en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱光有,男,1973年生。博士,教授级高级工程师,主要从事油气地质与成藏研究。E-mail:zhuguangyou@petrochina.com.cn。

参考文献
Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.
参考文献
Boyer C, Kieschnick J, Suarez-Rivera R. 2006. Producing gas from its source. Oilfield Review, 18: 36~49.
参考文献
Brumsack H J. 2006. The trace metal content of recent organic carbonrich sediments: implications for Cretaceous black shale Formation. Palaeogeography Palaeoclimatology Palaeoecology, 232(2): 344~361.
参考文献
Cai Chunfang, Xiang L, Yuan Y, He X, Chu X, Chen Y, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze Ocean. Journal of the Geological Society, 390~406.
参考文献
Cao Tingting, Xu Sihuang, Zhou Lian, Wang Yue. 2014. Element geoehemistry evaluation of marine source rock with high maturity: a case study of Lower Cambrianin Yangba section of Nanjiang County. Earth Science—Journal of China University of Geosciences, 39(2): 199~209 (in Chinese with English abstract).
参考文献
Cheng Meng, Li Chao, Zhou Lian, Feng Lianjun, Algeo T J, Zhang Feifei, Romaniello S, Jin Chengsheng, Ling Hongfei, Jiang Shaoyong. 2017. Transient deep-water oxygenation in the early Cambrian Nanhua basin, South China. Geochimica et Cosmochimica Acta, 210: 42~58.
参考文献
Cui Haifeng, Tian Lei, Zhang Nianchun, Liu Jun, Zhang Jijuan. 2016. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest depression of Tarim basin. Natural Gas Geoscience, 27(4): 577~583 (in Chinese with English abstract).
参考文献
Du Jinhu, Pan Wenqing. 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim basin, NW China. Petroleum Exploration and Development, 43(3): 327~339 (in Chinese with English abstract).
参考文献
El Kammar M M. 2015. Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt. Journal African Earth Science, 104: 19~26.
参考文献
Emerson S R, Huested S S. 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177~196.
参考文献
Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149~1158.
参考文献
Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue. 2020. Paleo-environments and development pattern of high-quality marine source rocks of the early Cambrian, northern Tarim platform. Earth Science, 45(1): 285~302 (in Chinese with English abstract).
参考文献
Feng Guoxiu, Chen Shengji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(3): 20~25 (in Chinese with English abstract).
参考文献
Guo Qingjun, Strauss Harald, Liu Congqiang, Goldberg Tatiana, Zhu Maoyan, Pi Daohui, Heubeck Christoph, Vernhet Elodie, Yang Xinglian, Fu Pingqing. 2007. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: evidence from the Yangtze platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 254(1-2): 140~157.
参考文献
Hu Guang, Meng Qingqiang, Wang Jie, Tengger, Xie Xiaomin, Lu Longfei, Luo Houyong, Liu Wenhui. 2018. The original organism assemblages and kerogen carbon isotopic compositions of the Early Paleozoic source rocks in the Tarim basin, China. Acta Geologica Sinica (English Edition), 92(6): 2297~2309.
参考文献
Huang Difan, Li Jinchao, Zhang Dajiang. 1984. Kerogen types and study on effectiveness, limitation and interrelation of their identification parameters. Acta Sedimentologica Sinica, 2(3): 18~33 (in Chinese with English abstract).
参考文献
Jia Chengzao. 1999. Structural characteristics and oil/gas accumulative regularity in Tarim basin. Xinjiang Petroleum Geology, 20(3): 177~183 (in Chinese with English abstract).
参考文献
Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111~129.
参考文献
Kidder D L, Krishnaswamy R, Mapes R H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology, 198(3-4): 335~353.
参考文献
Kimura H, Watanabe Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29: 995~998.
参考文献
Li Weiyang. 2017. Research on the evaluation criterion of high-over mature marine-source rock in the Middle Yangtze region. Journal of Hebei University of Geosciences, (2): 10~14 (in Chinese with English abstract).
参考文献
Liu Wenhui, Hu Guang, Tenger, Wang Jie, Lu Longfei, Xie Xiaoming. 2016. Organism assemblages in the Paleozoic source rocks and their implications. Oil and Gas Geology, 37(5): 617~626 (in Chinese with English abstract).
参考文献
Lü Xiuxiang, Bai Zhongkai, Xie Yuquan, Yang Xianmao. 2014. Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim basin. Acta Sedimentologica Sinica, 32(4): 766~775 (in Chinese with English abstract).
参考文献
Mackenzie A S, Hoffmann C F, Maxwell J R. 1981. Molecular parameters of maturation in the Toarcian shales, Paris basin, France, Changes in aromatic steroid hydrocarbons. Geochimica et Cosmochimica Acta, 45: 1345~1355.
参考文献
Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil and Gas Geology, 1(2): 99~115 (in Chinese with English abstract).
参考文献
Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentology Geology, 90: 213~232.
参考文献
Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chemical Geology, 324-325: 19~27.
参考文献
Seifert W K, Moldowan J M. 1981. Paleorecon struction by biological markers. Geochimica et Cosmochimica Acta, 45 (6): 783~794.
参考文献
Sinninghe Damsté J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.
参考文献
Sun Dongsheng, Li Shuangjian, Li Jianjiao, Li Yingqiang, Yang Tianbo, Feng Xiaokuan, Li Huili, Han Zuozhen, He Zhiliang. 2022. Insights from a comparison of hydrocarbon accumulation condition of Sinian-Cambrian between the Tarim and the Sichuan basins. Acta Geologica Sinica, 96(1): 249~264 (in Chinese with English abstract).
参考文献
Sweere T, Boorn S V D, Dickson A J, Reichart G J. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chemical Geology, 441: 235~245.
参考文献
Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence. Second Revised and Enlarged Ed. New York: Springer-Verlag.
参考文献
Tribovillard N, Algeo T J, Baudin F, Riboulleau A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation—applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46~58.
参考文献
Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar sag, Junggar basin. Geological Review, 66(3): 755~764 (in Chinese with English abstract).
参考文献
Wang Jie, Chen Jianfa, Wang Darui, Zhang Shuichang. 2002. Study on the characteristics of carbon isotopic composition and hydrocarbon generation potential of organic matter of Middle-Upper Proterozoic in northern part of North China. Petroleum Exploration and Development, 29(5): 13~15 (in Chinese with English abstract).
参考文献
Xiao Bin, Liu Shugen, Ran Bo, Yang Di, Han Yuyue. 2019. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: application in the northern margin of Sichuan basin, South China. Geological Review, 65(6): 1316~1330 (in Chinese with English abstract).
参考文献
Xiong Ran, Zhou Jingao, Ni Xinfeng, Zhu Yongjin, Chen yongquan. 2015. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim basin. Natural Gas Industry, 35(10): 49~56.
参考文献
Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhu, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. Great discovery and its signifcance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim basin. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).
参考文献
Zhang Mai, Liu Chenglin, Tian Jixian, Pang Hao, Zeng Xu, Kong Hua, Yang Sai. 2020. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam basin. Natural Gas Geoscience, 31(1): 61~72 (in Chinese with English abstract).
参考文献
Zhang Shuichang, Huang Haiping, Su Jin, Liu Mei, Zhang Haifeng. 2014. Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim basin, NW China. Organic Geochemistry, 77: 126~139.
参考文献
Zhu Guangyou, Zhang Shuichang, Su Jin, Huang Haipping, Yang Haijun, Gu Lijing, Zhang Bin, Zhu Yongfeng. 2012. The occurrence of ultra-deep heavy oils in the Tabei uplift of the Tarim basin, NW China. Organic Geochemistry, 52: 88~102.
参考文献
Zhu Guangyou, Chen Feiran, Chen Zhiyong, Zhang Ying, Xing Xiang, Tao Xiaowan, Ma Debo. 2016. Discovery and basic characteristics of the high-quality source rocks of Cambrian Yuertusi Formation in Tarim basin. Natural Gas Geoscience, 27(1): 8~21 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Chen Feiran, Wang Meng, Zhang Zhiyao, Ren Rong. 2018. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim basin, China. AAPG Bulletin, 102: 2123~2151.
参考文献
Zhu Guangyou, Zhang Zhiyao, Zhou Xiaoxiao, Li Tingting, Han Jianfa, Sun Chonghao. 2019a. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim basin, China. Earth-Science Reviews, 198: 1~28.
参考文献
Zhu Guangyou, Milkov A V, Zhang Zhiyao, Sun Chonghao, Zhou Xiaoxiao, Chen Feiran, Han Jianfa, Zhu Yongfeng. 2019b. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim basin, China. AAPG Bulletin, 103(7): 1703~1743.
参考文献
Zhu Guangyou, Milkov A V, Li Jingfei, Xue Nan, Chen Yongquan, Hu Jianfeng, Li Tingting, Zhang Zhiyao, Chen Zhiyong. 2021a. Deepest oil in Asia: characteristics of petroleum system in the Tarim basin, China. Journal of Petroleum Science and Engineering, 199: 108246.
参考文献
Zhu Guangyou, Li Tingting, Zhao Kun, Li Chao, Cheng Meng, Chen Weiyan, Yan Huihui, Zhang Zhiyao, Thomas J. Algeo. 2021b. Mo isotope records from Lower Cambrian black shales, northwestern Tarim basin (China): implications for the early Cambrian ocean. GSA Bulletin, 1~12; https: //doi. org/ 10. 1130/ B35726. 1.
参考文献
曹婷婷, 徐思煌, 周炼, 王约. 2014. 高演化海相烃源岩元素地球化学评价——以四川盆地南江杨坝地区下寒武统为例. 地球科学——中国地质大学学报, 39(2): 199~209.
参考文献
崔海峰, 田雷, 张年春, 刘军, 张继娟 2016. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征. 天然气地球科学, 27(4): 577~583.
参考文献
杜金虎, 潘文庆. 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327~339.
参考文献
樊奇, 樊太亮, 李一凡, 张俊鹏, 高志前, 陈跃. 2020. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285~302.
参考文献
丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20~25.
参考文献
黄第潘, 李晋超, 张大江. 1984. 干酪根的类型及其分类参数的有效性、局限性和相关性. 沉积学报, 2(3): 18~33.
参考文献
贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177~183.
参考文献
李蔚洋. 2017. 中扬子地区古生界高成熟—过成熟海相烃源岩评价指标浅析. 河北地质大学学报, (2): 10~14.
参考文献
刘文汇, 胡广, 腾格尔, 王杰, 卢龙飞, 谢小敏. 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质. 37(5): 617~626.
参考文献
吕修祥, 白忠凯, 谢玉权, 杨先茂. 2014. 塔里木盆地西北缘柯坪地区油气勘探前景再认识. 沉积学报, 32(4): 766~775.
参考文献
梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.
参考文献
孙冬胜, 李双建, 李建交, 李英强, 杨天博, 冯小宽, 李慧莉, 韩作振, 何治亮. 2022. 塔里木与四川盆地震旦系—寒武系油气成藏条件对比与启示. 地质学报, 96(1): 249~261.
参考文献
王剑, 李二庭, 陈俊, 米巨磊, 马聪, 雷海艳, 谢礼科. 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究. 地质论评, 66(3): 755~764.
参考文献
王杰, 陈践发, 王大锐, 张水昌. 2002. 华北北部中、上元古界生烃潜力及有机质碳同位素组成特征研究. 石油勘探与开发, 29(5): 13~15.
参考文献
肖斌, 刘树根, 冉波, 杨迪, 韩雨樾. 2019. 基于元素 Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用. 地质论评, 65(6): 1316~1330.
参考文献
熊冉, 周进高, 倪新锋, 朱永进, 陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 天然气工业, 35(10): 49~56.
参考文献
杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.
参考文献
张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 2020. 柴达木盆地西部地区原油地球化学特征及油源对比. 天然气地球科学, 31(1): 61~72.
参考文献
朱光有, 陈斐然, 陈志勇, 张颖, 邢翔, 陶小晚, 马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8~21.
目录contents

