-
白垩纪(145~66 Ma)发生了大火成岩省、大洋缺氧、生物演化和绝灭等一系列全球重大地质事件(Wang Chengshan et al.,2005; Xi Dangpeng et al.,2019),导致白垩纪成为全球地质研究的热点时期。中国的白垩纪以陆相沉积为主,西藏南部是少数沉积了海相地层的地区,林周盆地下白垩统塔克那组是藏南主要的海相沉积地层之一(Chen,2003; Wan et al.,2007; Xi Dangpeng et al.,2019)。已有研究表明,青藏高原在白垩纪就已经发生了大范围的抬升(Murphy et al.,1997; Leier et al.,2007b; Volkmer et al.,2007; Sun et al.,2015)。其中,拉萨地块60%的地壳缩短变形发生在白垩纪塔克那组沉积之后(Murphy et al.,1997; Volkmer et al.,2007; Bou Dagher-Fadel et al.,2017)。因此,塔克那组记录的沉积过程及其所蕴含的古地理信息,对重建新特提斯洋洋壳俯冲以及印度-亚欧大陆碰撞抬升前的古地理格局、加深对青藏高原形成过程的认识,具有重要的科学意义,亦可为拓宽全球白垩纪海相地层和相关热点问题的研究提供鲜有的中国实例。
-
前人有关塔克那组的研究主要涉及到区域的盆山耦合关系和盆地充填过程,有关塔克那组沉积学的研究包括塔克那组岩性组成(Leeder et al.,1988; Leier et al.,2007a; Wang et al.,2020),古生物类型(Gou Zonghai,1985; Liu Guifang,1988; Bou Dagher-Fadel et al.,2017; Thupten-Tsering et al.,2018),遗迹化石(Yao Peiyi et al.,1992),1∶20万区域地质调查拉萨幅将塔克那组底部地层沉积环境解释为滨岸❶、潟湖环境(Leier et al.,2007a; Wang et al.,2020)。对除塔克那组底部以上地层的沉积环境和塔克那组整体沉积演化及其控制因素鲜有报道。本文旨在通过基于野外露头描述和薄片观察,对塔克那组地层岩石组合、古生物类型等研究基础上,讨论塔克那组沉积环境演化及其所反映的构造古地理格局。
-
1 地质概况
-
青藏高原自北向南由松潘-甘孜地块、羌塘地块、拉萨地块三大东西走向的地块拼接而成(图1a)(Zhu et al.,2011)。林周盆地位于西藏自治区拉萨城区东北约30 km林周县一带,大地构造位置处于南拉萨地块(Wang et al.,2020)。拉萨地块北接羌塘地块,南邻喜马拉雅造山带。二叠纪末—三叠纪初期,新特提斯洋开启,拉萨地块自冈瓦纳大陆分离,随着新特提斯洋的扩张,拉萨地块开始向北漂移。晚侏罗世—古近纪,拉萨地块位于北纬7.6°±3.5°N(图1b、c)(Lin et al.,1988; Chen,1993)至约10°~15°N(Ma et al.,2014; Yang et al.,2015; Li et al.,2017),与北部的羌塘地块逐渐碰撞拼合,拉萨地块以北的班公湖-怒江洋(班怒洋)洋壳完全俯冲消减于羌塘地块,形成班公湖-怒江对接带,拉萨地块和羌塘地块处于陆-陆碰撞阶段(Murphy et al.,1997),上述过程导致了拉萨地块北部靠近羌塘地块一侧主要的火山活动,形成早白垩世则弄等火山群。白垩纪初期,印度板块向北漂移携带新特提斯洋洋壳向北俯冲于拉萨地块,新特提斯洋开始闭合,在拉萨地块南缘逐渐形成冈底斯火山弧(Zhu et al.,2011)。上述拉萨地块南部新特提斯洋洋壳俯冲消减、北部拉萨-羌塘陆陆碰撞的构造格局一直持续了整个白垩纪(图1c)。白垩纪拉萨地块的构造样式存在争议,前人分别提出受新特提斯洋俯冲主控的,与冈底斯火山岛弧相关的弧背前陆盆地(Kapp et al.,2004; Leier et al.,2007a)和与俯冲带回退(变陡后撤)-岩浆上涌相关的弧后伸展盆地(Zhang,2000,2004; Zhang et al.,2004); 受拉萨-羌塘陆陆碰撞主控的周缘前陆盆地(Leeder et al.,1988; Murphy et al.,1997; Kapp et al.,2007)。近年来研究指出,白垩纪拉萨地块构造样式具有阶段性演变特征(Ma Yuan,2017; Wang et al.,2020),塔克那组沉积期,在拉萨地块周缘形成西太平洋型活动大陆边缘,自南向北发育雅鲁藏布缝合带海沟盆地(Hu Xiumian et al.,2020)—日喀则弧前盆地—冈底斯岩浆弧(火山岛弧)—林周弧后伸展盆地(Wang et al.,2020)(图1c)等西太平洋型活动大陆边缘典型构造单元。林周盆地白垩系楚木龙组顶部、塔克那组和设兴组中下部沉积被认为记录了伸展构造作用阶段(Wang et al.,2020; Hu Xiumian et al.,2021),其中塔克那组是唯一从始至终沉积于伸展阶段,沉积了富含海相生物化石的浅海地层,对于揭示伸展构造过程对沉积环境演化的控制作用具有十分重要的价值。
-
林周盆地位于冈底斯火山弧的北部弧后一侧(图1c)(Wang et al.,2020),属于中生代沉积盆地(图1d),盆地基底被覆盖而不清楚(Hu Xiumian,2021),也有人将中—上侏罗统叶巴组(J1-2y)海相火山岩和火山碎屑岩归属为盆地基底(Pan Liang et al.,2018),盆地发育中上侏罗统—白垩系沉积盖层,自下而上包括中侏罗统却桑温泉组(J2q)、上侏罗统多底沟组(J1d)、下白垩统林布宗组(K1l)、下白垩统楚木龙组(K1c)、下白垩统塔克那组(K1t)、上白垩统设兴组(K2s),岩性包括泥页岩、砂质碎屑岩和碳酸盐岩等,上覆古近系林子宗群(E1-2L)火山岩,与下伏沉积地层区域性不整合接触(He et al.,2007; Pan Liang et al.,2018)。白垩系是林周盆地充填的主要地层,分布面积最广(图1e)。
-
塔克那组最初由西藏地质三队罗仲舒于1973年命名,包括两个岩性段,下部的“彭波段”发育杂色海相砂页岩和灰岩组合,上部的“林周段”由非海相紫红色砂泥岩段组成(Yao Peiyi et al.,1992)。Wang Naiwen(1983)将“林周段”非海相红层独立命名为设兴组,由“彭波段”组成塔克那组。尽管少数研究仍然沿用罗仲舒分组内涵(Leeder et al.,1988; Yin et al.,1988; Leier et al.,2007a),但是考虑到显著的岩性差异和野外露头的易区分性,多数研究采用Wang Naiwen(1983)分组方案(Yao Peiyi et al.,1992; Bou Dagher-Fadel et al.,2017; Wang et al.,2020),因此,本研究也采用该方案,用塔克那组指以下白垩统海相为主的层段,与下伏的楚木龙组和上覆的设兴组均呈整合接触(图1d)。塔克那组主要出露于林周县南部的山麓地带及其以北的丘陵地带,分布范围较狭小。本次研究基于玛行村西(N29°54′25.1″,E91°20′48.1″)和甲绒村东(N29°53′48.7″,E91°19′19.1″)两个塔克那组剖面(图1e)。这两个剖面出露连续,交通便利,是塔克那组露头研究较理想的剖面。
-
图1 研究区位置及林周盆地地层柱状图
-
Fig.1 The location of the study area and stratigraphic column of the Linzhou basin
-
(a)—青藏高原构造框架(据Zhu et al.,2011修改);(b)—早白垩世Aptian期(120 Ma)全球古地理格局(据Ron Blakey,heep://jan.ucc.nau.edu/rcb7/; Golonka et al.,2006修改);(c)—塔克那组沉积期拉萨地块大地构造格局与盆山关系示意图(据Zhu et al.,2011; Zhang et al.,2004; Wang et al.,2020; Murphy et al.,1997; Lin et al.,1988; Wang Dong,2017修改);(d)—林周盆地地层柱状图(据Pan Liang et al.,2018修改);(e)—林周盆地塔克那组主要出露位置图(据Chen Beibei,2017)
-
(a) —Tectonic framework of the Tibetan Plateau (modified from Zhu et al., 2011) ; (b) —global paleogeographic setting during Early Cretaceous Mid-Aptian (120 Ma) (modified from Ron Blakey, heep://jan.ucc.nau.edu/rcb7/; Golonka et al., 2006) ; (c) —schematic illustrations of the geotectonics and basin-range coupling of Lhasa terrane during the deposition of the Takena Formation (modified from Zhu et al., 2011; Zhang et al., 2004; Wang et al., 2020; Murphy et al., 1997; Lin et al., 1988; Wang Dong, 2017) ; (d) —comprehensive stratigraphic column of the Linzhou basin (modified from Pan Liang et al., 2018) ; (e) —outcrop locations of the Takena Formation in the Linzhou basin (after Chen Beibei, 2017)
-
2 塔克那组沉积特征
-
2.1 岩石地层特征
-
根据岩性纵向上的变化和组合,自下而上可将塔克那组划分为四个岩性段(图2、图3)。塔一段厚50~60 m,整体呈灰绿色,由多套向上变浅旋回组成(图2、图3b),单个旋回厚度存在较大差异,从0.4~7 m不等(图3c)。旋回下部岩性为泥页岩,新鲜面呈深灰色,发生显著的劈理化,劈理方向高角度斜交层面,风化破碎严重; 旋回上部岩性粒度较粗,厚度0.2~4 m,裸眼可见生物碎屑大量发育,部分旋回顶面发育瘤状构造,之上被下一期旋回下段泥页岩所覆盖。
-
塔二段厚30~40 m,整体岩性相对单一,岩性以厚层状深灰色泥灰岩为主,偶夹薄层灰岩,剖面植被茂盛(图3d),中下部可见一套顺层侵入岩(图2)。
-
图2 塔克那组露头玛行西剖面(a)和甲绒东剖面(b)地层柱状图
-
Fig.2 Stratigraphic columns of west Maxing section (a) and east Jiarong section (b) of the Takena Formation in the Linzhou basin
-
图3 林周盆地塔克那组宏观特征
-
Fig.3 The macroscopic characteristics of the Takena Formation in the Linzhou basin
-
(a)—玛行东剖面塔克那组全貌;(b)—塔一段全貌;(c)—塔一段钙质泥页岩-混积岩(生物碎屑砂岩/砂质生物碎屑灰岩)高频旋回;(d)—塔二段—塔四段宏观,照片中标注了(e)、(f)的位置;(e)—塔三段中下部泥页岩夹灰岩旋回;(f)—塔三段顶部钙质泥页岩夹生物富集层;(g)—塔四段厚层泥页岩夹薄层粉砂岩
