en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孟贵祥,男,1968年生。博士,研究员,主要从事矿产资源勘查研究。E-mail:mgxlw@126.com。

参考文献
Cai Keda. 2007. Age, genetic mechanism and tectonic significance of magmatism in the western part of Altay orogenic belt. Guangdong: Master's thesis of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, 1~132(in Chinese with English abstract).
参考文献
Cai Keda, Sun Min. , Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research, 18(4): 638~652.
参考文献
Cai Keda, Sun Min. , Yuan Chao. , Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2011. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949~968.
参考文献
Chai Fengmei, Ouyang, LiuJin, Dong Lianhui. 2013. Chronology and geochemistry of tonalite in Ashele copper zinc mining area, Xinjiang. Journal of Rock Mineralogy, 32(1): 41~52(in Chinese with English abstract).
参考文献
Chen Ling, Wang Xu, Liang Xiaofeng. 2020. Subduction structure vs. mantle plume structure plate motion driving force. Chinese Science: Earth Science, 50(4): 501~514(in Chinese with English abstract).
参考文献
Chen Yuchuan, Ye Qingtong, Feng Jing, Mu Chuanlin, Zhou Liangren, Wang Quanming, Huang Guangzhao, Zhuang Daoze, Ren Bingshen. 1996. Metallogenic Conditions and Metallogenic Prediction of Ashele Copper Zinc Metallogenic Belt. Beijing: Geological Publishing House(in Chinese with English abstract).
参考文献
Feng Jing, Xu Shiqi. 2012. Comprehensive prospecting prediction model of Ashele copper zinc deposit. Xinjiang Geology, 30(4): 418~424(in Chinese with English abstract).
参考文献
Francalanci L, Manetti P, Peccerillo A, Keller J. 1993. Magmatological evolution of the Strombolivolcano(Aeolian Arc, Italy): inferences from major and trace element and Sr isotopic composition of lavas and pyroclastic rocks. Bulletin of Volcanology, 51: 355~378.
参考文献
Gao Zhenquan, Fang Weixuan, Hu Ruizhong, Li Wenqian. 2010. Geochemical characteristics and tectonic setting of dacite basaltic andesitic volcanic rocks in Ashele copper mine, Xinjiang. Deposit Geology, 29(2): 218~229(in Chinese with English abstract).
参考文献
Green M L H. 1995. A new approach to the formal classification of covalent compounds of the elements. Journal of Organometallic Chemistry, 500(1-2): 127~148.
参考文献
Han Baofu, He Guoqi, Wang Shiguang. 1999. Post collision slow source magmatism, matting and the properties of the basement of Junggar Basin. Chinese Science (Series D), 29 (1): 16~21 (in Chinese with English abstract).
参考文献
He Guoqi, Liu Dequan, Li Maosong. 1995. Five stage model and metallogenic series of crustal development in major orogenic belts in Xinjiang. Geology of Xinjiang, (2): 99~176(in Chinese with English abstract).
参考文献
Hu Aiqin, Jahn B M, Zhang Guoxin, Chen Yibing, Zhang Qianfeng. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15~51.
参考文献
Jia Qunzi. 1996. Metallogenic characteristics and formation environment of Ashele massive sulfide deposit in Xinjiang. Deposit Geology, 15(3): 267~277(in Chinese with English abstract).
参考文献
Jiao Xuejun, Ma Zhongmei, Guo Xuji. 2005. Devonian volcanic deposits and minerals in the krona basin on the Southern edge of Altai Mountain. Northwest Geology, 38(3): 21~21(in Chinese with English abstract).
参考文献
Li Chunyu, Tang Yaoqing. 1983. Division of ancient blocks in Asia and related issues. Journal of Geology, (1): 3~12(in Chinese with English abstract).
参考文献
Li Huijun, He Guoqi, Wu Tairan 2010. Discovery of Early Paleozoic post collisional granite in Altay, China and its geological significance. Acta Petrologica Sinica, 26(8): 2445~2451(in Chinese with English abstract).
参考文献
Li Jinyi, Zhu Baoqing. 1990. Basic characteristics of Late Paleozoic plate tectonics inKalamari area, East Junggar, Xinjiang. Geological Review, 36(4): 305~316(in Chinese with English abstract).
参考文献
Li Jinyi, Xiao Xuchang. 1999. A brief review on several problems of crustal structure and tectonic evolution in Xinjiang. Geoscience, (4): 405~419(in Chinese with English abstract).
参考文献
Li Yong, Zhou Gang, Chai Fengmei. 2012. LA-ICP-MS zircon dating of Habahe pluton in the southern margin of Altay and its geological significance. Xinjiang Geology, 30(2): 146~151(in Chinese with English abstract).
参考文献
Li Zhichun. 1996. Formation, evolution and metallogenic activity tracking of Altai left type echelon volcanic sedimentary basin. Geotectonics and Metallogeny, 20(3): 189~200(in Chinese with English abstract).
参考文献
Liang Xirong, Wei Gangjian, Li Xianhua. 2003. Accurate determination of 143Nd/144Nd and Sm/Nd ratios by MC-ICPMS. Geochemistry, 32(1): 91~96(in Chinese with English abstract).
参考文献
Ma Xiaomei, Cai Keda, Zhao Taiping, Bao Zihe, Wang Xiangsong, Chen Ming. 2018. Devonian volcanic rocks of the southern Chinese Altai, NW China: petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis. Journal of Asian Earth Sciences, 160: 78~94.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635~643.
参考文献
Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen, Zhong Yong. 1995. Sedimentary facies and palaeogeography of the devonian strata in the Ashele and Chonghur regions, Xinjiang. Lithofacies Paleogeography, (5): 1~13(in Chinese with English abstract).
参考文献
Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen. 1996. Tectonic setting and evolution of Devonian volcanic sedimentary basin in Ashele chonghur area, Xinjiang. Sedimentary Geology and Tethyan Geology, (1): 70~84(in Chinese with English abstract).
参考文献
Niu Hecai, Xu Jifeng, Yu Xueyuan, Chen Fanrong, Zheng Zuoping. 1999. Discovery of magnesium rich volcanic rock series in Altai, Xinjiang and its geological significance. Scientific Bulletin, 44(9): 1002~1004(in Chinese with English abstract).
参考文献
Niu Lei, Hong Tao, Xu Xingwang, Li Hang, Ke Qiang, Wang Xuehai, Ma Yince. 2020. A revised stratigraphic and tectonic framework for the Ashele volcanogenic massive sulfide deposit in the southern Chinese Altay: evidence from stratigraphic relationships and zircon geochronology. Ore Geology Reviews, 127: 1~16.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy & Petrology, 58(1): 63~81. Qin Kezhang. 2000. Central Asian orogeny and mineralization in Northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics, Chinese Academy of Sciences(in Chinese with English abstract).
参考文献
Qin Kezhang. 2000. Paleozoic Central-Asia orogeneses and metallogenese in northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics.
参考文献
Shen Xuehua, Yao Chunyan, Fan Xianke, Dong Yongguan, You Jun. 2016. Geochemical characteristics and genesis of sarshuoke Au-Cu polymetallic deposit in the southern margin of Altai mountain system, Xinjiang. Northwest Geology, 49(2): 84~92(in Chinese with English abstract).
参考文献
Song Guoxue, Qin Kezhang, Liu Tiebing, Li Guangming, Shen Ping. 2010. U-Pb age, Hf isotope and REE characteristics of ancient zircons in Devonian volcanic rocks in Ashele basin on the southern margin of Altay and their geological significance. Acta Petrologica Sinica, 26(10): 2946~2958(in Chinese with English abstract).
参考文献
Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247(3-4), 352~383.
参考文献
Sun Min, Long Xiaoping, Cai Keda, Jiang Yingde, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Wu Fuyuan. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Science, 1345~1358.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications, 42: 313~345.
参考文献
Thompson A B, James A, Connolly D. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 100(B8): 15565~15579.
参考文献
Wan Bo, Zhang Lianchang. 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallic metallogenic belt in the Southern margin of Altay, Xinjiang. Acta petrologica Sinica, 22(1): 145~152(in Chinese with English abstract).
参考文献
Wan Bo, Zhang Lianchang, Xiang Peng. 2010. The Ashele VMS-type Cu-Zn Deposit in Xinjiang, NW China Formed formed in a Rifted rifted Arc arc Settingsetting. Resource Geology, 60(2): 150~164.
参考文献
Wang Denghong. 1996. Sulfur and lead isotopic geochemistry of the Ashele volcanogenic massive sulfide deposit, Xinjiang, China. Geochimica, 25(6): 582~590(in Chinese with English abstract).
参考文献
Wang Denghong, Chen Yuchuan, Xu Zhigang, Li Tiande, Fu Xujie. 2002. Metallogenic Series and Metallogenic Law of Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese with English abstract).
参考文献
Wang Jingbin, Qin kezhang, Wu Zhiliang, Hu Jianhui, Deng Jiniu. 1998. Volcanic Exhalative Sedimentary Lead Zinc Deposit in the Southern Margin of Altai Mountain. Beijing: Geological Publishing House. 1~210(in Chinese with English abstract).
参考文献
Wang Tao, Tong Ying, Li San. 2010. Temporal and spatial evolution, tectonic environment and crustal growth significance of granite in Altai orogenic belt: a case study of Altai, China. Journal of Rock Mineralogy, 29(6): 595~618(in Chinese with English abstract).
参考文献
Wei Gangjian, Liang Xirong, Li Xianhua. 2002. (LP) MC-ICPMS method for accurate determination of Sr isotopic composition of liquid and solid samples. Geochemistry, 31(3): 295~299(in Chinese with English abstract).
参考文献
Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman.
参考文献
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325~343.
参考文献
Windley B F, Kröner A, Guo J, Qu G, Li Y, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology, 110(6), 719~737.
参考文献
Wu Yufeng, Yang Fuquan, Liu Feng, Feng Liu, Geng Xinxia, Li Qiang, Zheng Jiahao. 2015. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes. Journal of Asian Earth Sciences, 112: 60~73.
参考文献
Wu Yufeng, Yang Fuquan, Liu Feng. 2015. 40Ar/39Ar chronology of Sericite in brittle ductile shear zone in Ashele copper zinc mining area, Xinjiang and its geological significance. Acta Geologica Sinica, 36(1): 121~126(in Chinese with English abstract).
参考文献
Wu Yufeng, Yang Fuquan, Liu Feng. 2016. Petrogeochemical characteristics and geological significance of basaltic andesite in Ashele copper zinc mining area, Xinjiang. Journal ofRock Mineralogy, 35(1): 65~80(in Chinese with English abstract).
参考文献
Xiao Wenjiao J, Windley B F, Badararch G. 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of the Geological Society of London, 161: 1~4.
参考文献
Xiao Xuchang. 1992. Geotectonics of Northern Xinjiang andIts Adjacent Areas. Beijing: Geological Publishing House(in Chinese with English abstract).
参考文献
Xing Xuefen. 1996. Study onevonian volcanic rock series and its tectonic environment in Ashele Chonghu area, Xinjiang. Sedimentation and Tethyan Geology, (3): 43~52(in Chinese with English abstract).
参考文献
Xu Xueyi, Li Rongshe, Chen Junlu. 2014. Some understandings on Paleozoic tectonic evolution innorthern Xinjiang. Acta Petrologica Sinica, 30(6): 1521~1534(in Chinese with English abstract).
参考文献
Xu Yigang, He Bin, Luo Zhenyu. 2013. Research progress and Prospect of igneous provinces and mantle plumes in China. Bulletin of mineral and rock geochemistry, 32(1): 25~39(in Chinese with English abstract).
参考文献
Yan Quanshu, Shi Xuefa. 2006. Research progress on the interaction between mid ocean ridge and mantle plume hotspot. Marine Geology and QuaternaryGeology, (5): 135~142(in Chinese with English abstract).
参考文献
Yang Chengdong. 2017. Study on mineralization of sarshuoke gold polymetallic deposit in Altai, Xinjiang. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Yang Fuquan, Mao Jingwen, Zheng Jianmin 2006. Geological characteristics and metallogenic model of Altai giant metallogenic belt in Kazakhstan Journal of geology, 80(7): 963~983(in Chinese with English abstract).
参考文献
Yang Fuquan, Li Fengming, Qin Jihua. 2013. LA-MC-ICP-MS zircon U-Pb age of (potential) volcanic rocks in Ashele copper Zn mining area, Xinjiang and its geological significance. Deposit Geology, (05): 869~883(in Chinese with English abstract).
参考文献
Yang Fuquan, Wu Yufeng, Yang Junjie. 2016. Copper polymetallic deposit model in Ashele ore concentration area, Altay, Xinjiang. Geotectonics and metallogeny, 40(4): 701~715(in Chinese with English abstract).
参考文献
Yu Yang, Sun Min, Yuan Chao, Zhao Guochun, Sun Min, Yuan Chao, Zhao Guochun, Huang Xiaolong. 2019. Evolution of the middle Paleozoic magmatism in the Chinese Altai: constraints on the crustal differentiation at shallow depth in the accretionary orogen. Journal of Asian Earth Sciences, 175: 230~246.
参考文献
Yuan Chao, long Xiaoping, Xia Xiaoping. 2007. Sedimentary age and tectonic setting of Habahe group in Altay. Acta Petrologica Sinica, 23(7): 1635~1644(in Chinese with English abstract).
参考文献
Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22~39.
参考文献
Zhao Guochun, Wu Fuyuan. 1995. Some problems and research progress of mantle plume structure theory. Geological Science and Technology Information, 14(2): 1~6(in Chinese with English abstract).
参考文献
Zhou Gang, Dong Lianhui, Qin Jihua. 2012. Formation age of granitoids in Ashele area, Habahe County, Xinjiang and its constraints on Au mineralization. Deposit Geology, (S1): 79~80(in Chinese with English abstract).
参考文献
Zhu Yusheng, Xiao Keyan, Wang Quanming, Xu Jue, Feng Jing, Zhuang Daoze, Gao Yongfeng, Gao Lan, Song Guoyao, Chen Zhenghui, Fang Yiping. 2002. Three Dimensional Location Prediction of Ashele Copper Zinc Deposit. Beijing: Geological Publishing House(in Chinese with English abstract).
参考文献
蔡克大. 2007. 阿尔泰造山带西段岩浆活动的时代、成因机制及其构造意义. 中国科学院广州地球化学研究所硕士学位论文, 1~132.
参考文献
柴凤梅, 欧阳刘进, 董连慧. 2013. 新疆阿舍勒铜锌矿区英云闪长岩年代学及地球化学. 岩石矿物学杂志, 32(1): 41~52.
参考文献
陈凌, 王旭, 梁晓峰. 2020. 俯冲构造vs. 地幔柱构造—板块运动驱动力探讨. 中国科学: 地球科学, 50(4): 501~514.
参考文献
陈毓川, 叶庆同, 冯京, 牟传林, 周良仁, 王全明, 黄光昭, 庄道泽, 任秉琛. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社. 1~330.
参考文献
冯京, 徐仕琪. 2012. 阿舍勒铜锌矿综合找矿预测模型. 新疆地质, 30(4): 418~424.
参考文献
高珍权, 方维萱, 胡瑞忠, 李文铅. 2010. 新疆阿舍勒铜矿英安-玄武安山质火山岩的地球化学特征与构造背景. 矿床地质, 29(2): 218~229.
参考文献
韩宝福, 何国琦, 王式光. 1999. 后碰撞慢源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16~21.
参考文献
何国琦, 刘德权, 李茂松. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, (2): 99~176.
参考文献
贾群子. 1996. 新疆阿舍勒块状硫化物矿床成矿特征及形成环境. 矿床地质, 15(3): 267~277.
参考文献
焦学军, 马忠美, 郭旭吉. 2005. 阿尔泰山南缘克朗盆地泥盆纪火山沉积与矿产. 西北地质, 38(3): 21~21.
参考文献
李春昱, 汤耀庆. 1983. 亚洲古板块划分以及有关问题. 地质学报, (1): 3~12.
参考文献
李会军, 何国琦, 吴泰然. 2010. 中国阿尔泰早古生代后碰撞花岗岩的发现及其地质意义. 岩石学报, 26(8): 2445~2451.
参考文献
李锦轶, 朱宝清. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305~316.
参考文献
李锦轶, 肖序常. 1999. 对新疆地壳结构与构造演化几个问题的简要评述. 地质科学, (4): 405~419.
参考文献
李永, 周刚, 柴凤梅. 2012. 阿尔泰南缘哈巴河岩体LA-ICP-MS锆石定年及地质意义. 新疆地质, 30(2): 146~151.
参考文献
李志纯. 1996. 阿尔泰左型雁列式火山-沉积盆地形成、演化及成矿活动追踪. 大地构造与成矿学, 20(3): 189~200.
参考文献
梁细荣, 韦刚健, 李献华. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91~96.
参考文献
牟传龙, 刘宝珺, 朱晓镇, 邢雪芬, 仲勇. 1995. 新疆阿舍勒、冲乎尔地区泥盆纪岩相古地理研究. 沉积与特提斯地质, (5): 1~13
参考文献
牟传龙, 刘宝珺, 朱晓镇. 1996. 新疆阿舍勒─冲乎尔地区泥盆纪火山沉积盆地大地构造背景及其演化. 沉积与特提斯地质, (1): 70~84.
参考文献
牛贺才, 许继峰, 于学元, 陈繁荣, 郑作平. 1999. 新疆阿尔泰富镁火山岩系的发现及其地质意义. 科学通报, 44(9): 1002~1004.
参考文献
秦克章. 2000. 新疆北部中亚型造山与成矿作用. 中国科学院地质与地球物理研究所博士后科研工作报告.
参考文献
沈雪华, 姚春彦, 樊献科, 董永观, 游军. 2016. 新疆阿尔泰山系南缘萨尔朔克金铜多金属矿床地球化学特征与矿床成因探讨. 西北地质, 49(2): 84~92.
参考文献
宋国学, 秦克章, 刘铁兵, 李光明, 申萍. 2010. 阿尔泰南缘阿舍勒盆地泥盆纪火山岩中古老锆石的 U-Pb年龄、Hf同位素和稀土元素特征及其地质意义. 岩石学报, 26(10): 2946~2958.
参考文献
万博, 张连昌. 2006. 新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨. 岩石学报, 022(1): 145~152.
参考文献
王登红. 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582~590.
参考文献
王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.
参考文献
王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社.
参考文献
王涛, 童英, 李舢. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595~618.
参考文献
韦刚健, 梁细荣, 李献华. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295~299.
参考文献
吴玉峰, 杨富全, 刘峰. 2015. 新疆阿舍勒铜锌矿区脆韧性剪切带中绢云母40Ar/39Ar年代学及其地质意义. 地球学报, 36(1): 121~126.
参考文献
吴玉峰, 杨富全, 刘锋. 2016. 新疆阿舍勒铜锌矿区潜玄武安山岩的岩石地球化学特征及其地质意义. 岩石矿物学杂志, 35(1): 65~80.
参考文献
肖序常. 1992. 新疆北部及其邻区大地构造. 地质出版社, 1~108.
参考文献
邢雪芬. 1996. 新疆阿舍勒-冲乎尔地区泥盆纪火山岩系的研究及其大地构造环境的探讨. 沉积与特提斯地质, (3): 43~52.
参考文献
徐学义, 李荣社, 陈隽璐. 2014. 新疆北部古生代构造演化的几点认识. 岩石学报, 30(6): 1521~1534.
参考文献
徐义刚, 何斌, 罗震宇. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25~39.
参考文献
鄢全树, 石学法. 2006. 洋中脊与地幔柱热点相互作用研究进展. 海洋地质与第四纪地质, (5): 135~142.
参考文献
杨成栋. 2017. 新疆阿尔泰萨尔朔克金多金属矿床成矿作用研究. 中国地质科学院博士学位论文.
参考文献
杨富全, 毛景文, 郑建民. 2006. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型. 地质学报, 80(7): 963~983.
参考文献
杨富全, 李凤鸣, 秦纪华. 2013. 新疆阿舍勒铜锌矿区(潜)火山岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 矿床地质, (05): 869~883.
参考文献
杨富全, 吴玉峰, 杨俊杰. 2016. 新疆阿尔泰阿舍勒矿集区铜多金属矿床模型. 大地构造与成矿学, 40(4): 701~715.
参考文献
袁超, 龙晓平, 夏小平. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.
参考文献
赵国春, 吴福元. 1995. 地幔柱构造理论研究若干问题及研究进展. 地质科技情报, 14(2): 1~6.
参考文献
周刚, 董连慧, 秦纪华. 2012. 新疆哈巴河县阿舍勒一带花岗岩类形成时代及其对金矿成矿作用的制约. 矿床地质, (S1): 79~80.
参考文献
朱裕生, 肖克炎, 王全明, 徐珏, 冯京, 庄道泽, 高永峰, 高兰, 宋国耀, 陈郑辉, 方一平. 2002. 阿舍勒铜锌矿床三维定位预测. 北京: 地质出版社.
目录contents

