;9—石英-绢云母化;10—碳酸盐化;11—Pb-Zn矿体;12—Cu-As矿体;13—W矿脉;14—节理;15—断裂; 16—水-岩交换; 17—大气降水;18—含矿流体运移方向

  • 1 —Siluric stratum; 2—metamorphic sandstone; 3—metamorphic quartz sandstone; 4—sericite slate; 5—phyllite sericitization slate; 6—siliceous slate; 7—quartz porphyry; 8—silicification; 9—quartz-sericitization; 10—carbonatization; 11—Pb-Zn orebody; 12—Cu-As orebody; 13—tungsten orebody; 14—joint; 15—fault; 16—water-rock interaction; 17—meteoric water; 18—migration direction of ore-bearing fluid

  • 6 结论

  • (1)大马尖山钨多金属矿发育的包裹体类型主要为气液两相包裹体(Ⅰ型),另有少量的含子晶包裹体(Ⅱ型)、富甲烷包裹体(Ⅲ型),未见纯气相、纯液相包裹体。包裹体气液相成分以H2O为主,部分中段出现以石盐为主子晶矿物,挥发份成分主要为CH4,少量N2以及微量的CO2,成矿压力为17.85~48.90MPa,深度为0.67~1.85km。成矿流体为中高温度、中高盐度、富CH4、贫CO2的H2O-NaCl体系。

  • (2)大马尖山钨多金属矿床成矿流体主要由岩浆水和大气降水组成,迁移演化过程中发生了水岩交换反应,且铜矿化流体与钨矿化流体为同一来源,但二者有着不同演化过程。铜矿化中CH4参与了硫酸盐还原反应,释放出大量S2-,促进Cu、As等成矿物质沉淀形成硫化物矿床,并使铜矿化流体包裹体盐度低于钨矿化;钨矿化中氯化物参与了W的运移和富集,主导W沉淀的机制可能为流体混合作用,并由F-、Ca+含量以及锰方解石和黑钨矿活度积的控制形成了以白钨矿为主的钨矿体。

  • (3)大马尖山钨多金属矿床的形成,与大马尖山石英斑岩-热液成矿系统密切相关,是该成矿系统迁移演化过程中,由于温度、压力等因素的改变,成矿流体以石英斑岩为主体向外运移,围绕岩体依次形成W、Cu-As、Pb-Zn矿化带,成矿物质沉淀形成钨多金属矿床。

  • 致谢:论文在写作过程与昆明理工大学燕永峰教授进行了有益探讨,并提出很好的建议;两位匿名审稿人提出的评审意见和修改意见,对提升论文质量起到重要作用,笔者谨此致以诚挚谢意!

  • 参考文献

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.

    • Basuki N I, Taylor B E, Spooner E T C. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103(4): 783~799.

    • Beuchat S, Moritz R, Pettke T. 2004. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chemical Geology, 210(1): 201~224.

    • Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).

    • Chen Xiaolei, Yan Yongfeng, Ye Lei, Su Changxue. 2012. Characteristics of ore-forming liquid of Damajianshan Co-As deposit in Lüchun, Honghe of Yunnan. Mineral Resources and Geology, 26(2): 148~152 (in Chinese with English abstract).

    • Chen X C, Hu R Z, Bi X W, Zhong H, Lan J B, Zhao C H, Zhu J J. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212: 93~110.

    • Deng Jun, Hou Zengqian, Mo Xuanxue, Yang Liqiang, Wang Qingfei, Wang Changming. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37~42 (in Chinese with English abstract).

    • Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihail, He Wenyan, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).

    • Ding Kangle, Li Shuyuan, Yue Changtao, Zhong Ningning. 2005. Review of thermochemical sulfate reduction. Journal of China University of Petroleum (Edition of Natural Science), 29(1): 150~155 (in Chinese with English abstract).

    • Foster R P. 1977. Solubility of scheelite in hydrothermal chloride solutions. Chemical Geology, 20: 27~43.

    • Ghazban F, Schwarcz H P, Ford D C. 1990. Carbon and sulfur isotope evidence for in situ reduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85(2): 360~375.

    • Goldstein R H, Reynolds T J. 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Society for Sedimentary Geology, 31: 199.

    • Gao Rui, XiaoLong, He Qi, Yuan Jing, Ni Pingze, Du Jingxia. 2010. Geochronology, geochemistry and petrogenesis of granites in Weixi-Deqin, West Yunnan. Earth Science-Journal of China University of Geosciences Earth Science, 35(2): 186~200 (in Chinese with English abstract).