    摘要

    塔里木盆地轮探1井完钻井深8882 m,是目前亚洲最深井,钻揭震旦系,在寒武系白云岩储层中获得工业油气流,显示了超深层寒武系良好的勘探潜力,引起广泛关注。该井在下寒武统玉尔吐斯组(8607.5~8688.5 m)钻遇优质烃源岩层,是目前获取的全球最深的古生界烃源岩样品。本文对新鲜的钻孔岩屑样品,开展有机碳含量、主微量元素、生物标志化合物和干酪根碳同位素等测试分析,研究玉尔吐斯组烃源岩的地球化学成因。烃源岩有机碳含量在0.14%~29.8%(平均值为5.65%,其中下段23 m优质烃源岩层TOC平均值为10.48%),S1+S2含量在0.17~29.08 mg/g(平均值为4.62 mg/g);Tmax分布在450~528℃,Ro在1.4%~1.7%,目前处于高—过成熟阶段。烃源岩干酪根碳同位素主要分布在-33.84‰~-29.02‰,均值-30.55‰。生物标志化合物中姥植比相对较高,Pr/n C17和Ph/n C18关系指示海相偏还原的沉积环境;C27规则甾烷含量相对较高,表明生源以藻类为主。烃源岩中高度富集氧化还原敏感微量元素Mo、U、V等;微量元素比值V/Sc、MoEF/UEF值等指示该区震旦纪晚期就出现硫化水体并在玉尔吐斯组沉积早期持续增强。研究认为,轮探1井玉尔吐斯组下部的黑色页岩形成于硫化还原环境,是目前古生界异常高丰度的优质烃源岩,具有重要的勘探潜力。

    Abstract

    Luntan 1 well in the Tarim basin is the deepest well in Asia with a drilling depth of 8882 m. It has been drilled in Sinian system and yielded industrial oil and gas flow in Cambrian dolomite. It shows good exploration potential in ultra-deep layer that has attracted wide attention. The well encountered high-quality source rocks in the lower Cambrian Yuertusi Formation (8607.5~8688.5 m), which reveals the deepest Paleozoic source rock samples in the world. In this paper, the organic carbon content, major and trace elements, biomarkers and kerogen carbon isotope of fresh drilling cuttings are tested and analyzed to study the geochemical origin of the source rocks of the Yuertusi Formation. The organic carbon content of source rocks ranges from 0.14% to 29.8% (average 5.65%) and the S1+S2 content ranges from 0.17 mg/g to 29.08 mg/g (average 4.62 mg/g); Tmax is 450~528℃, Ro is 1.4%~1.7%, and is in the stage of high and over mature. The carbon isotopes of kerogen in source rocks are mainly distributed in the range of -31.65‰~-28.09‰ (average value is -30.24‰); according to the relationship between Pr/n C17 and Ph/n C18, the marine partial reduction sedimentary environment was indicated; the content of C27 regular sterane was relatively high, indicating that the biogenic source was mainly algae. The redox sensitive trace elements Mo, U and V are highly enriched in source rocks; the V/Sc and MoEF/UEF ratios of trace elements indicate that the sulfidic water body appeared in the late Sinian and continued to strengthen in the early stage of the deposition of the Yuertusi Formation. The study shows that the black shale in the lower part of the Yuertusi Formation of Luntan1 well was formed in the reducing and sulfidic environment, and is a high-quality source rock with high TOC abundance in Paleozoic, which has important exploration potential.

  • 塔里木盆地油气资源非常丰富,含油气层系多,是构造复杂的叠合复合盆地之一(Jia Chengzao,1999),具有埋藏深、时代老的特点,经历了多期构造旋回叠加、多期油气充注和多期成藏(Zhu Guangyou et al.,2012),油气分布极其复杂(Zhang Shuichang et al.,2014;Zhu Guangyou et al.,2019a)。近年来,中石油和中石化两家公司在塔中、塔北地区相继发现了一批大型油气田,油气产量稳步增长,形成了海相层系探明油气储量超30×108 t、年产油气超1000×104 t的规模(Zhu Guangyou et al.,2019b),主力储集层为奥陶系。近年来,随着向深层勘探的推进,寒武系生储盖组合逐渐得到勘探家的重视,且中深1井、中深5井相继获得工业油气流,坚定了向8000m以下寒武系勘探的信心。而且,寒武系玉尔吐斯组烃源岩在塔西北阿克苏地区有很好出露,油气源对比也确定寒武系为主力烃源岩(Lü Xiuxiang et al., 2014; Xiong Ran et al., 2015; Cui Haifeng et al., 2016; Du Jinhu et al., 2016; Zhu Guangyou et al., 2016, 2018)。但是,由于盆内埋藏深,除盆地北部边缘地区星火1井钻遇玉尔吐斯组烃源岩,台盆区主体深埋区尚未获得钻井证实。因此,关于玉尔吐斯组烃源岩在盆内的厚度、质量、规模、生烃潜力等,有待研究。

  • 经过长期基础研究和钻前论证,塔北轮南低凸起成为有利勘探领域,部署的轮探1井钻揭震旦系,井深8882m。在寒武系吾松格尔组8203~8260m白云岩储层中获日产油134m3、天然气4.59×104 m3(Yang Haijun et al., 2020),原始气油比平均343m3/m3,为油藏。产层段测井温度162℃,压力为90.8MPa,为正常温压系统(Zhu Guangyou et al., 2021a)。这是目前全球在古生界发现的埋藏最深的油藏,也是塔里木盆地新领域、新层系获得的重大战略性发现,钻揭了下寒武统玉尔吐斯组优质烃源岩层,由此明确了寒武系的勘探潜力。本文基于轮探1井岩屑样品,通过密集取样和系统分析,查明了这套优质烃源岩的形成环境、地球化学成因等,为深层油气勘探提供了依据和支持。

  • 1 地质背景

  • 轮探1井位于新疆阿克苏地区库车县境内(图1),在塔北隆起轮南低凸起上,钻揭震旦系苏盖特布拉克组42m。轮探1井自上而下钻遇新生界第四系,新近系库车组、康村组、吉迪克组,古近系苏维依组,中生界白垩系,侏罗系,三叠系,古生界石炭系卡拉沙依组,奥陶系鹰山组、蓬莱坝组,寒武系下丘里塔格组、阿瓦塔格组、沙依里克组、吾松格尔组、肖尔布拉克组、玉尔吐斯组,新元古界震旦系奇格布拉克组和苏盖特布拉克组(Zhu Guangyou et al., 2021a)(图1)。其中,中—下寒武统是一套有效的生储盖组合:中寒武统的阿瓦塔格组和沙依里克组,为蒸发潟湖占主体的镶边型碳酸盐岩台地,发育厚层蒸发岩,为一套优质盖层;吾松格尔组发育白云岩储层;玉尔吐斯组厚度为81m,下段为深灰、黑色泥页岩,厚23m;上段以泥质灰岩为主,夹灰黑色泥岩,厚58m。与上覆肖尔布拉克组整合接触,肖尔布拉克组以含泥灰岩为主。寒武系与下伏震旦系呈角度不整合接触。震旦系(Z)钻厚193.5m(井段8688.5~8882.0m)(未穿),为一套滨浅海碎屑岩和台地相碳酸盐岩沉积组合。其中,奇格布拉克组(Z2q)(井段8688.5~8840.0m)为厚层状含灰云岩;苏盖特布拉克组(Z2s)(井段8840~8882.0m)钻厚仅42.0m,主要为灰绿色灰质泥岩、红色粉砂质泥岩、泥质粉砂岩,未钻至基底。

