en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高新宇,男,1992年生。在读博士研究生,矿物学、岩石学、矿床学专业。E-mail:GaoxinyuGeology@outlook.com。

通讯作者:

王登红,男,1967年生。研究员,博士生导师,主要从事矿产资源研究。E-mail:wangdenghong@vip.sina.com。

参考文献
Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63: 363~372.
参考文献
Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155: 77~90.
参考文献
Chen Jing. 2014. Geological and geochemical characteristics and mineralization of Sijiayingiron deposit, eastern Hebei Province. Master's thesis of Chinese Academy of Geological Sciences (in Chinese).
参考文献
Cheng Yuqi. 1957. Probelms on the genesis of the high-grade ore in the pre-Sinian (Precambrian) banded iron ore deposits of the Anshan-type of Liaoning and Shantung Provinces. Acta Geologica Sinica, 37(2): 153~178+241~250 (in Chinese with English abstract).
参考文献
Cui Minli, Zhang Lianchang, Wu Huaying, Xu Yingxia, Li Wenjun. 2014. Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei Province, North China Craton: constraints from geochemistry and SIMS zircon U-Pb dating. Journal of Asian Earth Sciences, 94: 240~251.
参考文献
Cui Wenyuan, Zhang Naixian. 1983. A study on ferri-winchite in the iron deposit of Sijiaying, Luanxian, eastern Hebei Province. Journal of Changchun Institute of Geology, (3): 97~106.
参考文献
Institute of Geology, Chinese Academy of Sciences. 1983. Papers on Precambrian. Beijing: Geological Publishing House (in Chinese).
参考文献
Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China. Geology in China, 39(3): 559~580 (in Chinese with English abstract).
参考文献
Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Yao Liangde, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircons from the garnet-rich altered rocks in the mining area Ⅱ of the Gongchangling iron deposit: constraints on the ages of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1207 (in Chinese with English abstract).
参考文献
Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Birger Rasmussen, Stephen Sheppard, Simon A W, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the ‘missing’ banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.
参考文献
Li Wenjun, Jin Xindi, Cui Minli, Wang Changle. 2012. Characterisics of rare earth elements, trace elements and geological significations of BIF from Sijiaying in eastern Hebei. Acta Petrologica Sinica, 28(11): 3670~3678 (in Chinese with English abstract).
参考文献
Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014. The genesis of the high-grade iron ores in the Anshan-Benxi BIF-hosted: evidence from Fe, Si, O and S isotopes. Acta Geologica Sinica, 88(12): 2351~2372(in Chinese with English abstract).
参考文献
Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde. 2017. Metallogenic epoch of high-grade iron ore deposits of iron activation and enrichment genesis in Anshan-Benxi area of Liaoning: Re-Os isotopic dating evidence of molybdenite from Qidashan iron deposit. Mineral Deposits, 36(1): 237~249. (in Chinese with English abstract).
参考文献
Nutman A P, Wan Yusheng, Du Lilin, Friend C R L, Dong Chunyan, Xie Hanqiang, Wang Wei, Sun Huiyi, Liu Dunyi. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43~65.
参考文献
Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising Cl-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291: 38~54.
参考文献
Qian Xianglin. 1985. Geology of Precambrian Iron Deposits in Eastern Hebei Province. Shijiazhuang: Hebei Science and Technology Press (in Chinese).
参考文献
Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters, 258(1-2): 249~259. Rasmussen B, Zi J W, Sheppard S, Krapež B, Muhling J R. 2016. Multiple episodes of hematite mineralization indicated by U-Pb dating of iron-ore deposits, Marquette Range, Michigan, USA. Geology, 44(7): 547~550.
参考文献
Shen Baofeng. 2012. Geological characters and resource prospect of the BIF type iron ore deposits in China. Acta Geologica Sinica, 86(9): 1376~1395(in Chinese with English abstract).
参考文献
Shen Qihan, Zhang Zongqing, Xia Mingxian, Wang Xueying, Lu Jinying. 1981. Rb-Srage determination on the late Archean ferrosiliceous rock series in Sijiaying, Luanxian, Hebei. Geological Review, 27(3): 207~212 (in Chinese with English abstract).
参考文献
Sheppard S, Krapez B, Zi J W, Rasmussen B, Fletcher I R. 2017. Young ores in old rocks: proterozoic iron mineralization in Mesoarchaean banded iron formation, northern Pilbara craton, Australia. Ore Geology Reviews, 89: 40~69.
参考文献
Wan Yusheng, Dong Chunyan, Jie Wanqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Dunyi. 2012. Formation ages of Early Precambrain BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478(in Chinese with English abstract).
参考文献
Wang Changle, Wu Huaying, Li Wenjun, Peng Zidong, Zhang Lianchang, Zhai Mingguo. 2017. Changes of Ge/Si, REE+Y and Sm-Nd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~2. 54 Ga Sijiaying banded iron formation in eastern Hebei, China. Ore Geology Reviews, 80: 363~376.
参考文献
Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation. Acta Geologica Sinica, 93(6): 1189~1209(in Chinese with English abstract).
参考文献
Wang Denghong, Chen Shiping, Wang Hong, Meng Guixiang, Chen Zhenghui, Wang Chenghui, Li Chunjie. 2007. Mineralization pedigree and prospecting for iron deposits in eastern Tianshan. Geotectonica et Metallogenia, 31(2): 186~192.
参考文献
Wei Juying, Zheng Shuhui, Mo Zhichao. 1979. Oxygen isotopic composition of magnetite in pre-Sinian Fe-bearing quartzite in the area of Luanxian County, Hebei Province. Geochimica, 8(3): 195~201(in Chinese with English abstract).
参考文献
Xu Yingxia, Zhang Longfei, Gao Xiaomin, Li Houmin, Jia Dongsuo, Li Lixing. 2014. Metallogenic conditions of high-grade ores in the Sijiaying sedimentary metamorphic iron deposit, eastern Hebei Province. Geology and Exploration, 50(4): 675~688(in Chinese with English abstract).
参考文献
Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanpei, Wang Changle, Liu Li. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions. Acta Petrologica Sinica, 28(11): 3431~3445.
参考文献
Zhang Qiusheng. 1984. Geology and Mineralization of Early Precambrian in China. Changchun: Jilin People's Publishing House(in Chinese).
参考文献
Zhao Guochun, Sun Min, Simon A W, Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 137: 149~172.
参考文献
Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposit in China. Mineral Deposits, 32(4): 685~704.
参考文献
陈靖. 2014. 冀东司家营铁矿床地质地球化学特征与成矿作用. 中国地质科学院硕士毕业论文.
参考文献
程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180+241~250.
参考文献
崔文元, 张乃娴. 1983. 冀东滦县司家营铁矿中的高铁-蓝透闪石的研究. 长春地质学院学报, (3): 97~106.
参考文献
中国科学院地质研究所. 1983. 前寒武纪论文集. 北京: 地质出版社.
参考文献
李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军. 2012. 中国铁矿成矿规律及重点矿集区资源潜力分析. 中国地质, 39(3): 559~580.
参考文献
李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.
参考文献
李文君, 靳新娣, 崔敏利, 王长乐. 2012. BIF微量稀土元素分析方法及其在冀东司家营铁矿中的应用. 岩石学报, 28(11): 3670~3678.
参考文献
李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.
参考文献
刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代—齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.
参考文献
钱祥麟. 1985. 冀东前寒武纪铁矿地质. 石家庄: 河北科学技术出版社.
参考文献
沈保丰. 2012. 中国BIF型铁矿床地质特征和资源远景. 地质学报, 86(9): 1376~1395.
参考文献
沈其韩, 张宗清, 夏明仙, 王雪英, 鲁锦英. 1981. 河北滦县司家营晚太古代铁硅质岩系的铷-锶同位素年龄测定. 地质论评, 27 (3): 207~212.
参考文献
万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代—SHRIMP锆石U-Pb定年. 地质学报, 86(9): 1447~1478.
参考文献
王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189~1209.
参考文献
王登红, 陈世平, 王虹, 孟贵祥, 陈郑辉, 王成辉, 李纯杰. 2007. 成矿谱系研究及对东天山铁矿找矿问题的探讨. 大地构造与成矿学, 31(2): 186~192.
参考文献
魏菊英, 郑淑蕙, 莫志超. 1979. 冀东滦县一带前震旦纪含铁石英岩中磁铁矿的氧同位素组成. 地球化学, 8(3): 195~201.
参考文献
许英霞, 张龙飞, 高孝敏, 李厚民, 贾东锁, 李立兴. 2014. 冀东司家营铁矿床富矿成矿条件研究. 地质与勘探, 50(4): 675~688.
参考文献
张秋生. 1984. 中国早前寒武纪地质及成矿作用. 长春: 吉林人民出版社.
参考文献
张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.
参考文献
赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.
目录contents