    摘要

    阿舍勒泥盆纪火山盆地是阿尔泰西南缘重要的矿集区,产出我国著名的火山成因块状硫化物型(VMS)矿床——阿舍勒铜矿。其内部发育的火山岩和侵入岩地球化学特征记录了阿舍勒盆地的构造-岩浆演化和成岩、成矿作用过程,但其形成构造背景和成岩成矿机制一直存在争论。本文报道了阿舍勒矿集区萨尔朔克铜金多金属矿区深部英云闪长岩的LA-MC-ICP-MS锆石U-Pb 年龄(376.7±1.3 Ma)和岩石地球化学数据,结合前人在阿舍勒矿区火山岩、潜火山岩及其东侧哈巴河侵入岩体的岩石地球化学特征、同位素年代学研究成果和区域岩浆岩研究成果,笔者认为阿舍勒矿区泥盆纪火山岩和东侧哈巴河岩体可能是同一地质构造背景下同期不同阶段和不同构造部位的产物,形成于地幔软流圈高热流地幔柱上涌、板片断离背景下的活动陆缘拉张环境,与成矿作用时空关系密切的双峰式火山岩是不同深部、不同性质岩浆源在快速拉张背景下喷发、喷溢的产物。地幔柱上涌致使板片断离、沿基底断裂系快速拉张和幔源岩浆持续补给可能是形成“双峰式火成岩”和阿舍勒高镁火山岩建造的主要深部动力学机制。

    Abstract

    The Ashele basin is an important ore concentration area in the southwestern margin of Altay. The famous Ashele Cu-Zn deposit of volcanic massive sulfide type (VMS) occurs in China. The geochemical characteristics of both volcanic and intrusive rocks in the Ashele basin record the tectonic magmatic evolution, diagenesis and mineralization processes in this basin. However, the tectonic background and mineralization mechanism of the Ashele basin has always been controversial. This paper reports the zircon U-Pb age (376.7±1.3 Ma) of tonalite in the core of the Saershuoke Cu polymetallic deposit in the Ashele ore concentration area. Based on the geochemical characteristics, isotopic geochronology and regional magmatic rocks including volcanic, subvolcanic and intrusive rocks in the Ashele area, the authors believe that the Devonian volcanic rocks and Habahe intrusive rocks in the Ashele area may have had different stages and ages in the same geological tectonic setting. The bimodal volcanic rocks, which are closely related to mineralization in time and space, are the products of eruption, overflow and intrusion of different deep magma sources with different properties under the background of rapid extension. Mantle plume upwelling resulted in plate fragmentation, rapid extension along the basement fault system and continuous supply of mantle-derived magma may be the main deep dynamic mechanism for the formation of bimodal igneous rocks and the Ashele high Mg volcanic rocks.

  • 阿舍勒泥盆纪火山盆地属于哈萨克斯坦矿区阿尔泰火山成因块状硫化物型(VMS)铜多金属成矿带的东延部分,产出我国著名的阿舍勒大型铜锌多金属矿床。近30年来,前人对该矿床开展了大量的勘探和研究,取得了丰硕的成果认识,主要涉及火山岩形成的构造环境、时代、来源和岩石地球化学特征,矿床形成机制、古地理环境、成矿物质来源、矿床模式和成矿(找矿)预测等诸多方面(牟传龙等,1995; 陈毓川等,1996; 王登红,1996; 牛贺才等,1999; 朱裕生等,2002; 王登红等,2002; 高珍权等,2010; Wan Bo et al.,2010; 宋国学等,2010; 冯京等,2012; 吴玉峰等,2015; 杨富全等,2016; 杨成栋,2017),研究成果对指导矿床勘查和深边部找矿发挥了重要作用。

  • 尽管如此,区内尚有许多基础地质问题存在争议和疑问,如成矿构造背景、成岩和成矿物质来源,与同期哈巴河侵入岩体时空关系及其形成机制等。其中尤以火山岩与铜多金属成矿构造背景争论较多。早期争议焦点是形成环境是否与洋壳俯冲消减有关?一些学者认为是被动陆缘裂谷环境(肖序常等,1992; 何国琦等,1995; 牟传龙等,1996; 邢雪芬等,1996; 陈毓川等,1996; 王京彬等,1998; 焦学军等,2005),多数学者认为是活动陆缘(岛弧)环境(李春昱等,1983; 牛贺才等,1999; 秦克章,2000; Xiao Wenjiao et al.,2004; 袁超等,2007); 也有学者认为构造背景为洋中脊俯冲(Sun Min et al.,2009; Cai Keda et al.,2011)。近年来,研究者多倾向与洋壳俯冲有关,但对所处俯冲消减带中的具体构造环境有多种认识,有大洋岛弧环境(牛贺才等,1999)或成熟岛弧环境中洋内弧附近的前弧盆地环境(高珍权等,2010)之说,有弧后盆地(贾群子,1996)及弧内(弧间)盆地(万博等,2006)环境之说,还有陆缘弧岛弧(或弧前)环境(柴凤梅等,2013吴玉峰等,2016)之说。在火山岩物质来源研究方面的争议主要集中在矿区酸性火山岩与基性火山岩是否来自同一源区?高珍权等(2010)认为矿区酸性火山岩与基性火山岩可能起源同一岩浆源区(富集地幔),而王登红(1996)则认为二者来自不同源区,酸性火山岩不是同一源区岩浆结晶分异的产物。在成矿物质来源方面,多认为来自火山岩(王登红,1996; 杨富全等,2016),其中主成矿元素铜来源于基性火山岩(细碧岩)的海底热水水岩反应萃取下渗,但该成矿机制观点难以解释基性火山岩为矿体顶板的地质现象。近年来,对阿舍勒矿区东部相邻哈巴河岩体的年代学调查显示岩体形成时代与阿舍勒泥盆纪火山岩形成时代相近(蔡克大,2007; Cai Keda et al.,2010; 李永等,2012; 柴凤梅等,2013),其与相邻泥盆纪火山岩形成的深部岩浆作用机制,以及与成矿的关系等基础地质问题值得关注。

  • 阿舍勒矿集区已发现阿舍勒(大型)和萨尔朔克(中型)铜金多金属矿床,尚有喀英德、桦树沟、床阿依、阿依托汉等诸多小型铜及铁铜矿(点)和赛都、哲兰德、金坝、阿希勒等金矿,已有矿床(点)的深边部及外围成矿潜力很大。因此深入理解和掌握矿集区火成岩,尤其是与成矿和赋矿密切相关的泥盆纪火成岩(火山岩和侵入岩)的构造背景、成岩成矿物质来源及深部构造-岩浆演化过程(机制),对进一步开展矿集区及已知矿区深部成矿预测研究和找矿勘探可提供重要参考。本文基于在萨尔朔克矿区钻孔中侵位于阿舍勒组火山岩中的英云闪长岩的岩石地球化学和同位素年代学分析结果,结合前人在阿舍勒矿集区开展的泥盆纪火山岩及东侧哈巴河岩体侵入岩岩石地球化学特征、同位素年代学和区域地质构造背景研究成果和认识,就阿舍勒矿集区泥盆纪火成岩构造背景、物质来源和构造-岩浆演化进行研究和探讨,期望能对推动阿舍勒矿集区基础地质和矿床地质研究工作有所脾益。

  • 1 区域地质概况

  • 新疆阿尔泰是中亚增生造山带的重要组成部分,位于新疆北部,呈北西向展布,大地构造上位于西伯利亚板块南部大陆边缘增生体(图1a),区域古生代地层、构造和岩浆活动发育。依据变形变质和岩浆作用,可分为北阿尔泰、中阿尔泰和南阿尔泰三个构造带(Windley et al.,2002Xiao Wenjiao et al.,2004; Sun Min et al.,2008),也有学者将南侧的额尔齐斯构造带归为阿尔泰造山带(Yuan Chao et al.,2007; 宋国学等,2010)。阿舍勒、冲乎尔、克兰和麦兹4个著名的晚古生代泥盆纪火山盆地由西向东斜列式分布于南阿尔泰成矿带,其中冲乎尔、克兰和麦兹矿集区为哈萨克斯坦矿山阿尔泰成矿带的西延部分,阿舍勒矿集区则是其南侧矿区阿尔泰的西延段(李志纯,1996)。