-
(a) —The overview of the Takena Formation section in the eastern Maxing Village; (b) —the overview of the first Member of the Takena Formation; (c) —high-frequency cycles of peperite (shale-bioclastic sandstone/sandy bioclastic limestone) in the first Member of the Takena Formation; (d) —the overview of the second to forth Members of the Takena Formation, the positions of the pictures (e) and (f) are marked using red boxes; (e) —the cycles of marlstone-limestone in the mid-lower third Member of the Takena Formation; (f) —the shell concentration is intercalated in the marl in the upper third Member of the Takena Formation; (g) —the overview of the thick shale with thin siltstone interlayers in the fourth Member of Takena Formation
-
塔三段厚70~80 m。整体呈灰绿色,由钙质泥页岩和灰岩层段交互发育(图2,图3d~f)。钙质泥页岩风化剥蚀严重,遇盐酸弱起泡,在玛行西剖面可见富含生物砾屑(粒度超过2 mm)的生物灰岩层与钙质泥页岩互层发育(图2a,图3e、f),单套生物灰岩层厚0.2~4 m,同一生物灰岩层生物类型相对单一、多样性低。在甲绒东剖面,与钙质泥页岩互层的岩性主要为颗粒灰岩(图2b)。塔三段下部发育一套顺层侵入岩。
-
塔四段厚60~70 m,整体呈灰白色,以泥页岩为主,风化破碎严重,其中夹多套薄层粉砂岩(图2,图3g),粉砂岩中可见交错层理。
-
2.2 古生物特征
-
海相生物是塔克那组主要的造岩组分,不仅是沉积环境指示标志,还可约束地层时代,对塔克那组沉积学研究具有重要意义。经过野外剖面观察与室内显微镜下观察,在塔克那组识别出了以浅海生物为主的多种生物类型。主要包括分布最广泛的圆笠有孔虫和双壳,还发育棘皮、腹足、绿藻、小型底栖有孔虫等。
-
(1)圆笠有孔虫(Orbitolinid):属于串珠虫目、圆笠虫超科,是一类胶结壳型大型底栖有孔虫,生活于温暖的浅海环境,因外形似斗笠状而得名。出现于早白垩世Barremian期,灭绝于晚白垩世Cenomanian期,是重要的生物地层标准化石。圆笠有孔虫在全球多地均有发现,除中非外,主要发现于北半球(Wan Xiaoqiao et al.,2003),被认为是白垩纪中期新特提斯洋浅水台地环境的重要生物地层标志(Bou Dagher-Fadel et al.,2017)。西藏地区发现的圆笠有孔虫主要分布于拉萨地块(Wan Xiaoqiao et al.,2003)。林周盆地塔克那组圆笠有孔虫主要发育在塔一段和塔三段,其特殊的斗笠形态和较大的尺寸(图4a),使其在野外裸眼可辨,其壳体大小和形态变化较大,个体大小一般1~8 mm,最大者可达2 cm。形态可见圆锥形、钟形、圆盘形、周边翘起斗笠形,壳质成分在灰岩中以碳酸盐颗粒为主,也可见陆源石英碎屑构成胶结壳成分(图4b)。
-
(2)双壳:在塔一段和塔三段均发育,壳体长轴从数百微米至1 cm以上不等,发育典型的壳饰结构,多数壳体呈现多层状壳饰,由壳体内侧的近水平叶片状组构和外侧棱柱层组成(图4c)。在塔一段,双壳碎屑粒径较小,部分被无圈层结构泥晶层包裹,形成核形石(图4d),甲绒西剖面塔三段可见双壳碎屑构成鲕粒的核心(图4e)。部分双壳受泥晶化作用改造较严重,整体壳饰结构已不可辨别。双壳由于破碎、成岩蚀变原因,部分识别特征不明显,可识别出中生代较为代表性的牡蛎类和叠瓦蛤类双壳。
-
(3)棘皮:是塔克那组仅次于圆笠有孔虫和双壳的生物。棘皮主要鉴别特征是单消光以及均一的“蜂窝状”显微组构(图4f),成因是均匀分布的细小孔管被微晶充填。可识别的棘皮碎屑主要为海胆的棘刺和海百合茎,棘皮指示较正常的海水盐度,主要分布于塔一段。棘皮类成岩蚀变较弱,可见围绕棘屑周围生长的共轴增生方解石,是典型的同沉积期海水环境胶结物(Scholle et al.,2003)。
-
(4)腹足:在塔克那组分布有限,典型的识别特征是隔壁较薄、纵切面或斜切面具明显的螺旋形(图4g),毫米级个体大小区分于微小的小型单列式有孔虫,腹足的海水盐度指示范围较宽。由于其壳体多为文石质,因此多发生溶蚀形成铸模孔,保留了生物外形轮廓,但是成分已经被充填于铸模孔中的亮晶方解石所取代。
-
(5)海洋绿藻:塔克那组识别出的绿藻主要为粗枝藻类,整体破碎较严重,部分碎屑保留了粗枝藻典型的轮环状外形和孢囊结构(图4h),粒径多超过500 μm,在塔克那组出现频率低,分布于塔一段,指示透光性好的水体环境。由于绿藻多由亚稳定状态的文石组成,易被溶蚀,因此在塔克那组以铸模孔被亮晶方解石充填的形式保存下来(图4h)。
-
(6)小型底栖有孔虫:塔克那组识别出来的小型有孔虫有小粟虫、单列有孔虫等,主要分布于塔一段。小型有孔虫薄的隔壁发生强烈的泥晶化,内部的软体腐烂形成体腔孔后,被亮晶方解石充填(图4i)。尽量塔克那组小型底栖有孔虫出现频率上远低于圆笠有孔虫,但是小型有孔虫具有很好的环境指示意义,主要出现在相对局限的台地内部,比如潟湖环境。
-
2.3 岩石类型
-
基于岩石薄片资料,识别了塔克那组岩石类型(图5)。对于碳酸盐岩(陆源碎屑含量不超过10%),参考Embry et al.(1971) 修改过的Dunham(1962) 岩石结构分类。对于硅质碎屑-碳酸盐混积岩(陆源碎屑含量超过10%),参考Mount(1985) 分类方案。
-
2.3.1 碎屑岩
-
(1)粉砂岩主要发育于塔四段。呈中—薄层状产出。露头灰黄色,表面风化,局部可见交错层理。微观可见碎屑颗粒以单晶石英为主,其次含少量岩屑(火山岩岩屑为主),颗粒粒径10~50 μm,多数为细粉砂,分选较好,磨圆度为次圆—次棱角状,填隙物为泥质(图5a)。
-
图4 塔克那组主要生物类型
-
Fig.4 Main fauna identified in the Takena Formation
-
(a)—圆笠有孔虫,形似斗笠状,长轴约3 mm,隔壁由于泥晶化呈深灰色,内部密集分布的网格状体腔孔被亮晶方解石充填呈浅粉色;(b)—陆源石英颗粒被黏结构成圆笠有孔虫隔壁;(c)—双壳生物灰岩,双壳长轴1~5 mm,以超过2 mm的砾屑为主,呈现出多层状壳饰结构,由壳体内侧的近水平叶片状组构和外侧棱柱层组成;(d)—双壳碎屑作为核心形成核形石;(e)—双壳碎屑作为核心形成鲕粒;(f)—多个海胆棘刺(箭头)分布于微亮晶中,均匀分布的细小孔管被微晶充填形成均一的“蜂窝状”显微组构;(g)—腹足的纵切面(箭头),壳体被溶蚀后,被粒状方解石胶结物充填,体腔孔内充填了泥晶基质;(h)—文石质海洋绿藻碎片,溶蚀后形成的铸模孔被亮晶方解石充填,保持了原始生屑的轮廓;(i)—单列底栖有孔虫,隔壁被泥晶化,且壳体仅仅为0.2 mm高(箭头),区别于外形相似的腹足类,有孔虫体腔孔被亮晶方解石充填
-
(a) —Orbitolinid foraminifera with a long axis of~3 mm, which is shaped like a bamboo hat. Its shell wall is dark gray due to micritization, and its densely distributed grid-like cavities are filled with spar calcites which show light pink; (b) —the terrigenous quartz grains are cemented to form the shell wall of the Orbitolinid foraminifera; (c) —bivalve limestone, the bivalve fragments have long axes of 1~5 mm and dominated by rudaceous fragments over 2 mm, they show a multi-layered shell wall structure, which is composed of a nearly horizontal foliated structure on the inner side of the shell and a prismatic layer on the outer side; (d) —bivalve fragments as the cores form oncolite grains; (e) —bivalve fragments as the cores form ooid grains; (f) —some echinoid spines (arrows) are distributed in micrite, and uniformly distributed fine pore tubes are filled with micrite to form uniform “honeycomb” microtexture; (g) —longitudinal section (arrow) of a gastropod. The shell is dissolved and filled with equant calcite cement, and the visceral foramen is filled with micrite matrix; (h) —aragonite marine green algae fragments, the moldic pores formed by dissolution are filled with spar calcite cement, which keeps the outline of the original green algae fragments; (i) —a calcareous uniserial benthic. Its shell wall is micritized. It has a much smaller shell size (0.2 mm) , which is distinguished from similar-shaped gastropods. The visceral foramen is filled with calcite cement
-
(2)泥页岩发育于塔一段和塔四段。劈理化导致原始层理结构被显著改造,表面强烈风化破碎后呈灰白色,新鲜面呈深灰色,结核发育。微观可见几乎全部由泥级长英质和黏土矿物构成,含少量分散状黄铁矿,整体呈现出弱的纹层状(图5b)。
-
2.3.2 硅质碎屑-碳酸盐混积岩
-