    摘要

    司家营铁矿是冀东最大的单体铁矿床,其资源量约占冀东铁矿资源总量的六分之一,具有重要的经济意义和资源战略地位。司家营铁矿自1914年发现至今已有100多年,有悠久的勘查和研究历史,取得了一系列重要研究进展:矿床的成矿时代为新太古代晚期;矿质初始来源于海底高温热液与海水混合;矿区内的褶皱和断裂构造对矿体的最终定位有控制作用;矿床的原始成矿地质背景可能为弧后盆地;矿区有原生沉积和热液改造贫矿而成的富铁矿,后期构造运动可以导致进一步的富集。通过对司家营铁矿的研究进展和存在问题综述,本文认为:滦县岩群的中上层是后续深部找矿的目标层位,而富铁矿应在厚大的贫矿体中找;辨别断裂的性质有助于推断深部矿体位置,褶皱的转折端和断裂的交汇处有助于赋存富铁矿;磁异常和重力异常是找大矿、找富矿的重要标志;混合岩化和热液蚀变作用发育的位置更利于找富铁矿;后续的找矿工作建议在矿区西侧矿体延深方向上开展;随着埋藏深度的加大,弱小的磁异常也值得高度重视。

    Abstract

    The Sijiaying iron deposit is the single largest iron deposit in China, with important economic and strategic resource significance, accounting for about one sixth of the total iron ore resources in eastern Hebei Province. It has been more than 100 years since the discovery of the Sijiaying deposit in 1914. It has a long history of exploration and research, and has provided a series of important research insights: the metallogenic material came from the mixed solution of submarine high temperature hydrothermal solution and seawater; the fold and fault structures in the mining area control the final location of the ore body; the original metallogenic geological setting of the deposit is probably a back-arc basin; there are two kinds of rich iron ores in the mining area; primary sedimentation and hydrothermal reformation, later tectonic movement may have led to further enrichment. Based on a review of the research progress and existing challenges of Sijiaying deposit, this paper proposes that the middle and upper strata of Luanxian Group are the target horizons for further deep prospecting, while the high-grade iron ore should be found in the thick and large low-grade ore body; identifying the character of faults is helpful to infer the location of deep ore bodies, and the turning end of folds and the intersection of faults are helpful to the occurrence of high-grade iron ores; magnetic anomaly and gravity anomaly are important marks for prospecting large and rich deposits; the location near migmatization and hydrothermal alteration is more conducive to the search for high-grade iron ore; it is suggested that a follow-up prospecting work should be carried out in the deepening direction of the orebody on the west side of the mining area; with the increase of burial depth, weak magnetic anomalies are also worthy of greater attention.

  • 司家营铁矿是冀东规模最大、最典型的沉积变质型铁矿,已探明铁矿资源量近24亿t,部分可以露天开采,现铁矿石年产量超过3000万t,为华北地区的钢铁原料供应打下坚实基础。虽经百年勘查,司家营依然在为国家作出重大贡献,当前面临着深部找矿难度加大,铁矿石大量进口的新形势(王登红,2019),司家营是否能续写辉煌?本文通过归纳以往的勘查、研究成果,又结合笔者在矿山一年的采矿工作,对司家营铁矿的地质特征和研究进展作简要的介绍,并探讨目前该矿床研究的薄弱之处,基于此分析矿床深部找矿的潜力,研究建立深部找矿和富铁矿找矿标志,期望有助于后续的找大矿、找富矿工作。

  • 1 矿床地质和资源概况

  • 冀东地区是中国重要的BIF矿集区,大地构造上隶属于华北克拉通东部陆块,广泛发育早前寒武纪地层且不同时代的地层中均有BIF型铁矿产出,主要包括司家营、马城、水厂、石人沟、杏山、柞栏杖子等大型、超大型矿床以及一批中小型矿床(图1b),经多次勘查工作探明该地区铁矿石储量60多亿t,约占全国铁矿储量的10%,而且还有巨大找矿潜力(沈保丰,2012;李厚民,2012)。此外,冀东BIF铁矿有一些显著特点:以产出于绿岩带的阿尔戈马型为主,成矿时代主要为新太古代(图1b),主要赋存于火山岩或火山—沉积岩系;矿体遭受了一定程度的变质,自东向西变质程度由麻粒岩相向绿片岩相过渡;铁矿石以磁铁石英岩为主,整体较贫,贫矿层中发育一定规模的富铁矿(赵一鸣,2013)。

  • 司家营矿区出露地层呈结晶基底和沉积盖层双层结构。结晶基底主要为上太古界滦县岩群,矿体主要赋存于沉积特征明显的中上部,主要岩性为黑云变粒岩和斜长角闪岩;沉积盖层主要由中—上元古界的长城系和第四系组成。该矿床位于滦河复式背斜西翼,司家营复式向斜东翼,受两期褶皱作用叠加影响,矿体内部紧密同斜小型褶皱十分发育。矿区内侵入体较少,仅发育混合花岗岩岩脉和变质辉长辉绿岩脉。混合花岗岩常呈脉状或透镜状顺层贯入于变粒岩和矿层之中,根据化学成分的不同,进一步细分为钾质花岗岩(图2f)和钠质花岗岩(图2g),个别部位对矿体有破坏作用。变质辉长辉绿岩脉主要分布在北矿段的东北部、南矿段和大贾庄矿段的西部及南部。

  • 图1 冀东地区BIF型铁矿时空分布图(a,据Zhao Guochun et al.,2005;b,据Nutman et al.,2011修改)和司家营BIF矿区地质图(c,据Wang Changle et al.,2017修改)