  • 研究区位于南阿尔泰的西南部(图1b、c)。主体夹持于别斯萨拉和玛尔卡库里大断裂之间,以别斯萨拉大断裂为界,北侧主体为早中泥盆世的阿勒泰组和康布铁堡组火山岩。玛尔卡库里大断裂以西的托克萨雷组为海相陆源碎屑岩夹硅质岩、碳酸盐岩。下—中泥盆统阿舍勒组为阿舍勒铜矿、萨尔朔克金多金属矿的主要赋矿层位,以中酸性长英质火山岩(英安岩、流纹岩)及其碎屑岩为主夹少量细碧岩,为一套双峰式火山岩组合,阿舍勒组火山岩高精度同位素年代学研究显示火山作用发生于早中泥盆世,与成矿有关的火山作用主体形成于中泥盆世(万博等,2006; 杨富全等,2016)。齐也组为浅海—半深海相中酸-中基性火山岩、火山碎屑岩、火山碎屑沉积岩。

  • 阿舍勒泥盆纪火山盆地东部相邻的哈巴河杂岩体,出露面积约 480 km2(图1c)。主要由英云闪长岩、似板状英云闪长岩、花岗斑岩、二长花岗岩、闪长岩和辉长岩、辉绿岩组成,其中与阿舍勒泥盆纪相邻的杂岩体主体由中酸性英云闪长岩和基性的辉长岩、辉绿岩组成,与泥盆纪火山岩多呈断层接触,局部呈侵入接触关系。已有年代学研究显示,东南部二长花岗岩年龄形成于406 Ma(李永等,2012)、西北部似斑状英云闪长岩年龄为386 Ma、细中粒英云闪长岩年龄为375 Ma(柴凤梅等,2013)、辉绿岩形成于375 Ma(Cai Keda et al.,2010)。盆地北部别斯萨拉大断裂北侧阿什勒二长花岗岩成岩年龄为318 Ma(Yuan Chao et al.,2007),断裂东侧冲乎尔北片麻状二长花岗岩年龄为413 Ma。阿舍勒泥盆纪火山盆地西部分布有别列则克中酸性岩体群,其中沃多克英云闪长岩体形成于318 Ma(周刚等,2012)。

  • 2 矿区地质概况

  • 阿舍勒铜多金属矿床(大型)和萨尔索克铜金多金属矿床(中型)相距约6 km,分别位于泥盆纪火山盆地中南部阿舍勒村东北侧和东北部哈巴河岩体西北边侧(图2)。

  • 图1 阿舍勒一带区域地质(a、b)及矿产分布略图(c)(据李永等,2012修编)

  • Fig.1 Geological sketch map of the Ashele basin showing distribution of mineral deposits (after Li Yong et al., 2012)

  • (b):I—北阿尔泰; Ⅱ—中阿尔泰; Ⅲ—南阿尔泰; Ⅳ—额尔齐斯构造带;(c):1—阿舍勒铜锌矿; 2—多拉那萨依金矿; 3—萨尔朔克金多金属矿; 4—沃多克金矿; 5—哲兰德金矿; 6—赛都金矿; 7—金坝金矿; 8—喀英德铜矿; 9—桦树沟铜矿; 10—阿克齐金矿; 11—恰奔布拉克金矿; 12—吉勒拜金矿; I—玛尔卡库里深大断裂; Ⅱ—别斯萨拉大断裂; Ⅲ—加曼哈巴大断裂; ①—新生代; ②—下石炭统红山嘴组; ③—上泥盆统齐也组; ④—中泥盆统阿勒泰组; ⑤—中-下泥盆统托克萨雷组; ⑥—中-下泥盆统阿舍勒组; ⑦—下泥盆统康布铁堡组; ⑧—震旦系哈巴河组; ⑨—辉长岩、辉绿岩; ⑩—闪长岩; ⑪—英云闪长岩; ⑫—二长花岗岩; ⑬—片麻状二长花岗岩; ⑭—地质界线; ⑮—断裂; ⑯—铜锌矿; ⑰—金矿; ⑱—金铜铅矿; ⑲—铜矿; ⑳—大型矿床; ㉑—中型矿床; ㉒—小型矿床; ㉓—矿点

  • (b) :I—North Altay; Ⅱ—Middle Altay; Ⅲ—South Altay; Ⅳ—Erqis structural belt; (c) :1—Ashele Cu-Zn deposit; 2—Duonasayi Au deposit; 3—Saershuoke Cu deposit; 4—Woduoke Au deposit; 5—Zhelande Au deposit; 6—Saidu Au deposit; 7— Jinba Au deposit; 8— Kayingde Cu deposit; 9—Huashugou Cu deposit; 10—Akeqi Au deposit; 11—Qiabenbulak Au deposit; 12— Jilebai Au deposit; I—Maerkakuli fault; Ⅱ—Biesisala fault; Ⅲ—Jiamanhaba fault; ①—Cenozoic strata; ②—Lower Carboniferous Hongshanzui Formation; ③—Upper Devonian Qiye Formation; ④—Middle Devonian Altay Formation; ⑤—Middle—lower Devonian Tuokesalei Formation; ⑥—Middle—Lower Devonian Ashele Formation; ⑦—Lower Devonian Kangbutiebao Formation; ⑧—Simian Habahe Group; ⑨—gabbro/diabase; ⑩—diorite; ⑪—tonalite; ⑫—monzonitic granite; ⑬—gneissic monzonitic granite; ⑭—geological boundary; ⑮—fracture; ⑯—Cu-Zn deposit; ⑰—Au deposit; ⑱—Au-Cu-Pb deposit; ⑲—Cu deposit; ⑳—large deposit; ㉑—medium sized deposit; ㉒—small deposit; ㉓—ore occurrence

  • 矿区主要出露下—中泥盆统阿舍勒组和上泥盆统齐也组(图3)。其中阿舍勒组是阿舍勒盆地主要的含矿层位,与上覆齐也组呈角度不整合,是一套以中酸性火山岩及其碎屑岩为主体的火山-沉积岩夹碳酸盐岩建造,可分为2个岩性段:在阿舍勒矿区,第一岩性段以滨-浅海相凝灰岩为主,夹沉(含角砾)凝灰岩、凝灰质砂岩、流纹岩、灰岩,厚度大于1136 m; 第二岩性段为矿区主体含矿地层,厚度691 m,可分为3个亚段,下亚段(D2as2a)厚323 m,主体以中酸性火山碎屑岩为主,下部分布有英安岩、流纹岩、霏细岩,上部分布有结晶灰岩、重晶石和金属硫化物矿层; 中亚段(D2as2b)厚222 m,以中酸性火山碎屑岩和火山-沉积碎屑岩类为主与薄层基性火山岩互层,夹少量结晶灰岩、绢云千枚岩、含铁硅质岩及多金属硫化物和重晶石矿层,是矿区主要含矿层; 上亚段(D2as2c)可见厚度146 m,岩性主要为玄武岩(有块状,角砾状及杏仁状构造)夹少量沉凝灰岩、英安岩及金属硫化物薄矿层或透镜体。上泥盆统齐也组分为3个岩性段:第一岩性段(D3ql)厚614 m,主要由角砾集块级粗火山碎屑岩和中酸性火山熔岩(包括碎屑熔岩)组成,第二岩性段(D3q2)厚517 m,以层状火山碎屑岩和火山-沉积碎屑岩为主,夹有中性火山熔岩; 第三岩性段(D3q3)厚639 m,由一套集块角砾级粗火山碎屑岩和中基性熔岩组成,在阿舍勒和萨尔索克矿区主要分布为齐也组第一岩性段中酸性火山岩。

  • 图2 阿舍勒和萨尔朔克铜多金属矿区地质简图(据新疆地矿局第四地质大队,1988修编)

  • Fig.2 Geological sketch map of the Ashele and Saershuoke Cu deposit (after No.4 Geological Team of the Xinjiang Bureau of Geology and Mineral Exploration and Development, 1988)

  • 1 —第四系; 2—下石炭统红山嘴组; 3—上泥盆统齐也组第三段; 4—上泥盆统齐也组第二段; 5—上泥盆统齐也组第一段; 6—中泥盆统阿勒泰组; 7—中下泥盆统托克萨雷组; 8—中下泥盆统阿舍勒组第二段; 9—中下泥盆统阿舍勒组第一段; 10—辉长岩、辉绿岩; 11—潜玄武岩; 12—闪长岩; 13—英云闪长岩; 14—二长花岗岩; 15—流纹斑岩; 16—断裂; 17—阿舍勒铜锌矿; 18—萨尔朔克金铜铅矿; 19—采样位置

  • 1 —Quaternary; 2—Lower Carboniferous Hongshanzui Formation; 3—thrid member of Upper Devonian Qiye Formation; 4—second member of Upper Devonian Qiye Formation; 5—frist member of Upper Devonian Qiye Formation; 6—Middle Devonian Altay Formation; 7—Middle-lower Devonian Tuokesalei Formation; 8—second member of Middle-lower Devonian Ashele Formation; 9—frist member of Middle-lower Devonian Ashele Formation; 10—gabbro/diabase; 11—basalt; 12—diorite; 13—tonalite; 14—monzonitic granite; 15—rhyolite porphyry; 16—fracture; 17—Ashele Cu-Zn deposit; 18—Sarsuk polymetallic Au deposit; 19—sampling location

  • 矿区断裂构造发育,有NW、近S-N、NE 和近E-W向4组断裂,矿区内近S-N向构造发育,矿区外围NW向断裂为区域大断裂的组成部分,规模较大,其余断裂规模较小,延伸较短,形成时代较晚。矿区潜火山岩及岩脉较发育,潜火山岩主要有流纹斑岩、英安斑岩、潜玄武岩、石英霏细斑岩等,脉岩主要有辉绿岩、辉绿玢岩、石英闪长岩及闪长玢岩等,其中阿舍勒矿区发育流纹斑岩、英安斑岩、潜玄武岩、闪长玢岩等,萨尔朔克矿区则以流纹斑岩规模最大,辉绿岩脉发育。近年来钻孔揭示阿舍勒矿区南部桦树沟和萨尔朔克南部的阿舍勒组火山岩深部有(似斑状)英云闪长岩侵入。

  • 3 样品特征及测试方法

  • 采样位置(图4):样品采自萨尔朔克矿区南部124勘探线ZK12403孔(孔深668.66 m),该孔上部(0~379.66 m)主体为阿舍勒组流纹质、英安质凝灰岩、角砾凝灰岩,夹辉绿岩脉; 自379.66 m以下主体为英云闪长岩组成,局部可见后期花岗斑岩及辉绿岩脉。

  • 英云闪长岩为浅灰白色,花岗结构,块状构造。主要成分:斜长石占40%~45%,钾长石占5%~10%,石英占25%~35%,角闪石黑云母等暗色矿物约占5%~10%。岩芯矿化蚀变一般,具有硅化、轻微的弱绢英岩化和弱绿泥石化,部分岩芯可见黄铁矿脉及星点状黄铁矿及黄铜矿,主要分布在花岗斑岩中(图4)。

  • 图3 阿舍勒矿区泥盆纪火山岩柱状图(据新疆地矿局第四地质大队,1988; 王登红,1996; 高珍全等,2010修编)

  • Fig.3 Stratigraphic column of volcanic rocks in Ashele basin (after No.4 Geological Team of the Xinjiang Bureau of Geology and Mineral Exploration and Development, 1988; Wang Denghong, 1996; Gao Zhenquan et al., 2010)

  • 1 —火山碎屑岩; 2—灰岩; 3—砂岩、粉砂岩; 4—流纹岩; 5—英安岩; 6—安山岩; 7—玄武岩; 8—矿体

  • 1 —Pyroclastic rock; 2—limestone; 3—sandstone-siltstone; 4—rhyolite; 5—dacite; 6—andesite; 7—basalt; 8—ore deposit

  • 图4 萨尔朔克矿区ZK12403钻孔典型样品岩芯照片及镜下特征

  • Fig.4 Core photos and microscopic characteristics of typical samples from ZK12403 in Saershuoke deposit

  • 1 —流纹质、英安质角砾凝灰岩; 2—英云闪长岩; 3—花岗斑岩; 4—辉绿岩; 5—黄铁矿化、黄铜矿化、绿帘石化; 6—取样位置; Py—黄铁矿; Ccp—黄铜矿; Ep—绿帘石; Qtz—石英; Pl—斜长石; Kfs—钾长石; Bt—黑云母; Ser—绢云母;(a)~(d)为正交偏光

  • 1 —Rhyolitic and dacite breccia tuff; 2—tonalite; 3—granite porphyry; 4—diabase; 5—pyritization, chalcopyrite and epidotization; 6—sampling location; Py—pyrite; Ccp—chalcopyrite; Ep—epidote; Qtz—quartz; Pl—plagioclase; Kfs—potassium feldspar; Bt—biotite; Ser—sericite; (a) ~ (d) : orthogonal polarization

  • 全岩主量、微量元素分析测试在中国地质科学院国家地质实验测试中心完成。对岩石样品进行详细手标本和偏光显微镜观察,挑选较为新鲜的样品进行主微量元素分析,主量元素测试采用熔片法X射线荧光光谱法(XRF)分析,主要氧化物的分析相对误差小于2%,微量和稀土元素采用等离子质谱法(ICP-MS),分析相对误差低于5%~10%。

  • 锆石U-Pb同位素定年利用LA-ICP-MS分析完成。激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约15 s的空白信号和50 s的样品信号。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5~10个样品点,分析2次91500。本次测试剥蚀光斑直径根据实际情况选择30 μm。锆石年龄谐和图用Isoplot 3.0程序获得。

  • 全岩Sr-Nd同位素采用Micromass IsoProbe多接收高分辨等离子质谱仪进行测定,具体分析流程及仪器分析情况详见韦刚健等(2002)梁细荣等(2003)

  • 4 分析结果

  • 4.1 锆石U-Pb年龄

  • 通过透射光、反射光以及阴极发光对比研究,对英云闪长岩(ZK124-643)样品进行了锆石LA-ICP-MS分析,分析结果见表1。

  • 样品中分选的锆石多为长柱状,发育清晰的韵律环带结构,粒径50~100 μm,长宽比多为2∶1~3∶1,半自形、自形晶形,晶面整洁光滑。U和Th含量变化范围分别为43.1×10-6~833×10-6和105.6×10-6~562.6×10-6,锆石Th/U比值在0.47~2.45之间,属岩浆成因锆石。在U-Pb谐和图上,数据投影点多数在谐和线附近(图5),锆石颗粒的206Pb/238U年龄值较稳定,集中分布于376 Ma附近,协和年龄值为376.7±1.3 Ma,英云闪长岩形成于晚中泥盆世。