    • Higgins N C. 1980. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Canadian Journal of Earth Sciences, 17(7): 823~830.

    • Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197~202.

    • Hou Z Q, Zaw K, Pan G T, Mo X X, Xu Q, Hu Y Z, Li X Z. 2007. Sanjiang Tethyan metallogenesis in S. W. China: tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48~87.

    • He Xinghua, Gu Shangyi. 2017. Distribution characteristics of tungsten in the granite magma system and impact on mineralization. Mineral Exploration, 8(4): 631~643 (in Chinese with English abstract).

    • Luo Zhenkuan, Guan Kang, Wang Zhiman, Wang Chuantai. 1993. Introduction of China's Gold Deposits. Tianjin: Tianjin Science and Technology Press, 122~277 (in Chinese).

    • Li Yanhe. 1998. Some apllications of isotope-tracing in geology. Earth Science Frontiers, 2: 106~112 (in Chinese with English abstract).

    • Liu Bin, Shen Kun. 1999. Thermodynamics of Fluid Inclusions. Beijing: Geological Publishing House, 29~137 (in Chinese).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 132~138 (in Chinese).

    • Li Rongxi, Dong Shuwen, Zhang Shaoni, Zhu Ruijing, Xia Bin. 2012. Features and formation of organic fluids during Dabashan orogenesis. Journal of Nanjing University (Natural Science), 48(3): 295~307 (in Chinese with English abstract).

    • Liao Shiyong, Wang Dongbing, Tang Yuan, Yin Fuguang, Sun Zhiming, Sun Jie. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450~462 (in Chinese with English abstract).

    • Lü Pengrui, Yao Wenguang, Zhang Huishan, Zhang Haidi, Hong Jun, Liu Shengrong. 2020. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain. Acta Geologica Sinica, 94(8): 2291~2310 (in Chinese with English abstract).

    • Machel H G. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1): 143~175.

    • Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329~2338 (in Chinese with English abstract).

    • Mao Jingwen, Wu Shenghua, Song Shiwei, Dai Pan, Xie Guiqing, Su Qiangwei, Liu Peng, Wang Xianguang, Yu Zhongzhen, Chen Xiangyun, Tang Weixin. 2020. The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin, 65(33): 3746~3762 (in Chinese with English abstract).

    • Ni P, Wang X D, Wang G G, Hung J B, Pan J Y, Wang T G. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062~1077.

    • Peng Ningjun. 2020. Fluid evolution and genetic mechanisms for the giant Dahutang tungsten deposit in northern Jiangxi Province, South China. PhD dissertation of China University of Geosciences (Wuhan), 94~100 (in Chinese with English abstract).

    • Rodder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineral Soc. Amer. , 12: 1~644.

    • Ramboz C, Schnapper D, Dubessy J. 1985. The P- V--T-X-fO2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: reconstruction from fluid inclusion studies. Geochimica et Cosmochimica Acta, 49: 205~219.

    • Shao Jielian, Mei Jianming. 1986. On the study of typomorphic characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Mineralogy and Petrology, 6(3): 103~111 (in Chinese with English abstract).

    • Song Shengqiong, Hu Ruizhong, Bi Xianwu, Wei Wenfeng, Shi Shaohua. 2011. Fluid inclusion geochemistry of the Taoxikeng tungsten deposit in southern Jiangxi Province, China. Geochimica, 40(3): 237~248 (in Chinese with English abstract).

    • Sun Wei, Wei Zhao, Han Haisheng, Gao Zhiyong, Wang Jianjun, Wang Ruolin. 2021. Flotation chemistry of tungsten ore and its practice. Metal Mine, 1: 24~41 (in Chinese with English abstract).

    • Tan Yunjin. 1999. Tungsten mineral composition characteristics and controlling factors of endophytic tungsten deposits in South China. China Tungsten Industry, 14(5-6): 85~90 (in Chinese with English abstract).

    • Tang Y, Ellis G S, Zhang T, Jin Y. 2005. Effect of aqueous chemistry on the thermal stability of hydrocarbons in petroleum reservoirs. Geochmica et Cosmochimica Acta, 69(10): 559.

    • Vallance J, Cathelineau M, Marignac C, Boiron M C, Fourcade S, Martineau F, Fabre C. 2001. Microfracturing and fluid mixing in granites: W-Sn ore deposition at Vaulry (NW French Massif Central). Tectonophysics, 336(1-4): 43~61.

    • Wang Dianzuo, Hu Yuehua. 1988. Solution Chemistry of Flotation. Changsha: Hunan Science and Technology Press, 180~207 (in Chinese).