(1)生物碎屑砂岩发育于塔一段下部。灰绿色,露头裸眼可见生物碎屑组分。陆源碎屑组分为单晶石英,含量超过70%,石英粒级以粗粉砂为主,分选好,次圆状; 陆源组分其次为5%~10%的泥质。碳酸盐组分含量约20%~25%,主要为浅海生物碎屑,以圆笠有孔虫、双壳等为主,圆笠有孔虫壳体由钙质和石英碎屑的黏结颗粒组成(图4b),可见石英颗粒镶嵌于圆笠有孔虫内部,双壳多形成包壳颗粒(图5c)。
-
图5 林周盆地塔克那组主要岩石类型野外宏观及室内显微特征及分布层段
-
Fig.5 Macro and micro characteristics of rocks composing the Takena Formation in Linzhou basin
-
(2)砂质生物碎屑灰岩发育于塔一段中部。灰褐色,肉眼可见较多生物碎屑组分。主要组分为生物碎屑,含量30%~75%,可见圆笠有孔虫、双壳、棘皮等,双壳多形成包壳颗粒,填隙物中灰泥含量20%~40%。粉砂级单晶石英含量超过10%,分选好、次圆—次棱角状,相对均匀的分布于填隙物中,在压溶缝合线部位相对富集,少量以黏结颗粒形式存在于圆笠有孔虫壳体内(图5d)。
-
(3)泥灰岩主要发育于塔二段。风化面黄褐色,新鲜面灰绿色。镜下可见岩石主要由碳酸盐组分和陆源泥质组分构成,二者相对均匀分布,碳酸盐组分主要为灰泥和少量细粒的生物碎屑(生物类型已不可辨别),泥质组分包括长英质和黏土矿物,纹层结构不可见(图5e)。
-
2.3.3 碳酸盐岩
-
(1)生物砾屑灰岩主要发育于玛行西剖面塔三段上部。相对均匀分布的深灰色(亚)厘米级生物壳体密集填集于灰黄色基质中,壳体整体具备一定定向性,但存在较多杂乱分布的壳体。镜下可见砾屑级(粒径超过2 mm)生屑相互支撑,砾屑间充填灰泥,砾屑主要为双壳壳体,其次为完整的圆笠有孔虫(图5f)。
-
(2)生物漂浮岩主要发育于玛行西剖面塔三段下部。灰黄色基质中含较少量相对均匀分布的深灰色亚厘米级生物壳体。镜下可见砾屑级生物碎屑含量超过10%,分散填集于灰泥基质中,灰泥支撑结构,砾屑以双壳壳体为主,完整的圆笠有孔虫次之(图5g)。
-
(3)生屑/鲕粒颗粒灰岩发育于甲绒东剖面塔三段上部,灰色中薄层状。镜下可见岩石为颗粒结构,不含灰泥。同一层颗粒类型相对较单一,识别出了双壳和鲕粒颗粒灰岩。双壳长轴超过0.5 mm,泥晶化较强; 鲕粒类型为放射鲕,呈球形、椭球型,鲕核为双壳碎屑。颗粒间发育中粗晶亮晶方解石胶结物(图5h)。
-
(4)泥晶生屑灰岩主要发育于塔一段上部。风化面呈土黄色,新鲜面深灰色,含较细小生物碎屑。岩石为生物碎屑颗粒支撑结构,生物碎屑类型有圆笠有孔虫、棘皮、双壳、绿藻、腹足、小型底栖有孔虫等,绿藻、腹足等溶蚀形成铸模孔后被亮晶方解石充填,基质为灰泥(图5i)。
-
(5)生屑泥晶灰岩主要发育于塔一段上部。薄层状分布,浅灰色,手标本泥晶结构、颗粒组分不可见。镜下可见岩石为灰泥支撑结构,生物碎屑含量一般小于20%,生屑类型有圆笠有孔虫、小型底栖有孔虫、棘皮、绿藻等,绿藻溶蚀形成铸模孔后被亮晶方解石充填(图5j)。
-
3 讨论
-
3.1 塔克那组沉积环境演化
-
前人曾在相关研究中提及过塔克那组沉积环境。Leeder et al.(1988)将塔一段砂质生物碎屑灰岩沉积环境解释为海湾/河口环境; 1:20万区域地质调查拉萨幅认为玛行西剖面塔克那组塔一段露头沉积环境为开阔海、高能浅水滨岸相❶; Leier et al.(2007a) 解释塔克那组为浅海潟湖和低能滨岸/潮坪环境; Wang et al.(2020)认为是内陆棚低能潟湖至潮上带泛滥平原环境。
-
本文通过对塔克那组岩石结构、沉积构造、生物类型等进行综合分析,建立了塔克那组沉积模式(图6a)并恢复其沉积演化过程(图6b~e)。从楚木龙组陆相河流环境(Pan Liang et al.,2018),演变到塔克那组塔一段,浅海生物化石开始出现代表由陆相向海相的转变,被称为“塔克那海侵”(Wang Naiwen,1983)。塔克那组下伏楚木龙组滨岸相碎屑岩和上覆设兴组下—中段陆相碎屑岩古流向和物源分析,揭示出来自林周盆地以北的主物源方向(Leeder et al.,1988; Leier et al.,2007a,2007b; Xing Liyuan et al.,2020; Wang et al.,2020),在塔克那组沉积期,尚未形成显著隆升的冈底斯火山弧(图1c),因此林周盆地南部不足以提供稳定的陆相碎屑物源供给(Wang et al.,2017; Wang Dong,2017)。综合物源分析指向拉萨地块北部的则弄火山群(早白垩世初期)和更早期的(变质)沉积岩(Wang et al.,2020; Xing Liyuan et al.,2020),因此认为塔克那组沉积期陆源物源主要来自拉萨地块北部。塔一段先后发育生物碎屑砂岩、砂质生物碎屑灰岩、生物碎屑灰岩,代表了海侵范围扩大、相对海平面上升,陆源石英碎屑输入逐渐减少、直至停止输入,陆源停止输入有利于碳酸盐岩沉积(Sanders et al.,2000; Khetani et al.,2002)。生物类型及组合的变化,同样能够反映沉积水介质条件的改变,圆笠有孔虫、双壳能够忍受有陆源碎屑输入、具有沉积物载荷和浑浊的水体(Kumar et al.,1997; Steuber et al.,1998; Mitchell,2002; Wan Xiaoqiao et al.,2003),因此二者成为塔一段早期沉积的生物碎屑砂岩和砂质生物碎屑灰岩的造岩生物类型(图2,图5c、d),塔一段晚期陆源碎屑输入减少至停止、海水变得更干净,灰岩中开始出现棘皮、绿藻、腹足、小型底栖有孔虫等生物(图5i、j)。塔一段泥页岩和混积岩、生屑灰岩组成的高频旋回,代表了相对海平面的高频震荡上升。旋回下段泥页岩中的海生迹Thalassinoides(图7a、b),垂直或高角度管状发育,潜穴直径约1 cm,表面较光滑,潜穴充填物铁含量较高,风化后呈铁锈色,指示较低能的沉积环境(Yang Shipu,1999),旋回顶部层面发育瘤状构造(图7c),1∶20万区域地质调查拉萨幅将层面呈红褐色的瘤状构造解释为同沉积期暴露形成的干裂❶,然而新鲜面呈深灰色(图7d),宏观、微观均未发现与暴露有关的溶蚀组构,且非黏性的砂不易形成干裂(Zhu Xiaomin,2008),因而本文认为瘤状构造并非干裂面,红褐色是表面浸染色。该层面瘤状构造形成于剧烈的生物扰动,属于蛇形迹Ophiomorpha,蛇形迹Ophiomorpha多建造在近海滨岸环境的潮间带,一般形成于高能量的松散基底中(Yang Shipu,1999)。相似的生物扰动作用形成的瘤状层面构造还出现在伊朗西南部扎格罗斯褶皱带与塔克那组同时代的Dariyan组(图7e)(Moosavizadeh et al.,2020)。旋回顶部强烈的生物扰动反映缓慢的沉积速率或者沉积间断,反映了水体向上的加深过程,岩性从混积岩变为泥页岩。塔一段下部混积岩中常见以双壳碎屑为核心的核形石,核形石皮层为无纹层、均质的泥晶(图4d),形成于颗粒表面微生物活动对细粒沉积物的捕获,根据Védrine et al.(2007)核形石分类标准,属于I型核形石,代表了局限—中等水动力潟湖环境(Védrine et al.,2007; Bahrehvar et al.,2020)。塔一段上部生屑泥晶灰岩中出现的示顶底构造(图7f)也指示了潮间带的沉积环境。综上,塔克那组塔一段代表海侵的初期,相对海平面的上升显著减弱了以拉萨地块北部火山岩为主的碎屑物源供给,结束了楚木龙组的滨岸相沉积,发育存在陆源碎屑输入、浅海生物发育的潮间-潮下带潟湖环境(图6b)。
-
图6 林周盆地塔克那组沉积模式及沉积演化过程
-
Fig.6 Sedimentary model and sedimentary evolution of the Takena Formation in the Linzhou basin
-
(a)—塔克那组沉积模式;(b)—塔克那组塔一段沉积;(c)—塔克那组塔二段沉积;(d)—塔克那组塔三段沉积;(e)—塔克那组塔四段沉积
-
(a) —Sedimentary model of the Takena Formation; (b) —sedimentary process of K1t1; (c) —sedimentary process of K1t2; (d) —sedimentary process of K1t3; (e) —sedimentary process of K1t4
-
塔二段沉积了厚层的泥灰岩,从玛行西剖面至甲绒东剖面可对比(图2)。泥灰岩中的钙质组分和陆源泥质组分(图5e),均以安静水体下的细粒沉积物为主,缺少较宏观底栖生物碎屑,指示水体深度超过透光带,仅可见代表远距离搬运的非常细小、粉砂级粒径的生物碎屑,指示沉积水动力弱。浮游有孔虫、颗石藻等浮游生物的缺失可能是由陆源泥质物质的输入所导致。塔二段沉积表明,区域海侵范围快速扩大、相对海平面快速上升,该阶段主要发生了风暴浪基面以下的沉积,由于海平面上升速度过快,导致风暴浪基面至晴天浪基面之间的沉积记录欠发育,该阶段对应了“塔克那组海侵”最盛时期,海侵范围最大、相对海平面最深(图6c),之后进入海退阶段。
-
图7 塔克那组塔一段主要沉积构造
-
Fig.7 Sedimentary structures in the1st Member of the Takena Formation (K1t1)
-
(a)—塔一段泥页岩,风化破碎,严重劈理化;(b)—(a)黄框放大,海生迹Thalassinoides形成多处高角度生物扰动潜穴,潜穴直径约1 cm,表面较光滑,潜穴充填物铁含量较高,风化后呈铁锈色;(c)—塔一段高频旋回顶部(生物碎屑砂岩/砂质生物碎屑灰岩/生物碎屑灰岩)层面蛇形迹Ophiomorpha,强烈生物扰动导致层面形成瘤状结构;(d)—蛇形迹Ophiomorpha瘤状结构新鲜面呈灰色;(e)—伊朗西南部白垩系Dariyan组(塔克那组同时代)顶面生物扰动构造导致层面形成瘤状结构(Moosavizadeh et al.,2020);(f)—塔一段上部生物碎屑泥晶灰岩发育示顶底构造
-
(a) —Shale in K1t1 is weathered and broken, and severely cleaved; (b) —the magnification of the yellow box in (a) , and many high-angle bioturbation burrows are formed resulted from Thalassinoides, the burrow fillers with a diameter of about 1 cm, smooth surface, high iron content and show rust color after weathering; (c) —extensive Ophiomorpha in the top of high-frequency cycles form; (d) —the fresh surface of Ophiomorpha nodular structure shows gray color; (e) —bioturbation in the top of Dariyan Formation (coeval with the Takena Formation) , southwest Iran, form similar nodular surfaces structure (Moosavizadeh et al., 2020) ; (f) —the geopetal structure occurs in bioclastic wackestone of K1t1
-