  • 2 实验方法

  • 2.1 总有机碳含量和热解分析

  • 样品均为岩屑,经过精细挑选和清洗处理后,分别开展有机地球化学和岩石地球化学分析测试。其中,有机碳含量(TOC)和热解分析在中国石油大学(北京)国家重点实验室完成,采用的仪器是Rock-Eval标准型热解分析仪。首先对岩石样品进行粉碎,盛入一个50mL的锥形烧瓶中,如果存在碳酸盐岩,利用HCl进行反应溶解。反应完成后,将样品转移到超细纤维滤纸上,使用微孔过滤装置,然后用蒸馏水清洗,去除所有的HCl,并放入烤箱进行干燥。将滤纸与样品一起转移到Leco CS-200装置中,在坩埚的燃烧炉中燃烧。最后利用红外探测器对样品中有机物燃烧产生的二氧化碳(CO2)进行定量测量,进而得到总有机碳含量(TOC)。使用在氦流中逐步加热的Rock-Eval6仪器对烃源岩的热解参数进行测量。氢指数(HI, mg/g TOC)为S2×100/TOC,其中S2为热解产物的量(mg/g)。在研究中,最高热解峰温(Tmax,℃)作为烃源岩成熟度指标。测定了TOC含量较高的样品镜质组反射率。用偏振光油浸法测定了镜质组的平均反射率(Ro,%)。反射光显微镜是一种采用MPV-Geor软件进行反射率测量的计算机化MPVSP。

  • 2.2 干酪根碳同位素分析

  • 干酪根碳同位素分析在北京科荟测试技术有限公司完成。通过与Agilent 6890气相色谱仪相连接的Isochrom II同位素比值质谱仪和载体组成的燃烧室(GC IRMS)对烃源岩碳同位素组成进行了分析。GC烘箱温度初始设定为50℃,保温3min, 15℃/min升温至150℃,保温8min。碳同位素测量根据Pee Dee Belemnite (PDB)标准。碳同位素测量的误差为± 0.5‰。

  • 2.3 生物标志化合物分析

  • 生物标志化合物分析在中国石油大学(北京)国家重点实验室完成,使用配备HP-5MS熔融石英毛细管柱(60m×0.25mm口径,厚度0.25 μm)的Agilent/7890-5975C气相色谱-质谱(GC-MS)仪器对取自轮探1井的9块烃源岩样品的饱和烃生物标志物进行了测量。入口温度设置为300℃,与传输线温度相同。GC烤箱温度最初设定为50℃,保持1min,20℃/min逐步增加到120℃,4℃/min增加到250℃, 3℃/min增加到300℃,最后保持30min。载气为99.99%氦气,流速保持在1mL/min。利用峰面积来计算单个化合物的生物标志物的比值。

  • 2.4 主量和微量元素分析

  • 主量元素测定采用熔片X荧光光谱法(XRF),在北京科荟测试技术有限公司完成。所用仪器为岛津XRF-1800, 测试精度优于5%。全岩微量元素含量采用溶样法在北京科荟测试技术有限公司利用Analyticjena PQMS elite ICP-MS分析完成。用于ICP-MS分析的样品处理过程如下:① 将200目样品置于105℃烘箱中烘干12h;② 准确称取粉末样品25mg置于Teflon溶样弹中;③ 先后依次缓慢加入1mL高纯HNO3和1mL高纯HF;④ 将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热24h以上;⑤ 待溶样弹冷却,开盖后置于140℃电热板上蒸干,然后加入1mL HNO3并再次蒸干;⑥ 加入1mL高纯HNO3、1mL MQ水和0.5mL内标In(浓度为1×10-6),再次将Teflon溶样弹放入钢套,拧紧后置于190℃烘箱中加热12h以上;⑦ 将溶液转入聚乙烯料瓶中,并用2%HNO3稀释至100g以备ICP-MS测试。

  • 图1 塔里木盆地轮探1井油藏地质图

  • Fig.1 Geological map of well LT1reservoir in Tarim basin

  • (a)—塔北地区构造图;(b)—塔北地区过轮探1井东西向油藏剖面;(c)—过轮探1井东西向地震剖面; (d)—轮探1井震旦系—寒武系综合柱状图

  • (a)—Structural map of Tabei area; (b)—east-west oil reservoir profile of well LT1in Tabei area; (c)—east-west seismic profile of well LT1; (d)—comprehensive histogram of Cambrian-Sinian system in well LT1

  • 3 结果

  • 3.1 有机碳含量与热解数据

  • 轮探1井玉尔吐斯组95块样品的有机地球化学分析结果表明,有机碳含量(TOC)分布在0.14%~29.8%,平均值为5.65%(n=95),自上而下逐渐升高。热解分析显示,玉尔吐斯组样品生烃潜力(S1+S2)为0.17~29.08mg/g,平均值为4.62mg/g(n=59),与TOC的结果一致,具有上段低、下段高的特征。HI主要分布在60.41~116.84mg/g之间(平均值为88.29mg/g)。

  • 3.2 镜质组反射率(Ro)

  • 本文针对玉尔吐斯组15块样品开展沥青反射率测试分析。基于Feng Guoxiu et al.(1988)对四川盆地二叠系—三叠系的自然演化样品的研究,提出沥青反射率(Ro,B)与镜质组反射率(Ro)之间的换算关系:

  • Ro=0.6569Ro,B+0.3364
    (1)
  • 计算出等效镜质组反射率的数值,主要分布在1.4%~1.7%之间(平均值为1.53%);Tmax分布范围为450~528℃(平均值为473.69℃),与Ro反映的结果基本一致,指示了玉尔吐斯组烃源岩处于高—过成熟阶段(Zhu Guangyou et al., 2021a)。

  • 3.3 干酪根碳同位素

  • 玉尔吐斯组烃源岩33块样品的干酪根碳同位素分布在-33.84‰~-29.02‰之间(平均值为-30.55‰,n=33;Zhu Guangyou et al., 2021a),表明轮探1井玉尔吐斯组烃源岩中的碳主要来自于浮游藻类,且相较于华南地区下寒武统牛蹄塘组烃源岩的干酪根碳同位素略显偏轻(Guo Qingjun et al.,2007; Cai Chunfang et al.,2015)。

  • 3.4 有机质的族组分

  • 玉尔吐斯组烃源岩有机质中氯仿沥青“A”分布范围为0.0634%~0.4421%,平均值为0.1929%;饱和烃的分布范围为15.71%~42.18%,平均值为28.80%;芳香烃的分布范围为12.51%~26.17%,平均值为18.29%;非烃的分布范围为29.73%~54.69%,平均值为41.86%;沥青质的分布范围为5.08%~19.51%,平均值为11.05%。

  • 3.5 生物标志化合物

  • 根据饱和烃色谱、质谱分析测试结果(表1,图2),下寒武统玉尔吐斯组烃源岩正构烷烃分布特征为以低碳数为主的单峰形态,主峰碳数主要为C15、C16,均位于n C20之前,也表明烃源岩有机质成熟度较高。碳优势指数CPI值为1.03~1.11,奇偶优势比OEP值在0.93~1.01之间,表明无明显的奇碳或偶碳优势。在m/z=191质量色谱图上可以看出,轮探1井玉尔吐斯组烃源岩的藿烷具有以下分布特征:即高于C31的升藿烷系列存在一定的丰度,且具有略微的“翘尾”特征,说明当时沉积水体处于还原状态。伽马蜡烷来源于原生动物,鉴于其丰度与沉积水体的盐度具有良好的相关性,常用于指示沉积水体的古盐度。伽马蜡烷/αβ-C30藿烷值(后面统称伽马蜡烷指数)会随着沉积环境盐度的升高而升高,样品中伽马蜡烷指数较低,反映了水体盐度不高。从m/z=217质量色谱图中可以看出,样品中C27、C28和C29规则甾烷分布特征相似,均呈不对称的“V”字型。

  • 3.6 主量元素

  • 轮探1井44块岩屑样品的主量元素分析表明 (表2),奇格布拉克组样品中CaO(22.11%~32.76%)、MgO(4.83%~18.63%)、P2O5(0.35%~4.18%)含量较高,Al2O3(0.72%~2.93%)、SiO2(4.08%~36.49%)、Fe2O3(0.26%~1.28%)含量较低,其他主量元素含量一般。玉尔吐斯组下部样品分布在8665~8688.5m之间,和奇格布拉克组样品相比,MgO(1.6%~4.55%)、CaO(7%~22.62%)、P2O5(0.23%~3.78%)含量整体较低,而Al2O3(1.47%~4.08%)、Fe2O3(0.76%~2.1%)、SiO2(34.28%~66.87%)含量较高。