    • Worden R H, Smalley P C, Oxtoby N H. 1995. Gas scouring by thermochemical sulfate reduction at 140℃. AAPG Bulletin, 79(6): 854~863.

    • Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl. Economic Geology, 95(1): 143~182.

    • Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.

    • Wang Xudong, Ni Pei, Jiang Shaoyong, Huang Jianbao, Sun Liqiang. 2008. Fluid inclusion study on the Piaotang tungsten deposit, southern Jiangxi Province, China. Acta Petrologica Sinica, 24(9): 2163~2170 (in Chinese with English abstract).

    • Wang Xudong, Ni Pei, Yuan Shunda, Wu Shenghua. 2013. Fluid inclusion studies of Dajishan tungsten deposit in Jiangxi Province. Mineral Deposits, 32(2): 308~322 (in Chinese with English abstract).

    • Wei Wenfeng, Hu Ruizhong, Bi Xianwu, Su Wenchao, Song Shengqiong, Shi Shaohua. 2011. Fluid evolution in Xihuashan tungsten deposit, southern Jiangxi Province, China. Acta Mineralogica Sinica, 31(2): 201~210 (in Chinese with English abstract).

    • Wang Caiyan, Ren Tao, Wang Die, Xu Saihua. 2020. Fluid inclusion and hydrogen-oxygen isotope study of the Nanyangtian super large tungsten deposit, southeastern Yunnan Province. Geotectonica et Metallogenia, 44(1): 103~118.

    • Wu Fan, Li Hao, LiDong. 2020. The distribution rule of main mineral resources and a preliminary analysis of prospecting direction of SE Yunnan. Yunnan Geology, 39(4): 447~452 (in Chinese with English abstract).

    • Wu Datian, Sun Wei, Zhao Yuandong, Xu Fengming, Xu Tao, Wang Kuiliang. 2021. Characteristics of fluid inclusions and mineralization of lode gold deposits in the greenstone belt of northern Madagascar. Acta Geologica Sinica, 95(4): 1231~1244 (in Chinese with English abstract).

    • Xie Yang, Li Yingshu, Guo Ningning, Lou Xi, Cheng Xiyin, Chen Nan, Wang Lun. 2011. Research on ore-controlling factors for one copper-gold polymetallic deposit in Lüchun County, Yunnan Province. Nonferrous Metals (Mining Section), 63(3): 47~50 (in Chinese with English abstract).

    • Xiong Suofei, Yao Shuzhen, Gong Yongjun, Tan Mantang, Zeng Guoping, Wang Wei. 2013. Ore forming fluid and thermochemical sulfate reduction in the Wusihe lead-zinc deposit, Sichuan Province, China. Earth Science, 41(1): 105~120 (in Chinese with English abstract).

    • Yang Y F, Li N, Chen Y J. 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews, 46: 83~94.

    • Zhang Ligang, Chen Zhensheng, Liu Jingxiu, Yu Guixiang. 1995. Hydrogen isotope kinetic fractionation in water-rock interaction system. Bulletin of Mineralogy, Petrology and Geochemistry, 1: 3~6 (in Chinese with English abstract).

    • Zhu J J, Hu R Z, Bi X W, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248~264.

    • Zhang Shuichang, Shuai Yanhua, He Kun, Mi Jingkui. 2012. Research on the initiation mechanism of thermochemical sulfate reduction (TSR). Acta Petrologica Sinica, 28(3): 739~748 (in Chinese with English abstract).

    • Zhao Bo. 2013. A study on metallogenic depths of Piaotang quartz vein type wolframite deposits in Jiangxi Province. Master dissertation of China University of Geosciences (Beijing), 44~57 (in Chinese with English abstract).

    • Zhang L, Wen H J, Qin C J, Du S J, Zhu C W, Fan H F, Zhang J R. 2015. The geological significance of Pb-Bi-and Pb-Sb-sulphosalts in the Damajianshan tungsten polymetallic deposit, Yunnan Province, China. Ore Geology Reviews, 71: 203~214.

    • Zhang Lei, Wen Hanjie, Zhang Guishan, Qin Chaojian. 2017. Chronology of quartz porphyry and its tectonic setting of the Damajianshan tungsten polymetallic deposit, Luchun, Yunnan. Abstract of the 8th National Symposium on Metallogenic Theory and Prospecting Methods, 641~642 (in Chinese with English abstract).

