en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘雯,女,1989年生。博士后,主要从事沉积盆地温压场研究工作。E-mail:liuwen0906@126.com。

通讯作者:

张凯逊,男,1985年生。副研究员,主要从事储层成岩作用及油气资源评价工作。E-mail:zhangkaixun@163.com。

参考文献
Aboubacar M S I, Cai Zhongxian, Harouna M, Yakubu Y. 2020. Thermo-tectonic history of the Northeast Sichuan basin, Southwest China, using apatite fission-track analysis, vitrinite reflectance, and basin modelling: implications for hydrocarbon prospectivity. Geological Journal, 55(9): 6049~6065.
参考文献
Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transcaal Supergroup, South Africa. Precambrian Research, 79: 37~55.
参考文献
Chu Yang, Faure M, Lin Wei, Wang Qingchen, Ji Wenbin. 2012. Tectonics of the Middle Triassic intracontinental Xuefengshan belt, South China: new insights from structural and chronological constraints on the decollement zone. Int. J. Earth Sci. (Geol Rundsch), 101: 2125~2150.
参考文献
Chu Yang, Lin Wei, Faure M, Wang Qingchen. 2015. Early Mesozoic intracontinental orogeny: example of the Xuefengshan-Jiuling belt. Acta Petrologica Sinica, 31(8): 2145~2155 (in Chinese with English abstract).
参考文献
Elderfield H, Greaves M J. 1982. The rare earth elements in seawater. Nature, 296: 214~219.
参考文献
Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21): 4223~4229.
参考文献
Feng Dongjun, Hu Zongquan, Li Shuangjian, Du Wei, Shi Yuan. 2021. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan basin. Geological Review, 67(1): 144~158 (in Chinese with English abstract).
参考文献
Feng Guoxiu, Chen Shenji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(8): 20~25 (in Chinese with English abstract).
参考文献
Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: a new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.
参考文献
Li Sanzhong, Wang Tao, Jin Chong, Dai Liming, Liu Xin, Zhou Xiaojun, Wang Yuejun, Zhang Guowei. 2011. Features and causes of Indosinian intracontinental structures in the Xuefengshan Precambrian basement and its neighboring regions. Journal of Jilin University (Earth Science Edition), 41(1): 93~105 (in Chinese with English abstract).
参考文献
Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017. Mesozic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers, 24(4): 213~225 (in Chinese with English abstract).
参考文献
Liu Liping, Li Sanzhong, Dai Liming, Suo Yanhui, Liu Bo, Zhang Guowei, Wang Yuejun, Liu Enshan. 2012. Geometry and timing of Mesozoic deformation in the western part of the Xuefeng tectonic belt, South China: implications for intra-continental deformation. Journal of Asian Earth Sciences, 49: 330~338.
参考文献
Liu Xishun. 2008. Characteristics and hydrocarbon generation model of Upper Paleozoic carbonate source rocks in Xiangzhong depression. Marine Origin Petroleum Geology, 13(1): 13~17 (in Chinese with English abstract).
参考文献
McLennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. Review of Mineralogy, 21: 169~200.
参考文献
Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).
参考文献
Olivarez A M, Owen R M. 1991. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chemical Geology, 92: 317~328.
参考文献
Peng Zhongqin, Tian Wei, Miao Fengbin, Wang Baozhong, Wang Chuanshang. 2019. Geological features and favorable area prediction of shale gas in Lower Cambrian Niutitang Formation of Xuefeng ancient uplift and its periphery. Earth Science, 44(10): 3512~3528 (in Chinese with English abstract).
参考文献
Qiu Nansheng, Liu Wen, Xu Qiuchen, Liu Yifeng, Chang Jian. 2018. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata. Earth Science, 43(10): 3511~3525 (in Chinese with English abstract).
参考文献
Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.
参考文献
She Haidong, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2018. Migration and precipitation of rare earth elements in the hydrothermal fluids. Acta Petrologica Sinica, 34(12): 3567~3581 (in Chinese with English abstract).
参考文献
Shen Chuanbo, Mei Lianfu, Guo Tonglou. 2007. Fission track analysis of Mesozoic-Cenozoic thermal history in northeast Sichuan basin. Natural Gas Industry, 27(7): 24~26 (in Chinese with English abstract).