  • 4.2 主微量元素

  • 岩石化学分析结果(表2)显示,本区英云闪长岩具有高硅(SiO2 =75.66%~77.50%)含量,均值为76.68%,铝(Al2O3=10.73%~12.22%)和全碱(K2O+Na2O=6.22%~7.14%)含量中等,低P2O5(<0.04%)和CaO(0.39%~1.23%)含量,富钠质(Na2O/K2O= 3.11~37.88),TiO2含量较低(0.084%~0.159%)。在K2O-SiO2 图解上位于低钾拉斑质系列岩区(图6),铝饱和指数(A/CNK=0.87~1.09),在A/NK-A/CNK图解中位于准铝质—过铝质岩区(图7)。本区英云闪长岩属低钾偏铝质—弱过铝质岩石。

  • 表1 萨尔朔克矿区英云闪长岩LA-ICP-MS锆石U-Pb分析结果

  • Table1 LA-ICP-MS zircon U-Pb isotopic data of the tonalite from Saershuoke

  • 图5 萨尔朔克矿区ZK12403钻孔英云闪长岩样品LA-ICP-MS锆石U-Pb年龄图

  • Fig.5 LA-ICP-MS zircon U-Pb concordia diagrams and 206Pb/238U average ages of from ZK12403 in Saershuoke deposit tonalite

  • 在地幔标准化微量元素蛛网图(图8a)上,具有显著铕负异常(δEu =0.39~0.71),暗示母岩浆可能发生过斜长石结晶分异或源区有斜长石残留。样品稀土总量介于61.14×10-6~116.29×10-6之间,LREE/HREE=2.32~3.75,(La/Yb)N=1.62~2.82,(La/Sm)N=1.67~2.23,(Gd/Yb)N=0.76~1.15(表3),显示相对富集轻稀土元素,轻重稀土元素分馏较强。

  • 在球粒陨石标准化配分模式图解(图8b)上,各样品呈现轻稀土相对富集的右倾型配分曲线,相对富集Rb、Ba、Th、K等大离子亲石元素,相对亏损Sr、Nb、Ta、Ti等高场强元素,具有明显的Sr、P和Ti负异常。

  • 表2 萨尔朔克矿区英云闪长岩主量元素(%)、微量元素(×10-6)和稀土元素(×10-6)含量

  • Table2 Chemical compositions of major elements (%) and trace elements (×10-6) of the tonalites from the Sarsuk polymetallic Au deposit

  • 图6 阿舍勒盆地火成岩Nb/Y-Zr/TiO2图解(a、b)(据Winchester et al.1977)及SiO2-K2O图解(c、d)(据Peccerillo et al.,1976

  • Fig.6 Nb/Y-Zr/TiO2 diagrams (a, b) (after Winchester et al., 1977) and SiO2-K2O diagrams (c, d) (after Peccerillo et al., 1976) for the igneous rocks in the Ashele basin

  • 图中哈巴河岩体英云闪长岩及似斑状英云闪长岩数据引自柴凤梅等(2013); 哈巴河岩体辉长岩及辉绿岩引自Cai Keda et al.(2010),萨尔朔克矿区流纹斑岩及辉绿岩引自杨成栋(2017); 阿舍勒组英安岩、玄武岩、齐也组安山-玄武岩数据引自高珍权等(2010),阿舍勒组细碧岩、角斑岩、石英角斑岩数据引自王登红(1996); 齐也组潜玄武岩数据引自吴玉峰等(2015);(a)、(c): 1—萨尔朔克矿区隐伏英云闪长岩; 2—萨尔朔克矿区辉绿岩; 3—哈巴河岩体似斑状英云闪长岩; 4—哈巴河岩体英云闪长岩; 5—哈巴河岩体辉长岩; 6—哈巴河岩体辉绿岩;(b)、(d):1—阿舍勒组流纹斑岩; 2—阿舍勒组玄武岩; 3—阿舍勒组英安岩; 4—阿舍勒组细碧岩; 5—阿舍勒组角斑岩; 6—阿舍勒组石英角斑岩; 7—齐也组潜玄武岩; 8—齐也组安山-玄武岩

  • Habahe tonlites data are from Chai Fengmei et al. (2013) ; Habahe gabbro and diabase data are from Cai Keda et al. (2010) , Saershuoke rhyolite and diabase data are from Yang Chengdong (2017) ; data of spilite and keratophyre in Ashele Formation are from Wang Denghong (1996) ; Qiye Formation basalt data are from Wu Yufeng et al. (2015) ; other data are from Gao Zhenquan et al. (2010) and references therein; (a) and (c) : 1—concealed tonalite of Sarsuk mining area; 2—diabase of Sarsuk mining area; 3—porphyry tonalite of Habahe pluton; 4—tonalite of Habahe pluton; 5—gabbro of Habahe pluton; 6—diabase of Habahe pluton; (b) and (d) : 1—rhyolite of Ashele Formation porphyry; 2—basalt of Ashele Formation; 3—dacite of Ashele Formation; 4—spilite of Ashele Formation; 5—keratophyry of Ashele Formation; 6—quartz keratophyry of Ashele Formation; 7—basalt of Qiye Formation; 8—andesite-basalt of Qiye Formation

  • 对比泥盆纪火成岩主微量元素(哈巴河侵入岩与阿舍勒火山岩)显示:

  • 侵入岩酸性端元(英云闪长岩)属于低钾、偏铝质-弱过铝质系列岩石(图7),侵入岩基性端元(辉长岩、辉绿岩)属于低钾、偏铝质-弱过铝质系列岩石,二者均为低钾拉斑系列岩石(图6b); 中泥盆统阿舍勒组火山岩明显呈酸性和基性两个端元,仅含有少量的中性火山岩组成,为酸性端元与基性端元的混合。由于阿舍勒组以酸性岩为主,碎屑岩含有基性角砾等碎屑物而使之偏离酸性端员,而齐也组正相反,它以基性岩为主,含有酸性碎屑物的角砾凝灰岩使之偏离基性端员(王登红,1996)。

  • 图7 阿舍勒盆地火成岩A/NCK-A/NK图解(a、b)(底图据 Maniar et al.,1989)。图中灰色图例数据来源同图6

  • Fig.7 A/NCK-A/NK diagrams for the igneous rocks in the Ashele basin (a, b) (after Maniar et al., 1989) . The data source of the gray legend in the figure is the same as that in Fig.6

  • (a): 1—萨尔朔克矿区隐伏英云闪长岩; 2—萨尔朔克矿区辉绿岩; 3—哈巴河岩体似斑状英云闪长岩; 4—哈巴河岩体英云闪长岩;(b):1—阿舍勒组流纹斑岩; 2—阿舍勒组玄武岩; 3—阿舍勒组英安岩; 4—阿舍勒组细碧岩; 5—阿舍勒组角斑岩; 6—阿舍勒组石英角斑岩; 7—齐也组潜玄武岩; 8—齐也组安山-玄武岩

  • (a) : 1—Concealed tonalite of Sarsuk mining area; 2—dabase of Sarsuk mining area; 3—porphyry tonalite of Habahe pluton; 4—tonalite of Habahe pluton; (b) : 1—rhyolite porphyry of Ashele Formation; 2—basalt of Ashele Formation; 3—dacite of Ashele Formation; 4—spilite of Ashele Formation; 5—keratophyry of Ashele Formation; 6—quartz keratophyry of Ashele Formation; 7—basalt of Qiye Formation; 8—andesite-basalt of Qiye Formation

  • (1)酸性火山岩(石英角斑岩、流纹岩、英安岩及其潜火山岩)属于低-中高钾、低钛、过铝质、富镁-高镁岩石,基性火山岩(细碧岩、玄武岩)属于低钾、低-中钛、准铝质-弱过铝质、富镁岩石,二者主体属于低钾拉斑-钙碱性系列岩石(图6b); 上泥盆统齐也组中基性火山岩(潜玄武岩、安山-玄武岩)属于低钾、低-中钛、准铝质、富镁岩石,主体属于低钾拉斑系列岩石(图6b); 泥盆纪后期侵入阿舍勒组的辉绿岩属于低钾-高钾、低-中钛、准铝质-过铝质、富镁岩石,主体属于高钾钙碱性系列岩石(图6a)。

  • (2)稀土元素地幔标准化微量元素蛛网图显示,中酸性侵入岩(英云闪长岩)较阿舍勒火山岩的稀土总量略高,但轻稀土含量低于未蚀变的流纹斑岩(图8a); 阿舍勒火山岩基性端元(细碧岩、玄武岩)一般低于酸性端元(流纹斑岩、石英角斑岩)的稀土总量,前者为轻稀土相对亏损,后者相反(王登红,1996),考虑到不同学者样品取样位置差异(英安岩、石英角斑岩),后期热液不均匀蚀变使这种关系局部复杂(图8e)。中酸性侵入岩轻重稀土元素分馏较强,铕亏损十分明显,表现出强负铕异常,曲线为右倾“V”型(图9a),基性侵入岩(脉)配分曲线为平坦型(图8c),铕亏损不太明显且有变化较大(高珍权等,2010); 阿舍勒组基性端元(细碧岩)配分曲线为左倾-平坦型(图9c),酸性端元(英安岩、石英角斑岩、流纹斑岩)曲线为右倾型(图8a、e); 齐也组中基性岩曲线为右倾型(图8e)。

  • (3)稀土元素球粒陨石标准化配分曲线显示,哈巴河中酸性侵入岩(英云闪长岩)和矿区流纹斑岩稀土元素曲线相对变化较小,变化趋势基本相似,相对富集大离子亲石元素(Rb、Ba、Th、K等),亏损高场强元素(Sr、Nb、Ta、Ti等),强亏损Eu,有明显的Sr、P和Ti负异常(图8b); 而中基性侵入岩(辉长岩、辉绿岩)中的稀土元素曲线变化趋势多与中酸性侵入岩有较大差异(图8d)。阿舍勒组双峰式火山岩的稀土元素曲线相对变化较大,大离子亲石元素和高场强元素富集及亏损特征不明显。齐也组安山岩及潜玄武岩配分曲线变化特征相似,但与阿舍勒组玄武岩或细碧岩的配分曲线变化差异明显。

  • 图8 阿舍勒盆地火成岩球粒陨石标准化稀土元素配分图(a、c、e)和原始地幔标准化微量元素蛛网图(b、d、f)(标准化数值据Sun et al.,1989); 图中灰色图例数据来源同图7

  • Fig.8 Chondrite-normalized REE distribution patterns (a, c, e) and continental primitive mantle-normalized multi-element distribution patterns (b, d, f) (normalizing values after Sun et al., 1989) for the igneous rocks in the Ashele basin; the data source of the gray legend in the figure is the same as that in Fig.7

  • (a)、(b):1—萨尔朔克矿区隐伏英云闪长岩; 2—萨尔朔克矿区流纹斑岩; 3—哈巴河岩体英云闪长岩;(c)、(d):1—萨尔朔克矿区辉绿岩; 2—齐也组潜玄武岩; 3—阿舍勒组玄武岩; 4—阿舍勒组细碧岩; 5—哈巴河岩体辉长岩; 6—哈巴河岩体辉绿岩;(e)、(f):1—阿舍勒组英安岩; 2—齐也组安山岩; 3—阿舍勒石英角斑岩

  • (a) and (b) : 1—concealed tonalite of Sarsuk mining area; 2—rhyolite porphyry of Sarsuk mining area; 3—tonalite of Habahe pluton; (c) and (d) : 1—diabase of Sarsuk mining area; 2—basalt of Qiye Formation; 3—basalt of Ashele Formation; 4—spilite of Ashele Formation; 5—gabbro of Habahe pluton; 6—diabase of Habahe pluton; (e) and (f) : 1—dacite of Ashele Formation; 2—andesite of Qiye Formation; 3—quartz keratophyry of Ashele Formation

  • 4.3 全岩Sr-Nd同位素

  • 对ZK124-583、ZK124-619、ZK124-667三个样品进行全岩Sr-Nd同位素测定,测定结果见表3。英云闪长岩Nd同位素二阶段模式年龄(T DM2)为945~882 Ma,揭示岩浆来源可能与新生地壳或与深部前寒武纪变质结晶基底有关。样品ZK124-619具有较低(87Sr/86Sr)i值(0.6960),为不合理(87Sr/86Sr)i值,样品ZK124-583、ZK124-667 的(87Sr/86Sr)i值分别为0.7071和0.7072(表3),εNdt)分别为2.26和2.45,T DM2分别为930 Ma和945 Ma。

  • 表3 萨尔朔克矿区英云闪长岩Sr-Nd同位素值

  • Table3 Sr-Nd isotopic compositions of the tonalite from Saershuoke

  • 5 讨论

  • 前人多关注阿舍勒火山岩和相邻哈巴河中酸性侵入岩物质来源和成矿构造地质背景,且对阿舍勒组双峰式火山岩是否为同源岩浆演化产物有不同认识(王登红,1996; 高珍权,2010),但对二者在深部岩浆来源、形成和成岩时空演化关系方面则少有论述。本文主要结合前人研究成果,对泥盆纪火成岩(侵入岩与火山岩)岩浆来源和晚古生代构造-岩浆演化这两个基础地质问题进行讨论。

  • 5.1 泥盆纪火山岩与侵入岩源区是否相同?