    • Zhang L, Zhang G S, Wen H J, Qin C J, Li R X, Zhu C W, Du S J. 2018. Genetic implications for the Damajianshan W-Cu-As polymetallic deposit in Lüchun, Southwest China: constraints from H-O, He-Ar, S, and Pb isotopes. Geological Journal, 53(S2): 384~394.

    • 陈晓磊, 燕永锋, 叶雷, 苏昌学. 2012. 云南红河绿春大马尖山铜砷矿床成矿液体特征. 矿产与地质, 26(2): 148~152.

    • 陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.

    • 丁康乐, 李术元, 岳长涛, 钟宁宁. 2005. 硫酸盐热化学还原反应的研究进展. 石油大学学报(自然科学版), 29(1): 150~155.

    • 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37~42.

    • 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.

    • 高睿, 肖龙, 何琦, 袁静, 倪平泽, 杜景霞. 2010. 滇西维西-德钦一带花岗岩年代学, 地球化学和岩石成因. 地球科学(中国地质大学学报), 35(2): 186~200.

    • 何兴华, 顾尚义. 2017. 钨在花岗岩岩浆体系中的分配特征以及对成矿作用的影响. 矿产勘查, 8(4): 631~643.

    • 罗镇宽, 关康, 王曼祉, 王传泰. 1993. 中国金矿床概论. 天津: 天津科学技术出版社, 122~277.

    • 李延河. 1998. 同位素示踪技术在地质研究中的某些应用. 地学前缘, (2): 106~112.

    • 刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社, 29~137.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 132~138.

    • 李荣西, 董树文, 张少妮, 朱瑞静, 夏彬. 2012. 大巴山造山过程有机流体研究. 南京大学学报(自然科学版), 48(3): 295~307.

    • 吕鹏瑞, 姚文光, 张辉善, 张海迪, 洪俊, 刘生荣. 2020. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程. 地质学报, 94(8): 2291~2310.

    • 廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. “三江”云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450~462.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 10: 2329~2338.

    • 毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746~3762.

    • 彭宁俊. 2020. 赣北大湖塘超大型钨矿床成矿流体与成因机制研究. 中国地质大学(武汉)博士学位论文, 94~100.

    • 邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~111.

    • 宋生琼, 胡瑞忠, 毕献武, 魏文凤, 石少华. 2011. 赣南淘锡坑钨矿床流体包裹体地球化学研究. 地球化学, 40(3): 237~248.

    • 孙伟, 卫召, 韩海生, 高志勇, 王建军, 王若林. 2021. 钨矿浮选化学及其实践. 金属矿山, 1: 24~41.

    • 谭运金. 1999. 华南地区内生钨矿床的钨矿物成分特征及其控制因素. 中国钨业, 14(5-6): 85~90.

    • 王淀佐, 胡岳华. 1988. 浮选溶液化学. 长沙: 湖南科学技术出版社, 180~207.

    • 王旭东, 倪培, 蒋少涌, 黄建宝, 孙立强. 2008. 赣南漂塘钨矿流体包裹体研究. 岩石学报, 24(9): 2163~2170.

    • 王旭东, 倪培, 袁顺达, 吴胜华. 2013. 江西大吉山钨多金属矿床流体包裹体研究. 矿床地质, 32(2): 308~322.

    • 魏文凤, 胡瑞忠, 毕献武, 苏文超, 宋生琼, 石少华. 2011. 赣南西华山钨矿床成矿流体演化特征. 矿物学报, 31(2): 201~210.

    • 王彩艳, 任涛, 王蝶, 许赛华. 2020. 滇东南南秧田超大型钨矿床流体包裹体及H、O同位素研究. 大地构造与成矿学, 44(1): 103~118.

    • 吴帆, 李昊, 李栋. 2020. 滇东南地区主要矿产分布规律及找矿方向简析. 云南地质, 39(4): 447~452.

    • 吴大天, 孙巍, 赵院冬, 许逢明, 徐涛, 王奎良. 2021. 马达加斯加北部绿岩带石英脉型金矿流体包裹体特征及成矿作用分析. 地质学报, 95(4): 1231~1244.

    • 谢阳, 黎应书, 郭宁宁, 罗曦, 程细音, 陈楠, 王伦. 2011. 云南绿春某铜金多金属矿床控矿因素分析. 有色金属(矿山部分), 63(3): 47~50.

    • 熊索菲, 姚书振, 宫勇军, 谭满堂, 曾国平, 王伟. 2016. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探. 地球科学, 41(1): 105~120.

    • 张理刚, 陈振胜, 刘敬秀, 于桂香. 1995. 水-岩交换体系氢同位素动力分馏. 矿物岩石地球化学通讯, (1): 3~6.