参考文献
Sun Xinglin, Chen Jianfa, Liu Wenhui, Zhang Shuichang, Wang Darui. 2003. Hydrothermal venting on the seafloor and formation of organic-rich sediments: evidence from the Neoproterozoic Xiamaling Formation, North China. Geological Review, 49(6): 588~595 (in Chinese with English abstract).
参考文献
Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10): 1559~1570.
参考文献
Tang Boning, Zhu Chuanqing, Xu Ming, Chen Tiange, Hu Shengbiao. 2019. Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China. Energy Exploration & Exploitation, 37(2): 691~720.
参考文献
Tang Meihua, Wu Jianhua. 2017. Geological evidence for compression events in the middle period of early Cretaceous in Southeast China. Geotectonica et Metallogenia, 41(2): 258~271 (in Chinese with English abstract).
参考文献
Tang Shuangli, Yan Danping, Qiu Liang, Gao Jianfeng, Wang Changliang. 2014. Partitioning of the Cretaceous Pan-Yangtze basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Research, 25: 1644~1659.
参考文献
Tonger, Liu Wenhui, Xu Yongchang, Chen Jianfa. 2004. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentologica Sinica, 22(2): 365~372 (in Chinese with English abstract).
参考文献
Tuo Xiusong, Chen Kongquan, Luo Sunshe, Tangjiguang, Zhang Douzhong, Shen Junjun. 2020. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan basin. Oil & Gas Geology, 41(5): 1017~1027 (in Chinese with English abstract).
参考文献
Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Research, 122(1/4): 141~158.
参考文献
Wang Yannan, Zhang Jin, Zhang Beihang, Zhao Heng. 2018. Cenozoic exhumation history of South China: a case study from the Xuefeng Mt. Range. Journal of Asian Earth Sciences, 151: 173~189.
参考文献
Wang Yuejun, Zhang Yanhua, Fan Weiming, Peng Tuoping. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27: 985~998.
参考文献
Wang Zhigang. 2019. Reservoir formation conditions and key efficient exploration & development technologies for marine shale gas fields in Fuling area, South China. Acta Petrolei Sinica, 40(3): 370~382 (in Chinese with English abstract).
参考文献
Wu Shiqing, Guo Jianhua, Wang Xikai, Li Zhiyu, Liu Chensheng, Jiao Peng, Chen Guang. 2020. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan. Journal of Central South University (Science and Technology), 51(8): 2049~2060 (in Chinese with English abstract).
参考文献
Xiao Xianming, Wilkins R W T, Liu Dehan, Liu Zhufa, Fu Jiamu. 2000. Investigation of thermal maturity of lower Paleozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim basin case study. Organic Geochemistry, 31(10): 1041~1052.
参考文献
Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.
参考文献
Yang Xin, Liu Xingwang, Wang Yadong, Liu Yanhong, Zheng Jianjing. 2011. The tectonic controls on the distribution of marine oil and gas in the adjacent areas of Xuefeng Mountain. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4): 7~12 (in Chinese with English abstract).
参考文献
Zhang Changjiang, Liu Guanglin, Guan Honglin, Fang Chengmin, Deng Mo. 2006. Genetic types of natural gas of Xiangzhong depression. Natural Gas Geoscience, 17(6): 829~833 (in Chinese with English abstract).
参考文献
Zhang Junfeng, Xu Hao, Zhou Zhi, Ren Pengfei, Guo Jingzhen, Wang Qiong. 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei. Acta Petrolei Sinica, 40(8): 887~899 (in Chinese with English abstract).
参考文献
Zhang Lin, Wei Guoqi, Han Long, Wang Lilong, Wang Dongliang. 2008. Evaluation of the high and over matured Sinian-lower Palaeozoic source rocks in the Sichuan basin. Petroleum Geology & Experiment, 30(3): 286~291 (in Chinese with English abstract).
参考文献
Zhang Peng, Huang Yuqi, Zhang Jinchuan, Li Bo, Liu Hongyang, Yang Junwei. 2020. Study on shale heterogeneity in western Hunan and Hubei: a case study of the Longmaxi Formation in well Ld1. Acta Geologica Sinica, 94(5): 1568~1577 (in Chinese with English abstract).
参考文献