  • Fig.1 Distribution of BIF type iron deposits in eastern Hebei Province (a, after Zhao Guochun et al.,2005; b, modified from Nutman et al.,2011) and geological map of Sijiaying BIF (c, modified from Wang Changle et al.,2017)

  • A—安子岭片麻岩;Q—秦皇岛片麻岩;J—界口岭片麻岩;Z—遵化群;Qx—迁西群;L—滦县群;D—单塔子群

  • A—Anziling gneiss; Q—Qinhuangdao gneiss; J—Jiekouling gneiss; Z—Zunhua Group; Qx—Qianxi Group; L—Luanxian Group; D—Dantazi Group

  • 司家营铁矿全长10km,宽1~3km,面积约为20km2,以S6勘探线为界分为南、北两区(图1)。北区矿体按平面分布位置自东向西划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ矿体,其中Ⅲ矿体在北区分布资源量最大;南区由南矿段和大贾庄矿段组成,南矿段的Ⅰ矿体和大贾庄的(Ⅰ+Ⅱ)矿体分别是两个矿段最大的矿体。矿体整体呈平行带状分布,走向近南北,倾向西,倾角40°~50°。矿体多呈层状或似层状,部分呈透镜状或扁豆状,层位稳定,厚度变化较大,沿走向和倾向均有突然尖灭、分枝复合和膨缩现象。

  • 图2 司家营北区露天采场矿体和矿石特征

  • Fig.2 Ore body and ore characteristics of open pit in north Sijiaying district

  • (a)—磁铁石英岩;(b)—热液改造成因的富铁矿;(c)—原始沉积成因的富铁矿;(d)—赤铁石英岩;(e)—混合岩化热液周围出露富铁矿;(f)—钾质伟晶岩;(g)—钠质伟晶岩

  • (a)—Magnetite quartzite; (b)—high-grade iron ore of hydrothermal reformation origin; (c)—high-grade iron ore of primitive sedimentary origin; (d)—hematite quartzite; (e)—high-grade iron ore is exposed around migmatization hydrothermal solution;(f)—potassic pegmatite; (g)—sodium pegmatite

  • 矿区内矿石主要为磁铁石英岩(图2a),浅部氧化带则主要为赤铁石英岩(图2d)。矿石矿物成分较简单,主要为磁铁矿、假象赤铁矿,其次为赤铁矿;脉石矿物以石英为主,其次为阳起石、透闪石、普通角闪石和辉石;微量矿物为磷灰石、黄铁矿、黄铜矿等,还有后期蚀变的绿泥石、碳酸盐、黑云母等矿物。

  • 区内各个矿体基本都可见富铁矿,品位约50%。富矿体绝大部分为隐伏矿,仅在铁石山地表有少量出露。根据地质特征可以将富铁矿分为两种:一种为热液改造贫铁矿而成(图2b),规模较大,一般产于贫矿体中,产出部位无明显规律,其形态大部分呈似层状和扁豆状,基本顺层产出,产状与贫铁矿一致,二者界线清晰,呈突变关系。富铁矿石呈黑绿、灰黑色,以致密块状构造为主,其次为稠密浸染状和变余细纹状,矿石矿物以磁铁矿为主,矿物颗粒比贫铁矿稍粗,其次是赤铁矿、镜铁矿,脉石矿物主要为绿泥石、碳酸盐、黑云母、角闪石,其次还有少量石英、黄铁矿、磷灰石,富铁矿附近热液蚀变显著(图2e),以绿泥石化为主,还有碳酸盐化、黑云母化和白云母化等蚀变现象;另一种为原始沉积富铁矿(图2c),规模较小,多见于厚层状贫铁矿的中下部,与贫铁矿产状一致,界线渐变,矿石以致密细纹状构造为主,矿石矿物主要为磁铁矿,颗粒较细,脉石矿物主要为石英,还有少量角闪石。

  • 2 司家营富铁矿的研究进展

  • 2.1 铁矿体形成时代

  • 司家营的铁矿体主要赋存在滦县岩群的中上部,赋矿地层的年龄可以为成矿年代研究提供线索。滦县岩群的变粒岩的Rb-Sr年龄测试显示该变质岩系的年龄为2566Ma(中国地质科学院地质研究所,1983),而全区较晚的一次区域变质作用终止于2.5Ga(沈其韩等,1981)。

  • 随着现代测年技术的进步,司家营的成矿时代也有了较多报道。Wang Changle et al.(2017) 通过矿石硅铁条带Sm-Nd同位素测试得到矿石铁质条带的年龄为2847~2692Ma。由于矿床成矿时代久远,流体的参与会破坏Sm-Nd同位素体系的封闭,司家营的矿质源于具有两种不同REE特征的流体,即海水和高温热液混合,因此可能导致Sm-Nd等时线年龄偏大,不能精确反映成矿年龄;而U-Pb体系具有半衰期长、封闭温度高的特点,且锆石普遍存在于各类岩石,因此常通过矿体顶底板的岩石中锆石U-Pb年龄限定BIF的成矿时代。Cui Minli et al.(2014)通过赋矿围岩的锆石U-Pb年代学测试,限定司家营的成矿时代为2543~2535Ma,这表明新太古代晚期为司家营的主体成矿时代,这一时期形成了贫铁矿体和原生沉积型富铁矿。热液改造成因的富铁矿年龄应晚于主体成矿时代,这点与华北克拉通其他矿集区BIF中热液改造成因的富铁矿相似,华北克拉通BIF的成矿主要集中于2.5Ga(王登红等,2007;万渝生等,2012;张连昌等,2012),弓长岭二矿区热液锆石U-Pb定年表明富铁矿形成于1.85Ga(李厚民等,2014);齐大山矿区中与富铁矿共生辉钼矿的Re-Os测年结果显示1.85Ga为热液改造型富铁矿主要成矿期(刘明军等,2017);袁家村BIF中热液成因的锆石、独居石、磷钇矿原位U-Pb测年表明1.84Ga是其富铁矿的主要形成时代(Li Lixing et al.,2020)。那么司家营热液改造型富铁矿是否也形成于1.85Ga?仍需进一步的研究工作证实。

  • 2.2 构造对矿体的控制作用

  • 滦县岩群的中上部是铁矿体的主要赋存层位,岩性主要为黑云变粒岩和斜长角闪岩。黑云变粒岩的原岩可能为中酸性的火山岩-火山碎屑岩,斜长角闪岩原岩可能为基性火山岩,两者的地球化学特征趋于岛弧火山岩,矿床原始成矿环境可能为弧后盆地环境(Cui Minli et al.,2014)。

  • 在控矿构造方面,滦县岩群的中上部位发育两期褶皱作用,方位角相差约72°。第一期为近东西向的舒缓褶皱,形成于太古代,表现为规模较小的同斜褶皱,在磁铁石英岩层中普遍发育;第二期为南北向紧密同斜褶皱,形成于太古宙晚期,是区内主要控矿构造,轴线向南倾伏,倾伏角为15°~30°,在矿区内表现为巨大的区域性压扁褶皱。褶皱的核部出现矿体厚度增加、品位升高的现象,两期褶皱的向斜复合部位容易保存矿体和积聚富矿,背斜部位矿体则易剥蚀。因此,本区基底地层所发育的强烈褶皱对铁矿体的形态、分布和富集程度有明显的控制作用。