    • 张水昌, 帅燕华, 何坤, 米敬奎. 2012. 硫酸盐热化学还原作用的启动机制研究. 岩石学报, 28(3): 739~748.

    • 赵波. 2013. 江西漂塘石英脉型黑钨矿床成矿深度估算. 中国地质大学(北京)硕士学位论文, 44~57.

    • 张磊, 温汉捷, 张贵山, 秦朝建. 2017. 云南绿春“大马尖山”钨多金属矿床石英斑岩年代学及其构造背景研究. 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集, 641~642.

  • 参考文献

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.

    • Basuki N I, Taylor B E, Spooner E T C. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103(4): 783~799.

    • Beuchat S, Moritz R, Pettke T. 2004. Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence. Chemical Geology, 210(1): 201~224.

    • Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).

    • Chen Xiaolei, Yan Yongfeng, Ye Lei, Su Changxue. 2012. Characteristics of ore-forming liquid of Damajianshan Co-As deposit in Lüchun, Honghe of Yunnan. Mineral Resources and Geology, 26(2): 148~152 (in Chinese with English abstract).

    • Chen X C, Hu R Z, Bi X W, Zhong H, Lan J B, Zhao C H, Zhu J J. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes. Lithos, 212: 93~110.

    • Deng Jun, Hou Zengqian, Mo Xuanxue, Yang Liqiang, Wang Qingfei, Wang Changming. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Mineral Deposits, 29(1): 37~42 (in Chinese with English abstract).

    • Deng Jun, Wang Qingfei, Chen Fuchuan, Li Gongjian, Yang Liqiang, Wang Changming, Zhang Jing, Sun Xiang, Shu Qihail, He Wenyan, Gao Xue, Gao Liang, Liu Xuefei, Zheng Yuanchuan, Qiu Kunfeng, Xue Shengchao, Xu Jiahao. 2020. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Science Frontiers, 27(2): 106~136 (in Chinese with English abstract).

    • Ding Kangle, Li Shuyuan, Yue Changtao, Zhong Ningning. 2005. Review of thermochemical sulfate reduction. Journal of China University of Petroleum (Edition of Natural Science), 29(1): 150~155 (in Chinese with English abstract).

    • Foster R P. 1977. Solubility of scheelite in hydrothermal chloride solutions. Chemical Geology, 20: 27~43.

    • Ghazban F, Schwarcz H P, Ford D C. 1990. Carbon and sulfur isotope evidence for in situ reduction of sulfate, Nanisivik lead-zinc deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85(2): 360~375.

    • Goldstein R H, Reynolds T J. 1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Society for Sedimentary Geology, 31: 199.

    • Gao Rui, XiaoLong, He Qi, Yuan Jing, Ni Pingze, Du Jingxia. 2010. Geochronology, geochemistry and petrogenesis of granites in Weixi-Deqin, West Yunnan. Earth Science-Journal of China University of Geosciences Earth Science, 35(2): 186~200 (in Chinese with English abstract).

    • Higgins N C. 1980. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Canadian Journal of Earth Sciences, 17(7): 823~830.

    • Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O. Economic Geology, 83(1): 197~202.

    • Hou Z Q, Zaw K, Pan G T, Mo X X, Xu Q, Hu Y Z, Li X Z. 2007. Sanjiang Tethyan metallogenesis in S. W. China: tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31(1-4): 48~87.

    • He Xinghua, Gu Shangyi. 2017. Distribution characteristics of tungsten in the granite magma system and impact on mineralization. Mineral Exploration, 8(4): 631~643 (in Chinese with English abstract).

    • Luo Zhenkuan, Guan Kang, Wang Zhiman, Wang Chuantai. 1993. Introduction of China's Gold Deposits. Tianjin: Tianjin Science and Technology Press, 122~277 (in Chinese).

    • Li Yanhe. 1998. Some apllications of isotope-tracing in geology. Earth Science Frontiers, 2: 106~112 (in Chinese with English abstract).

    • Liu Bin, Shen Kun. 1999. Thermodynamics of Fluid Inclusions. Beijing: Geological Publishing House, 29~137 (in Chinese).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 132~138 (in Chinese).

    • Li Rongxi, Dong Shuwen, Zhang Shaoni, Zhu Ruijing, Xia Bin. 2012. Features and formation of organic fluids during Dabashan orogenesis. Journal of Nanjing University (Natural Science), 48(3): 295~307 (in Chinese with English abstract).