  • 泥盆纪火成岩主要指火山岩(阿舍勒组双峰式火山岩、齐也组中基性火山岩)和哈巴河岩体中酸性-基性侵入岩体(脉)。近十多年来的高精度同位素年代学研究显示,泥盆纪火山岩与相邻哈巴河中酸性侵入岩的成岩时代相近(表4),且多呈断层接触(图1、2),结合已有地质信息,可判别中酸性侵入岩(英云闪长岩)和齐也组中基性火山-潜火山岩年代均晚于中泥盆世“双峰式”火山岩,基性侵入岩(辉长岩、辉绿岩)略晚于中酸性侵入岩(侵入关系)。

  • 值得注意的是,中泥盆纪火山岩及其同期晚阶段相邻东侧哈巴河(复式)岩体主体均呈现“双峰式”特征,本次发现的萨尔朔克隐伏英云闪长岩(约376 Ma)与中泥盆阿舍勒组火山岩(约408~371 Ma)呈侵入接触关系,显示二者可能有一定成因联系。

  • 在阿舍勒组双峰式火山岩中,酸性端元和基性端元岩石化学主微量元素特征显示,相对于基性火成岩呈大面积(体积)分布的中酸性岩浆主要源自地壳物质的部分熔融,但有较明显的幔源成分加入,这与国外学者(Thompson et al.,1995)研究大体积花岗质岩浆主要为壳源物质部分熔融产物的认识一致; 在阿舍勒矿区,宋国学(2010)杨富全(2013)在火山岩中均发现存在岩浆演化中捕获的老锆石(2505~743 Ma),同位素年代学数据揭示矿区存在古元古代—早古生代基底,也间接指示中酸性火成岩主要来自壳源物质部分熔融; 从微量元素锆石 εHft)数值变化(英安岩:-1.41~8.5; 流纹岩:7~13)显示英安岩有更多幔源物质加入(宋国学等,2010; 沈雪华等,2016)。La-La/Sm比值关系图显示基性岩(近斜直线)与酸性岩(近水平线)二者物质来源不同(王登红,1996),基性岩浆则主要源自幔源物质部分熔融,可能有少量壳源物质加入。

  • 表4 阿舍勒矿区及周边火成岩锆石U-Pb年龄统计表

  • Table4 Zircon U-Pb ages of igneous rocks in Ashele basin and its surrounding areas

  • 齐也组中基性岩(潜玄武(安山)岩)岩石化学主微量元素特征显示,中基性岩浆主要源自幔源物质部分熔融,Zr/Hf同位素比值(27~29)显示岩浆形成-演化过程中可能存在少量壳源物质加入(吴玉峰等,2016)。

  • 萨尔朔克矿区与东侧英云闪长岩同位素年代测定值及岩石地球化学主微量元素特征(柴凤梅等,2013)相似,从Sr和Al2O3含量、与地壳参考值对比的A/CNK、Nb/ Ta、Zr/Hf、Th/Ta 和Ti/Zr 比值判别,其岩浆主要源自壳源物质部分熔融(Wilson,1989; Francalanci et al.,1993; Green,1995),本次Sr-Nd同位素分析结果显示,英云闪长岩(87Sr/86Sr)i介于幔源玄武岩(0.706)和地壳部分熔融花岗岩(0.718)的Sr初始值之间,但更接近于幔源玄武岩的Sr初始值,暗示在岩浆形成与演化过程中可能存在壳、幔不同性质物源加入。在εNdt)-(87Sr/86Sr)i图解中(图9a),两件英云闪长岩样品与本区哈巴河岩体辉长岩等火成岩的位置大致接近; 在εNdt)-t图中,所有数据点位于北疆洋壳地壳和球粒陨石线之间(图9b),暗示岩浆起源可能主要与壳源物质部分熔融有关。哈巴河岩体中基性辉长岩、辉绿岩岩石地球化学主微量元素特征分析显示基性侵入岩主要源自幔源物质部分熔融(Cai Keda et al.,2010)。

  • 综合本次和前人主微量元素地球化学分析结果,本区泥盆纪火成岩形成与不同比例及不同程度的壳-幔物质混合-结晶分异相关,火山岩与侵入岩具有相似的成岩物质来源,基性端元主要源自幔源物质部分熔融(有少量壳源物质加入),酸性端元主要源自壳源物质部分熔融(有少量幔源物质加入),那么,二者的酸性端元(或基性端元)是否源自相同源区?如果相同,为何仅火山岩表现显著富镁特征?

  • 本文认为泥盆纪火山岩和侵入岩酸性端元(或基性端元)是同一大地构造背景下源自同一源区,但在岩浆形成-演化-喷发/侵入动态过程中所处构造部位不同,且喷发/侵入时间有差异,主要依据如下:① 酸性岩成岩时间相近(侵入岩: 406~375 Ma,火山岩: 408~371 Ma)(表4),二者呈侵入/被侵入关系(图3)。② 酸性岩及基性岩主微量元素特征显示:侵入岩与火山岩均为相对富钠低钾岩浆产物,未经热液蚀变或弱蚀变岩石稀土元素配分模式一致,大离子亲石元素和高场强元素变化趋势相同(图8),具有明显的Sr、P和Ti的负异常,暗示母岩浆可能发生过磷灰石、斜长石、角闪石和钛铁矿等矿物的结晶分异或源区中有这些矿物的残留。全岩Sr-Nd同位素和锆石Hf同位素分析成果,侵入岩Nd同位素二阶段模式年龄及火山岩老锆石年龄(宋国学等,2010; 杨富全等,2013)均指示岩浆主要源自新生地壳或前寒武纪变质结晶基底。③ 侵入岩与火山岩所处构造部位不同,成岩过程中,火山岩处于基底大断裂发育中心部位,经喷发-溢流-超浅成侵入形成,而侵入岩处于外侧,火山作用期后收缩松弛期侵入火山岩中。处于基底大断裂构造中心部位的壳源酸性岩浆房的早期排气作用使其更宜获取幔源物质的持续注入,从而进一步演化促使富镁火山岩的形成,不同岩性镁含量变化与壳幔物质混合程度有关。

  • 5.2 泥盆纪构造-岩浆演化

  • 关于阿尔泰南缘泥盆纪深部大地构造环境,传统观点基于板块俯冲消减的沟-弧-盆体系,多数学者对于区域上早古生代在阿尔泰陆块和准噶尔陆块之间发育斋桑-准噶尔洋(或额尔齐斯洋)的认识基本一致(徐学义等,2014; 李锦轶等,19901999),但对阿舍勒盆地晚古生代构造背景认识尚不明晰,主要疑问有:① 阿舍勒火山盆地西侧的马尔卡卡库里断裂是穿壳深断裂吗?② 早泥盆世托克萨雷组陆源碎屑物物源来自哪里?③ 阿舍勒火山盆地形成是否一定与洋壳俯冲作用有关?

  • 最新的地球物理深部探测(反射地震和大地电磁测深)和区域重磁场研究成果(另文发表)显示,阿舍勒火山盆地西侧的玛尔卡库里断裂并非前人厘定的穿壳深大断裂,而是后期火山岩盖层中的走滑断裂,据此及相应的岩石建造特征,可判别阿舍勒组和托克萨雷组地层为相同近海活动陆缘斜坡不同部位的产物,托克萨雷组更靠近古陆块一侧。

  • 对比哈萨克斯坦阿尔泰巨型成矿带(杨富全等,2006),在我国境内阿尔泰南缘泥盆纪火山盆地中,冲乎尔、克朗(兰)和麦兹盆地均属于矿区阿尔泰北缘,阿舍勒盆地属于矿区阿尔泰南缘,二者以深大断裂(别斯萨拉大断裂)为界,北侧阿勒泰组和康布铁堡组(碎屑岩及火成岩)变质变形强烈,南侧托克萨雷组和阿舍勒组-齐也组(碎屑岩及火成岩)变质变形弱,依据托克萨雷组碎屑岩(夹生物碎屑灰岩)建造特征和空间分布,对比哈萨克斯坦矿区阿尔泰南缘,显示托克萨雷组陆源碎屑物更可能来自阿舍勒西南部“古陆块”,该古陆块可能在早古生代晚期已拼合为阿尔泰古陆块的一部分,在晚古生代早期以残留海盆与阿尔泰古陆块相连。

  • 图9 萨尔朔克矿区英云闪长岩εNdt)-(87Sr/86Sr)i图解(a)及锆石年龄-εNdt)图解(b)

  • Fig.9 εNd (t) - (87Sr/86Sr) i diagram (a) and age (Ma) -εNd (t) diagram (b) for the igneous rocks from Saershuoke

  • 早—中元古代地壳引自Hu Aiqin et al.(2000),北疆地区古生代洋壳引自韩宝福等(1999)Hu Aiqin et al.(2000),阿舍勒εNdt)值引自Wu Yufeng et al.(2015),萨尔朔克流纹斑岩及辉绿岩εNdt)引自杨成栋(2017),哈巴河岩体辉长岩、辉绿岩εNdt)引自Cai Keda et al.(2010),其余εNdt)数据引Yu Yang et al.(2019)及其相关文献; 1—本文英云闪长岩; 2—萨尔朔克流纹斑岩; 3—萨尔朔克辉绿岩; 4—阿舍勒组、齐也组玄武岩; 5—哈巴河岩体辉长岩、辉绿岩; 6—哈巴河岩体黑云母花岗岩; 7—阿尔泰强过铝质花岗岩

  • The early—middle Proterozoic crust is from Hu Aiqin et al. (2000) , the oceanic crust of the northern Xinjiang from Han Baofu et al. (1999) and Hu Aiqin et al. (2000) , Ashele εNd (t) data are from Wu Yufeng et al. (2015) , Saershuoke εNd (t) data are from Yang Chengdong (2017) , other εNd (t) data are from Yu Yang et al. (2019) and references therein; 1—concealed tonalite of Sarsuk mining area; 2—rhyolite porphyry of Sarsuk mining area; 3—diabase of Sarsuk mining area; 4—basalts of Ashele and Qiye formations; 5—gabbro and diabase of Habahe pluton; 6—biotite granite of Habahe pluton; 7—strong peraluminous granite of Altai

  • 从岩石学、岩石地球化学研究角度,多数学者认为阿舍勒泥盆纪火成岩形成与洋壳俯冲作用关系密切(Sun Min et al.,2009; Cai Keda et al.,2011),从矿床学角度,则强调其形成与拉张作用或海底裂谷作用有关(陈毓川等,1996; 王登红,1996)。对于早古生代晚期的构造背景和演化,前人研究显示,阿尔泰造山作用与早古生代中晚期(奥陶纪-志留纪)陆缘俯冲密切相关(王涛等,2010),早古生代晚期,位于活动大陆边缘(袁超等,2007)的阿尔泰南缘造山带处于挤压体制(洋壳俯冲消减)向拉张体制(陆缘海底裂谷扩张)转换的构造环境(李会军等,2010),基于阿尔泰造山带古生代大规模花岗岩的年代学和Nd同位素研究,王涛等(2010)提出了增生造山作用不仅有陆缘弧前增生,还存在陆缘裂解再拼合作用。

  • 基于区内泥盆纪火成岩物源时空分布与岩浆动态演化过程密切关联,借鉴板块拆沉理论及地幔柱理论(赵国春等,1995; 王登红,1996; 鄢全树等,2006; 徐义刚等,2013; 陈凌等,2020),本文认为在阿尔泰西南缘阿舍勒一带,与拉张作用相伴的大规模火山-岩浆活动可能与深部地幔热柱(羽)上涌造成的局部板片断离-拆沉作用有关,阿舍勒组火山岩和其后侵入的哈巴河岩体是同一构造背景下不同构造部位、同期不同阶段的产物,二者均呈现快速拉张动力学背景下的“双峰式”特征。

  • 区内晚古生代泥盆纪构造-岩浆演化过程简要阐述如下(图10):

  • 早古生代晚期(图10a),斋桑-准噶尔洋壳俯冲消减至阿尔泰陆块活动大陆西南缘下部,伴随增生造山作用结束,在阿舍勒-冲乎尔一带形成残留海盆,二者位于海盆南北两侧的构造薄弱带,因深部软流圈高热流异常体(地幔柱/羽)上涌主导该区深部热流循环,构造体制由洋壳俯冲挤压向扩张拉伸转换,局部高热流异常体上涌致使洋壳板片断离,部分随地幔热流上升,部分逐渐熔入软流圈。至早古生代末期—晚古生早期(图10b),地幔热流上涌致使岩石圈地幔局部熔融形成基性岩浆房(伴有幔源岩浆补体加入),基性岩浆底侵中下地壳局部熔融形成中酸性岩浆房(伴有基性岩浆补体混染,主体向酸性岩浆演化)。

  • 图10 阿舍勒一带晚古生代泥盆纪构造-岩浆演化示意图

  • Fig.10 Tectonic magmatic evolution of Devonian in Ashele basin

  • (a)—早古生代晚期构造背景;(b)—早古生代末期—晚古生代早期构造背景;(c)—晚古生代早期(D1)构造背景;(d)—晚古生代早期(D2)构造背景;(e)—晚古生代中晚期(D3)构造背景;(f)—晚古生代中晚期(D3)构造背景

  • (a) —Late early Paleozoic tectonic setting; (b) —Late early Paleozoic—Early late Paleozoic tectonic setting; (c) —Early tectonic setting of late Paleozoic (D1) ; (d) —Early tectonic setting of late Paleozoic (D2) ; (e) —Late Paleozoic tectonic setting (D3) ; (f) —Late Paleozoic tectonic setting (D3)

  • 晚古生代早期,随地幔柱作用持续加强,沿阿舍勒和冲乎尔深部基底断裂附近呈现快速拉张,致使酸性岩浆和基性岩浆沿基底断裂系开始快速上升,因基底地壳厚度差异及物质不均一性,在冲乎尔一带以酸性岩浆的裂隙式喷发为主,形成以流纹岩为主体的火山岩; 在阿舍勒一带,早阶段以酸性-中酸性岩浆裂隙式喷发-溢流为主,中晚阶段从开始出现酸性-中酸性-薄层基性火山岩互层到晚阶段以基性为主的阿舍勒组双峰式火山岩建造,该阶段是阿舍勒重要的VMS矿床成矿期。伴随双峰式火山喷发收缩,中酸性岩浆侵入阿舍勒火山岩中,并引发基性岩浆侵入至酸性岩体中,形成“双峰式侵入岩”。局部快速拉张环境、地幔热流体及基性岩浆流体沿基底断裂早期优先进入和随后持续加入很可能是形成阿舍勒“双峰式火成岩”和高镁火山岩建造的主要深部动力学机制(图10c、d)。

  • 晚古生代中晚期,随地幔柱作用逐渐减弱,沿阿舍勒深部断裂附近拉张速度减缓,火山喷发作用向南发展,深部基性岩浆的持续底侵和沿断裂系注入使浅部中酸性岩浆房内酸性和基性岩浆混合程度提高,形成以中心式喷发-喷溢为主的齐也组中酸性-中基性-基性火山岩建造。早先持续拉张环境致使在别斯萨拉一带形成新的构造薄弱带,为晚古生代晚期石炭纪火山活动孕育了主要构造空间(图10e、f)。