  • 司家营北区的断裂构造较为发育,主要有北北东向、北北西向和近东西向三组,其中北北东向和北北西向为压扭型逆断层,近东西向的则为张扭型正断层,矿体常受断层活动影响发生位移,如图3a中高坎-响嘡断层沿倾向斜截矿体,该断层西侧的杜峪矿体是司家营北区Ⅲ号矿体的延伸,断层南侧的常峪矿体为受多组不同方向的断层切割的北区Ⅲ、Ⅳ号矿体,高坎-响嘡断层东侧的尹峪矿体是受一系列正断层控制的Ⅲ号矿体;司家营南区的南矿段的矿体受断裂破坏较少,而大贾庄矿段断裂构造较为发育,矿体位置也受其影响而变化。

  • 2.3 铁质富集机制

  • 20世纪80年代就有学者对司家营铁矿的物质来源做出探讨,认为其与海底火山活动及海水对洋壳的淋滤作用相关,如张秋生(1984)认为铁质与基性岩有直接关系,在火山喷发的间歇期完成铁质的聚集;钱祥麟(1985)认为司家营矿质是海底火山喷溢过程中,火山活动携带的硅铁质在海水中溶解以及周围的酸性水对下部的基性岩作用带来的。

  • 图3 司家营铁矿北区及周边矿体分布图(a)和Z2纵剖面图(b)(河北省地勘局第二地质大队,2010)

  • Fig.3 Ore body distribution map (a) and Z2profile (b) of Sijiaying iron mine (the Second Geological Brigade of Hebei Geological Exploration Bureau, 2010)

  • BIF中的REEs不会因铁质迁移沉淀而分异,是很好的矿质来源研究工具。综合前人研究资料(表1),司家营矿石显示轻微的重稀土相对富集、La正异常(La/La*平均值为1.55)、Y正异常(Y/Y*平均值为1.34)的特点,Y/Ho平均值为32.98,介于现代海水(>44)和球粒陨石(26~28)之间,有北太平洋深部海水的REE特征,还具有Eu正异常(Eu/Eu*平均值为1.56),与海底高温热液一致(图4);铁质条带的εNd(t)平均值为1.78,表明矿质来自亏损地幔(Wang Changle et al.,2017)。因此,海底火山热液与海水的混合为矿床提供的铁质来源,富矿和贫矿有相似的REE配分型式可能预示着贫、富矿具有相同的成因,后期改造应比较弱,即可能富矿是贫矿原始沉积时局部富集造成的。

  • 3 影响司家营找矿的因素

  • 3.1 矿床基础地质资料老,年代学研究仍需深入

  • 矿床在基础地质方面至今仍沿用20世纪80年代的区域地质资料,且研究工作主要集中在磁铁石英岩和黑云变粒岩,矿区其他岩性的研究程度较低。

  • 表1 司家营铁矿样品稀土元素分析数据的平均值

  • Table1 Average value of REE analysis data of Sijiaying iron ore sample

  • 图4 司家营BIF铁矿石稀土元素PAAS标准化配分型式图(标准化数据引自Pourmand et al.,2012;北太平洋深部海水和高温热液分别引自Alibo et al.,1999; Bau et al.,1999)

  • Fig.4 PAAS-normalized REE pattern in Sijiaying BIF iron ore (standardized data from Pourmand et al.,2012; the deep sea water and high-temperature hydrothermal fluid in the North Pacific are derived from Alibo et al.,1999; Bau et al.,1999)

  • 成矿相关的年代学研究同样有待深入。前人多以矿区西侧钻孔中矿体夹层围岩或混合岩的锆石年龄限定矿床成矿时代,未对四条主要矿体顶底板围岩进行系统年代学分析,数据可能存在一定误差。另外,赋矿围岩中的不同成因的锆石及单颗粒锆石的多组年龄研究匮乏,之前研究多集中于岩浆锆石,锆石颗粒的形态为短柱状、半自形晶,蕴含密集的振荡环带,U/Th比值均大于0.4。然而,矿床在成矿期后至少经历了区域变质作用和热液蚀变作用,围岩和蚀变岩中除了岩浆锆石还存在其他成因锆石,如变质锆石、变质增生锆石、热液锆石。其次,热液成因磷钇矿、独居石U-Pb法近年来也常被用于测定BIF中富矿体的年龄(Rasmussen et al.,2007, 2016; Sheppard et al.,2017),以上热液矿物的测年结果与区域变质作用、混合花岗岩的年龄对比,不仅有助于厘定富铁矿的成矿时代,还可以辅助判断富铁矿的成矿热液来源,进而为富铁矿形成机制研究提供线索。

  • 3.2 矿质迁移、沉淀和富集机制

  • 海底火山热液与海水的混合所提供的铁质,被周期性的上升洋流带至浅部氧化带,二价铁被氧化成三价后沉淀成矿,原始沉积的富矿多于此阶段形成。其后,沉淀的铁矿经历了热液改造,形成较大体量的热液成因富铁矿,证据如下:① 富矿和贫矿中磁铁矿的晶胞参数和氧同位素测试表明富铁矿有原生沉积和热液改造贫矿两类(魏菊英等,1979);② 富铁矿与贫铁矿之间界线清晰,部分富矿中有交代残留原贫矿的变余细纹状构造;③ 富铁矿产出受构造裂隙控制,靠近富矿位置围岩蚀变强烈; ④富铁矿在成分、结构构造、类型等方面与贫矿石有差异,如石英在贫矿中是主要矿物,在富矿石中为少量或微量矿物;黑云母、绿泥石、碳酸盐是富铁矿中主要脉石矿物,而在贫矿中为少量、微量;碱性角闪石在贫矿中有少量,在富矿中则没有;在化学成分上,富矿SiO2比贫矿的少,而CaO、MgO、Al2O3、Fe2O3、FeO、H2O高于贫矿;⑤矿区内岩浆活动较弱,富铁矿中存在混合岩化的残留脉体(钱祥麟等,1985)。但是热液的来源和改造贫矿机制仍有很大争议,综合矿床野外地质和地球化学特征,建立详实的成矿模式仍是下一步研究的重点。

  • 3.3 热液来源及改造机制

  • 在热液来源方面,区域内广泛发育的混合岩化作用很大可能提供了改造贫矿的热液,原因如下:① 程裕淇(1957)提出“鞍山式”沉积变质铁矿中富矿以热液交代成因为主,热液活动与邻近的花岗质岩石和混合岩化作用生成的混合岩有关;② 张秋生(1984)认为冀东富铁矿的形成有热液交代参与,从围岩带入的组分有K、Na、Fe,带出的组分有Ca、Mg、Al、Si,说明富矿与富K、Na的介质溶液密切相关,且富铁矿与花岗岩的石英包裹体含盐度相似;③ 崔文元等(1983)的研究表明高铁—蓝透闪石与司家营的富矿成因有密切关系,两者出现的位置混合岩化强烈;④ 矿区南部钻孔中发现富矿产于断裂和片麻状花岗岩附近,周围伴随强烈的围岩蚀变(陈靖,2014);⑤ 笔者在野外发现司家营北区露天采场存在花岗质岩石穿插矿体并伴有矿石品位升高、磁铁矿颗粒增大现象(图5c、d),富矿体附近钾质混合岩化作用和热液蚀变现象明显(图5a),矿石在被热液交代后有硅质组分残留(图5b),靠近富矿的围岩蚀变较强向外逐渐减弱,在层状或透镜状的富铁矿体和围岩及其附近的断裂带中矿物组合上常见热液蚀变矿物。