    • Liao Shiyong, Wang Dongbing, Tang Yuan, Yin Fuguang, Sun Zhiming, Sun Jie. 2013. LA-ICP-MS U-Pb age of two-mica granite in the Yunlong tin-tungsten metallogenic belt in Three River region and its geological implications. Acta Petrologica et Mineralogica, 32(4): 450~462 (in Chinese with English abstract).

    • Lü Pengrui, Yao Wenguang, Zhang Huishan, Zhang Haidi, Hong Jun, Liu Shengrong. 2020. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain. Acta Geologica Sinica, 94(8): 2291~2310 (in Chinese with English abstract).

    • Machel H G. 2001. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights. Sedimentary Geology, 140(1): 143~175.

    • Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329~2338 (in Chinese with English abstract).

    • Mao Jingwen, Wu Shenghua, Song Shiwei, Dai Pan, Xie Guiqing, Su Qiangwei, Liu Peng, Wang Xianguang, Yu Zhongzhen, Chen Xiangyun, Tang Weixin. 2020. The world-class Jiangnan tungsten belt: geological characteristics, metallogeny, and ore deposit model. Chinese Science Bulletin, 65(33): 3746~3762 (in Chinese with English abstract).

    • Ni P, Wang X D, Wang G G, Hung J B, Pan J Y, Wang T G. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062~1077.

    • Peng Ningjun. 2020. Fluid evolution and genetic mechanisms for the giant Dahutang tungsten deposit in northern Jiangxi Province, South China. PhD dissertation of China University of Geosciences (Wuhan), 94~100 (in Chinese with English abstract).

    • Rodder E. 1984. Fluid inclusions. Reviews in Mineralogy. Mineral Soc. Amer. , 12: 1~644.

    • Ramboz C, Schnapper D, Dubessy J. 1985. The P- V--T-X-fO2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: reconstruction from fluid inclusion studies. Geochimica et Cosmochimica Acta, 49: 205~219.

    • Shao Jielian, Mei Jianming. 1986. On the study of typomorphic characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Mineralogy and Petrology, 6(3): 103~111 (in Chinese with English abstract).

    • Song Shengqiong, Hu Ruizhong, Bi Xianwu, Wei Wenfeng, Shi Shaohua. 2011. Fluid inclusion geochemistry of the Taoxikeng tungsten deposit in southern Jiangxi Province, China. Geochimica, 40(3): 237~248 (in Chinese with English abstract).

    • Sun Wei, Wei Zhao, Han Haisheng, Gao Zhiyong, Wang Jianjun, Wang Ruolin. 2021. Flotation chemistry of tungsten ore and its practice. Metal Mine, 1: 24~41 (in Chinese with English abstract).

    • Tan Yunjin. 1999. Tungsten mineral composition characteristics and controlling factors of endophytic tungsten deposits in South China. China Tungsten Industry, 14(5-6): 85~90 (in Chinese with English abstract).

    • Tang Y, Ellis G S, Zhang T, Jin Y. 2005. Effect of aqueous chemistry on the thermal stability of hydrocarbons in petroleum reservoirs. Geochmica et Cosmochimica Acta, 69(10): 559.

    • Vallance J, Cathelineau M, Marignac C, Boiron M C, Fourcade S, Martineau F, Fabre C. 2001. Microfracturing and fluid mixing in granites: W-Sn ore deposition at Vaulry (NW French Massif Central). Tectonophysics, 336(1-4): 43~61.

    • Wang Dianzuo, Hu Yuehua. 1988. Solution Chemistry of Flotation. Changsha: Hunan Science and Technology Press, 180~207 (in Chinese).

    • Worden R H, Smalley P C, Oxtoby N H. 1995. Gas scouring by thermochemical sulfate reduction at 140℃. AAPG Bulletin, 79(6): 854~863.

    • Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl. Economic Geology, 95(1): 143~182.

    • Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.

    • Wang Xudong, Ni Pei, Jiang Shaoyong, Huang Jianbao, Sun Liqiang. 2008. Fluid inclusion study on the Piaotang tungsten deposit, southern Jiangxi Province, China. Acta Petrologica Sinica, 24(9): 2163~2170 (in Chinese with English abstract).

    • Wang Xudong, Ni Pei, Yuan Shunda, Wu Shenghua. 2013. Fluid inclusion studies of Dajishan tungsten deposit in Jiangxi Province. Mineral Deposits, 32(2): 308~322 (in Chinese with English abstract).

    • Wei Wenfeng, Hu Ruizhong, Bi Xianwu, Su Wenchao, Song Shengqiong, Shi Shaohua. 2011. Fluid evolution in Xihuashan tungsten deposit, southern Jiangxi Province, China. Acta Mineralogica Sinica, 31(2): 201~210 (in Chinese with English abstract).