  • 玉尔吐斯组中部样品分布在8645~8665m之间,和下部样品(8665~8688.5m)相比,SiO2(18.57%~37.34%)、P2O5(0.12%~0.42%)含量减少、MgO(2.09%~4.44%)、CaO(23.29%~34.16%)含量增加,同时Al2O3(3.68%~5.41%)含量略微增加,表明这一时期有较多的碎屑黏土矿物输入。

  • 表1 轮探1井下寒武统玉尔吐斯组烃源岩生物标志物化合物参数表

  • Table1 Biomarkers of the Lower Cambrian Yuertusi Formation source rocks in well LT1

  • 图2 轮探1井下寒武统玉尔吐斯组烃源岩m/z=85、191、217色谱质谱图

  • Fig.2 Chromatographic mass spectrum (m/z=85, 191, 217) of the Lower Cambrian Yuertusi Formation source rocks in well LT1

  • 玉尔吐斯组上部样品(8607.5~8645m)和中部样品(8645~8665m)相比,CaO(24.34%~44.32%)含量显著增加,且比下部样品的CaO(7.00%~22.62%)含量高,SiO2(16.34%~33.51%)、P2O5(0.10%~0.19%)明显降低,其他主量元素没有明显变化。肖尔布拉克组样品中,CaO(36.32%~47.15%)含量较高,Al2O3(0.85%~3.34%)、SiO2(4.04%~17.61%)、MgO(3.66%~4.93%)、P2O5(0.06%~0.09%)、Fe2O3(0.18%~0.88%)含量较低。

  • 3.7 微量元素

  • 微量元素中的一些氧化还原敏感元素(表3),如Mo、U、V、Ni等,在玉尔吐斯组高度富集,尤其以玉尔吐斯组的中下部最为富集(Mo为74×10-6~454×10-6,U为19×10-6~39×10-6,V为431×10-6~2332×10-6,Ni为115×10-6~624×10-6)。在奇格布拉克组表现为轻微富集(Mo为3.1×10-6~102×10-6,U为2.05×10-6~32.6×10-6,V为63.3×10-6~1113×10-6,Ni为17.4×10-6~170×10-6)。在肖尔布拉克组和玉尔吐斯组上部微量元素含量较低。

  • 4 讨论

  • 4.1 有机地球化学特征

  • 轮探1井钻揭寒武系玉尔吐斯组81m (井段8607.5~8688.5m),分为上下两段,上段以泥质灰岩为主,夹少量黑色泥岩,厚58m;下段为灰黑色页岩,厚23m,并含有硅质条带,与柯坪地区野外露头的岩性相似(Zhu Guangyou et al.,2016)。玉尔吐斯组的95块样品总体显示有机碳含量(TOC)较高,平均值为5.65%,由上至下,TOC含量呈明显增高的趋势,下段(8665.5~8688.5m)43块黑色页岩的有机碳含量分布在2.1%~29.8%之间,平均值为10.48%(Zhu Guangyou et al., 2021a)(图3)。生烃潜力(Pg=S1+S2)被定义为在足够的时间间隔内、足够的温度下干酪根能够生成石油和天然气的量(Tissot et al.,1984; EI Kammar,2015)。玉尔吐斯组样品的S1+S2显示出与TOC相同的趋势,具有上段低、下段高的特征,平均值为4.28mg/g,下段的S1+S2主要分布在0.42~26.14mg/g之间,平均值为10mg/g,大于6mg/g的可达65%以上,生烃潜力大,是一套优质的烃源岩(图3)。根据TOC与S1+S2之间的关系(图4a),可以看出玉尔吐斯组上段显示出是一套差烃源岩;而下段有机质具有很高的生烃潜力,为一套优质烃源岩。

  • 当沉积有机质处于高—过成熟阶段时,其有机碳含量、沥青沥青“A”、H/C比值以及生烃潜力等将发生不可逆转的变化(Cao Tingting et al.,2014)。玉尔吐斯组的氢指数(HI)分布在60.41~116.84mg/g之间(平均值为88.29mg/g),大多数小于100mg/g,下段主要分布在57.41~87.08mg/g之间,均低于整体氢指数的平均值。这是由于在高—过成熟阶段,可热降解的有机质大多数已裂解成气,生烃潜力中相对应的S2峰很小,致使氢指数(S2/TOC)很小,整体异常偏低,因此不再适用于这些高热演化烃源岩的干酪根类型划分(Li Weiyang,2017)。干酪根碳同位素(δ13C干酪根)与有机质母质碳同位素基本一致,是判断有机质类型的可靠指标(Huang Difan et al.,1984;Wang Jie et al.,2002)。如图4b所示,玉尔吐斯组有机质类型以Ⅰ型干酪根为主,含少量Ⅱ型干酪根。

  • 表2 塔里木盆地轮探1井震旦系—寒武系样品主量元素数据表(%)

  • Table2 Major element data (%) of the Cambrian-Sinian samples from well LT1in Tarim basin

  • Liu Wenhui et al.(2016)Hu Guang et al.(2018)根据烃源岩干酪根碳同位素值与成烃生物组合进行了详细讨论,指出寒武系浮游藻类烃源岩所形成的干酪根同位素组成偏重,δ13C干酪根>-30‰,而底栖藻类烃源岩所形成的干酪根同位素组成则偏轻,δ13C干酪根<-34‰。玉尔吐斯组烃源岩的干酪根碳同位素值主要分布在-33.84‰~-29.02‰,平均-30.55‰,分布在浮游藻类与底栖藻类的重叠区域,指示烃源岩中的有机碳由底栖藻类和浮游藻类共同提供,但从干酪根碳同位素数据来看,整体偏浮游一端(图4c)。

  • 表3 塔里木盆地轮探1井震旦系—寒武系样品微量元素数据表

  • Table3 Trace element data of the Cambrian-Sinian samples from well LT1in Tarim basin

  • 注:元素富集因子EF的计算公式为:X EF=[(X/Al)sample/(X/Al)PAAS],其中Mo、U、Al的PAAS数据来自Taylor et al.(1985)。

  • 4.2 生物标志化合物特征

  • 在玉尔吐斯组烃源岩样品中均检出类异戊二烯烷烃,Pr/Ph值为1.22~1.74,均值为1.41,呈现出姥植均势,反映烃源岩形成于还原沉积环境(Mei Bowen et al.,1980)。Pr/n C17比值为0.44~1.06,均值为0.59;Ph/n C18比值为0.41~0.62,均值为0.48,呈现出海相偏还原的沉积环境,主要以Ⅰ型、Ⅱ型干酪根为主。烃源岩正构烷烃n C21-/n C22+比值分布在1.5~3.12,其平均值为2.23;(n C21+n C22)/(n C28+n C29)比值略微高些(2.55~4.8,平均值为3.34),反映高成熟的源岩特征。

  • 图3 轮探1井玉尔吐斯组烃源岩地球化学综合柱状图

  • Fig.3 Composite geochemical histogram of the Lower Cambrian Yuertusi Formation source rocks in well LT1

  • 一般情况下,随着水体盐度的增加,伽马蜡烷呈增加趋势。高含量的伽马蜡烷常被用于指示强还原超咸水环境,而且与水体的分层有关(Mackenzie et al.,1981)。Sinninghe Damsté(1995)研究发现伽马蜡烷可以作为水体分层的指示物,由于高盐环境往往伴伴随着密度分层,故其富集多与高盐度海相及非海相沉积环境有关,但不一定局限于这样的沉积物。样品中伽马蜡烷/αβ-C30藿烷值(表1)介于0.17~0.22之间,均值0.18,指示水体发生分层,属于正常盐度水体。一般认为水生生物和藻类富含C27(和C28)规则甾烷,而高等植物富含C29规则甾烷,根据谱图可以看出(图2),C27、C28、C29规则甾烷呈不对称的“V”字型,富含C27、C29规则甾烷,且C27规则甾烷相对含量略低于C29规则甾烷相对含量,考虑到寒武系未出现陆源高等植物这一地质事实,故研究区有机质主要来源于细菌、藻类(绿藻)等低等底栖和浮游生物,与烃源岩干酪根碳同位素得出的结果一致,反映了海相烃源岩特征。

  • 甾烷系列的部分生标(如C29ααα20S/(20S+20R))随着成熟度的增加,其值会逐渐增大。因此,根据乙基胆甾烷的比值变化情况,可以反映有机质的成熟度演化阶段。一般来讲,生油门限C29ααα20S/(20S+20R)值和C29αββ/(αββ+ααα)值约为0.25,到生油高峰达到平衡,前一比值为0.5~0.55,后一比值为0.7左右(Seifert et al.,1981;Zhang Mai et al.,2020)。从表1可以看出,C29ααα20S/(20S+20R)最大值为0.48,最小值为0.42,平均值为0.46,样品的比值接近平衡状态,说明其演化程度已经非常高了(Wang Jian et al.,2020)。C29αββ/(αββ+ααα)甾烷在异构化的过程中,受有机质的热演化程度影响很大。从表1中可以看出,C29αββ/(αββ+ααα)比值最大值为0.49,最小值为0.42,平均值为0.46,也反映出烃源岩已经处于高—过成熟阶段。