  • 6 结论

  • (1)萨尔朔克矿区隐伏英云闪长岩属于哈巴河中酸性岩体东延部分,与同期阿舍勒组火山岩呈侵入接触关系,暗示二者可能有成因联系,其LA-MC-ICP-MS锆石U-Pb年龄为376.7±1.3 Ma,全岩Sr-Nd同位素结果显示岩浆主要来自壳源物质部分熔融,有少量幔源物质加入。对比东侧哈巴河岩体同期基性侵入岩体(脉),主量元素特征显示二者均为低钾、偏铝-弱过铝质系列岩石,同属低钾拉斑系列,但稀土或微量元素特征差异较大,显示基性体主要源自深部幔源物质局部熔融。

  • (2)综合区内主要火成岩主微量元素研究成果,阿舍勒泥盆纪不同类型火成岩的形成主要与壳幔物质混合程度、混合比例和岩浆演化的程度有关,火山岩与侵入岩有相似的成岩物质来源,基性端元和酸性端元分别主要源自幔源物质和壳源物质部分熔融,早中泥盆纪的阿舍勒组火山岩和哈巴河侵入岩均具有“双峰式”特征,成矿作用与双峰式火山岩在空间分布上密切相关。

  • (3)阿舍勒火山岩具有显著的富镁特征,富镁火山岩与其形成时的深大断裂部位密切相关,处于基底大断裂构造中心部位的壳源酸性岩浆房的早期排气作用使其更易得到幔源物质持续注入,从而进一步演化形成富镁火山岩浆,富含幔源物质的高镁基性岩浆沿基底断裂注入到早期浅部酸性岩浆房可能是富镁火山岩形成主因。

  • (4)在阿尔泰西南缘阿舍勒一带,与拉张作用相伴的大规模火山-岩浆活动可能与深部地幔热柱(羽)上涌造成的局部板片断离-拆沉作用有关,同期的阿舍勒组火山岩和哈巴河岩体是同一构造背景下不同构造部位、同期不同阶段的产物,二者均呈现快速拉张动力学背景下的“双峰式”特征。局部快速拉张环境、地幔热流体及基性岩浆流体沿基底断裂早期优先进入和随后持续加入很可能是形成阿舍勒“双峰式火成岩”和高镁火山岩建造的主要深部动力学机制。

  • 致谢:三位审稿专家和编辑部老师为本文提出了宝贵的修改意见和建议,作者在此一并深表感谢!

  • 注释

  • ❶ 新疆地矿局第四地质大队.1988.新疆哈巴河县萨尔布拉克-齐叶一带1∶5万地质矿产调查报告.1~98(未公开资料).

  • 参考文献

    • Cai Keda. 2007. Age, genetic mechanism and tectonic significance of magmatism in the western part of Altay orogenic belt. Guangdong: Master's thesis of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, 1~132(in Chinese with English abstract).

    • Cai Keda, Sun Min. , Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research, 18(4): 638~652.

    • Cai Keda, Sun Min. , Yuan Chao. , Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2011. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949~968.

    • Chai Fengmei, Ouyang, LiuJin, Dong Lianhui. 2013. Chronology and geochemistry of tonalite in Ashele copper zinc mining area, Xinjiang. Journal of Rock Mineralogy, 32(1): 41~52(in Chinese with English abstract).

    • Chen Ling, Wang Xu, Liang Xiaofeng. 2020. Subduction structure vs. mantle plume structure plate motion driving force. Chinese Science: Earth Science, 50(4): 501~514(in Chinese with English abstract).

    • Chen Yuchuan, Ye Qingtong, Feng Jing, Mu Chuanlin, Zhou Liangren, Wang Quanming, Huang Guangzhao, Zhuang Daoze, Ren Bingshen. 1996. Metallogenic Conditions and Metallogenic Prediction of Ashele Copper Zinc Metallogenic Belt. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Feng Jing, Xu Shiqi. 2012. Comprehensive prospecting prediction model of Ashele copper zinc deposit. Xinjiang Geology, 30(4): 418~424(in Chinese with English abstract).

    • Francalanci L, Manetti P, Peccerillo A, Keller J. 1993. Magmatological evolution of the Strombolivolcano(Aeolian Arc, Italy): inferences from major and trace element and Sr isotopic composition of lavas and pyroclastic rocks. Bulletin of Volcanology, 51: 355~378.

    • Gao Zhenquan, Fang Weixuan, Hu Ruizhong, Li Wenqian. 2010. Geochemical characteristics and tectonic setting of dacite basaltic andesitic volcanic rocks in Ashele copper mine, Xinjiang. Deposit Geology, 29(2): 218~229(in Chinese with English abstract).

    • Green M L H. 1995. A new approach to the formal classification of covalent compounds of the elements. Journal of Organometallic Chemistry, 500(1-2): 127~148.

    • Han Baofu, He Guoqi, Wang Shiguang. 1999. Post collision slow source magmatism, matting and the properties of the basement of Junggar Basin. Chinese Science (Series D), 29 (1): 16~21 (in Chinese with English abstract).

    • He Guoqi, Liu Dequan, Li Maosong. 1995. Five stage model and metallogenic series of crustal development in major orogenic belts in Xinjiang. Geology of Xinjiang, (2): 99~176(in Chinese with English abstract).

    • Hu Aiqin, Jahn B M, Zhang Guoxin, Chen Yibing, Zhang Qianfeng. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15~51.

    • Jia Qunzi. 1996. Metallogenic characteristics and formation environment of Ashele massive sulfide deposit in Xinjiang. Deposit Geology, 15(3): 267~277(in Chinese with English abstract).

    • Jiao Xuejun, Ma Zhongmei, Guo Xuji. 2005. Devonian volcanic deposits and minerals in the krona basin on the Southern edge of Altai Mountain. Northwest Geology, 38(3): 21~21(in Chinese with English abstract).

    • Li Chunyu, Tang Yaoqing. 1983. Division of ancient blocks in Asia and related issues. Journal of Geology, (1): 3~12(in Chinese with English abstract).

    • Li Huijun, He Guoqi, Wu Tairan 2010. Discovery of Early Paleozoic post collisional granite in Altay, China and its geological significance. Acta Petrologica Sinica, 26(8): 2445~2451(in Chinese with English abstract).

    • Li Jinyi, Zhu Baoqing. 1990. Basic characteristics of Late Paleozoic plate tectonics inKalamari area, East Junggar, Xinjiang. Geological Review, 36(4): 305~316(in Chinese with English abstract).

    • Li Jinyi, Xiao Xuchang. 1999. A brief review on several problems of crustal structure and tectonic evolution in Xinjiang. Geoscience, (4): 405~419(in Chinese with English abstract).

    • Li Yong, Zhou Gang, Chai Fengmei. 2012. LA-ICP-MS zircon dating of Habahe pluton in the southern margin of Altay and its geological significance. Xinjiang Geology, 30(2): 146~151(in Chinese with English abstract).

    • Li Zhichun. 1996. Formation, evolution and metallogenic activity tracking of Altai left type echelon volcanic sedimentary basin. Geotectonics and Metallogeny, 20(3): 189~200(in Chinese with English abstract).

    • Liang Xirong, Wei Gangjian, Li Xianhua. 2003. Accurate determination of 143Nd/144Nd and Sm/Nd ratios by MC-ICPMS. Geochemistry, 32(1): 91~96(in Chinese with English abstract).

    • Ma Xiaomei, Cai Keda, Zhao Taiping, Bao Zihe, Wang Xiangsong, Chen Ming. 2018. Devonian volcanic rocks of the southern Chinese Altai, NW China: petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis. Journal of Asian Earth Sciences, 160: 78~94.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635~643.

    • Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen, Zhong Yong. 1995. Sedimentary facies and palaeogeography of the devonian strata in the Ashele and Chonghur regions, Xinjiang. Lithofacies Paleogeography, (5): 1~13(in Chinese with English abstract).

    • Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen. 1996. Tectonic setting and evolution of Devonian volcanic sedimentary basin in Ashele chonghur area, Xinjiang. Sedimentary Geology and Tethyan Geology, (1): 70~84(in Chinese with English abstract).

    • Niu Hecai, Xu Jifeng, Yu Xueyuan, Chen Fanrong, Zheng Zuoping. 1999. Discovery of magnesium rich volcanic rock series in Altai, Xinjiang and its geological significance. Scientific Bulletin, 44(9): 1002~1004(in Chinese with English abstract).

    • Niu Lei, Hong Tao, Xu Xingwang, Li Hang, Ke Qiang, Wang Xuehai, Ma Yince. 2020. A revised stratigraphic and tectonic framework for the Ashele volcanogenic massive sulfide deposit in the southern Chinese Altay: evidence from stratigraphic relationships and zircon geochronology. Ore Geology Reviews, 127: 1~16.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy & Petrology, 58(1): 63~81. Qin Kezhang. 2000. Central Asian orogeny and mineralization in Northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics, Chinese Academy of Sciences(in Chinese with English abstract).

    • Qin Kezhang. 2000. Paleozoic Central-Asia orogeneses and metallogenese in northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics.

    • Shen Xuehua, Yao Chunyan, Fan Xianke, Dong Yongguan, You Jun. 2016. Geochemical characteristics and genesis of sarshuoke Au-Cu polymetallic deposit in the southern margin of Altai mountain system, Xinjiang. Northwest Geology, 49(2): 84~92(in Chinese with English abstract).

    • Song Guoxue, Qin Kezhang, Liu Tiebing, Li Guangming, Shen Ping. 2010. U-Pb age, Hf isotope and REE characteristics of ancient zircons in Devonian volcanic rocks in Ashele basin on the southern margin of Altay and their geological significance. Acta Petrologica Sinica, 26(10): 2946~2958(in Chinese with English abstract).

    • Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247(3-4), 352~383.

    • Sun Min, Long Xiaoping, Cai Keda, Jiang Yingde, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Wu Fuyuan. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Science, 1345~1358.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications, 42: 313~345.

    • Thompson A B, James A, Connolly D. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 100(B8): 15565~15579.

    • Wan Bo, Zhang Lianchang. 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallic metallogenic belt in the Southern margin of Altay, Xinjiang. Acta petrologica Sinica, 22(1): 145~152(in Chinese with English abstract).

    • Wan Bo, Zhang Lianchang, Xiang Peng. 2010. The Ashele VMS-type Cu-Zn Deposit in Xinjiang, NW China Formed formed in a Rifted rifted Arc arc Settingsetting. Resource Geology, 60(2): 150~164.

    • Wang Denghong. 1996. Sulfur and lead isotopic geochemistry of the Ashele volcanogenic massive sulfide deposit, Xinjiang, China. Geochimica, 25(6): 582~590(in Chinese with English abstract).

    • Wang Denghong, Chen Yuchuan, Xu Zhigang, Li Tiande, Fu Xujie. 2002. Metallogenic Series and Metallogenic Law of Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese with English abstract).

    • Wang Jingbin, Qin kezhang, Wu Zhiliang, Hu Jianhui, Deng Jiniu. 1998. Volcanic Exhalative Sedimentary Lead Zinc Deposit in the Southern Margin of Altai Mountain. Beijing: Geological Publishing House. 1~210(in Chinese with English abstract).

    • Wang Tao, Tong Ying, Li San. 2010. Temporal and spatial evolution, tectonic environment and crustal growth significance of granite in Altai orogenic belt: a case study of Altai, China. Journal of Rock Mineralogy, 29(6): 595~618(in Chinese with English abstract).

    • Wei Gangjian, Liang Xirong, Li Xianhua. 2002. (LP) MC-ICPMS method for accurate determination of Sr isotopic composition of liquid and solid samples. Geochemistry, 31(3): 295~299(in Chinese with English abstract).

    • Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325~343.

    • Windley B F, Kröner A, Guo J, Qu G, Li Y, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology, 110(6), 719~737.

    • Wu Yufeng, Yang Fuquan, Liu Feng, Feng Liu, Geng Xinxia, Li Qiang, Zheng Jiahao. 2015. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes. Journal of Asian Earth Sciences, 112: 60~73.

    • Wu Yufeng, Yang Fuquan, Liu Feng. 2015. 40Ar/39Ar chronology of Sericite in brittle ductile shear zone in Ashele copper zinc mining area, Xinjiang and its geological significance. Acta Geologica Sinica, 36(1): 121~126(in Chinese with English abstract).

    • Wu Yufeng, Yang Fuquan, Liu Feng. 2016. Petrogeochemical characteristics and geological significance of basaltic andesite in Ashele copper zinc mining area, Xinjiang. Journal ofRock Mineralogy, 35(1): 65~80(in Chinese with English abstract).

    • Xiao Wenjiao J, Windley B F, Badararch G. 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of the Geological Society of London, 161: 1~4.

    • Xiao Xuchang. 1992. Geotectonics of Northern Xinjiang andIts Adjacent Areas. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Xing Xuefen. 1996. Study onevonian volcanic rock series and its tectonic environment in Ashele Chonghu area, Xinjiang. Sedimentation and Tethyan Geology, (3): 43~52(in Chinese with English abstract).

    • Xu Xueyi, Li Rongshe, Chen Junlu. 2014. Some understandings on Paleozoic tectonic evolution innorthern Xinjiang. Acta Petrologica Sinica, 30(6): 1521~1534(in Chinese with English abstract).

    • Xu Yigang, He Bin, Luo Zhenyu. 2013. Research progress and Prospect of igneous provinces and mantle plumes in China. Bulletin of mineral and rock geochemistry, 32(1): 25~39(in Chinese with English abstract).

    • Yan Quanshu, Shi Xuefa. 2006. Research progress on the interaction between mid ocean ridge and mantle plume hotspot. Marine Geology and QuaternaryGeology, (5): 135~142(in Chinese with English abstract).

    • Yang Chengdong. 2017. Study on mineralization of sarshuoke gold polymetallic deposit in Altai, Xinjiang. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Zheng Jianmin 2006. Geological characteristics and metallogenic model of Altai giant metallogenic belt in Kazakhstan Journal of geology, 80(7): 963~983(in Chinese with English abstract).

    • Yang Fuquan, Li Fengming, Qin Jihua. 2013. LA-MC-ICP-MS zircon U-Pb age of (potential) volcanic rocks in Ashele copper Zn mining area, Xinjiang and its geological significance. Deposit Geology, (05): 869~883(in Chinese with English abstract).

    • Yang Fuquan, Wu Yufeng, Yang Junjie. 2016. Copper polymetallic deposit model in Ashele ore concentration area, Altay, Xinjiang. Geotectonics and metallogeny, 40(4): 701~715(in Chinese with English abstract).