    • Wang Caiyan, Ren Tao, Wang Die, Xu Saihua. 2020. Fluid inclusion and hydrogen-oxygen isotope study of the Nanyangtian super large tungsten deposit, southeastern Yunnan Province. Geotectonica et Metallogenia, 44(1): 103~118.

    • Wu Fan, Li Hao, LiDong. 2020. The distribution rule of main mineral resources and a preliminary analysis of prospecting direction of SE Yunnan. Yunnan Geology, 39(4): 447~452 (in Chinese with English abstract).

    • Wu Datian, Sun Wei, Zhao Yuandong, Xu Fengming, Xu Tao, Wang Kuiliang. 2021. Characteristics of fluid inclusions and mineralization of lode gold deposits in the greenstone belt of northern Madagascar. Acta Geologica Sinica, 95(4): 1231~1244 (in Chinese with English abstract).

    • Xie Yang, Li Yingshu, Guo Ningning, Lou Xi, Cheng Xiyin, Chen Nan, Wang Lun. 2011. Research on ore-controlling factors for one copper-gold polymetallic deposit in Lüchun County, Yunnan Province. Nonferrous Metals (Mining Section), 63(3): 47~50 (in Chinese with English abstract).

    • Xiong Suofei, Yao Shuzhen, Gong Yongjun, Tan Mantang, Zeng Guoping, Wang Wei. 2013. Ore forming fluid and thermochemical sulfate reduction in the Wusihe lead-zinc deposit, Sichuan Province, China. Earth Science, 41(1): 105~120 (in Chinese with English abstract).

    • Yang Y F, Li N, Chen Y J. 2012. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geology Reviews, 46: 83~94.

    • Zhang Ligang, Chen Zhensheng, Liu Jingxiu, Yu Guixiang. 1995. Hydrogen isotope kinetic fractionation in water-rock interaction system. Bulletin of Mineralogy, Petrology and Geochemistry, 1: 3~6 (in Chinese with English abstract).

    • Zhu J J, Hu R Z, Bi X W, Zhong H, Chen H. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248~264.

    • Zhang Shuichang, Shuai Yanhua, He Kun, Mi Jingkui. 2012. Research on the initiation mechanism of thermochemical sulfate reduction (TSR). Acta Petrologica Sinica, 28(3): 739~748 (in Chinese with English abstract).

    • Zhao Bo. 2013. A study on metallogenic depths of Piaotang quartz vein type wolframite deposits in Jiangxi Province. Master dissertation of China University of Geosciences (Beijing), 44~57 (in Chinese with English abstract).

    • Zhang L, Wen H J, Qin C J, Du S J, Zhu C W, Fan H F, Zhang J R. 2015. The geological significance of Pb-Bi-and Pb-Sb-sulphosalts in the Damajianshan tungsten polymetallic deposit, Yunnan Province, China. Ore Geology Reviews, 71: 203~214.

    • Zhang Lei, Wen Hanjie, Zhang Guishan, Qin Chaojian. 2017. Chronology of quartz porphyry and its tectonic setting of the Damajianshan tungsten polymetallic deposit, Luchun, Yunnan. Abstract of the 8th National Symposium on Metallogenic Theory and Prospecting Methods, 641~642 (in Chinese with English abstract).

    • Zhang L, Zhang G S, Wen H J, Qin C J, Li R X, Zhu C W, Du S J. 2018. Genetic implications for the Damajianshan W-Cu-As polymetallic deposit in Lüchun, Southwest China: constraints from H-O, He-Ar, S, and Pb isotopes. Geological Journal, 53(S2): 384~394.

    • 陈晓磊, 燕永锋, 叶雷, 苏昌学. 2012. 云南红河绿春大马尖山铜砷矿床成矿液体特征. 矿产与地质, 26(2): 148~152.

    • 陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.

    • 丁康乐, 李术元, 岳长涛, 钟宁宁. 2005. 硫酸盐热化学还原反应的研究进展. 石油大学学报(自然科学版), 29(1): 150~155.

    • 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用. 矿床地质, 29(1): 37~42.

    • 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 2020. 再论三江特提斯复合成矿系统. 地学前缘, 27(2): 106~136.

    • 高睿, 肖龙, 何琦, 袁静, 倪平泽, 杜景霞. 2010. 滇西维西-德钦一带花岗岩年代学, 地球化学和岩石成因. 地球科学(中国地质大学学报), 35(2): 186~200.