  • 4.3 古氧化还原条件

  • 微量元素Mo、U、V在沉积水体的氧化还原条件识别上具有重要意义。一般认为,在缺氧环境中,沉积物普遍富集Mo、U、V等氧化还原敏感的微量元素。其中,Mo和U的特性使得二者在氧化环境中含量极低;在Fe3+和Fe2+的氧化-还原界面,U的富集程度远远超过Mo;在缺氧或硫化环境中,Mo的富集程度超过U(Algeo et al.,2009)。除此之外,微量元素比值也是重要的识别沉积水体氧化还原条件的指标,Th/U<2指示缺氧环境,Th/U>3.8指示氧化环境;Ni/Co>7指示缺氧环境,Ni/Co<5指示氧化环境;V/(V+Ni)>0.54指示缺氧环境,V/(V+Ni)<0.46指示氧化环境(Jones et al., 1994;Kimura et al., 2001)。

  • 图4 轮探1井寒武系玉尔吐斯组烃源岩评价图

  • Fig.4 Source rock evaluation of the Cambrian Yuertusi Formation in well LT1

  • (a)—TOC与S1+S2对比测定玉尔吐斯组油气潜力(据EI Kammar,2015;Tissot et al.,2015;Boyer et al.,2006修改);(b)—干酪根碳同位素划分有机质类型;(c)—干酪根碳同位素判识母质来源

  • (a)—The hydrocarbon potential of black shales in the Yuertusi Formation as measured by TOC vs.S1+S2 (modified from EI Kammar, 2015;Tissot et al., 2015; Boyer et al., 2006); (b)—classification of organic matter types by carbon isotopes; (c)—identification of parent material source by kerogen carbon isotopes

  • 图5 塔里木盆地轮探1井样品微量元素比值(图版据Tribovillard et al., 2012; Xiao Bin et al., 2019)

  • Fig.5 The ratio of trace elements of samples from well LT1in Tarim basin (after Tribovillard et al., 2012; Xiao Bin et al., 2019)

  • 在轮探1井中(图3),奇格布拉克组上部样品的Th/U值为0.10~0.79(平均值为0.35,n=9),Ni/Co值为5.19~17.22(平均值为10.83,n=9),V/(V+Ni)值为0.74~0.87(平均值为0.80,n=9),反映以缺氧为主的沉积水体环境。与此同时,该段样品的有机碳含量也较高,TOC为0.55%~2.09%(平均值为1.09%,n=9),指示沉积期偏还原的有机质保存环境。奇格布拉克组向上,玉尔吐斯组样品同样表现出极低的Th/U值,较高的Ni/Co值和V/(V+Ni)值,均在缺氧的阈值范围内变化,指示玉尔吐斯组整体表现为缺氧沉积,与玉尔吐斯组极高的有机碳含量变化一致。然而,反映水体硫化状态的微量元素比值V/Sc(Fan Qi et al.,2020)在玉尔吐斯组中下部(8645~8688.5m)表现为极高值(V/Sc值为29.60~617.99,平均值为191.21,n=19),指示该段沉积水体以硫化环境为主。除此之外,可以一定程度上反映水体硫化环境的微量元素Mo和MoEF(Scott et al., 2012),在玉尔吐斯组下部(8665~8688.5m)出现了极高值(MoEF值为484.38~2146.89,平均值为997.95,n=11),该段Mo的富集程度MoEF(最高达2146.89)甚至超过了华南地区牛蹄塘组烃源岩(Cheng Meng et al.,2017),指示玉尔吐斯组下部可能处于长期的极端硫化水体环境。

  • 而在玉尔吐斯组上部(8607.5~8645m)的样品中,虽然没有下部样品的MoEF值高,但是上部地层样品的MoEF值仍然处于相对较高的水平,其MoEF值为1.43~93.61(平均值为49.90,n=10),指示该段沉积水体处于间歇性的硫化环境。

  • 与奇格布拉克组和玉尔吐斯组样品中的微量元素所表现出的缺氧水体环境不同,轮探1井中肖尔布拉克组样品的微量元素很低,相关微量元素的富集程度诸如MoEF(3.66~48.41,平均值为16.23,n=6),UEF(2.19~16.43,平均值为6.58,n=6),VEF(1.48~3.75,平均值为2.49,n=6)表现出很低的状态。除此之外,该段的微量元素比值Th/U、Ni/Co和V/(V+Ni)均不同程度地反映出沉积水体以氧化环境为主(图3)。

  • 从MoEF-UEF图可以看出(图5),轮探1井的样品点落在了不同的氧化还原环境范围内:肖尔布拉克组样品基本处于偏氧化-贫氧阶段,而玉尔吐斯组上部(8617~8663m)样品几乎都在缺氧环境范围内,并且MoEF/UEF值远高于正常海水值(图5)。与V/Sc值指示的沉积水体环境相似,玉尔吐斯组中下部层段(8665~8688.5m)的样品点均落在了硫化环境的范围内,而震旦系的奇格布拉克组上部样品,大部分处于缺氧-硫化环境范围内,指示轮探1井的玉尔吐斯组沉积水体条件可能是在奇格布拉克组晚期缺氧基础上持续“恶化”。

  • 4.4 热液活动对烃源岩发育的影响

  • 除微量元素比值可以反映水体古环境外,稀土元素在示踪古氧化还原条件方面具有重要意义。一般认为,Eu/Eu*正异常是强还原热液流体活动的重要标志(Murray,1994)。然而,经ICP-MS测试获得的Eu/Eu*异常可能会受到Ba的干扰,造成正Eu/Eu*异常假象,除此之外,陆源碎屑也可能会引起Eu/Eu*正异常(Kidder et al.,2003)。因此在应用Eu/Eu*正异常解释热液流体活动前需要检验样品的Eu/Eu*是否受到元素Ba的干扰。经检验,轮探1井肖尔布拉克组、玉尔吐斯组上段、中段以及奇格布拉克组的样品Eu/Eu*异常均与Ba呈现出线性关系,其样品的Eu/Eu*异常与Ba的线性相关指数R2超过0.5(图6a~d),表明稀土中的Eu/Eu*异常受到元素Ba的强烈干扰,不能反映沉积时期的海水信号,因此样品中的稀土元素中Eu/Eu*正异常不能作为热液流体活动的证据。但玉尔吐斯组下段Eu/Eu*异常与Ba的相关性较弱(R 2=0.3195),认为钡化物在测试过程中对Eu的干扰不大(图6e);而且Eu/Eu*与Al2O3相关性极弱(R 2=0.0086),指示此次样品的正Eu异常并不是陆源碎屑造成的(图6f),综合表明,玉尔吐斯组下段正Eu异常就是由热液活动引起的。

  • 图6 塔里木盆地轮探1井样品Eu/Eu*异常与微量元素Ba和Al2O3的相关关系

  • Fig.6 The cross plot of Eu/Eu* vs.Ba and Al2O3 of samples from well LT1in Tarim basin

  • 4.5 上升洋流对烃源岩发育的影响

  • 微量金属元素在古沉积环境重建过程中具有重要意义。Sweere et al.(2016)在对全球5种不同程度滞留水体、现代海洋中4个著名的上升洋流区沉积物中的Co、Mn元素含量研究发现,金属元素向水体供应的系统差异是影响滞留环境和上升洋流环境之间Co和Mn含量差异的主要因素(Xiao Bin et al., 2019)。一方面,在上升洋流系统中,其大规模驱动的更深部的海洋水体中,富含多种营养物质,但是典型地缺乏Co和Mn(Sweere et al., 2016),因此,沉积物中Co和Mn的供应不足限制其富集程度。另一方面,在滞留环境中,富Co、Mn的河水流入提供了大量的Co和Mn,因此,Co、Mn的自生富集不太可能发展到受供应限制的阶段。在上升洋流背景下,沉积态Mn几乎不存在,它是一种在还原态下可以动的元素,因此,低氧区可作为Mn元素的传送带,将Mn元素输送至开阔海洋(Brumsack, 2006)。鉴于上述理论,Sweere et al.(2016)提出了Al-Co×Mn对于滞留环境和开放/上升洋流判别图版。

  • 除此以外,在缺氧/静水条件下,Cd、Mo分别以硫化物和颗粒活性硫钼酸盐的形式,有效地运移到沉积物中(Emerson et al., 1991; Erickson et al., 2000)。Sweere et al.(2016)对不同滞留程度海盆中Cd/Mo比值的差异进行分析总结,将0.1作为控制有机质富集的两大因素(生产力和保存条件)之间的界限。Cd/Mo比值高于0.1,指示有机质的富集主要受控于生产力,Cd/Mo比值低于0.1,其富集主要受控于优质的保存条件。因此,Co×Mn和Cd/Mo联合指标作为一种新颖高效的判别方法,不仅可以区分不同海洋环境,而且还能表征这些环境对富有机质形成的控制作用(Sweere et al., 2016)。

  • 轮探1井烃源岩样品在Al-Co×Mn图版中的分布特征显示玉尔吐斯组烃源岩沉积期几乎均受上升洋流的影响(图7a、b),仅有极少数处于滞留环境(只有一块样品的Co×Mn大于0.4)。轮探1井玉尔吐斯组样品在Co×Mn和Cd/Mo联合图版中的分布也揭示了相同的结论,即绝大多数样品沉积于上升洋流环境,而且本文烃源岩样品数据表明其发育均受控于良好的保存条件(图7c)。