    • Yu Yang, Sun Min, Yuan Chao, Zhao Guochun, Sun Min, Yuan Chao, Zhao Guochun, Huang Xiaolong. 2019. Evolution of the middle Paleozoic magmatism in the Chinese Altai: constraints on the crustal differentiation at shallow depth in the accretionary orogen. Journal of Asian Earth Sciences, 175: 230~246.

    • Yuan Chao, long Xiaoping, Xia Xiaoping. 2007. Sedimentary age and tectonic setting of Habahe group in Altay. Acta Petrologica Sinica, 23(7): 1635~1644(in Chinese with English abstract).

    • Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22~39.

    • Zhao Guochun, Wu Fuyuan. 1995. Some problems and research progress of mantle plume structure theory. Geological Science and Technology Information, 14(2): 1~6(in Chinese with English abstract).

    • Zhou Gang, Dong Lianhui, Qin Jihua. 2012. Formation age of granitoids in Ashele area, Habahe County, Xinjiang and its constraints on Au mineralization. Deposit Geology, (S1): 79~80(in Chinese with English abstract).

    • Zhu Yusheng, Xiao Keyan, Wang Quanming, Xu Jue, Feng Jing, Zhuang Daoze, Gao Yongfeng, Gao Lan, Song Guoyao, Chen Zhenghui, Fang Yiping. 2002. Three Dimensional Location Prediction of Ashele Copper Zinc Deposit. Beijing: Geological Publishing House(in Chinese with English abstract).

    • 蔡克大. 2007. 阿尔泰造山带西段岩浆活动的时代、成因机制及其构造意义. 中国科学院广州地球化学研究所硕士学位论文, 1~132.

    • 柴凤梅, 欧阳刘进, 董连慧. 2013. 新疆阿舍勒铜锌矿区英云闪长岩年代学及地球化学. 岩石矿物学杂志, 32(1): 41~52.

    • 陈凌, 王旭, 梁晓峰. 2020. 俯冲构造vs. 地幔柱构造—板块运动驱动力探讨. 中国科学: 地球科学, 50(4): 501~514.

    • 陈毓川, 叶庆同, 冯京, 牟传林, 周良仁, 王全明, 黄光昭, 庄道泽, 任秉琛. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社. 1~330.

    • 冯京, 徐仕琪. 2012. 阿舍勒铜锌矿综合找矿预测模型. 新疆地质, 30(4): 418~424.

    • 高珍权, 方维萱, 胡瑞忠, 李文铅. 2010. 新疆阿舍勒铜矿英安-玄武安山质火山岩的地球化学特征与构造背景. 矿床地质, 29(2): 218~229.

    • 韩宝福, 何国琦, 王式光. 1999. 后碰撞慢源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16~21.

    • 何国琦, 刘德权, 李茂松. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, (2): 99~176.

    • 贾群子. 1996. 新疆阿舍勒块状硫化物矿床成矿特征及形成环境. 矿床地质, 15(3): 267~277.

    • 焦学军, 马忠美, 郭旭吉. 2005. 阿尔泰山南缘克朗盆地泥盆纪火山沉积与矿产. 西北地质, 38(3): 21~21.

    • 李春昱, 汤耀庆. 1983. 亚洲古板块划分以及有关问题. 地质学报, (1): 3~12.

    • 李会军, 何国琦, 吴泰然. 2010. 中国阿尔泰早古生代后碰撞花岗岩的发现及其地质意义. 岩石学报, 26(8): 2445~2451.

    • 李锦轶, 朱宝清. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305~316.

    • 李锦轶, 肖序常. 1999. 对新疆地壳结构与构造演化几个问题的简要评述. 地质科学, (4): 405~419.

    • 李永, 周刚, 柴凤梅. 2012. 阿尔泰南缘哈巴河岩体LA-ICP-MS锆石定年及地质意义. 新疆地质, 30(2): 146~151.

    • 李志纯. 1996. 阿尔泰左型雁列式火山-沉积盆地形成、演化及成矿活动追踪. 大地构造与成矿学, 20(3): 189~200.

    • 梁细荣, 韦刚健, 李献华. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91~96.

    • 牟传龙, 刘宝珺, 朱晓镇, 邢雪芬, 仲勇. 1995. 新疆阿舍勒、冲乎尔地区泥盆纪岩相古地理研究. 沉积与特提斯地质, (5): 1~13

    • 牟传龙, 刘宝珺, 朱晓镇. 1996. 新疆阿舍勒─冲乎尔地区泥盆纪火山沉积盆地大地构造背景及其演化. 沉积与特提斯地质, (1): 70~84.

    • 牛贺才, 许继峰, 于学元, 陈繁荣, 郑作平. 1999. 新疆阿尔泰富镁火山岩系的发现及其地质意义. 科学通报, 44(9): 1002~1004.

    • 秦克章. 2000. 新疆北部中亚型造山与成矿作用. 中国科学院地质与地球物理研究所博士后科研工作报告.

    • 沈雪华, 姚春彦, 樊献科, 董永观, 游军. 2016. 新疆阿尔泰山系南缘萨尔朔克金铜多金属矿床地球化学特征与矿床成因探讨. 西北地质, 49(2): 84~92.

    • 宋国学, 秦克章, 刘铁兵, 李光明, 申萍. 2010. 阿尔泰南缘阿舍勒盆地泥盆纪火山岩中古老锆石的 U-Pb年龄、Hf同位素和稀土元素特征及其地质意义. 岩石学报, 26(10): 2946~2958.

    • 万博, 张连昌. 2006. 新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨. 岩石学报, 022(1): 145~152.

    • 王登红. 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582~590.

    • 王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.

    • 王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社.

    • 王涛, 童英, 李舢. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595~618.

    • 韦刚健, 梁细荣, 李献华. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295~299.

    • 吴玉峰, 杨富全, 刘峰. 2015. 新疆阿舍勒铜锌矿区脆韧性剪切带中绢云母40Ar/39Ar年代学及其地质意义. 地球学报, 36(1): 121~126.

    • 吴玉峰, 杨富全, 刘锋. 2016. 新疆阿舍勒铜锌矿区潜玄武安山岩的岩石地球化学特征及其地质意义. 岩石矿物学杂志, 35(1): 65~80.

    • 肖序常. 1992. 新疆北部及其邻区大地构造. 地质出版社, 1~108.

    • 邢雪芬. 1996. 新疆阿舍勒-冲乎尔地区泥盆纪火山岩系的研究及其大地构造环境的探讨. 沉积与特提斯地质, (3): 43~52.

    • 徐学义, 李荣社, 陈隽璐. 2014. 新疆北部古生代构造演化的几点认识. 岩石学报, 30(6): 1521~1534.

    • 徐义刚, 何斌, 罗震宇. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25~39.

    • 鄢全树, 石学法. 2006. 洋中脊与地幔柱热点相互作用研究进展. 海洋地质与第四纪地质, (5): 135~142.

    • 杨成栋. 2017. 新疆阿尔泰萨尔朔克金多金属矿床成矿作用研究. 中国地质科学院博士学位论文.

    • 杨富全, 毛景文, 郑建民. 2006. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型. 地质学报, 80(7): 963~983.

    • 杨富全, 李凤鸣, 秦纪华. 2013. 新疆阿舍勒铜锌矿区(潜)火山岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 矿床地质, (05): 869~883.

    • 杨富全, 吴玉峰, 杨俊杰. 2016. 新疆阿尔泰阿舍勒矿集区铜多金属矿床模型. 大地构造与成矿学, 40(4): 701~715.

    • 袁超, 龙晓平, 夏小平. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.

    • 赵国春, 吴福元. 1995. 地幔柱构造理论研究若干问题及研究进展. 地质科技情报, 14(2): 1~6.

    • 周刚, 董连慧, 秦纪华. 2012. 新疆哈巴河县阿舍勒一带花岗岩类形成时代及其对金矿成矿作用的制约. 矿床地质, (S1): 79~80.

    • 朱裕生, 肖克炎, 王全明, 徐珏, 冯京, 庄道泽, 高永峰, 高兰, 宋国耀, 陈郑辉, 方一平. 2002. 阿舍勒铜锌矿床三维定位预测. 北京: 地质出版社.

  • 参考文献

    • Cai Keda. 2007. Age, genetic mechanism and tectonic significance of magmatism in the western part of Altay orogenic belt. Guangdong: Master's thesis of Guangzhou Institute of geochemistry, Chinese Academy of Sciences, 1~132(in Chinese with English abstract).

    • Cai Keda, Sun Min. , Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research, 18(4): 638~652.

    • Cai Keda, Sun Min. , Yuan Chao. , Zhao Guochun, Xiao Wenjiao, Long Xiaoping, Wu Fuyuan. 2011. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 42(5): 949~968.

    • Chai Fengmei, Ouyang, LiuJin, Dong Lianhui. 2013. Chronology and geochemistry of tonalite in Ashele copper zinc mining area, Xinjiang. Journal of Rock Mineralogy, 32(1): 41~52(in Chinese with English abstract).

    • Chen Ling, Wang Xu, Liang Xiaofeng. 2020. Subduction structure vs. mantle plume structure plate motion driving force. Chinese Science: Earth Science, 50(4): 501~514(in Chinese with English abstract).

    • Chen Yuchuan, Ye Qingtong, Feng Jing, Mu Chuanlin, Zhou Liangren, Wang Quanming, Huang Guangzhao, Zhuang Daoze, Ren Bingshen. 1996. Metallogenic Conditions and Metallogenic Prediction of Ashele Copper Zinc Metallogenic Belt. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Feng Jing, Xu Shiqi. 2012. Comprehensive prospecting prediction model of Ashele copper zinc deposit. Xinjiang Geology, 30(4): 418~424(in Chinese with English abstract).

    • Francalanci L, Manetti P, Peccerillo A, Keller J. 1993. Magmatological evolution of the Strombolivolcano(Aeolian Arc, Italy): inferences from major and trace element and Sr isotopic composition of lavas and pyroclastic rocks. Bulletin of Volcanology, 51: 355~378.

    • Gao Zhenquan, Fang Weixuan, Hu Ruizhong, Li Wenqian. 2010. Geochemical characteristics and tectonic setting of dacite basaltic andesitic volcanic rocks in Ashele copper mine, Xinjiang. Deposit Geology, 29(2): 218~229(in Chinese with English abstract).

    • Green M L H. 1995. A new approach to the formal classification of covalent compounds of the elements. Journal of Organometallic Chemistry, 500(1-2): 127~148.

    • Han Baofu, He Guoqi, Wang Shiguang. 1999. Post collision slow source magmatism, matting and the properties of the basement of Junggar Basin. Chinese Science (Series D), 29 (1): 16~21 (in Chinese with English abstract).

    • He Guoqi, Liu Dequan, Li Maosong. 1995. Five stage model and metallogenic series of crustal development in major orogenic belts in Xinjiang. Geology of Xinjiang, (2): 99~176(in Chinese with English abstract).

    • Hu Aiqin, Jahn B M, Zhang Guoxin, Chen Yibing, Zhang Qianfeng. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics, 328(1-2): 15~51.

    • Jia Qunzi. 1996. Metallogenic characteristics and formation environment of Ashele massive sulfide deposit in Xinjiang. Deposit Geology, 15(3): 267~277(in Chinese with English abstract).

    • Jiao Xuejun, Ma Zhongmei, Guo Xuji. 2005. Devonian volcanic deposits and minerals in the krona basin on the Southern edge of Altai Mountain. Northwest Geology, 38(3): 21~21(in Chinese with English abstract).

    • Li Chunyu, Tang Yaoqing. 1983. Division of ancient blocks in Asia and related issues. Journal of Geology, (1): 3~12(in Chinese with English abstract).

    • Li Huijun, He Guoqi, Wu Tairan 2010. Discovery of Early Paleozoic post collisional granite in Altay, China and its geological significance. Acta Petrologica Sinica, 26(8): 2445~2451(in Chinese with English abstract).

    • Li Jinyi, Zhu Baoqing. 1990. Basic characteristics of Late Paleozoic plate tectonics inKalamari area, East Junggar, Xinjiang. Geological Review, 36(4): 305~316(in Chinese with English abstract).

    • Li Jinyi, Xiao Xuchang. 1999. A brief review on several problems of crustal structure and tectonic evolution in Xinjiang. Geoscience, (4): 405~419(in Chinese with English abstract).

    • Li Yong, Zhou Gang, Chai Fengmei. 2012. LA-ICP-MS zircon dating of Habahe pluton in the southern margin of Altay and its geological significance. Xinjiang Geology, 30(2): 146~151(in Chinese with English abstract).

    • Li Zhichun. 1996. Formation, evolution and metallogenic activity tracking of Altai left type echelon volcanic sedimentary basin. Geotectonics and Metallogeny, 20(3): 189~200(in Chinese with English abstract).

    • Liang Xirong, Wei Gangjian, Li Xianhua. 2003. Accurate determination of 143Nd/144Nd and Sm/Nd ratios by MC-ICPMS. Geochemistry, 32(1): 91~96(in Chinese with English abstract).

    • Ma Xiaomei, Cai Keda, Zhao Taiping, Bao Zihe, Wang Xiangsong, Chen Ming. 2018. Devonian volcanic rocks of the southern Chinese Altai, NW China: petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis. Journal of Asian Earth Sciences, 160: 78~94.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635~643.

    • Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen, Zhong Yong. 1995. Sedimentary facies and palaeogeography of the devonian strata in the Ashele and Chonghur regions, Xinjiang. Lithofacies Paleogeography, (5): 1~13(in Chinese with English abstract).

    • Mu Chuanlong, Liu Baojun, Zhu Xiaozhen, Xing Xuefen. 1996. Tectonic setting and evolution of Devonian volcanic sedimentary basin in Ashele chonghur area, Xinjiang. Sedimentary Geology and Tethyan Geology, (1): 70~84(in Chinese with English abstract).

    • Niu Hecai, Xu Jifeng, Yu Xueyuan, Chen Fanrong, Zheng Zuoping. 1999. Discovery of magnesium rich volcanic rock series in Altai, Xinjiang and its geological significance. Scientific Bulletin, 44(9): 1002~1004(in Chinese with English abstract).

    • Niu Lei, Hong Tao, Xu Xingwang, Li Hang, Ke Qiang, Wang Xuehai, Ma Yince. 2020. A revised stratigraphic and tectonic framework for the Ashele volcanogenic massive sulfide deposit in the southern Chinese Altay: evidence from stratigraphic relationships and zircon geochronology. Ore Geology Reviews, 127: 1~16.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy & Petrology, 58(1): 63~81. Qin Kezhang. 2000. Central Asian orogeny and mineralization in Northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics, Chinese Academy of Sciences(in Chinese with English abstract).