    • 何兴华, 顾尚义. 2017. 钨在花岗岩岩浆体系中的分配特征以及对成矿作用的影响. 矿产勘查, 8(4): 631~643.

    • 罗镇宽, 关康, 王曼祉, 王传泰. 1993. 中国金矿床概论. 天津: 天津科学技术出版社, 122~277.

    • 李延河. 1998. 同位素示踪技术在地质研究中的某些应用. 地学前缘, (2): 106~112.

    • 刘斌, 沈昆. 1999. 流体包裹体热力学. 北京: 地质出版社, 29~137.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 132~138.

    • 李荣西, 董树文, 张少妮, 朱瑞静, 夏彬. 2012. 大巴山造山过程有机流体研究. 南京大学学报(自然科学版), 48(3): 295~307.

    • 吕鹏瑞, 姚文光, 张辉善, 张海迪, 洪俊, 刘生荣. 2020. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程. 地质学报, 94(8): 2291~2310.

    • 廖世勇, 王冬兵, 唐渊, 尹福光, 孙志明, 孙洁. 2013. “三江”云龙锡(钨)成矿带晚白垩世二云母花岗岩LA-ICP-MS锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 32(4): 450~462.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 10: 2329~2338.

    • 毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746~3762.

    • 彭宁俊. 2020. 赣北大湖塘超大型钨矿床成矿流体与成因机制研究. 中国地质大学(武汉)博士学位论文, 94~100.

    • 邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~111.

    • 宋生琼, 胡瑞忠, 毕献武, 魏文凤, 石少华. 2011. 赣南淘锡坑钨矿床流体包裹体地球化学研究. 地球化学, 40(3): 237~248.

    • 孙伟, 卫召, 韩海生, 高志勇, 王建军, 王若林. 2021. 钨矿浮选化学及其实践. 金属矿山, 1: 24~41.

    • 谭运金. 1999. 华南地区内生钨矿床的钨矿物成分特征及其控制因素. 中国钨业, 14(5-6): 85~90.

    • 王淀佐, 胡岳华. 1988. 浮选溶液化学. 长沙: 湖南科学技术出版社, 180~207.

    • 王旭东, 倪培, 蒋少涌, 黄建宝, 孙立强. 2008. 赣南漂塘钨矿流体包裹体研究. 岩石学报, 24(9): 2163~2170.

    • 王旭东, 倪培, 袁顺达, 吴胜华. 2013. 江西大吉山钨多金属矿床流体包裹体研究. 矿床地质, 32(2): 308~322.

    • 魏文凤, 胡瑞忠, 毕献武, 苏文超, 宋生琼, 石少华. 2011. 赣南西华山钨矿床成矿流体演化特征. 矿物学报, 31(2): 201~210.

    • 王彩艳, 任涛, 王蝶, 许赛华. 2020. 滇东南南秧田超大型钨矿床流体包裹体及H、O同位素研究. 大地构造与成矿学, 44(1): 103~118.

    • 吴帆, 李昊, 李栋. 2020. 滇东南地区主要矿产分布规律及找矿方向简析. 云南地质, 39(4): 447~452.

    • 吴大天, 孙巍, 赵院冬, 许逢明, 徐涛, 王奎良. 2021. 马达加斯加北部绿岩带石英脉型金矿流体包裹体特征及成矿作用分析. 地质学报, 95(4): 1231~1244.

    • 谢阳, 黎应书, 郭宁宁, 罗曦, 程细音, 陈楠, 王伦. 2011. 云南绿春某铜金多金属矿床控矿因素分析. 有色金属(矿山部分), 63(3): 47~50.

    • 熊索菲, 姚书振, 宫勇军, 谭满堂, 曾国平, 王伟. 2016. 四川乌斯河铅锌矿床成矿流体特征及TSR作用初探. 地球科学, 41(1): 105~120.

    • 张理刚, 陈振胜, 刘敬秀, 于桂香. 1995. 水-岩交换体系氢同位素动力分馏. 矿物岩石地球化学通讯, (1): 3~6.

    • 张水昌, 帅燕华, 何坤, 米敬奎. 2012. 硫酸盐热化学还原作用的启动机制研究. 岩石学报, 28(3): 739~748.

    • 赵波. 2013. 江西漂塘石英脉型黑钨矿床成矿深度估算. 中国地质大学(北京)硕士学位论文, 44~57.

    • 张磊, 温汉捷, 张贵山, 秦朝建. 2017. 云南绿春“大马尖山”钨多金属矿床石英斑岩年代学及其构造背景研究. 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集, 641~642.