  • 热液改造贫铁矿机理有两种模式,分别为“去硅富铁”和“铁质活化再富集”。去硅富铁指的是在高温(500~600℃)、弱碱性(pH约8~10)、强还原条件下,热液改造贫铁矿,将硅质和一部分铁质带走,滞留的铁在原地富集形成富铁矿(李厚民,2012);铁质的活化再富集的观点认为,酸性、相对还原的热液交代贫铁矿,淋滤其中的Fe和Si元素,之后发生元素迁移,随着温度、压力、氧逸度等条件的变化,Fe和Si先后沉淀,Fe质富集形成富铁矿(李延河,2014)。

  • 笔者认为富铁矿形成机制可能主要为“去硅富铁”,原因如下:① 因为在铁质活化再富集模式中热液对铁质的活化是小规模的,铁在混合岩化作用中是相对惰性的成分,从磁铁石英岩中带走的加入溶液的铁质较少,而钻孔数据显示在司家营矿区内至少有300多万t储量的富铁矿,如此大规模的富铁矿可能无法通过活化贫铁矿中的铁质后再富集沉淀解释;② 被淋滤出的铁质可能会发生迁移,因此再富集沉淀所形成富矿体的产出位置和产状较复杂,而司家营的富铁矿多产出于贫矿体中,产状与贫矿体一致;③ 本次野外观察也发现富铁矿中有去硅不彻底,致使残余少量硅质组分的现象(图5b)。但这两种机制并非是截然的,去硅富铁的同时,热液可能会将铁质和硅质的带走,一部分Fe与Mg、Al、Si等作用形成绿泥石,另一部分铁质在适宜的条件下富集沉淀形成零星的富矿石。但热液发生的时间、是否有区域变质作用和天水的参与等科学问题仍待深入研究。

  • 图5 司家营矿区富铁矿特征

  • Fig.5 Characteristics of high-grade iron ore in Sijiaying mining area

  • (a)—钾质混合岩化较发育的位置矿石中石英含量明显较少;(b)—热液交代铁矿石后未将硅质完全带走,致使矿石残留硅质组分; (c)—贫矿石中的磁铁矿颗粒较小(BSE图像);(d)—富铁矿中磁铁矿颗粒粗大(BSE图像)

  • (a)—The quartz content in the iron ore is obviously less in the location where the potash migmatization is more developed; (b)—after hydrothermal replacement of iron ore, the siliceous material is not completely removed, resulting in residual siliceous components in the ore; (c)—the magnetic particles in low-grade iron ore are small (BSE image); (d)—coarse magnetite particles in high-grade iron ore (BSE image)

  • 4 深部找矿潜力和找矿标志

  • 钻探工作与重磁法均表明司家营矿区的深部和外围有巨大找矿潜力。据河北省地勘局第二地质大队(2009, 2010)在司家营的钻孔资料,司家营北区Ⅲ号矿体在深部(-500m)无变薄趋势,其中N22、N24、N26、M28等勘探线控制标高-900m,斜深达1600m,矿体厚度仍未变薄并无尖灭趋势,且距西部磁异常线还有一定距离,而且北区的物探工作也显示高坎—响嘡断层以西有明显的重力异常和宽缓的磁异常,这说明司家营北区矿体向西侧有较大延深且矿体埋深较大;在司家营南区,南矿段的Ⅰ和Ⅱ矿体在标高-800m处出现分支尖灭现象,大贾庄矿段Ⅰ+Ⅱ号矿体在标高-1000m,甚至-1500m处仍有矿体厚度增大、品位增高的现象,且矿体未见尖灭迹象。2009年河北省地质第二大队对司家营南区的南矿段和大贾庄矿段进行补充勘查,钻探共完成28个钻孔,工作量2万余米,新增资源量2.6亿t,矿石平均品位在30%以上。在大贾庄矿段完工的钻孔中,全部见矿,矿体平均厚度84.3m,其中S22线的Zk602孔控制矿体厚度120m左右,并见到30m厚的富矿,矿石质量较好,品位高达56%(图6)。以上都表明司家营铁矿深部有一定规模的矿体存在,矿区外围的勘查空白区具备一定找矿潜力。

  • 4.1 地层标志

  • 司家营铁矿的赋矿层位为新太古代滦县岩群的中上部,主要分布于冀东南的卢龙-滦县-马城一带,岩性主要为黑云变粒岩、斜长角闪岩,其中黑云变粒岩出露的部位为找矿的最有利层位。比如,司家营的四个主矿体均赋存于该层位;此外,2008年中国冶金地质总局第一勘察院的详勘工作在司家营南部发现资源量超过10亿t的马城铁矿,该矿床的14个铁矿体皆隐伏于新太古代滦县岩群中。因此,滦县岩群中上部应作为下一步找矿的目标层位。

  • 4.2 构造标志

  • 矿区内的褶皱和断裂构造都对矿体的最终定位有控制作用。南北向和近东西向两期褶皱作用都会影响矿体的形态和分布特征,在两期褶皱带向斜构造的复合部位铁矿体保存较完整,且褶皱的核部和转折端可以形成厚大、高品位的铁矿体,可能是深部找矿的有利位置,而褶皱的背斜核部会因长期的剥蚀作用致使矿体保存不完整,仅分布零星矿体。此外,区域性的大断裂-青龙河断裂使该地区东南部的司家营-马城-长凝地区沉降,促使司马长地区的铁矿体保存完好;矿区内广泛发育的复杂断裂系统会切割铁矿体,矿体也会因断裂的性质不同,发生不同程度的位移。因此,辨别断裂性质对于厘定矿体赋存位置,进而指导下一步钻孔位置布置具有重要的意义。

  • 4.3 地球物理标志方向

  • 司家营矿区内的铁矿石有高磁化率、高密度的特征,而富矿体由于聚积的铁矿物更多,因此其密度和磁性比贫矿体更大,磁异常和重力异常自然而然成为重要的找矿标志。河北省地勘局第二地质大队(2010)的勘探结果表明,在司家营北区矿体出露地表的位置出现9000~12000nT的磁正异常,其余铁矿体分布位置也存在明显的磁正异常,说明磁法勘探对本区铁矿体的分布有较好的指示意义。磁法勘探测试结果表明司家营北部呈微弱的磁负异常,而司家营北区铁矿体的西侧无磁负异常,这说明矿区北部找矿潜力较小,但在矿区西侧的矿体倾向方向上,铁矿体有较大延深,找矿潜力更大;在司家营南区较强的磁异常与钻探工作揭示的矿体分布相吻合。

  • 图6 司家营南区概图(a)及S22勘探线剖面图(b)(河北省地勘局第二地质大队,2009)