    • Qin Kezhang. 2000. Paleozoic Central-Asia orogeneses and metallogenese in northern Xinjiang. Post-doctoral research report of Institute of Geology and Geophysics.

    • Shen Xuehua, Yao Chunyan, Fan Xianke, Dong Yongguan, You Jun. 2016. Geochemical characteristics and genesis of sarshuoke Au-Cu polymetallic deposit in the southern margin of Altai mountain system, Xinjiang. Northwest Geology, 49(2): 84~92(in Chinese with English abstract).

    • Song Guoxue, Qin Kezhang, Liu Tiebing, Li Guangming, Shen Ping. 2010. U-Pb age, Hf isotope and REE characteristics of ancient zircons in Devonian volcanic rocks in Ashele basin on the southern margin of Altay and their geological significance. Acta Petrologica Sinica, 26(10): 2946~2958(in Chinese with English abstract).

    • Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 247(3-4), 352~383.

    • Sun Min, Long Xiaoping, Cai Keda, Jiang Yingde, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Wu Fuyuan. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Science, 1345~1358.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, Special Publications, 42: 313~345.

    • Thompson A B, James A, Connolly D. 1995. Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 100(B8): 15565~15579.

    • Wan Bo, Zhang Lianchang. 2006. Sr-Nd-Pb isotope geochemistry and tectonic setting of Devonian polymetallic metallogenic belt in the Southern margin of Altay, Xinjiang. Acta petrologica Sinica, 22(1): 145~152(in Chinese with English abstract).

    • Wan Bo, Zhang Lianchang, Xiang Peng. 2010. The Ashele VMS-type Cu-Zn Deposit in Xinjiang, NW China Formed formed in a Rifted rifted Arc arc Settingsetting. Resource Geology, 60(2): 150~164.

    • Wang Denghong. 1996. Sulfur and lead isotopic geochemistry of the Ashele volcanogenic massive sulfide deposit, Xinjiang, China. Geochimica, 25(6): 582~590(in Chinese with English abstract).

    • Wang Denghong, Chen Yuchuan, Xu Zhigang, Li Tiande, Fu Xujie. 2002. Metallogenic Series and Metallogenic Law of Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese with English abstract).

    • Wang Jingbin, Qin kezhang, Wu Zhiliang, Hu Jianhui, Deng Jiniu. 1998. Volcanic Exhalative Sedimentary Lead Zinc Deposit in the Southern Margin of Altai Mountain. Beijing: Geological Publishing House. 1~210(in Chinese with English abstract).

    • Wang Tao, Tong Ying, Li San. 2010. Temporal and spatial evolution, tectonic environment and crustal growth significance of granite in Altai orogenic belt: a case study of Altai, China. Journal of Rock Mineralogy, 29(6): 595~618(in Chinese with English abstract).

    • Wei Gangjian, Liang Xirong, Li Xianhua. 2002. (LP) MC-ICPMS method for accurate determination of Sr isotopic composition of liquid and solid samples. Geochemistry, 31(3): 295~299(in Chinese with English abstract).

    • Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman.

    • Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4): 325~343.

    • Windley B F, Kröner A, Guo J, Qu G, Li Y, Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology, 110(6), 719~737.

    • Wu Yufeng, Yang Fuquan, Liu Feng, Feng Liu, Geng Xinxia, Li Qiang, Zheng Jiahao. 2015. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes. Journal of Asian Earth Sciences, 112: 60~73.

    • Wu Yufeng, Yang Fuquan, Liu Feng. 2015. 40Ar/39Ar chronology of Sericite in brittle ductile shear zone in Ashele copper zinc mining area, Xinjiang and its geological significance. Acta Geologica Sinica, 36(1): 121~126(in Chinese with English abstract).

    • Wu Yufeng, Yang Fuquan, Liu Feng. 2016. Petrogeochemical characteristics and geological significance of basaltic andesite in Ashele copper zinc mining area, Xinjiang. Journal ofRock Mineralogy, 35(1): 65~80(in Chinese with English abstract).

    • Xiao Wenjiao J, Windley B F, Badararch G. 2004. Paleozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of the Geological Society of London, 161: 1~4.

    • Xiao Xuchang. 1992. Geotectonics of Northern Xinjiang andIts Adjacent Areas. Beijing: Geological Publishing House(in Chinese with English abstract).

    • Xing Xuefen. 1996. Study onevonian volcanic rock series and its tectonic environment in Ashele Chonghu area, Xinjiang. Sedimentation and Tethyan Geology, (3): 43~52(in Chinese with English abstract).

    • Xu Xueyi, Li Rongshe, Chen Junlu. 2014. Some understandings on Paleozoic tectonic evolution innorthern Xinjiang. Acta Petrologica Sinica, 30(6): 1521~1534(in Chinese with English abstract).

    • Xu Yigang, He Bin, Luo Zhenyu. 2013. Research progress and Prospect of igneous provinces and mantle plumes in China. Bulletin of mineral and rock geochemistry, 32(1): 25~39(in Chinese with English abstract).

    • Yan Quanshu, Shi Xuefa. 2006. Research progress on the interaction between mid ocean ridge and mantle plume hotspot. Marine Geology and QuaternaryGeology, (5): 135~142(in Chinese with English abstract).

    • Yang Chengdong. 2017. Study on mineralization of sarshuoke gold polymetallic deposit in Altai, Xinjiang. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Yang Fuquan, Mao Jingwen, Zheng Jianmin 2006. Geological characteristics and metallogenic model of Altai giant metallogenic belt in Kazakhstan Journal of geology, 80(7): 963~983(in Chinese with English abstract).

    • Yang Fuquan, Li Fengming, Qin Jihua. 2013. LA-MC-ICP-MS zircon U-Pb age of (potential) volcanic rocks in Ashele copper Zn mining area, Xinjiang and its geological significance. Deposit Geology, (05): 869~883(in Chinese with English abstract).

    • Yang Fuquan, Wu Yufeng, Yang Junjie. 2016. Copper polymetallic deposit model in Ashele ore concentration area, Altay, Xinjiang. Geotectonics and metallogeny, 40(4): 701~715(in Chinese with English abstract).

    • Yu Yang, Sun Min, Yuan Chao, Zhao Guochun, Sun Min, Yuan Chao, Zhao Guochun, Huang Xiaolong. 2019. Evolution of the middle Paleozoic magmatism in the Chinese Altai: constraints on the crustal differentiation at shallow depth in the accretionary orogen. Journal of Asian Earth Sciences, 175: 230~246.

    • Yuan Chao, long Xiaoping, Xia Xiaoping. 2007. Sedimentary age and tectonic setting of Habahe group in Altay. Acta Petrologica Sinica, 23(7): 1635~1644(in Chinese with English abstract).

    • Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22~39.

    • Zhao Guochun, Wu Fuyuan. 1995. Some problems and research progress of mantle plume structure theory. Geological Science and Technology Information, 14(2): 1~6(in Chinese with English abstract).

    • Zhou Gang, Dong Lianhui, Qin Jihua. 2012. Formation age of granitoids in Ashele area, Habahe County, Xinjiang and its constraints on Au mineralization. Deposit Geology, (S1): 79~80(in Chinese with English abstract).

    • Zhu Yusheng, Xiao Keyan, Wang Quanming, Xu Jue, Feng Jing, Zhuang Daoze, Gao Yongfeng, Gao Lan, Song Guoyao, Chen Zhenghui, Fang Yiping. 2002. Three Dimensional Location Prediction of Ashele Copper Zinc Deposit. Beijing: Geological Publishing House(in Chinese with English abstract).

    • 蔡克大. 2007. 阿尔泰造山带西段岩浆活动的时代、成因机制及其构造意义. 中国科学院广州地球化学研究所硕士学位论文, 1~132.

    • 柴凤梅, 欧阳刘进, 董连慧. 2013. 新疆阿舍勒铜锌矿区英云闪长岩年代学及地球化学. 岩石矿物学杂志, 32(1): 41~52.

    • 陈凌, 王旭, 梁晓峰. 2020. 俯冲构造vs. 地幔柱构造—板块运动驱动力探讨. 中国科学: 地球科学, 50(4): 501~514.

    • 陈毓川, 叶庆同, 冯京, 牟传林, 周良仁, 王全明, 黄光昭, 庄道泽, 任秉琛. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社. 1~330.

    • 冯京, 徐仕琪. 2012. 阿舍勒铜锌矿综合找矿预测模型. 新疆地质, 30(4): 418~424.

    • 高珍权, 方维萱, 胡瑞忠, 李文铅. 2010. 新疆阿舍勒铜矿英安-玄武安山质火山岩的地球化学特征与构造背景. 矿床地质, 29(2): 218~229.

    • 韩宝福, 何国琦, 王式光. 1999. 后碰撞慢源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑), 29(1): 16~21.

    • 何国琦, 刘德权, 李茂松. 1995. 新疆主要造山带地壳发展的五阶段模式及成矿系列. 新疆地质, (2): 99~176.

    • 贾群子. 1996. 新疆阿舍勒块状硫化物矿床成矿特征及形成环境. 矿床地质, 15(3): 267~277.

    • 焦学军, 马忠美, 郭旭吉. 2005. 阿尔泰山南缘克朗盆地泥盆纪火山沉积与矿产. 西北地质, 38(3): 21~21.

    • 李春昱, 汤耀庆. 1983. 亚洲古板块划分以及有关问题. 地质学报, (1): 3~12.

    • 李会军, 何国琦, 吴泰然. 2010. 中国阿尔泰早古生代后碰撞花岗岩的发现及其地质意义. 岩石学报, 26(8): 2445~2451.

    • 李锦轶, 朱宝清. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305~316.

    • 李锦轶, 肖序常. 1999. 对新疆地壳结构与构造演化几个问题的简要评述. 地质科学, (4): 405~419.

    • 李永, 周刚, 柴凤梅. 2012. 阿尔泰南缘哈巴河岩体LA-ICP-MS锆石定年及地质意义. 新疆地质, 30(2): 146~151.

    • 李志纯. 1996. 阿尔泰左型雁列式火山-沉积盆地形成、演化及成矿活动追踪. 大地构造与成矿学, 20(3): 189~200.

    • 梁细荣, 韦刚健, 李献华. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91~96.

    • 牟传龙, 刘宝珺, 朱晓镇, 邢雪芬, 仲勇. 1995. 新疆阿舍勒、冲乎尔地区泥盆纪岩相古地理研究. 沉积与特提斯地质, (5): 1~13

    • 牟传龙, 刘宝珺, 朱晓镇. 1996. 新疆阿舍勒─冲乎尔地区泥盆纪火山沉积盆地大地构造背景及其演化. 沉积与特提斯地质, (1): 70~84.

    • 牛贺才, 许继峰, 于学元, 陈繁荣, 郑作平. 1999. 新疆阿尔泰富镁火山岩系的发现及其地质意义. 科学通报, 44(9): 1002~1004.

    • 秦克章. 2000. 新疆北部中亚型造山与成矿作用. 中国科学院地质与地球物理研究所博士后科研工作报告.

    • 沈雪华, 姚春彦, 樊献科, 董永观, 游军. 2016. 新疆阿尔泰山系南缘萨尔朔克金铜多金属矿床地球化学特征与矿床成因探讨. 西北地质, 49(2): 84~92.

    • 宋国学, 秦克章, 刘铁兵, 李光明, 申萍. 2010. 阿尔泰南缘阿舍勒盆地泥盆纪火山岩中古老锆石的 U-Pb年龄、Hf同位素和稀土元素特征及其地质意义. 岩石学报, 26(10): 2946~2958.

    • 万博, 张连昌. 2006. 新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨. 岩石学报, 022(1): 145~152.

    • 王登红. 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582~590.

    • 王登红, 陈毓川, 徐志刚, 李天德, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.

    • 王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社.

    • 王涛, 童英, 李舢. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例. 岩石矿物学杂志, 29(6): 595~618.

    • 韦刚健, 梁细荣, 李献华. 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295~299.

    • 吴玉峰, 杨富全, 刘峰. 2015. 新疆阿舍勒铜锌矿区脆韧性剪切带中绢云母40Ar/39Ar年代学及其地质意义. 地球学报, 36(1): 121~126.

    • 吴玉峰, 杨富全, 刘锋. 2016. 新疆阿舍勒铜锌矿区潜玄武安山岩的岩石地球化学特征及其地质意义. 岩石矿物学杂志, 35(1): 65~80.

    • 肖序常. 1992. 新疆北部及其邻区大地构造. 地质出版社, 1~108.

    • 邢雪芬. 1996. 新疆阿舍勒-冲乎尔地区泥盆纪火山岩系的研究及其大地构造环境的探讨. 沉积与特提斯地质, (3): 43~52.

    • 徐学义, 李荣社, 陈隽璐. 2014. 新疆北部古生代构造演化的几点认识. 岩石学报, 30(6): 1521~1534.

    • 徐义刚, 何斌, 罗震宇. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25~39.

    • 鄢全树, 石学法. 2006. 洋中脊与地幔柱热点相互作用研究进展. 海洋地质与第四纪地质, (5): 135~142.

    • 杨成栋. 2017. 新疆阿尔泰萨尔朔克金多金属矿床成矿作用研究. 中国地质科学院博士学位论文.

    • 杨富全, 毛景文, 郑建民. 2006. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型. 地质学报, 80(7): 963~983.

    • 杨富全, 李凤鸣, 秦纪华. 2013. 新疆阿舍勒铜锌矿区(潜)火山岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 矿床地质, (05): 869~883.

    • 杨富全, 吴玉峰, 杨俊杰. 2016. 新疆阿尔泰阿舍勒矿集区铜多金属矿床模型. 大地构造与成矿学, 40(4): 701~715.

    • 袁超, 龙晓平, 夏小平. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.

    • 赵国春, 吴福元. 1995. 地幔柱构造理论研究若干问题及研究进展. 地质科技情报, 14(2): 1~6.

    • 周刚, 董连慧, 秦纪华. 2012. 新疆哈巴河县阿舍勒一带花岗岩类形成时代及其对金矿成矿作用的制约. 矿床地质, (S1): 79~80.

    • 朱裕生, 肖克炎, 王全明, 徐珏, 冯京, 庄道泽, 高永峰, 高兰, 宋国耀, 陈郑辉, 方一平. 2002. 阿舍勒铜锌矿床三维定位预测. 北京: 地质出版社.