Zhang Peng, Huang Yuqi, Zhang Jinchuan, Wei Xiaoliang, Yang Junwei, He Rui, Hu Yang. 2019. Difference analysis of hydrocarbon generation and reservoir capacity between the Cambrian Niutitang Formation and the Silurian Longmaxi Formation in Northwest Guizhou. Marine Origin Petroleum Geology, 24(3): 83~90 (in Chinese with English abstract).
参考文献
Zhang Yanlin, Duan Ke, Liu Zaoxue, Jin Chunshuang, Chen Ke, Luo Fan. 2019. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology & Experiment, 41(5): 691~698 (in Chinese with English abstract).
参考文献
Zhang Yuxiang, Zeng Zhigang, Yin Xuebo, Li He, Qi Haiyan, Wang Xiaoyuan, Chen Shuai. 2018. Geochemical records of hydrothermal activities in the sediment fillings within pumice's vesicles in the vicinity of a seafloor hydrothermal field in the Okinawa Trough. Marine Geology & Quaternary Geology, 38(5): 102~111 (in Chinese with English abstract).
参考文献
Zhang Zilong, Qi Fucheng, Fu Jin, Li Zhixing. 2015. Metallogenic perspect prognostication of Carbonaceous-siliceous-argillaceous type uranium deposit in the northwestern margin of Xuefengshan uplift belt. Uranium Geology, 31(5): 483~490 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 43(4): 499~510 (in Chinese with English abstract).
参考文献
Zheng Chen, Xu Changhai, Brix M R, Zhou Zuyi. 2019. Evolution and provenance of the Xuefeng intracontinental tectonic system in South China: constraints from detrital zircon fission track thermochronology. Journal of Asian Earth Sciences, 176: 164~273.
参考文献
Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. 43(6): 2007~2018 (in Chinese with English abstract).
参考文献
褚杨, 林伟, Faure M, 王清晨. 2015. 华南板块早中生代陆内造山过程——以雪峰山-九岭为例. 岩石学报, 31(8): 2145~2155.
参考文献
冯动军, 胡宗全, 李双建, 杜伟, 师源. 2021. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用. 地质论评, 67(1): 144~158.
参考文献
丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(8): 20~25.
参考文献
李三忠, 藏艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213~225.
参考文献
李三忠, 王涛, 金宠, 戴黎明, 刘鑫, 周小军, 王岳军, 张国伟. 2011. 雪峰山基底隆升带及其邻区印支期陆内构造特征与成因. 吉林大学学报(地球科学版), 41(1): 93~105.
参考文献
刘喜顺. 2008. 湘中坳陷上古生界碳酸盐岩烃源岩特征及生烃模式. 海相油气地质, 13(1): 13~17.
参考文献
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形来自裂变径迹和平衡剖面的证据. 地球科学—中国地质大学学报, 35(2): 161~174.
参考文献
彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测. 地球科学, 44(10): 3512~3528.
参考文献
邱楠生, 刘雯, 徐秋晨, 刘一锋, 常健. 2018. 深层-古老海相层系温压场与油气成藏. 地球科学, 43(10): 3511~3525.
参考文献
佘海东, 范宏瑞, 胡芳芳, 杨奎锋, 杨占峰, 王其伟. 2018. 稀土元素在热液中的迁移与沉淀. 岩石学报, 34(12): 3567~3581.
参考文献
沈传波, 梅廉夫, 郭彤楼. 2007. 川东北地区中、新生代热历史的裂变径迹分析. 天然气工业, 27(7): 24~26.
参考文献
孙省利, 陈践发, 刘文汇, 张水昌, 王大锐. 2003. 海底热水活动与海相富有机质层形成的关系: 以华北新元古界青白口系下马岭组为例. 地质论评, 49(6): 588~595.
参考文献
唐梅华, 巫建华. 2017. 华南内陆早白垩世中期挤压构造事件的地质证据. 大地构造与成矿学, 41(2): 258~271.
参考文献
腾格尔, 刘文汇, 徐永昌, 陈践发. 2004. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例. 沉积学报, 22(2): 365~372.
参考文献
庹秀松, 陈孔全, 罗顺社, 汤济广, 张斗中, 沈均均. 2020. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件. 石油与天然气地质, 41(5): 1017~1027.
参考文献
王志刚. 2019. 涪陵大型海相页岩气田成藏条件及高效勘探开发关键技术. 石油学报, 40(3): 370~382.
参考文献
吴诗倩, 郭建华, 王玺凯, 李智宇, 刘辰生, 焦鹏, 陈广. 2020. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理. 中南大学学报(自然科学版), 51(8): 2049~2060.
参考文献
杨鑫, 刘兴旺, 王亚东, 刘燕红, 郑建京. 2011. 构造活动对雪峰山邻区海相油气分布的控制. 西南石油大学学报(自然科学版), 33(4): 7~12.
参考文献
张君峰, 许浩, 周志, 任鹏飞, 郭景震, 王琼. 2019. 鄂西宜昌地区页岩气成藏地质特征. 石油学报, 40(8): 887~899.
参考文献
张林, 魏国齐, 韩龙, 王立龙, 王东良. 2008. 四川盆地震旦系—下古生界高过成熟度烃源岩评价. 石油实验地质, 30(3): 286~291.
参考文献
张鹏, 黄宇琪, 张金川, 李博, 刘洪洋, 杨军伟. 2020. 湘鄂西页岩非均质性研究——以Ld1井龙马溪组为例. 地质学报, 94(5): 1568~1577.
参考文献
张鹏, 黄宇琪, 张金川, 魏晓亮, 杨军伟, 何瑞, 呼阳. 2019. 黔西北寒武系牛蹄塘组与志留系龙马溪组页岩生烃和储集能力差异分析. 海相油气地质, 24(3): 83~90.
参考文献
张焱林, 段轲, 刘早学, 金春爽, 陈科, 罗凡. 2019. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素. 石油实验地质, 41(5): 691~698.
参考文献
张玉祥, 曾志刚, 殷学博, 李禾, 齐海燕, 王晓媛, 陈帅. 2018. 冲绳海槽海底热液区附近浮岩气孔充填沉积物中热液活动的地球化学记录. 海洋地质与第四纪地质, 38(5): 102~111.
参考文献
张长江, 刘光祥, 管宏林, 方成名, 邓模. 2006. 湘中坳陷天然气成因类型分析. 天然气地球科学, 17(6): 829~833.
参考文献
张字龙, 漆富成, 付锦, 李治兴. 2015. 雪峰山隆起带西北缘碳硅泥岩型铀矿远景预测. 铀矿地质, 31(5): 483~490.
参考文献
赵文智, 李建忠, 杨涛, 王淑芳, 黄金亮. 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, (43)4: 499~510.
参考文献
邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中—新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.
目录contents