  • Fig.6 Overview of Sijiaying south area (a) and S22exploration line profile (b) (the Second Geological Brigade of Hebei Geological Exploration Bureau, 2009)

  • 重力异常亦在司家营的找矿方面有较好应用,司家营北区的重力异常与磁异常区域几乎一致,均较好地揭示了矿体的赋存位置;在司家营南区大贾庄和南矿段矿体的西侧显示有较大的重力异常,却无相对应的地磁异常(河北省地勘局第二地质大队,2009),但后续的极少量的钻探工作在司家营南矿区西侧的-1500m处发现了向西延深的大贾庄(Ⅰ+Ⅱ)矿体,伴有矿体变厚(约50m)和品位增高的现象,且矿体并未尖灭,这表明重力测量不仅可以指示矿体分布,还在深部的找富矿工作上有良好应用,显示司家营南区西侧的矿体延深方向拥有良好的找富铁矿前景。

  • 总体而言,高重磁异常揭示的矿体位置与前人勘查所得的铁矿体分布基本吻合,因此将两种地球物理勘查技术结合能很好地指导找矿,重磁异常可以作为本区最有效的找矿标志。同时,前人重磁法探测工作表明在司家营北区和南区在矿体西侧的延深方向上仍有巨大找矿潜力。

  • 4.4 富铁矿找矿

  • 司家营存在原生沉积和热液改造两种成因的富铁矿,两者的产出位置都与贫矿体密切相关,远离贫铁矿或其他岩层中不见或少见磁铁矿的富矿。因此富铁矿找矿应以厚大的贫矿体为目标层位。但值得注意的是,规模巨大的贫铁矿中不一定有大型富铁矿体的存在,占据主体规模的热液改造成因富铁矿是多因素作用的综合产物,贫铁矿可以提供良好的物质条件,但必须具备富矿形成的外在条件才能使铁质富集成矿。

  • 无论是褶皱还是断裂都是有助于富铁矿的形成的,尤其是褶皱的转折端和断裂的交汇处。贫铁矿体发育紧密褶皱以及广泛发育的断裂构造是混合热液改造贫矿,进而形成富矿的良好外因,其可以为混合热液活动提供通道和成矿组分富集的空间。以断裂控矿构造最为明显,各组断裂的交汇处以及切割贫矿体的断裂构造有可能运输改造贫矿的热液以及容纳热液活化的铁质,因此其是利于富铁矿形成的导矿和容矿构造。

  • 混合岩化和热液蚀变作用是司家营富铁矿成矿的重要因素之一。本区的富铁矿体都有毗邻钾质混合岩这一空间特征,且临近富矿体的位置热液蚀变现象显著,以绿泥石化最为普遍,还有碳酸盐化、黑云母化和白云母化等蚀变现象。此外,层间断裂和裂隙发育的位置则更有利于混合热液活动,因此混合岩、热液蚀变及构造断裂三者的复合发育位置应作为富铁矿找矿工作重点。

  • 剩余体量较少的原始沉积成因的富铁矿,常呈似层状产出于厚大的贫矿层中,附近没有混合岩化和热液蚀变现象,亦没有构造活动,根据沉积分异理论笔者认为更应该在较厚的贫矿层的中下部寻找此类富矿。

  • 5 结论

  • (1)司家营铁矿属于阿尔戈马型BIF铁矿,成矿时代为新太古代晚期,而这一时期也是冀东BIF成矿的高峰期。

  • (2)铁质来源于海底火山热液与海水混合,围岩的原岩为中酸性火山岩—火山碎屑岩,矿床可能形成于弧后盆地环境。

  • (3)司家营的富铁矿呈黑绿、灰黑色,多为致密块状或致密细纹状,矿石矿物为磁铁矿,脉石矿物为绿泥石、碳酸盐、黑云母、角闪石、石英;按照成因可分为热液改造和原生沉积两种类型,两者均分布于贫矿体中,产出位置不一,常受褶皱和断裂构造控制。

  • (4)司家营找矿工作应以滦县岩群中上部为目标层位;辨别区内断裂性质有助于找到受构造运动影响位移的矿体;磁异常和重力异常是重要的找矿标志,尤其是找富铁矿。建议后续找矿工作在矿区西侧矿体延深方向上开展。

  • (5)矿区的富铁矿找矿应以厚大的贫矿体为目标层位;褶皱的转折端和断裂的交汇处是找富矿工作的重点位置;混合岩化和热液蚀变作用是富矿形成的良好外因;而三者的复合位置最有利于寻找富矿。原始沉积成因的富铁矿应在较厚贫矿层的中下部寻找。

  • 致谢:两位审稿专家对本文提出了宝贵意见,在野外工作过程中曾得到河钢矿业公司司家营北区分公司技术科、地测科、采矿作业区一众同事的热情帮助和支持,在此表示衷心感谢!

  • 注释

  • ❶ 河北省地勘局第二地质大队.2009.河北省滦县司家营铁矿南区深部补充勘查总结地质报告.

  • ❷ 河北省地勘局第二地质大队.2010.河北省滦县司家营铁矿普查综合研究成果报告.

  • 参考文献

    • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63: 363~372.

    • Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155: 77~90.

    • Chen Jing. 2014. Geological and geochemical characteristics and mineralization of Sijiayingiron deposit, eastern Hebei Province. Master's thesis of Chinese Academy of Geological Sciences (in Chinese).

    • Cheng Yuqi. 1957. Probelms on the genesis of the high-grade ore in the pre-Sinian (Precambrian) banded iron ore deposits of the Anshan-type of Liaoning and Shantung Provinces. Acta Geologica Sinica, 37(2): 153~178+241~250 (in Chinese with English abstract).

    • Cui Minli, Zhang Lianchang, Wu Huaying, Xu Yingxia, Li Wenjun. 2014. Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei Province, North China Craton: constraints from geochemistry and SIMS zircon U-Pb dating. Journal of Asian Earth Sciences, 94: 240~251.

    • Cui Wenyuan, Zhang Naixian. 1983. A study on ferri-winchite in the iron deposit of Sijiaying, Luanxian, eastern Hebei Province. Journal of Changchun Institute of Geology, (3): 97~106.

    • Institute of Geology, Chinese Academy of Sciences. 1983. Papers on Precambrian. Beijing: Geological Publishing House (in Chinese).

    • Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China. Geology in China, 39(3): 559~580 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Yao Liangde, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircons from the garnet-rich altered rocks in the mining area Ⅱ of the Gongchangling iron deposit: constraints on the ages of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1207 (in Chinese with English abstract).

    • Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Birger Rasmussen, Stephen Sheppard, Simon A W, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the ‘missing’ banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.

    • Li Wenjun, Jin Xindi, Cui Minli, Wang Changle. 2012. Characterisics of rare earth elements, trace elements and geological significations of BIF from Sijiaying in eastern Hebei. Acta Petrologica Sinica, 28(11): 3670~3678 (in Chinese with English abstract).

    • Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014. The genesis of the high-grade iron ores in the Anshan-Benxi BIF-hosted: evidence from Fe, Si, O and S isotopes. Acta Geologica Sinica, 88(12): 2351~2372(in Chinese with English abstract).

    • Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde. 2017. Metallogenic epoch of high-grade iron ore deposits of iron activation and enrichment genesis in Anshan-Benxi area of Liaoning: Re-Os isotopic dating evidence of molybdenite from Qidashan iron deposit. Mineral Deposits, 36(1): 237~249. (in Chinese with English abstract).

    • Nutman A P, Wan Yusheng, Du Lilin, Friend C R L, Dong Chunyan, Xie Hanqiang, Wang Wei, Sun Huiyi, Liu Dunyi. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43~65.

    • Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising Cl-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291: 38~54.

    • Qian Xianglin. 1985. Geology of Precambrian Iron Deposits in Eastern Hebei Province. Shijiazhuang: Hebei Science and Technology Press (in Chinese).

    • Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters, 258(1-2): 249~259. Rasmussen B, Zi J W, Sheppard S, Krapež B, Muhling J R. 2016. Multiple episodes of hematite mineralization indicated by U-Pb dating of iron-ore deposits, Marquette Range, Michigan, USA. Geology, 44(7): 547~550.

    • Shen Baofeng. 2012. Geological characters and resource prospect of the BIF type iron ore deposits in China. Acta Geologica Sinica, 86(9): 1376~1395(in Chinese with English abstract).

    • Shen Qihan, Zhang Zongqing, Xia Mingxian, Wang Xueying, Lu Jinying. 1981. Rb-Srage determination on the late Archean ferrosiliceous rock series in Sijiaying, Luanxian, Hebei. Geological Review, 27(3): 207~212 (in Chinese with English abstract).

    • Sheppard S, Krapez B, Zi J W, Rasmussen B, Fletcher I R. 2017. Young ores in old rocks: proterozoic iron mineralization in Mesoarchaean banded iron formation, northern Pilbara craton, Australia. Ore Geology Reviews, 89: 40~69.

    • Wan Yusheng, Dong Chunyan, Jie Wanqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Dunyi. 2012. Formation ages of Early Precambrain BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478(in Chinese with English abstract).

    • Wang Changle, Wu Huaying, Li Wenjun, Peng Zidong, Zhang Lianchang, Zhai Mingguo. 2017. Changes of Ge/Si, REE+Y and Sm-Nd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~2. 54 Ga Sijiaying banded iron formation in eastern Hebei, China. Ore Geology Reviews, 80: 363~376.

    • Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation. Acta Geologica Sinica, 93(6): 1189~1209(in Chinese with English abstract).

    • Wang Denghong, Chen Shiping, Wang Hong, Meng Guixiang, Chen Zhenghui, Wang Chenghui, Li Chunjie. 2007. Mineralization pedigree and prospecting for iron deposits in eastern Tianshan. Geotectonica et Metallogenia, 31(2): 186~192.

    • Wei Juying, Zheng Shuhui, Mo Zhichao. 1979. Oxygen isotopic composition of magnetite in pre-Sinian Fe-bearing quartzite in the area of Luanxian County, Hebei Province. Geochimica, 8(3): 195~201(in Chinese with English abstract).

    • Xu Yingxia, Zhang Longfei, Gao Xiaomin, Li Houmin, Jia Dongsuo, Li Lixing. 2014. Metallogenic conditions of high-grade ores in the Sijiaying sedimentary metamorphic iron deposit, eastern Hebei Province. Geology and Exploration, 50(4): 675~688(in Chinese with English abstract).

    • Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanpei, Wang Changle, Liu Li. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions. Acta Petrologica Sinica, 28(11): 3431~3445.

    • Zhang Qiusheng. 1984. Geology and Mineralization of Early Precambrian in China. Changchun: Jilin People's Publishing House(in Chinese).

    • Zhao Guochun, Sun Min, Simon A W, Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 137: 149~172.

    • Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposit in China. Mineral Deposits, 32(4): 685~704.

    • 陈靖. 2014. 冀东司家营铁矿床地质地球化学特征与成矿作用. 中国地质科学院硕士毕业论文.

    • 程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180+241~250.

    • 崔文元, 张乃娴. 1983. 冀东滦县司家营铁矿中的高铁-蓝透闪石的研究. 长春地质学院学报, (3): 97~106.

    • 中国科学院地质研究所. 1983. 前寒武纪论文集. 北京: 地质出版社.

    • 李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军. 2012. 中国铁矿成矿规律及重点矿集区资源潜力分析. 中国地质, 39(3): 559~580.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.

    • 李文君, 靳新娣, 崔敏利, 王长乐. 2012. BIF微量稀土元素分析方法及其在冀东司家营铁矿中的应用. 岩石学报, 28(11): 3670~3678.

    • 李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.

    • 刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代—齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.

    • 钱祥麟. 1985. 冀东前寒武纪铁矿地质. 石家庄: 河北科学技术出版社.

    • 沈保丰. 2012. 中国BIF型铁矿床地质特征和资源远景. 地质学报, 86(9): 1376~1395.

    • 沈其韩, 张宗清, 夏明仙, 王雪英, 鲁锦英. 1981. 河北滦县司家营晚太古代铁硅质岩系的铷-锶同位素年龄测定. 地质论评, 27 (3): 207~212.

    • 万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代—SHRIMP锆石U-Pb定年. 地质学报, 86(9): 1447~1478.

    • 王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189~1209.

    • 王登红, 陈世平, 王虹, 孟贵祥, 陈郑辉, 王成辉, 李纯杰. 2007. 成矿谱系研究及对东天山铁矿找矿问题的探讨. 大地构造与成矿学, 31(2): 186~192.

    • 魏菊英, 郑淑蕙, 莫志超. 1979. 冀东滦县一带前震旦纪含铁石英岩中磁铁矿的氧同位素组成. 地球化学, 8(3): 195~201.

    • 许英霞, 张龙飞, 高孝敏, 李厚民, 贾东锁, 李立兴. 2014. 冀东司家营铁矿床富矿成矿条件研究. 地质与勘探, 50(4): 675~688.

    • 张秋生. 1984. 中国早前寒武纪地质及成矿作用. 长春: 吉林人民出版社.

    • 张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.

    • 赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.

  • 参考文献

    • Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63: 363~372.

    • Bau M, Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155: 77~90.

    • Chen Jing. 2014. Geological and geochemical characteristics and mineralization of Sijiayingiron deposit, eastern Hebei Province. Master's thesis of Chinese Academy of Geological Sciences (in Chinese).

    • Cheng Yuqi. 1957. Probelms on the genesis of the high-grade ore in the pre-Sinian (Precambrian) banded iron ore deposits of the Anshan-type of Liaoning and Shantung Provinces. Acta Geologica Sinica, 37(2): 153~178+241~250 (in Chinese with English abstract).

    • Cui Minli, Zhang Lianchang, Wu Huaying, Xu Yingxia, Li Wenjun. 2014. Timing and tectonic setting of the Sijiaying banded iron deposit in the eastern Hebei Province, North China Craton: constraints from geochemistry and SIMS zircon U-Pb dating. Journal of Asian Earth Sciences, 94: 240~251.

    • Cui Wenyuan, Zhang Naixian. 1983. A study on ferri-winchite in the iron deposit of Sijiaying, Luanxian, eastern Hebei Province. Journal of Changchun Institute of Geology, (3): 97~106.