塔三段玛行西剖面发育多套生物介壳富集层,夹于钙质泥页岩中。生物介壳富集层被定义为岩层中富集粒径超过2 mm的非脊椎动物介壳(Kidwell,1991)。根据修改过的 Dunham(1962)灰岩结构分类,生物介壳富集层岩性为砾屑灰岩或漂浮岩(图5f、g); 生物介壳富集层在甲绒东剖面发生相变,发育生屑颗粒灰岩或鲕粒颗粒灰岩(图5h)。综合分析认为玛行西剖面中的生物介壳富集层为风暴成因,风暴作用导致生物介壳在晴天浪基面至风暴浪基面之间发生沉积,主要基于以下证据:① 单层生物介壳富集层以薄层状互层产出于钙质泥灰岩中,生物砾屑之间充填的基质与背景相中的钙质泥页岩基质相似,符合典型的风暴成因生物灰岩结构组成,如西班牙南部三叠系Cehegin组风暴成因生物富集层(图8a、b)(Pérez-López et al.,2012); ② 单层生物介壳富集层底部呈侵蚀状或者突变状接触界面,符合风暴作用侵蚀面特征(Sharafi et al.,2013); ③ 对典型生物灰岩层中的生物壳体定向性进行定量统计(图8c~h),结果表明双壳(图8c~e)、圆笠有孔虫(图8f~h)等多数生屑走向具有一致性、指示风暴浪搬运方向,但存在与主方向定向性不一致、甚至相垂直的壳体(图8e、h),圆笠有孔虫不同定向性通常表明沿浅水区向深水区搬运(Flügel,2010),且双壳砾屑长轴长度与主要生屑走向具有一致性(图8e),双壳凸面倾向无主导方向(图8e),上述介壳在生物富集层中的排列方式反映了风暴期间局部的湍流和旋转流作用; ④ 双壳富集层中介壳的搬运多受控于风暴浪作用(Fürsich et al.,1999; Sharafi et al.,2013),具有双峰粒径分布(分别代表完整壳体和破碎壳体)的壳体(图8e),是风暴层砾屑的典型特征(Einsele et al.,1991); ⑤ 生物壳体大都未经磨蚀,生物侵蚀作用、结壳作用均不存在,呈漂浮砾状散布于泥晶基质间(图8i~k),结合埋藏特点看,反映了一种快速堆积条件下的沉积产物(Flügel,2010)。塔克那组风暴沉积的发生具有其时代背景,Ito et al.(2001)对全球中—新生代内陆棚风暴浪作用强度的统计结果表明,白垩纪中期前后是全球风暴浪作用强度最大的时期,与塔克那组沉积时期具有好的吻合性。白垩纪频繁风暴活动被认为可能与大陆裂解导致的大洋活动有关,南美、非洲、印度板块的分离,导致强烈飓风产生(Marsaglia et al.,1983)。风暴层横向延伸可达数十千米甚至几百千米(Howard et al.,1981; Reading,1986),塔克那组风暴成因生物灰岩延伸范围未知,在玛行西剖面横向较稳定,在甲绒东剖面相变为双壳颗粒灰岩和以双壳碎屑为核心的鲕粒颗粒灰岩(图5h)。颗粒灰岩代表了晴天浪基面之上的浅水高能沉积环境,表明塔三段沉积期,甲绒东所处位置发育内缓坡浅滩沉积,推测两个剖面处沉积水体深度差异受控于盆地边界伸展构造有关的的正断层活动,断层下盘上升,发育浅滩沉积(图6d)。风暴作用生物介壳富集层中,介壳的物源一般来自于浅水礁丘。在喜马拉雅岗巴地区上白垩统,Yu Guangming et al.(1990)曾报道了牡蛎和圆笠有孔虫分别形成的生物建隆。Heckel(1974)曾总结了牡蛎在侏罗纪—第三纪时期形成的生物建隆,牡蛎礁丘建造的发育一直延续到全新世(Wang Hong et al.,2006; Yue Jun et al.,2012)。圆笠有孔虫丘微观上几乎由单一的圆笠有孔虫组成,排列十分紧密,说明生物丘是由有孔虫相互攀附叠置向上生长,而非流水分选作用的产物(Yu Guangming et al.,1990)。据此推测塔克那组沉积期,内缓坡浅水中可能发育与双壳和圆笠有孔虫有关的生物建隆,风暴浪作用时期,双壳被打碎、圆笠有孔虫丘被打散为单个壳体,被风暴浪携带至晴天浪基面至风暴浪基面之间发生异地再沉积作用。玛行西剖面塔三段生物富集层中生物类型主要以牡蛎为主,间或出现圆笠有孔虫生物灰岩。这种主要生物类型的交替变化,代表了生物生长的浅水环境中水体盐度的变化(Leeder et al.,1988),当盐度趋于不正常,导致牡蛎生物建隆的消亡和广盐性圆笠有孔虫的大量繁殖,形成圆笠有孔虫生物建隆。目前关于塔克那组野外露头研究中,并无正断层和相关的高能浅滩和生物建隆的报道,原因除了出露不全以外,也可能是在后期挤压缩短中被构造破坏(He et al.,2007)。从塔二段至塔三段,沉积环境水体从风暴浪基面之下演变为风暴浪基面之上,相对海平面开始下降(图6d)。
-
塔四段沉积期,海平面持续下降,海水逐渐从林周盆地退出,沉积物主要为陆源输入物质,发育滨岸相粉砂岩夹于三角洲平原亚相泛滥平原微相泥页岩中(图6e),不发育灰岩段,林周盆地自北向南被填平。多套泥页岩到粉砂岩旋回,代表海水的高频震荡性下降,指示“塔克那海侵”的结束阶段。海水全部退出林周盆地后,最终过渡到设兴组陆相红层沉积。
-
图8 塔克那组塔三段风暴成因生物富集层特征
-
Fig.8 Characteristics of storm-induced shell concentrations in the3rd Member of the Takena Formation (K1t3)
-
(a)—西班牙南部三叠系Cehegin组风暴成因生物富集层宏观特征(据Pérez-López et al.,2012);(b)—风暴成因生物富集层微观特征(据Pérez-López et al.,2012);(c)—双壳为主的生物富集层,双壳砾屑紧密堆积;(d)—黄色短线表示(c)中白框内所有壳体走向,橘黄色箭头表示弯曲壳体凸面倾向;(e)—(d)中壳体走向、弯曲壳体凸面倾向、壳体长度玫瑰花图;(f)—以圆笠有孔虫为主的生物富集层,圆笠有孔虫分布于泥晶基质中;(g)—黄线表示(f)中白框内所有壳体走向;(h)—(f)中圆笠有孔虫走向玫瑰花图;(i)—双壳生物富集层微观特征;(j)—双壳生物富集层微观特征;(k)—圆笠有孔虫生物富集层微观特征
-
(a) —Macro-characteristics of storm-induced shell concentrations in Triassic Cehegin Formation, southern Spain (after Pérez-López et al., 2012) ; (b) —micro-characteristics of storm-induced shell concentrations in Triassic Cehegin Formation, southern Spain (after Pérez-López et al., 2012) ; (c) —shell concentration dominated by bivalve fragments show closely packed of bivalve rudaceous fragments; (d) —the yellow short line indicates the trend of all shells in the white frame in (c) , and the orange arrow indicates the inclinations of the convex surface of shells; (e) —rose diagram show the shell directions, convex inclinations and shell length in (d) ; (f) —shell concentration dominated by Orbitolinid foraminiferas which distribute in micrite; (g) —the yellow short line indicates the trend of all Orbitolinid foraminiferas in the white frame in (f) ; (h) —rose diagram show the shell directions in (f) ; (i) —micro characteristics of shell concentration dominated by bivalve fragments; (j) —micro characteristics of shell concentration dominated by bivalve fragments; (k) —micro characteristics of shell concentration dominated by Orbitolinid foraminiferas
-
3.2 塔克那组与同期被动陆缘沉积对比
-
早白垩世拉萨地块与阿拉伯板块分别处于新特提斯洋东北缘活动大陆边缘和西南缘被动大陆边缘(图1b)。阿拉伯板块Shu'aiba组(地层时限124~113 Ma(van Buchem et al.,2010; Schroeder et al.,2010)是塔克那组同期海相沉积地层(图9a),广泛分布于沙特、阿曼、阿联酋等国家(图1b),是中东地区白垩系最重要的油气储层之一。对比二者沉积特征异同(表1),有助于解释塔克那组沉积背景,理解同期被动陆缘与主动陆缘沉积差异,为探讨塔克那组及相关地层油气储层潜力提供依据。
-
对比塔克那组与Shu'aiba组的生物类型,表明二者所含生物类型具有非常高的相似性(图9b)。Bou Dagher-Fadel et al.(2017)在塔克那组识别出了23种底栖有孔虫,其中的16种也发育于Shu'aiba组(Fonooni,2010; Schroeder et al.,2010),其余7种除Mayncina sp.外,均在塔克那组零星发育(图9b)。作为白垩系重要的生物地层标志,底栖有孔虫种属的高度相似性表明二者沉积时代上的重合性,还指示了塔克那组沉积时期,林周盆地海水与新特提斯洋沟通通畅,冈底斯岩浆弧此时未能将林周盆地与新特提斯洋相分割,圆笠有孔虫等生物能够沿着环特提斯洋的滨浅海地带交流扩散。塔克那组双壳可与欧洲特提斯洋浅海双壳对比(Gou Zonghai,1985),同样说明林周盆地与西新特提斯洋的连通性。其他浅海底栖生物种类,包括双壳、棘皮、绿藻、腹足类等浅海底栖生物在二者均发育(图9b,图10a、b),Lithocodium-Bacinella和厚壳蛤分别在Shu'aiba组下段和上段发育(图10d),而在塔克那组未被识别到。厚壳蛤是白垩纪重要的造礁生物之一( Kiessling et al.,2002; Scholle et al.,2003; Flügel,2010),据统计,厚壳蛤礁占白垩纪中期生物礁总量的60%以上(Stanley,2003),Lithocodium-Bacinella在Aptian早期一度替代厚壳蛤成为造礁生物(Rameil et al.,2010),二者一般发育在相对安静和清澈的水体中,代表了局限环境中发育的藻丘或台地边缘发育的小型点礁(Rameil et al.,2010; Esrafili-Dizaji et al.,2020),在中东、欧洲等白垩纪环新特提斯洋浅海中广泛发育(Skelton,2003; Pascual-Cebrian et al.,2016; Liu et al.,2021),二者在塔克那组的缺失,可能是陆源物质输入导致水体浑浊,不利于其发育,而在拉萨地块西北部下白垩统郎山组(Aptian—Albian)厚层浅海相灰岩地层中,缺少陆源输入的背景下,前人识别出厚壳蛤(Leeder et al.,1988; Leier et al.,2007b)。此外,塔二段、塔三段等深水沉积中浮游生物的缺失也可能是受陆源泥质的输入的影响。
-