  • 图7 塔里木盆地轮探1井样品元素含量及比值关系图

  • Fig.7 The relation diagram of element content and ratio of well LT1in Tarim basin

  • (a)—Al-Co×Mn图;(b)—Al-CoEF×MnEF图;(c)—Co×Mn-Cd/Mo图(据Sweere et al., 2016)

  • (a)—Al versus Co×Mn diagram, (b)—Al versus CoEF×MnEF diagram, (c)—Co×Mn-Cd/Mo joint chart (after Sweere et al., 2016)

  • 4.6 玉尔吐斯组烃源岩发育模式

  • 塔里木盆地轮探1井下寒武统玉尔吐斯组是目前在古生界发现的埋藏最深、有机质丰度最高的海相优质烃源岩。在寒武纪早期整体处于全球海侵这一大背景下,以上分析结果揭示了玉尔吐斯组底部的黑色页岩形成于缺氧硫化环境(图8)。热液流体活动和沿岸的上升洋流带来较多的金属元素和营养盐物质(Zhu Guangyou et al.,2021b;Sun Dongsheng et al.,2022),激发近岸表层水体的古海洋生产力,大量藻类得以繁盛,生物产率极大提高,表层浮游藻类和底栖藻类的发育为烃源岩提供了丰富的有机质来源。而藻类等有机物质在沉降过程中,消耗海水中的溶解氧,造成最低含氧带逐渐上移,加剧底层水体的缺氧程度,为优质烃源岩的形成提供了有利的保存条件;此外,热液流体带来的还原性气体导致形成硫化缺氧的水体环境,使得有机质得以埋藏和大量保存,最终形成这套富有机质烃源岩。

  • 5 结论

  • (1)亚洲最深井——轮探1井完钻8882m,钻揭震旦系,并在下寒武统吾松格尔组白云岩储层中获得了工业油流。轮探1井钻揭下寒武统玉尔吐斯组厚81m,下段黑色页岩厚23m (8665.5~8688.5m),有机质丰度高(TOC平均值为10.48%)、类型好,处于高—过成熟阶段(Ro平均值为1.53%),具有巨大的生烃潜力。

  • (2)生物标志化合物中的C27、C28、C29规则甾烷呈不对称的“V”字型,C27占优势,但其相对含量仍略低于C29规则甾烷相对含量,结合干酪根碳同位素,反映了玉尔吐斯组烃源岩母质以底栖和浮游藻类为主;姥植比相对较高,伽马蜡烷/αβ-C30藿烷值介于0.17~0.22之间,反映了正常盐度的还原环境水体。甾烷的C29ααα20S/(20S+20R)值、C29αββ/(αββ+ααα)值和Ts/Tm值也证明了有机质成熟度高,与镜质组反射率反映的结果一致。

  • (3)微量元素比值Th/U、V/(V+Ni)、Ni/Co和V/Sc指示玉尔吐斯组沉积水体以缺氧还原为主,而半开放的水体环境和早期强烈的硫化水体现象,控制了优质烃源岩的形成。奇格布拉克组上部的氧化还原条件分析表明轮探1井所处地区在震旦纪晚期水体就已出现硫化现象,而这种硫化环境一直持续到早寒武世玉尔吐斯组沉积时期,直到肖尔布拉克组沉积期,沉积水体才逐渐演化为偏氧化的环境,这是玉尔吐斯组异常高TOC烃源岩形成的重要原因。

  • (4)轮探1井首次在8000m以下发现工业油气流,明确了塔里木盆地下古生界的油气勘探潜力,坚定了石油勘探转向深层—超深层的信心,为全球古生界超深层石油勘探提供了重要的依据。轮探1井发现的下寒武统玉尔吐斯组优质烃源岩,在纵向上与下寒武统吾松格尔组的白云岩储层、中寒武统的厚层蒸发岩形成一套良好的生储盖组合,是塔里木盆地下一步重点勘探层系。

  • 图8 塔里木盆地轮探1井玉尔吐斯组烃源岩发育模式图

  • Fig.8 The development model of source rocks in Yuertusi Formation

  • 致谢:本文在撰写和研究中得到中国石油勘探开发研究院和塔里木油田公司的领导和专家们的诸多帮助和支持,在此深表感谢。

  • 参考文献

    • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.

    • Boyer C, Kieschnick J, Suarez-Rivera R. 2006. Producing gas from its source. Oilfield Review, 18: 36~49.

    • Brumsack H J. 2006. The trace metal content of recent organic carbonrich sediments: implications for Cretaceous black shale Formation. Palaeogeography Palaeoclimatology Palaeoecology, 232(2): 344~361.

    • Cai Chunfang, Xiang L, Yuan Y, He X, Chu X, Chen Y, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze Ocean. Journal of the Geological Society, 390~406.

    • Cao Tingting, Xu Sihuang, Zhou Lian, Wang Yue. 2014. Element geoehemistry evaluation of marine source rock with high maturity: a case study of Lower Cambrianin Yangba section of Nanjiang County. Earth Science—Journal of China University of Geosciences, 39(2): 199~209 (in Chinese with English abstract).

    • Cheng Meng, Li Chao, Zhou Lian, Feng Lianjun, Algeo T J, Zhang Feifei, Romaniello S, Jin Chengsheng, Ling Hongfei, Jiang Shaoyong. 2017. Transient deep-water oxygenation in the early Cambrian Nanhua basin, South China. Geochimica et Cosmochimica Acta, 210: 42~58.

    • Cui Haifeng, Tian Lei, Zhang Nianchun, Liu Jun, Zhang Jijuan. 2016. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest depression of Tarim basin. Natural Gas Geoscience, 27(4): 577~583 (in Chinese with English abstract).

    • Du Jinhu, Pan Wenqing. 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim basin, NW China. Petroleum Exploration and Development, 43(3): 327~339 (in Chinese with English abstract).

    • El Kammar M M. 2015. Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt. Journal African Earth Science, 104: 19~26.

    • Emerson S R, Huested S S. 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177~196.

    • Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149~1158.

    • Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue. 2020. Paleo-environments and development pattern of high-quality marine source rocks of the early Cambrian, northern Tarim platform. Earth Science, 45(1): 285~302 (in Chinese with English abstract).

    • Feng Guoxiu, Chen Shengji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(3): 20~25 (in Chinese with English abstract).

    • Guo Qingjun, Strauss Harald, Liu Congqiang, Goldberg Tatiana, Zhu Maoyan, Pi Daohui, Heubeck Christoph, Vernhet Elodie, Yang Xinglian, Fu Pingqing. 2007. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: evidence from the Yangtze platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 254(1-2): 140~157.

    • Hu Guang, Meng Qingqiang, Wang Jie, Tengger, Xie Xiaomin, Lu Longfei, Luo Houyong, Liu Wenhui. 2018. The original organism assemblages and kerogen carbon isotopic compositions of the Early Paleozoic source rocks in the Tarim basin, China. Acta Geologica Sinica (English Edition), 92(6): 2297~2309.

    • Huang Difan, Li Jinchao, Zhang Dajiang. 1984. Kerogen types and study on effectiveness, limitation and interrelation of their identification parameters. Acta Sedimentologica Sinica, 2(3): 18~33 (in Chinese with English abstract).

    • Jia Chengzao. 1999. Structural characteristics and oil/gas accumulative regularity in Tarim basin. Xinjiang Petroleum Geology, 20(3): 177~183 (in Chinese with English abstract).

    • Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111~129.

    • Kidder D L, Krishnaswamy R, Mapes R H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology, 198(3-4): 335~353.

    • Kimura H, Watanabe Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29: 995~998.

    • Li Weiyang. 2017. Research on the evaluation criterion of high-over mature marine-source rock in the Middle Yangtze region. Journal of Hebei University of Geosciences, (2): 10~14 (in Chinese with English abstract).

    • Liu Wenhui, Hu Guang, Tenger, Wang Jie, Lu Longfei, Xie Xiaoming. 2016. Organism assemblages in the Paleozoic source rocks and their implications. Oil and Gas Geology, 37(5): 617~626 (in Chinese with English abstract).

    • Lü Xiuxiang, Bai Zhongkai, Xie Yuquan, Yang Xianmao. 2014. Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim basin. Acta Sedimentologica Sinica, 32(4): 766~775 (in Chinese with English abstract).

    • Mackenzie A S, Hoffmann C F, Maxwell J R. 1981. Molecular parameters of maturation in the Toarcian shales, Paris basin, France, Changes in aromatic steroid hydrocarbons. Geochimica et Cosmochimica Acta, 45: 1345~1355.

    • Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil and Gas Geology, 1(2): 99~115 (in Chinese with English abstract).

    • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentology Geology, 90: 213~232.

    • Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chemical Geology, 324-325: 19~27.

    • Seifert W K, Moldowan J M. 1981. Paleorecon struction by biological markers. Geochimica et Cosmochimica Acta, 45 (6): 783~794.

    • Sinninghe Damsté J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.

    • Sun Dongsheng, Li Shuangjian, Li Jianjiao, Li Yingqiang, Yang Tianbo, Feng Xiaokuan, Li Huili, Han Zuozhen, He Zhiliang. 2022. Insights from a comparison of hydrocarbon accumulation condition of Sinian-Cambrian between the Tarim and the Sichuan basins. Acta Geologica Sinica, 96(1): 249~264 (in Chinese with English abstract).