    摘要

    对于复杂构造带的古老-深层页岩,烃类的生成过程可能是多阶段的。准确恢复页岩的成熟演化过程是研究页岩气富集机理的先决条件。本文依托雪峰山隆起北缘新钻探的地质调查井,恢复雪峰山北缘古生代以来的热历史,从热演化的角度讨论牛蹄塘组页岩的生烃潜力。元素分析显示,热液活动对牛蹄塘组黑色页岩有机质的富集产生了积极影响,特别是下部页岩热液指示指标异常高、显著的Ce负异常、Eu正异常和Y正异常,都证明了牛蹄塘组早期受热液作用的影响。古温标联合反演结果显示,雪峰山北缘自古生代以来先后经历了三次升温—降温过程。三次热演化高峰依次出现在晚奥陶世末期、中三叠世末期和早白垩世末期,所达到的最高温度依次降低。三次升温过程分别受到早古生代拉张作用和岩浆活动、晚古生代—早中生代快速沉降作用和早白垩世岩浆活动的控制。受沉积埋藏作用和早期热事件的影响,牛蹄塘组页岩在寒武纪—早志留世快速经历了生油高峰、原油裂解高峰等生烃关键时期,在晚奥陶世达到过成熟阶段。随后第一次的抬升剥蚀作用,破坏了页岩及上覆盖层的封闭性,形成有利于气体扩散的裂缝或断层通道,使得早期形成的烃类散失。

    Abstract

    Hydrocarbon generation may occur in multiple stages in ancient, complex, deep shale tectonic belts. The accurate reconstruction of the maturity evolution of shale is a prerequisite for the study of the shale gas accumulation mechanism. In this study, the thermal history of the northern margin of the Xuefeng Mountains since the Paleozoic was reconstructed based on a new well drilled by the Geological Survey. The hydrocarbon generation potential of the Lower Cambrian shale is discussed from the perspective of thermal evolution. The results of the inversion of the multiple geologic paleothermometers show that the northern margin of the Xuefeng Mountains had experienced three heating and cooling processes since the Paleozoic. Three thermal evolution peaks successively occurred at the end of the Late Ordovician, late Middle Triassic, and late Early Cretaceous. The maximum temperature decreased over time. The three heating processes were controlled by Early Paleozoic tension and magmatism, Late Paleozoic-Early Mesozoic rapid subsidence, and Early Cretaceous magmatism, respectively. Affected by burial and early thermal events, the shale of the Niutitang Formation experienced peaks in oil generation and cracking in the Cambrian and Early Silurian and reached the mature stage in the Late Ordovician. Subsequently, the first uplift-denudation destroyed the sealing properties of the overburden. This led to the formation of fractures or fault channels, which are conducive to gas diffusion, resulting in the loss of early formed hydrocarbon.