塔克那组和Shu'aiba组沉积演化过程也具有较高的相似性(表1),二者均代表了一期三级海平面的海侵—海退过程,可以划分出海侵体系域和高位体系域(图10c、d)。Shu'aiba组最大海泛面对应Sharland et al.(2001)划分的K80(117 Ma)区域性海侵面(van Buchem et al.,2010)。Wang Feng et al.(2007)在Shu'aiba组上段识别出了滩间洼地的风暴沉积,高位域结束后,海平面下降,顶部来自阿拉伯板块西部阿拉伯地盾的碎屑物源充填低位域下切谷。与之相比,塔克那组存在两点显著区别。其一是相变非常快,体现在:① 塔一段发生混积岩到灰岩岩相的迅速变化; ② 从塔一段到塔二段,沉积水体从晴天浪基面之上快速上升至风暴浪基面之下,代表相对海平面的快速变化; ③ 塔三段风暴成因介壳富集层中,偶尔出现圆笠有孔虫生物层,代表海水盐度的间歇变化。其二是整个沉积过程存在陆源沉积物的持续输入:① 海侵早期(塔一段早期)与高位域晚期(塔四段),相对海平面较低,盆地边缘浅水环境中输入较多陆源石英碎屑,分别形成塔一段下部生物碎屑砂岩、砂质生屑灰岩和塔四段粉砂岩,盆地内部主要输入陆源泥质、沉积了泥页岩; ② 海侵晚期和海退早期,陆源砂质碎屑输入少,主要输入陆源泥质,形成塔二段泥灰岩和塔三段钙质泥页岩。上述两点区别,反映出活动陆缘伸展构造过程对塔克那组沉积作用的控制,一方面控制沉积基底的快速差异沉降,区别于被动陆缘的缓慢稳定沉降; 另一方面是横向沉积分异快,导致短陆源物源输运过程,区别于被动陆缘横向沉积分异慢、长陆源沉积物输运过程。
-
3.3 相对海平面变化控制因素
-
塔克那组沉积揭示了海侵至海退的过程,即相对海平面上升再下降。相对海平面变化一般认为受控于绝对海平面变化和沉积基底沉降的控制。塔克那组沉积时限的不确定性导致相对海平面变化的控制因素具有多解性。塔克那组沉积时限、尤其是沉积结束时限存在争议。罗仲舒最初命名塔克那组时,将其时代归属为晚白垩世(Yao Peiyi et al.,1992),Wang Naiwen(1983)划归塔克那组为晚白垩世早期,1∶20万区域地质调查拉萨幅认为塔克那组包括了早—晚白垩世部分地层❶。通过对塔克那组圆笠有孔虫化石组合鉴定,Liu Guifang(1988)和Wan Xiaoqiao et al.(2003)将塔克那组时代约束到Aptian—Albian期,Wang Naiwen(1983)和Leier et al.(2007)在塔克那组识别出Aptian—Albian期的生物类型及组合,Bou Dagher-Fadel et al.(2017)认为塔克那组底栖有孔虫时代为124~119 Ma(中Aptian期),综上,塔克那组生物地层年龄结束于中Aptian—Albian期。但应注意的是,上述海相生物分布于塔一段至塔三段(图9b),未考虑塔四段,因而不能代表塔克那组结束时期。塔四段和设兴组底部碎屑锆石U-Pb年龄可进一步帮助约束塔克那组沉积结束时限。Chen Beibei(2017)采自甲绒西剖面塔四段砂岩的最年轻锆石年龄为95±1 Ma,指示塔克那组沉积延续至Cenomanian期; Leier et al.(2007a)和Xing Liyuan et al.(2020)先后报道了设兴组底部最年轻锆石U-Pb年龄105±2 Ma和98 Ma; 设兴组锆石年龄时限还包括100~80 Ma(Zhang Jiawei,2018)、83~78 Ma(Chen Beibei,2017)、81~70 Ma(Jing Tianjing,2014),然而Wang et al.(2020)报道了设兴组底部碎屑岩最年轻锆石U-Pb年龄为119 ± 2 Ma和116 ± 2 Ma(中Aptian期)。一般详细的古生物化石研究相比碎屑锆石年龄在限定地层时代上具有更好的效果,若主要根据古生物时代、兼顾碎屑锆石年龄,本文认为塔克那组地层年龄存在两种可能,其一为早至中Aptian期,其二为早Aptian期至中晚Albian期。
-
若塔克那组沉积时限为早至中Aptian期,该阶段的全球海平面变化曲线保持相对稳定(Golonka et al.,2002; Haq,2014)或逐渐上升趋势(Müller et al.,2008),有孔虫变化揭示出藏南区域海平面变化曲线呈上升趋势(Wan Xiaoqiao,1992),受控于上述海平面变化趋势,沉积基底需要发生先沉降再抬升的过程,才能产生目前根据沉积演化推测到的塔克那组相对海平面变化。塔克那沉积期处于伸展构造背景中,受控于新特提斯洋壳俯冲和羌塘地块的碰撞,可能产生幕次性挤压抬升,产生先沉降再抬升的基底活动过程,这是控制塔克那组沉积期相对海平面变动机制的可能性解释之一。塔克那组沉积过程相对海平面变化的另外一个解释是绝对海平面的变化,绝对海平面并非上述的相对稳定或上升趋势( Wan Xiaoqiao,1992; Golonka et al.,2002; Müller et al.,2008; Haq,2014),而是先上升再下降的过程,与伸展阶段基底沉降过程相耦合,形成先上升再下降的相对海平面变化,这一变化过程被记录在全球众多同时代海相地层中。如阿拉伯板块同时期Shu'aiba组沉积于新特提斯洋被动陆缘一侧,稳定构造沉降控制下,相对海平面表现出了上升再下降的趋势(图9a、图10d)(van Buchem et al.,2010),还包括俄罗斯台地(Sahagian et al.,1996)、英格兰地区(Ruffel and Wach,1998)、加拿大西部(Ardies et al.,2002; Zaitlin et al.,2002)、新特提斯洋北部和西部(Heimhofer et al.,2007; Rodriguez-Lopez et al.,2008)。Rodriguez-Lopez et al.(2008)、Mutterlose et al.(2009)、van Buchem et al.(2010)认为该阶段海平面下降受控于两次全球性冷事件,其中早Aptian期的短期冷事件与极地冰盖生长相关,Aptian中晚期的长期冷事件对应于冰盖消融后冰水迅速流入海水导致的海水体积冷缩。楚木龙组顶部海侵沉积黑色页岩,之后早Aptian短期冷事件相关的海平面下降,沉积了塔一段中下部的砂岩、生物碎屑砂岩; Aptian中晚期长期冷事件相关的海平面下降,导致塔四段滨岸相和设兴组陆相红层的沉积。因此,塔克那组沉积过程并非仅受控于伸展阶段的快速构造沉降过程(Leier et al.,2007; Wang et al.,2020),全球冷事件引起的海平面变动同样起到不可忽视的作用。
-
图9 早白垩世Aptian—Albian期全球/区域海平面变化(a)及塔克那组与阿拉伯板块同时期 Shu'aiba组主要造岩生物类型对比(b)
-
Fig.9 Global and regional sea-level curves during Aptian-Albian, Early Cretaceous (a) and comparison of the main biota between the Takena Formation and coeval Shu'aiba Formation in the Arabian plate (b) ①—Haq, 2014; ②—Müller et al., 2008; ③—Golonka at al., 2002; ④—Wan Xiaoqiao, 1992; ⑤—van Buchem, 2010
-
若塔克那组沉积时限为早Aptian期至中晚Albian期,Müller et al.(2008)建立的全球海平面变化曲线和Wan Xiaoqiao(1992)建立的西藏南部海平面变化曲线在上述时段均具有先上升再下降的变化趋势(图9),符合塔克那组沉积演化过程,可推测该阶段研究区构造背景为伸展背景下稳定的基底沉降过程。
-
4 结论
-
(1)塔克那组发育碎屑岩、硅质碎屑-碳酸盐混积岩、碳酸盐岩三大类沉积岩10种岩石类型,纵向上划分为四个岩性段,是一个三级相对海平面变化旋回的沉积层系。
-
(2)塔一段沉积于海侵初期,潮间-潮下带潟湖环境发育砂岩-混积岩-灰岩岩性组合; 塔二段沉积期相对海平面快速上升至风暴浪基面以下,发育厚层泥灰岩; 塔三段在玛行西剖面发育多套指示晴天浪基面之下的风暴成因生物介壳富集层,往西南在甲绒东剖面相变为浅滩相带; 塔四段持续海退,沉积滨岸和泛滥平原环境的泥页岩夹粉砂岩。
-
图10 塔克那组与阿拉伯板块同时期Shu'aiba组部分造岩生物类型/颗粒类型对比和沉积结构模型
-
Fig.10 Comparison of micro characteristics of some biota and grains between the Takena Formation and coeval Shu'aiba Formation in the Arabian Plate, and conceptual sedimentary architecture
-
(a)—塔克那组造岩生物类型/颗粒类型;(b)—Shu'aiba组造岩生物类型/颗粒类型(b-1、b-3据Bahrehvar et al.,2020; b-2据Mansouri-Daneshvar et al.,2015; b-4据Mehrabi et al.,2015);(c)—塔克那组沉积结构模型;(d)—Shu'aiba组沉积结构模型(据van Buchem et al.,2010修改)
-
(a) —Micro characteristics of some biota and grains in the Takena Formation; (b) —micro characteristics of some biota and grains in the Shu'aiba Formation (b-1, b-3 after Behrehvar et al., 2020; b-2 after Mansouri-Daneshvar et al., 2015; b-4 after Mehrabi et al., 2015) ; (c) —conceptual sedimentary architecture of the Takena Formation; (d) —conceptual sedimentary architecture of the Shu'aiba Formation (modified from van Buchem et al., 2010)
-
(3)与同时代新特提斯洋被动陆缘沉积的Shu'aiba组对比,塔克那组具有相似的底栖有孔虫种属和主要的造岩生物类型,说明该时期拉萨地块南部林周盆地与新特提斯洋沟通良好。主要区别是,塔克那组沉积于活动陆缘伸展背景下:① 具有基底快速差异沉降特征,相对海平面快速变动,导致纵、横向相变快; ② 始终存在陆源物质的输入,导致混积岩发育,厚壳蛤、Lithocodium-Bacinella等浅海喜净水生物和深水浮游生物欠发育。
-
(4)塔克那组沉积时限存在争议导致相对海平面变动机制的多解性。若塔克那组沉积结束于中晚Albian期,塔克那组沉积期相对海平面受控于全球和藏南海平面变化; 若结束于中Aptian期,相对海平面变化驱动机制可能是:① 活动陆缘伸展构造背景下,基底稳定沉降过程伴随幕次性的挤压抬升; ② Aptian期存在全球变冷事件,导致海平面上升再下降。
-
致谢:感谢成都理工大学朱利东教授、解龙博士、麦源君博士在野外工作中提供的帮助。南京大学胡修棉教授和另外一名匿名评审专家提出的建设性意见和建议,显著提高了文章质量,在此谨致谢忱。
-
注释
-
❶ 西藏自治区地质矿产局区域地质调查大队.1991.1∶20万区域地质调查报告(拉萨幅).