    • Sweere T, Boorn S V D, Dickson A J, Reichart G J. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chemical Geology, 441: 235~245.

    • Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence. Second Revised and Enlarged Ed. New York: Springer-Verlag.

    • Tribovillard N, Algeo T J, Baudin F, Riboulleau A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation—applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46~58.

    • Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar sag, Junggar basin. Geological Review, 66(3): 755~764 (in Chinese with English abstract).

    • Wang Jie, Chen Jianfa, Wang Darui, Zhang Shuichang. 2002. Study on the characteristics of carbon isotopic composition and hydrocarbon generation potential of organic matter of Middle-Upper Proterozoic in northern part of North China. Petroleum Exploration and Development, 29(5): 13~15 (in Chinese with English abstract).

    • Xiao Bin, Liu Shugen, Ran Bo, Yang Di, Han Yuyue. 2019. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: application in the northern margin of Sichuan basin, South China. Geological Review, 65(6): 1316~1330 (in Chinese with English abstract).

    • Xiong Ran, Zhou Jingao, Ni Xinfeng, Zhu Yongjin, Chen yongquan. 2015. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim basin. Natural Gas Industry, 35(10): 49~56.

    • Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhu, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. Great discovery and its signifcance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim basin. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).

    • Zhang Mai, Liu Chenglin, Tian Jixian, Pang Hao, Zeng Xu, Kong Hua, Yang Sai. 2020. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam basin. Natural Gas Geoscience, 31(1): 61~72 (in Chinese with English abstract).

    • Zhang Shuichang, Huang Haiping, Su Jin, Liu Mei, Zhang Haifeng. 2014. Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim basin, NW China. Organic Geochemistry, 77: 126~139.

    • Zhu Guangyou, Zhang Shuichang, Su Jin, Huang Haipping, Yang Haijun, Gu Lijing, Zhang Bin, Zhu Yongfeng. 2012. The occurrence of ultra-deep heavy oils in the Tabei uplift of the Tarim basin, NW China. Organic Geochemistry, 52: 88~102.

    • Zhu Guangyou, Chen Feiran, Chen Zhiyong, Zhang Ying, Xing Xiang, Tao Xiaowan, Ma Debo. 2016. Discovery and basic characteristics of the high-quality source rocks of Cambrian Yuertusi Formation in Tarim basin. Natural Gas Geoscience, 27(1): 8~21 (in Chinese with English abstract).

    • Zhu Guangyou, Chen Feiran, Wang Meng, Zhang Zhiyao, Ren Rong. 2018. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim basin, China. AAPG Bulletin, 102: 2123~2151.

    • Zhu Guangyou, Zhang Zhiyao, Zhou Xiaoxiao, Li Tingting, Han Jianfa, Sun Chonghao. 2019a. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim basin, China. Earth-Science Reviews, 198: 1~28.

    • Zhu Guangyou, Milkov A V, Zhang Zhiyao, Sun Chonghao, Zhou Xiaoxiao, Chen Feiran, Han Jianfa, Zhu Yongfeng. 2019b. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim basin, China. AAPG Bulletin, 103(7): 1703~1743.

    • Zhu Guangyou, Milkov A V, Li Jingfei, Xue Nan, Chen Yongquan, Hu Jianfeng, Li Tingting, Zhang Zhiyao, Chen Zhiyong. 2021a. Deepest oil in Asia: characteristics of petroleum system in the Tarim basin, China. Journal of Petroleum Science and Engineering, 199: 108246.

    • Zhu Guangyou, Li Tingting, Zhao Kun, Li Chao, Cheng Meng, Chen Weiyan, Yan Huihui, Zhang Zhiyao, Thomas J. Algeo. 2021b. Mo isotope records from Lower Cambrian black shales, northwestern Tarim basin (China): implications for the early Cambrian ocean. GSA Bulletin, 1~12; https: //doi. org/ 10. 1130/ B35726. 1.

    • 曹婷婷, 徐思煌, 周炼, 王约. 2014. 高演化海相烃源岩元素地球化学评价——以四川盆地南江杨坝地区下寒武统为例. 地球科学——中国地质大学学报, 39(2): 199~209.

    • 崔海峰, 田雷, 张年春, 刘军, 张继娟 2016. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征. 天然气地球科学, 27(4): 577~583.

    • 杜金虎, 潘文庆. 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327~339.

    • 樊奇, 樊太亮, 李一凡, 张俊鹏, 高志前, 陈跃. 2020. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285~302.

    • 丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20~25.

    • 黄第潘, 李晋超, 张大江. 1984. 干酪根的类型及其分类参数的有效性、局限性和相关性. 沉积学报, 2(3): 18~33.

    • 贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177~183.

    • 李蔚洋. 2017. 中扬子地区古生界高成熟—过成熟海相烃源岩评价指标浅析. 河北地质大学学报, (2): 10~14.

    • 刘文汇, 胡广, 腾格尔, 王杰, 卢龙飞, 谢小敏. 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质. 37(5): 617~626.

    • 吕修祥, 白忠凯, 谢玉权, 杨先茂. 2014. 塔里木盆地西北缘柯坪地区油气勘探前景再认识. 沉积学报, 32(4): 766~775.

    • 梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.

    • 孙冬胜, 李双建, 李建交, 李英强, 杨天博, 冯小宽, 李慧莉, 韩作振, 何治亮. 2022. 塔里木与四川盆地震旦系—寒武系油气成藏条件对比与启示. 地质学报, 96(1): 249~261.

    • 王剑, 李二庭, 陈俊, 米巨磊, 马聪, 雷海艳, 谢礼科. 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究. 地质论评, 66(3): 755~764.

    • 王杰, 陈践发, 王大锐, 张水昌. 2002. 华北北部中、上元古界生烃潜力及有机质碳同位素组成特征研究. 石油勘探与开发, 29(5): 13~15.

    • 肖斌, 刘树根, 冉波, 杨迪, 韩雨樾. 2019. 基于元素 Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用. 地质论评, 65(6): 1316~1330.

    • 熊冉, 周进高, 倪新锋, 朱永进, 陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 天然气工业, 35(10): 49~56.

    • 杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.

    • 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 2020. 柴达木盆地西部地区原油地球化学特征及油源对比. 天然气地球科学, 31(1): 61~72.

    • 朱光有, 陈斐然, 陈志勇, 张颖, 邢翔, 陶小晚, 马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8~21.

  • 参考文献

    • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.

    • Boyer C, Kieschnick J, Suarez-Rivera R. 2006. Producing gas from its source. Oilfield Review, 18: 36~49.

    • Brumsack H J. 2006. The trace metal content of recent organic carbonrich sediments: implications for Cretaceous black shale Formation. Palaeogeography Palaeoclimatology Palaeoecology, 232(2): 344~361.

    • Cai Chunfang, Xiang L, Yuan Y, He X, Chu X, Chen Y, Xu C. 2015. Marine C, S and N biogeochemical processes in the redox-stratified early Cambrian Yangtze Ocean. Journal of the Geological Society, 390~406.

    • Cao Tingting, Xu Sihuang, Zhou Lian, Wang Yue. 2014. Element geoehemistry evaluation of marine source rock with high maturity: a case study of Lower Cambrianin Yangba section of Nanjiang County. Earth Science—Journal of China University of Geosciences, 39(2): 199~209 (in Chinese with English abstract).

    • Cheng Meng, Li Chao, Zhou Lian, Feng Lianjun, Algeo T J, Zhang Feifei, Romaniello S, Jin Chengsheng, Ling Hongfei, Jiang Shaoyong. 2017. Transient deep-water oxygenation in the early Cambrian Nanhua basin, South China. Geochimica et Cosmochimica Acta, 210: 42~58.

    • Cui Haifeng, Tian Lei, Zhang Nianchun, Liu Jun, Zhang Jijuan. 2016. Distribution characteristics of the source rocks from Cambrian Yuertusi Formation in the Southwest depression of Tarim basin. Natural Gas Geoscience, 27(4): 577~583 (in Chinese with English abstract).

    • Du Jinhu, Pan Wenqing. 2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim basin, NW China. Petroleum Exploration and Development, 43(3): 327~339 (in Chinese with English abstract).

    • El Kammar M M. 2015. Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt. Journal African Earth Science, 104: 19~26.

    • Emerson S R, Huested S S. 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177~196.

    • Erickson B E, Helz G R. 2000. Molybdenum (VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochimica et Cosmochimica Acta, 64(7): 1149~1158.

    • Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue. 2020. Paleo-environments and development pattern of high-quality marine source rocks of the early Cambrian, northern Tarim platform. Earth Science, 45(1): 285~302 (in Chinese with English abstract).

    • Feng Guoxiu, Chen Shengji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(3): 20~25 (in Chinese with English abstract).

    • Guo Qingjun, Strauss Harald, Liu Congqiang, Goldberg Tatiana, Zhu Maoyan, Pi Daohui, Heubeck Christoph, Vernhet Elodie, Yang Xinglian, Fu Pingqing. 2007. Carbon isotopic evolution of the terminal Neoproterozoic and early Cambrian: evidence from the Yangtze platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. , 254(1-2): 140~157.