    • Institute of Geology, Chinese Academy of Sciences. 1983. Papers on Precambrian. Beijing: Geological Publishing House (in Chinese).

    • Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China. Geology in China, 39(3): 559~580 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Yao Liangde, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircons from the garnet-rich altered rocks in the mining area Ⅱ of the Gongchangling iron deposit: constraints on the ages of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1207 (in Chinese with English abstract).

    • Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Birger Rasmussen, Stephen Sheppard, Simon A W, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the ‘missing’ banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.

    • Li Wenjun, Jin Xindi, Cui Minli, Wang Changle. 2012. Characterisics of rare earth elements, trace elements and geological significations of BIF from Sijiaying in eastern Hebei. Acta Petrologica Sinica, 28(11): 3670~3678 (in Chinese with English abstract).

    • Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014. The genesis of the high-grade iron ores in the Anshan-Benxi BIF-hosted: evidence from Fe, Si, O and S isotopes. Acta Geologica Sinica, 88(12): 2351~2372(in Chinese with English abstract).

    • Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde. 2017. Metallogenic epoch of high-grade iron ore deposits of iron activation and enrichment genesis in Anshan-Benxi area of Liaoning: Re-Os isotopic dating evidence of molybdenite from Qidashan iron deposit. Mineral Deposits, 36(1): 237~249. (in Chinese with English abstract).

    • Nutman A P, Wan Yusheng, Du Lilin, Friend C R L, Dong Chunyan, Xie Hanqiang, Wang Wei, Sun Huiyi, Liu Dunyi. 2011. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Research, 189(1-2): 43~65.

    • Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising Cl-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291: 38~54.

    • Qian Xianglin. 1985. Geology of Precambrian Iron Deposits in Eastern Hebei Province. Shijiazhuang: Hebei Science and Technology Press (in Chinese).

    • Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters, 258(1-2): 249~259. Rasmussen B, Zi J W, Sheppard S, Krapež B, Muhling J R. 2016. Multiple episodes of hematite mineralization indicated by U-Pb dating of iron-ore deposits, Marquette Range, Michigan, USA. Geology, 44(7): 547~550.

    • Shen Baofeng. 2012. Geological characters and resource prospect of the BIF type iron ore deposits in China. Acta Geologica Sinica, 86(9): 1376~1395(in Chinese with English abstract).

    • Shen Qihan, Zhang Zongqing, Xia Mingxian, Wang Xueying, Lu Jinying. 1981. Rb-Srage determination on the late Archean ferrosiliceous rock series in Sijiaying, Luanxian, Hebei. Geological Review, 27(3): 207~212 (in Chinese with English abstract).

    • Sheppard S, Krapez B, Zi J W, Rasmussen B, Fletcher I R. 2017. Young ores in old rocks: proterozoic iron mineralization in Mesoarchaean banded iron formation, northern Pilbara craton, Australia. Ore Geology Reviews, 89: 40~69.

    • Wan Yusheng, Dong Chunyan, Jie Wanqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Dunyi. 2012. Formation ages of Early Precambrain BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478(in Chinese with English abstract).

    • Wang Changle, Wu Huaying, Li Wenjun, Peng Zidong, Zhang Lianchang, Zhai Mingguo. 2017. Changes of Ge/Si, REE+Y and Sm-Nd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~2. 54 Ga Sijiaying banded iron formation in eastern Hebei, China. Ore Geology Reviews, 80: 363~376.

    • Wang Denghong. 2019. Study on critical mineral resources: significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation. Acta Geologica Sinica, 93(6): 1189~1209(in Chinese with English abstract).

    • Wang Denghong, Chen Shiping, Wang Hong, Meng Guixiang, Chen Zhenghui, Wang Chenghui, Li Chunjie. 2007. Mineralization pedigree and prospecting for iron deposits in eastern Tianshan. Geotectonica et Metallogenia, 31(2): 186~192.

    • Wei Juying, Zheng Shuhui, Mo Zhichao. 1979. Oxygen isotopic composition of magnetite in pre-Sinian Fe-bearing quartzite in the area of Luanxian County, Hebei Province. Geochimica, 8(3): 195~201(in Chinese with English abstract).

    • Xu Yingxia, Zhang Longfei, Gao Xiaomin, Li Houmin, Jia Dongsuo, Li Lixing. 2014. Metallogenic conditions of high-grade ores in the Sijiaying sedimentary metamorphic iron deposit, eastern Hebei Province. Geology and Exploration, 50(4): 675~688(in Chinese with English abstract).

    • Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanpei, Wang Changle, Liu Li. 2012. Study of the Precambrian BIF-iron deposits in the North China Craton: progresses and questions. Acta Petrologica Sinica, 28(11): 3431~3445.

    • Zhang Qiusheng. 1984. Geology and Mineralization of Early Precambrian in China. Changchun: Jilin People's Publishing House(in Chinese).

    • Zhao Guochun, Sun Min, Simon A W, Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 137: 149~172.

    • Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposit in China. Mineral Deposits, 32(4): 685~704.

    • 陈靖. 2014. 冀东司家营铁矿床地质地球化学特征与成矿作用. 中国地质科学院硕士毕业论文.

    • 程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180+241~250.

    • 崔文元, 张乃娴. 1983. 冀东滦县司家营铁矿中的高铁-蓝透闪石的研究. 长春地质学院学报, (3): 97~106.

    • 中国科学院地质研究所. 1983. 前寒武纪论文集. 北京: 地质出版社.

    • 李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军. 2012. 中国铁矿成矿规律及重点矿集区资源潜力分析. 中国地质, 39(3): 559~580.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.

    • 李文君, 靳新娣, 崔敏利, 王长乐. 2012. BIF微量稀土元素分析方法及其在冀东司家营铁矿中的应用. 岩石学报, 28(11): 3670~3678.

    • 李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.

    • 刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代—齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.

    • 钱祥麟. 1985. 冀东前寒武纪铁矿地质. 石家庄: 河北科学技术出版社.

    • 沈保丰. 2012. 中国BIF型铁矿床地质特征和资源远景. 地质学报, 86(9): 1376~1395.

    • 沈其韩, 张宗清, 夏明仙, 王雪英, 鲁锦英. 1981. 河北滦县司家营晚太古代铁硅质岩系的铷-锶同位素年龄测定. 地质论评, 27 (3): 207~212.

    • 万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代—SHRIMP锆石U-Pb定年. 地质学报, 86(9): 1447~1478.

    • 王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189~1209.

    • 王登红, 陈世平, 王虹, 孟贵祥, 陈郑辉, 王成辉, 李纯杰. 2007. 成矿谱系研究及对东天山铁矿找矿问题的探讨. 大地构造与成矿学, 31(2): 186~192.

    • 魏菊英, 郑淑蕙, 莫志超. 1979. 冀东滦县一带前震旦纪含铁石英岩中磁铁矿的氧同位素组成. 地球化学, 8(3): 195~201.

    • 许英霞, 张龙飞, 高孝敏, 李厚民, 贾东锁, 李立兴. 2014. 冀东司家营铁矿床富矿成矿条件研究. 地质与勘探, 50(4): 675~688.

    • 张秋生. 1984. 中国早前寒武纪地质及成矿作用. 长春: 吉林人民出版社.

    • 张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.

    • 赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.