-
参考文献
-
Ardies G W, Dalrymple R W, Zaitlin B A. 2002. Controls on the geometry of incised valleys in the basal quartz unit (Lower Cretaceous), western Canada sedimentary basin. Journal of Sedimentary Research, 72: 602~618.
-
Bahrehvar M, Mehrabi H, Rahimpour-Bonab H. 2020. Coated grain petrography and geochemistry as palaeoenvironmental proxies for the Aptian strata of the southern Neo-Tethys Ocean, Persian Gulf, Iran. Facies, 66(1): 1~23.
-
Bou Dagher-Fadel M K, Hu X, Price G D, Sun G, Wang J, An W. 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the Mid-Cretaceous limestones in the southern Tibetan Plateau. Journal of Foraminiferal Research, 47(2): 188~207.
-
Chen Beibei. 2017. Late Cretaceous-early Eocene tectonic evolution of the southern Tibetan Plateau: key geological records from Linzhou basin. Master thesis of China University of Geosciences (Beijing), 21+59~65 (in Chinese with English abstract).
-
Chen P. 2003. Cretaceous biostratigraphy of China. In: Zhang W, Chen P, Palmer A R, eds. Biostratigraphy of China. Beijing: Science Press, 465~532.
-
Chen Y, Courtillot V, Cogné J, Besse J, Yang Z, Enkin R. 1993. The configuration of Asia prior to the collision of India: Cretaceous paleomagnetic constraints. Journal of Geophysical Research: Solid Earth, 98(B12): 21927.
-
Dunham R J. 1962. Classification of carbonate rocks according to depositional textures. AAPG Mem. , 1: 108~121.
-
Einsele G, Seilacher A. 1991. Cycles and Events in Stratigraphy. Berlin: Springer-Verlag.
-
Embry A F, Klovan J E. 1971. A late Devonian reef tract on northeastern Banks Island, N. W. T. Bulletin of Canadian Petroleum Geology, 19: 730~781.
-
Esrafili-Dizaji B, Hajikazemi E, Dalvand M. 2020. Diagenesis and reservoir characteristics of the Lithocodium-Bacinella facies in a Lower Cretaceous reservoir, eastern Persian Gulf Basin. Facies, 66(4): 1~24.
-
Flügel E. 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Second ed. Berlin Heidelberg New York: Springer-Verlag.
-
Fonooni B. 2010. Biostratigraphy, micropalaeontology and micropaleonto-logical studies on the cutting and core samples of drilled sequence of well 1. Report 1788. Tehran: Exploration Directorate, National Iranian Oil Company.
-
Fürsich F T, Pandey D K. 1999. Genesis and environmental significance of Upper Cretaceous shell concentrations from the Cauvery basin, southern India. Palaeogeogr. , Palaeoclimatol. , Palaeoecol. , 145: 119~139.
-
Golonka J, Kiessling W. 2002. Phanerozoic time scale and definition of time slices. In: Kiessling W, Flügel E, Golonka J, eds. Phanerozoic Reef Patterns, SEPM Special Publication, 72: 11~20.
-
Golonka J, Krobicki M, Pajak J, Nguyen V G, Zuchiewicz W. 2006. Global plate tectonics and paleogeography of Southeast Asia. Faculty of Geology, Geophysics and Environmental Protection. Arkadia. AGH University of Science and Technology.
-
Gou Zonghai. 1985. A Cretaceous bivalve fauna in Pengbo Fram area of Lhasa, Xizang (Tibet). Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 17: 233~254 (in Chinese with English abstract).
-
Haq B U. 2014. Cretaceous eustasy revisited. Global & Planetary Change, 113(2): 44~58.
-
He S, Kapp P, DeCelles P G, Gehrels G E, Heizler M. 2007. Cretaceous-Tertiary geology of the Gangdese arc in the Linzhou area, Southern Tibet. Tectonophysics, 433 (1): 15~37.
-
Heckel P H. 1974. Carbonate buildups in the geologic record: a review. In: Laporte L F, ed. Reefs in Time and Space. SEPM (Soc. Sediment. Geol. ) Spec. Publ. , Tulsa, 18: 90~155.
-
Heimhofer U, Hochuli P A, Burla S, Weissert H. 2007. New records of Early Creteaceous angiosperm pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. Review of Paleobotany and Palynology, 144: 39~76.
-
Howard J D, Reineck H E. 1981. Depositional facies of high-energy beach-to-offshore sequence; comparison with low-energy sequence. AAPG Bulletin, 65(5): 807~830.
-
Hu Xiumian, An Wei, Garzanti E, Liu Qun. 2020. Recognition of trench basins in collisional orogens: insights from the Yarlung Zangbo suture zone in southern Tibet. Science China Earth Sciences, 63(12): 2017~2028.
-
Hu Xiumian, Xue Weiwei, Lai Wen, Wang Jiangang, An Wei, Li Juan. 2021. Sedimentary basin in orogenic belt and continental geodynamiucs. Acta Geologica Sinica, 95(1): 139~158 (in Chinese with English abstract).
-
Ito M, Ishigaki A, Nishikawa T, Saito T. 2001. Temporal variation in the wavelength of hummocky cross-stratification: implications for storm intensity through Mesozoic and Cenozoic. Geology, 29(1): 87~89.
-
Jing Tianjing. 2014. Geochronology, geochemistry and implications of the sandstones in Shexing Formation in Maxiang are. Tibet. Master thesis of Chinese University of Geoscience (Beijing), 35~39 (in Chinese with English abstract).
-
Kapp P, DeCelles P G, Leier A L, He S, Ding L. 2004. The Gangdese retroarc fold-thrust belt revealed. Geological Society of America Abstracts with Programs, 36(5): 49.
-
Kapp P, DeCelles P G, Leier A L, Fabijanic J M, He S, Pullen A, Gehrels G E, Ding L. 2007. The Gangdese retroarc thrust belt revealed: GSA Today, 17(7): 4~9.
-
Khetani A B, Read J F. 2002. Sequence development of a mixed carbonate-siliciclastic high-relief ramp, Mississippian, Kentucky, U. S. A. Journal of Sedimentary Research, 72(5): 657~672.
-
Kidwell S M. 1991. The stratigraphy of shell concentrations. In: Allison P A, Briggs D E G, eds. Taphonomy: Releasing the Data Locked in the Fossil Record. New York: Plenum Press, 115~209.
-
Kiessling W, Flügel E, Golonka J. 2002. Phanerozoic Reef Patterns. SEPM Special Publication No. 72. Tulsa.
-
Kumar A, Saraswati P K. 1997. Response of larger foraminifera to mixed carbonate-siliciclastic environments: an example from the Oligocene-Miocene sequence of Kutch, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 136(1-4): 53~65.
-
Leeder M R, Smith A B, Yin J X. 1988. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud geotraverse. Philosophical Transactions of the Royal Society A: Mathematical and Physical Sciences, 327: 107~143.
-
Leier A L, DeCelles P G, Kapp P, Ding L. 2007a. The Takena Formation of the Lhasa Terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin. Geological Society of America Bulletin, 119(1/2): 31~48.
-
Leier A L, DeCelles P G, Kapp P, Gehrels G E. 2007b. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77: 809~825.
-
Li Z, Ding L, Song P, Fu J, Yue Y. 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa terrane during the Early Cretaceous: implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Research, 41: 352~372.
-
Lin J, Watts D R. 1988. Palaeomagneticresults from the Tibetan Plateau. Philosophical Transactions of the Royal Society A: Mathematical Physical & Engineering Sciences, 327(1594): 239~262.
-
Liu Guifang. 1988. Early Cretaceous Aptian ammonites from Lhasa and Nam Lake areas, Xizang (Tibet). Acta Palaeontologica Sinica, 27(3): 382~389+419~421 (in Chinese with English abstract).