    • Hu Guang, Meng Qingqiang, Wang Jie, Tengger, Xie Xiaomin, Lu Longfei, Luo Houyong, Liu Wenhui. 2018. The original organism assemblages and kerogen carbon isotopic compositions of the Early Paleozoic source rocks in the Tarim basin, China. Acta Geologica Sinica (English Edition), 92(6): 2297~2309.

    • Huang Difan, Li Jinchao, Zhang Dajiang. 1984. Kerogen types and study on effectiveness, limitation and interrelation of their identification parameters. Acta Sedimentologica Sinica, 2(3): 18~33 (in Chinese with English abstract).

    • Jia Chengzao. 1999. Structural characteristics and oil/gas accumulative regularity in Tarim basin. Xinjiang Petroleum Geology, 20(3): 177~183 (in Chinese with English abstract).

    • Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111~129.

    • Kidder D L, Krishnaswamy R, Mapes R H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology, 198(3-4): 335~353.

    • Kimura H, Watanabe Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29: 995~998.

    • Li Weiyang. 2017. Research on the evaluation criterion of high-over mature marine-source rock in the Middle Yangtze region. Journal of Hebei University of Geosciences, (2): 10~14 (in Chinese with English abstract).

    • Liu Wenhui, Hu Guang, Tenger, Wang Jie, Lu Longfei, Xie Xiaoming. 2016. Organism assemblages in the Paleozoic source rocks and their implications. Oil and Gas Geology, 37(5): 617~626 (in Chinese with English abstract).

    • Lü Xiuxiang, Bai Zhongkai, Xie Yuquan, Yang Xianmao. 2014. Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim basin. Acta Sedimentologica Sinica, 32(4): 766~775 (in Chinese with English abstract).

    • Mackenzie A S, Hoffmann C F, Maxwell J R. 1981. Molecular parameters of maturation in the Toarcian shales, Paris basin, France, Changes in aromatic steroid hydrocarbons. Geochimica et Cosmochimica Acta, 45: 1345~1355.

    • Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil and Gas Geology, 1(2): 99~115 (in Chinese with English abstract).

    • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentology Geology, 90: 213~232.

    • Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chemical Geology, 324-325: 19~27.

    • Seifert W K, Moldowan J M. 1981. Paleorecon struction by biological markers. Geochimica et Cosmochimica Acta, 45 (6): 783~794.

    • Sinninghe Damsté J S, Kenig F, Koopmans M P, Koster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9): 1895~1900.

    • Sun Dongsheng, Li Shuangjian, Li Jianjiao, Li Yingqiang, Yang Tianbo, Feng Xiaokuan, Li Huili, Han Zuozhen, He Zhiliang. 2022. Insights from a comparison of hydrocarbon accumulation condition of Sinian-Cambrian between the Tarim and the Sichuan basins. Acta Geologica Sinica, 96(1): 249~264 (in Chinese with English abstract).

    • Sweere T, Boorn S V D, Dickson A J, Reichart G J. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chemical Geology, 441: 235~245.

    • Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence. Second Revised and Enlarged Ed. New York: Springer-Verlag.

    • Tribovillard N, Algeo T J, Baudin F, Riboulleau A. 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation—applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46~58.

    • Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar sag, Junggar basin. Geological Review, 66(3): 755~764 (in Chinese with English abstract).

    • Wang Jie, Chen Jianfa, Wang Darui, Zhang Shuichang. 2002. Study on the characteristics of carbon isotopic composition and hydrocarbon generation potential of organic matter of Middle-Upper Proterozoic in northern part of North China. Petroleum Exploration and Development, 29(5): 13~15 (in Chinese with English abstract).

    • Xiao Bin, Liu Shugen, Ran Bo, Yang Di, Han Yuyue. 2019. Identification of organic matter enrichment factors in marine sedimentary rocks based on elements Mn, Co, Cd and Mo: application in the northern margin of Sichuan basin, South China. Geological Review, 65(6): 1316~1330 (in Chinese with English abstract).

    • Xiong Ran, Zhou Jingao, Ni Xinfeng, Zhu Yongjin, Chen yongquan. 2015. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim basin. Natural Gas Industry, 35(10): 49~56.

    • Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhu, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. Great discovery and its signifcance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim basin. China Petroleum Exploration, 25(2): 62~72 (in Chinese with English abstract).

    • Zhang Mai, Liu Chenglin, Tian Jixian, Pang Hao, Zeng Xu, Kong Hua, Yang Sai. 2020. Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam basin. Natural Gas Geoscience, 31(1): 61~72 (in Chinese with English abstract).

    • Zhang Shuichang, Huang Haiping, Su Jin, Liu Mei, Zhang Haifeng. 2014. Geochemistry of alkylbenzenes in the Paleozoic oils from the Tarim basin, NW China. Organic Geochemistry, 77: 126~139.

    • Zhu Guangyou, Zhang Shuichang, Su Jin, Huang Haipping, Yang Haijun, Gu Lijing, Zhang Bin, Zhu Yongfeng. 2012. The occurrence of ultra-deep heavy oils in the Tabei uplift of the Tarim basin, NW China. Organic Geochemistry, 52: 88~102.

    • Zhu Guangyou, Chen Feiran, Chen Zhiyong, Zhang Ying, Xing Xiang, Tao Xiaowan, Ma Debo. 2016. Discovery and basic characteristics of the high-quality source rocks of Cambrian Yuertusi Formation in Tarim basin. Natural Gas Geoscience, 27(1): 8~21 (in Chinese with English abstract).

    • Zhu Guangyou, Chen Feiran, Wang Meng, Zhang Zhiyao, Ren Rong. 2018. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim basin, China. AAPG Bulletin, 102: 2123~2151.

    • Zhu Guangyou, Zhang Zhiyao, Zhou Xiaoxiao, Li Tingting, Han Jianfa, Sun Chonghao. 2019a. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim basin, China. Earth-Science Reviews, 198: 1~28.

    • Zhu Guangyou, Milkov A V, Zhang Zhiyao, Sun Chonghao, Zhou Xiaoxiao, Chen Feiran, Han Jianfa, Zhu Yongfeng. 2019b. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim basin, China. AAPG Bulletin, 103(7): 1703~1743.

    • Zhu Guangyou, Milkov A V, Li Jingfei, Xue Nan, Chen Yongquan, Hu Jianfeng, Li Tingting, Zhang Zhiyao, Chen Zhiyong. 2021a. Deepest oil in Asia: characteristics of petroleum system in the Tarim basin, China. Journal of Petroleum Science and Engineering, 199: 108246.

    • Zhu Guangyou, Li Tingting, Zhao Kun, Li Chao, Cheng Meng, Chen Weiyan, Yan Huihui, Zhang Zhiyao, Thomas J. Algeo. 2021b. Mo isotope records from Lower Cambrian black shales, northwestern Tarim basin (China): implications for the early Cambrian ocean. GSA Bulletin, 1~12; https: //doi. org/ 10. 1130/ B35726. 1.

    • 曹婷婷, 徐思煌, 周炼, 王约. 2014. 高演化海相烃源岩元素地球化学评价——以四川盆地南江杨坝地区下寒武统为例. 地球科学——中国地质大学学报, 39(2): 199~209.

    • 崔海峰, 田雷, 张年春, 刘军, 张继娟 2016. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征. 天然气地球科学, 27(4): 577~583.

    • 杜金虎, 潘文庆. 2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327~339.

    • 樊奇, 樊太亮, 李一凡, 张俊鹏, 高志前, 陈跃. 2020. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285~302.

    • 丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20~25.

    • 黄第潘, 李晋超, 张大江. 1984. 干酪根的类型及其分类参数的有效性、局限性和相关性. 沉积学报, 2(3): 18~33.

    • 贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177~183.

    • 李蔚洋. 2017. 中扬子地区古生界高成熟—过成熟海相烃源岩评价指标浅析. 河北地质大学学报, (2): 10~14.

    • 刘文汇, 胡广, 腾格尔, 王杰, 卢龙飞, 谢小敏. 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质. 37(5): 617~626.

    • 吕修祥, 白忠凯, 谢玉权, 杨先茂. 2014. 塔里木盆地西北缘柯坪地区油气勘探前景再认识. 沉积学报, 32(4): 766~775.

    • 梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.

    • 孙冬胜, 李双建, 李建交, 李英强, 杨天博, 冯小宽, 李慧莉, 韩作振, 何治亮. 2022. 塔里木与四川盆地震旦系—寒武系油气成藏条件对比与启示. 地质学报, 96(1): 249~261.

    • 王剑, 李二庭, 陈俊, 米巨磊, 马聪, 雷海艳, 谢礼科. 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究. 地质论评, 66(3): 755~764.

    • 王杰, 陈践发, 王大锐, 张水昌. 2002. 华北北部中、上元古界生烃潜力及有机质碳同位素组成特征研究. 石油勘探与开发, 29(5): 13~15.

    • 肖斌, 刘树根, 冉波, 杨迪, 韩雨樾. 2019. 基于元素 Mn、Co、Cd、Mo的海相沉积岩有机质富集因素判别指标在四川盆地北缘的应用. 地质论评, 65(6): 1316~1330.

    • 熊冉, 周进高, 倪新锋, 朱永进, 陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 天然气工业, 35(10): 49~56.

    • 杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~72.

    • 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 2020. 柴达木盆地西部地区原油地球化学特征及油源对比. 天然气地球科学, 31(1): 61~72.

    • 朱光有, 陈斐然, 陈志勇, 张颖, 邢翔, 陶小晚, 马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8~21.