-
Liu H, Shi K, Liu B, Song X, Guo R, Wang G, Wang H. 2021. Microfacies and reservoir quality of the Middle Cretaceous Rumaila Formation in the AD oilfield, Central Mesopotamian basin, Southern Iraq. Journal of Asian Earth Sciences, 213: 104726.
-
Ma Yuan. 2017. Tectonic evolution of the Cretaceous back-arc basin in the middle-east segment of the South Gangdese, South Tibet. PhD thesis of China University of Geosciences (Beijing), 49~50 (in Chinese with English abstract).
-
Ma Y, Yang T, Yang Z, Ding J. 2014. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from thewestern Lhasa Terrane: new constraints on the India-Asia collision process and intracontinental deformation within Asia. Journal of Geophysical Research, 119(10): 7404~7424.
-
Mansouri-Daneshvar P, Moussavi-Harami R, Mahboubi A, Gharaie M, Feizie A. 2015. Sequence stratigraphy of the petroliferous Dariyan Formation (Aptian) in Qeshm Island and offshore (Southern Iran). Petroleum Science, 12(2): 232~251.
-
Marsaglia K M, George D K. 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. The Journal of Geology, 91(2): 117~42.
-
Mehrabi H, Rhimpour-Bonab H, Hajikazemi E, Esrafili-Dizaji B. 2015. Geological reservoir characterization of the Lower Cretaceous Dariyan Formation (Shu'aiba equivalent) in the Persian Gulf, southern Iran. Marine and Petroleum Geology, 68: 132~157.
-
Mitchell S F. 2002. Palaeoecology of corals and rudists in mixed volcaniclastic-carbonate small-scale rhythms (Upper Cretaceous, Jamaica). Palaeogeography Palaeoclimatology Palaeoecology, 186(3-4): 237~259.
-
Moosavizadeh S M A, Zand-Moghadam H, Rahiminejad A H. 2020. Palaeoenvironmental reconstruction and sequence stratigraphy of the Lower Cretaceous deposits in the Zagros belt, SW Iran. Boletín de la Sociedad Geológica Mexicana, 72 (2): A060919. http: //dx. doi. org/10. 18268/BSGM2020v72n2a060919.
-
Mount J. 1985. Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32: 435~442.
-
Müller R D, Seton M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319(5868): 1357~1362.
-
Murphy M A, Yin A, Harrison T M, Dürr S B, Chen Z, Ryerson F J, Kidd W S F, Wang X, Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau? Geology, 25(8): 719~722.
-
Mutterlose J, Bornemann A, Herrle J. 2009. The Aptian-Albian cold snap: evidence for ‘mid' Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 252(2): 217~225.
-
Pan L, Zhou B, Han K, Qiao X, Zhao H, Wang M. 2018. The nature and formation and evolution of Mesozoic sedimentary basins in Lhasa-Riduo. Mineral Exploration, 9(9): 1736~1745 (in Chinese with English abstract).
-
Pascual-Cebrian E, Stefan G, Telm B, Skelton P W, Gili E, Salas R, Stinnesbeck W. 2016. Calcite/aragonite ratio fluctuations in Aptian rudist bivalves: correlation with changing temperatures. Geology, 44(2): 135~138.
-
Pérez-López A, Pérez-Valera F. 2012. Tempestite facies models for the epicontinental Triassic carbonates of the Betic Cordillera (southern Spain). Sedimentology, 59: 646~678.
-
Rameil N, Immenhauser A, Warrlich G, Hillgartner H, Droste H. 2010. Morphological patterns of Aptian Lithocodium-Bacinella geobodies: relation to environment and scale. Sedimentology, 57(3): 883~911.
-
Reading H G. 1986. Sedimentary environments and facies. Oxford: Blackwell Scientific Publications.
-
Rodriguez-Lopez J P, Melendez N, De Boer P L, Soria A R. 2008. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology, 55(5): 1253~1292.
-
Ruffel A, Wach G. 1998. Estuarine/offshore depositional sequences of the Cretaceous Aptian/Albian boundary, England. In: de Graciansky P Ch, Hardenbol J, Jacquin Th, Vail P R, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60, 411~422.
-
Sahagian D, Pinous O, Olferiev A, Zakharov V. 1996. Eustatic curve for the Middle Jurassic-Cretaceous based on Russian platform and Siberian stratigraphy: zonal resolution. American Association of Petroleum Geologists, 80: 1433~1458.
-
Sanders D, Höfling R. 2000. Carbonate deposition in mixed siliciclastic-carbonate environments on top of an orogenic wedge (Late Cretaceous, northern calcareous Alps, Austria). Sedimentary Geology, 137(3-4): 127~146.
-
Scholle P A, Ulmer-Scholle D S. 2003. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. American Association of Petroleum Geologists, Tulsa, Oklahoma. 474 pp.
-
Schroeder R, Buchem F S P, van Cherchi A, Baghbani D, Vincent B, Immenhauser A, Granier B. 2010. Revised orbitolinid bio-stratigraphic zonation for the Barremian-Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. GeoArabia Special Publication 4, Gulf PetroLink, Manama: 49~96.
-
Sharafi M, Mahboubi A, Moussavi-Harami R, Ashuri M, Rahimi B. 2013. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Aitamir Formation (Albian-Cenomanian), Kopet-Dagh basin, northeastern Iran. Journal of Asian Earth Sciences, 67(5): 171~186.
-
Sharland P R, Archer R, Casey D M, Davis R B, Hall S H, Heward A P, Horbury A D, Simmons M D. 2001. Arabian Plate sequence stratigraphy. GeoArabia Special Publication no. 2, Gulf PetroLink, Bahrain, 371 pp.
-
Skelton P W. 2003. The Cretaceous World. Cambridge: Cambridge University Press. Stanley G D. 2003. Theevolution of modern corals and their early history. Earth Science Reviews, 60(3-4): 195~225.
-
Steuber T, Yilmaz C, Löser H. 1998. Growth rates of Early Campanian rudists in a siliciclastic-calcareous setting (Pontid Mts. , North-central Turkey). Geobios, Mémoir Spécial, 22: 385~401.
-
Sun G, Hu X, Sinclair H D, Boudagher-Fadel M K, Wang J. 2015. Late Cretaceous evolution of the Coqen basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geological Society of America Bulletin, 127(7-8): 1001~1020.
-
Thupten-Tsering, Li X, Zhu W, Yangdorn, Penphan. 2018. Discovery of fossils of Cretaceous marine facies at Linzhou Basin in Lhasa Tibet and its geological implication. Plateau Science Research, 2(2): 12~17 (in Chinese with English abstract).
-
van Buchem F S P, Al-Husseini M I, Maurer F, Droste H J, Yose L A. 2010. Sequence-stratigraphic synthesis of the Barremian-Aptian of the eastern Arabian Plate and implications for the petroleum habitat. In: van Buchem F S P, Al-Husseini M I, Maurer F, Droste H J, eds. Barremian-Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Special Publication 4, Gulf PetroLink, Bahrain, 1: 9~48.
-
Védrine S, Strasser A, Hug W. 2007. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies, 53(4): 535~552.
-
Volkmer J, Kapp P, Guynn J H, Lai Q. 2007. Cretaceous-Tertiary tectonic evolution of the North-central Lhasa Terrane, Tibet. Tectonics, 26: TC6007.
-
Wan Xiaoqiao. 1992. Cretaceous foraminifera from southern Xizang (Tibet): a study on eustatic change. Geoscience, 6(4): 392~398 (in Chinese with English abstract).
-
Wan Xiaoqiao, Wu Yanhua, Li Guobiao. 2003. Distribution of Mid-Cretaceous orbitolinids in Xizang (Tibet) and its paleobiogeographic implications. Acta Geologica Sinica, 77(1): 1~8 (in Chinese with English abstract).
-
Wan X, Chen P, Wei M. 2007. The Cretaceous system in China. Acta Geologica Sinica-English Edition, 81: 957~983.
-
Wang Chengshan, Hu Xiumian. 2005. Cretaceous world and oceanic beds. Earth Science Frontiers, 12(2): 11~21 (in Chinese with English abstract).
-
Wang Dong. 2017. Cretaceous tectonic magma evolution in the southern Qinghai-Tibet Plateau. Master dessertation of Chengdu University of Technology, 76~80 (in Chinese with English abstract).
-
Wang Feng, Jiang Zaixing, Zhou Liqing, Zhao Guoliang, Wang Lin, Zheng Ning, Xiang Shu'an. 2007. Sedimentary facies model on carbonate rock in the Upper Shu'aiba Member of Lower Cretaceous in Daleel field, Oman. Acta Sedimentologica Sinica, 25(2): 192~200 (in Chinese with English abstract).
-
Wang Hong, Fan Changfu, Li Jianfen, Li Fenglin, Yan Yuzhong, Wang Yunsheng, Zhang Jinqi, Zhang Yufa. 2006. Holocene oyster reefs on the northwest coast of the Bohai Bay, China. Geological Bulletin of China, 25(3): 315~331 (in Chinese with English abstract).
-
Wang J, Hu X, Garzanti E, An W, Liu X. 2017. The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letters, 465: 38~47.
-
Wang J, Hu X, Garzanti E, BouDagher-Fadel M K, Liu Z, Li J, Wu F. 2020. From extension to tectonic inversion: Mid-Cretaceous onset of andean-type orogeny in the Lhasa Block and early topographic growth of Tibet. Geological Society of America Bulletin, 132: 2432~2454.
-
Wang Naiwen, Wang Sien, Liu Guifang, Bassoullet J, Colchen M, Mascle L, Jaeger J. 1983. The Juro-Cretaeous marine-terrestrial alternating formation in Lhasa area, Xizang (Tibet). Acta Geologica Sinica, (1): 83~95 (in Chinese with English abstract).
-
Xi Dangpeng, Wan Xiaoqiao, Li Guobiao, Li Gang. 2019. Cretaceous integrative stratigraphy and timescale of China. Science China: Earth Science, 49(1): 257~288 (in Chinese with English abstract).
-
Xing Liyuan, Zhao Zhidan, Qi Ningyuan, Tang Yan, Liu Dong, Tong Xin, Wang Qing, Zhu Dicheng. 2020. Geochemistry and petrogenesis of sandstones and their basaltic interlayers of Shexing Formation from Linzhou basin, South Tibet. Acta Petrologica Sinica, 36(9): 2729~2750 (in Chinese with English abstract).
-
Yang Shipu. 1999. Palaeoenvironmental and palaeogeographic significance of trace fossils. Journal of Palaengeography, (1): 7~19(in Chinese with English abstract).
-
Yang T, Ma Y, Zhang S, Bian W, Yang Z, Wu H, Li H, Chen W, Ding J. 2015. New insights into the India-Asia collision process from Cretaceous paleomagnetic and geochronologic results in the Lhasa terrane. Gondwana Research, 28(2): 625~641.
-
Yao Peiyi, Liu Xun, Fu Derong. 1992. Marine Cretaceous trace fossils from the north of Lhasa, Xizang and their environmental significance. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 23: 220~230 (in Chinese with English abstract).
-
Yin J, Xu J, Liu C, Li H. 1988. The Tibetan Plateau: regional stratigraphic context and previous work. Philosophical Transactions of the Royal Society A: Mathematical and Physical Sciences, 327: 5~52.
-
Yu Guangming, Wang Chengshan. 1990. Sedimentary Geology of the Xizang (Tibet). Beijing: Geological Publishing House, 24~28 (in Chinese with English abstract).
-
Yue Jun, Zhang Baohua, Han Fang, Zhao Xitao, Liu Dongyan, Duan Huanchun, Zhang Baiming, Zhao Changrong. 2012. Several oyster barrier reefs in the northwest coast of Bohai Sea. Acta Geologica Sinica, 86(8): 1175~1187 (in Chinese with English abstract).
-
Zaitlin B A, Warren M J, Potocki D, Rosenthal L, Boyd R. 2002. Depositional styles in a low accommodation foreland basin setting: an example from the Basal Quartz (Lower Cretaceous), southern Alberta. Bulletin of Canadian Petroleum Geology, 50: 31~72.
-
Zhang Jiawei. 2018. Evolution and exhumation of the Mesozoic Qiangtang and Maqu-Linzhou basins, Tibet. PhD thesis of China University of Geosciences (Beijing), 77~80 (in Chinese with English abstract).
-
Zhang K. 2000. Cretaceouspalaeogeography of Tibet and adjacent areas (China): tectonic Implications. Cretaceous Research, 21(1): 23~33.
-
Zhang K. 2004. Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from Central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth and Planetary Science Letters, 229(1): 73~89.
-
Zhang K, Xia B, Wang G, Li Y, Ye H. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of Central Tibet, western China. Geological Society of America Bulletin, 116(9): 1202.
-
Zhu Xiaomin. 2008. Sedimentary Petrology. Beijing: Petroleum Industry Press, 92~93.
-
Zhu D, Zhao Z, Niu Y, Mo X, Chung S, Hou Z, Wang L, Wu F. 2011. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301: 241~255.
-
陈贝贝. 2017. 林周盆地晚白垩世—早始新世关键地质事件对青藏高原南部构造演化的制约. 中国地质大学(北京)硕士学位论文, 21+59~65.
-
苟宗海. 1985. 西藏拉萨彭波农场地区白垩纪的双壳类动物群. 青藏高原地质文集, 17: 233~254.
-
胡修棉, 安慰, Garzanti E, 刘群. 2020. 碰撞造山带海沟盆地的识别——以雅鲁藏布缝合带为例. 中国科学: 地球科学, 50(12): 1893~1905.
-
胡修棉, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139~158.
-
井天景. 2014. 西藏马乡设兴组砂岩锆石U-Pb年代学、岩石地球化学及其意义. 中国地质大学(北京)硕士学位论文, 35~39.
-
刘桂芳. 1988. 西藏拉萨、纳木湖地区早白垩世阿普弟期菊石. 古生物学报, 27(3): 382~389+419~421.
-
马元. 2017. 西藏南冈底斯中东段白垩纪弧后盆地构造演化. 中国地质大学(北京)博士学位论文, 49~50.
-
潘亮, 周斌, 韩奎, 乔新星, 赵焕强, 王明志. 2018. 西藏拉萨-日多中生代沉积盆地的性质及其形成演化. 矿产勘查, 9(9): 1736~1745.
-
土登次仁, 李兴鹏, 朱卫翁, 央珍, 边片. 2018. 西藏拉萨市林周盆地海相白垩系生物化石的发现及地质意义. 高原科学研究, 2(2): 12~17.
-
万晓樵. 1992. 从有孔虫分析西藏南部白垩纪海平面升降. 现代地质, 6(4): 392~398.
-
万晓樵, 吴雁华, 李国彪. 2003. 西藏白垩纪中期Orbitolinids(有孔虫)的分布与古地理意义. 地质学报, 77(1): 1~8.
-
王成善, 胡修棉. 2005. 白垩纪世界和大洋红层. 地学前缘, 12: 11~21.
-
汪东. 2017. 青藏高原南部白垩纪构造岩浆演化. 成都理工大学硕士学位论文, 76~80.
-
王锋, 姜在兴, 周丽清, 赵国良, 王林, 郑宁, 向树安. 2007. 阿曼Daleel油田下白垩统Shuaiba组上段碳酸盐岩沉积相模式. 沉积学报, 25(2): 192~200.
-
王宏, 范昌福, 李建芬, 李凤林, 阎玉忠, 王云生, 张金起, 张玉发. 2006. 渤海湾西北岸全新世牡蛎礁研究概述. 地质通报, (3): 315~331.
-
王乃文, 王思恩, 刘桂芳, 巴苏雷 J, 柯尔申 M, 马斯克 L, 让格 J. 1983. 西藏拉萨地区的海陆交互相侏罗系与白垩系. 地质学报, (1): 83~95.
-
席党鹏, 万晓樵, 李国彪, 李罡. 2019. 中国白垩纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 257~288.
-
邢莉圆, 赵志丹, 齐宁远, 唐演, 刘栋, 佟鑫, 王青, 朱弟成. 2020. 藏南林周盆地设兴组砂岩及其中玄武岩夹层的地球化学与成因. 岩石学报, 36(9): 2729~2765.
-
杨式溥. 1999. 遗迹化石的古环境和古地理意义. 古地理学报, (1): 7~19.
-
姚培毅, 刘训, 傅得荣. 1992. 西藏拉萨北部海相白垩系遗迹化石及其环境意义. 中国地质科学院地质研究所所刊, 23: 220~230.
-
余光明, 王成善. 1990. 西藏特提斯沉积地质. 北京: 地质出版社, 24~28.
-
岳军, 张宝华, 韩芳, 赵希涛, 刘冬雁, 段焕春, 张百鸣, 赵长荣. 2012. 渤海湾西北岸的几道牡蛎礁. 地质学报, 86(8): 1175~1187.
-
张佳伟. 2018. 西藏中生代羌塘及马乡—林周盆地形成演化与剥露过程. 中国地质大学(北京)博士学位论文, 77~80.
-
朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社, 92~93.
-
摘要
拉萨地块林周盆地下白垩统塔克那组沉积于新特提斯洋壳向拉萨地块俯冲的弧后伸展环境,对重构该时期古地理格局、理解活动陆缘伸展构造对沉积的控制作用具有重要意义。基于野外露头描述和薄片观察,总结塔克那组岩石地层、岩石学和古生物特征,对比同期新特提斯被动陆缘阿拉伯板块Shu'aiba组,讨论塔克那组沉积演化和活动陆缘沉积特征。塔克那组发育碎屑岩、硅质碎屑-碳酸盐混积岩、碳酸盐岩三大类沉积岩十种岩石类型,纵向上划分为四个岩性段,是一个三级相对海平面变化旋回的沉积层系。塔一段砂岩—混积岩—灰岩岩性变化、沉积构造和生物类型均指示潮间-潮下带潟湖环境;塔二段沉积于海平面快速上升期,主要为风暴浪基面之下厚层泥灰岩;塔三段在玛行西剖面首次识别出代表风暴浪基面之上的风暴成因生物富集层,往西南在甲绒东剖面相变为浅滩相生屑/鲕粒颗粒灰岩;塔四段沉积期海平面持续下降,海水逐渐退出盆地,沉积滨岸和泛滥平原环境的泥页岩夹粉砂岩。与阿拉伯板块同期生物种属对比表明,塔克那组沉积期,南拉萨地块林周盆地与新特提斯洋沟通性好。活动陆缘伸展背景下,具有基底快速差异沉降、陆源沉积物持续输入的特征,导致纵、横向相变快,混积岩发育,厚壳蛤、Lithocodium-Bacinella等浅海喜净水生物和深水浮游生物欠发育。
Abstract
The Lower Cretaceous Takena Formation in the Linzhou basin, Lhasa terrane was deposited in the back-arc extensional setting during northward subduction of the Neo-Tethys oceanic lithosphere to Lhasa Terrane, which is of great significance for reconstructing the palaeogeography of this period and understanding the control of extensional setting on sedimentation. Based on field outcrop descriptions and thin section observations, the stratigraphic architecture, petrology and paleontology characteristics of the Takena Formation are studied, and the sedimentary evolution and characteristics in the extensional setting during the Takena period are discussed by comparing the coeval Arabian Plate Shu'aiba Formation deposited in the passive continental margin of the Neo-Tethys Ocean. Four lithologic members are identified in the Takena Formation from bottom to top according to the lithological association of ten rock types of clastic, siliciclastic-carbonate mixed and carbonate rocks, witch record a third sequence stratigraphy composing of transgression-regression cycles. The lithofacies change from sandstone, siliciclastic-carbonate mixed rocks to carbonate rocks, combined with sedimentary structures and fauna typify the sedimentary environment of the 1st member of the Takena Formation (K1t 1) as a lagoon in intertidal-subtidal zone. Subsequently, the relative sea-level rose sharply and thick marl deposited in K1t 2 indicating palaeobathymetry below the storm wave base. The storm-induced shell concentrations intercalated in calcareous shale were first identified in K1t 3 in West Maxing Section and changed into shoal facies to the southwest indicated by bioclastic and oolite grainstones in the East Jiarong Section. Relative sea-level continued to drop leading to the end regression, and the coastal and floodplain environment siltstone intercalated in shale were deposited in K1t 4. Comparison between the coeval Takena and the Arabian Plate Shu'aiba Formations shows similarity between the fauna types indicating that the Linzhou Basin, southern Lhasa Terrane was connected with the Neo-Tethys Ocean in the Takena period. Under the extension setting in the active continental margin, sedimentation is characterized by rapid differential subsidence of the basement and continuous input of terrigenous sediments, which led to rapid vertical and lateral facies transition, development of siliciclastic-carbonate mixed rocks, and the absence of shallow clean-water-preferred organism rudists and Lithocodium-Bacinella and deep-water plankton.