  • 影响页岩气大规模富集的关键因素主要包括烃源岩的生烃能力和区域性的保存条件。而对保存条件的定义不仅包括对页岩储集能力和封堵能力的静态描述,还应与页岩的生烃作用放在时间尺度上进行匹配。特别是对于复杂构造带的古老-深层页岩,烃类的生成过程可能是多阶段的,关键生烃期之后保存条件的有效性才是页岩气富集机理的核心问题 (Wang Zhigang,2019; Tuo Xiusong et al., 2020; Feng Dongjun et al., 2021)。因此,准确恢复页岩的成熟演化过程,建立热演化时间标尺,是研究页岩气富集机理的基础工作和先决条件,其中控制页岩成熟的主要因素是温度和时间(Qiu Nansheng et al.,2018;Xu Qiuchen et al., 2018)。近年来四川盆地周缘的油气勘探成果显示,寒武系牛蹄塘组黑色页岩在鄂西-渝东褶皱带、湘中凹陷等地区有丰富的油气显示(Zhang Changjiang et al., 2006;Liu Xishun, 2008;Zhao Wenzhi et al.,2016;Zhang Junfeng et al., 2019),展示出良好的生烃潜力。而二者之间的雪峰山地区同样广泛发育有机质丰度良好的寒武系黑色页岩(Wu Shiqing et al.,2020),经历了相似的沉积环境和抬升作用(Li Sanzhong et al.,2011;Zhang Junfeng et al., 2019),但油气显示微弱。为揭示寒武系牛蹄塘组页岩油气富集机理差异性的原因,需要从页岩热演化过程的准确恢复入手,精细讨论生烃作用与构造活动时间上的匹配关系。

  • 由于雪峰山地区特殊的构造位置,很多学者的研究更加关注其构造演化过程(Wang Jian et al., 2003;Chu Yang et al., 2015;Li Sanzhong et al., 2017)。随着牛蹄塘组页岩在周围区域受到重视,目前针对雪峰山地区的研究主要包括从地球化学的角度描述牛蹄塘组页岩的生烃潜力(Peng Zongqin et al., 2019),从岩石物性的角度描述牛蹄塘组的储集能力(Zhang Yanlin et al., 2019),对于页岩成熟生烃过程的恢复既缺乏热背景的研究也缺乏埋藏抬升过程的恢复。目前对于热史的研究,已经有学者通过白垩系碎屑岩样品的磷灰石裂变径迹分析恢复了雪峰山地区渐新世以来的一期降温过程(Wang Yannan et al., 2018),而更关键的古生代以来的热史研究仍是空白。从区域上看,邻近的湘鄂西褶皱带白垩纪以来地层经历了多次快速的抬升降温,最大剥蚀厚度超过2400m(Shen Chuanbo et al., 2007;Aboubacar et al., 2020),但早古生代热历史的研究也十分薄弱。这一问题严重制约了复杂褶皱带古老页岩烃类差异性富集的机理研究,亟需结合构造演化过程,明确构造单元划分,分别进行页岩生烃过程的恢复,从热演化的角度识别出有利于页岩气大规模富集的条件。因此,本文依托雪峰山隆起北缘新钻探的地质调查井,恢复雪峰山北缘古生代以来的热历史,从热演化的角度讨论牛蹄塘组页岩的生烃潜力,并结合构造演化特征,初步分析与相邻构造单元页岩气富集机理的差异性。

  • 1 区域地质概况

  • 雪峰山隆起位于扬子板块与华南板块的过渡区,以安化-溆浦断裂带为边界毗邻湘鄂西褶皱带,总体呈北东南西走向、向北西凸出的弧形构造带(图1)。震旦纪—早奥陶世,受罗迪尼亚超级大陆裂解影响,研究区沿雪峰山—九岭一带形成裂谷盆地(Wang Jian et al., 2003)。中奥陶世开始,扬子地块和华南地块相互汇聚,在板块交界处雪峰山形成逆冲断层。受广西运动影响,酸性岩浆侵入,华南板块的湘中、湘东南首先发生强烈褶皱冲断,形成雪峰山隆起,推覆作用受到阻挡,而湘鄂西地区并未受到推覆影响(Li Sanzhong et al., 2017)。志留纪末期开始的加里东后期运动,使扬子板块向华南板块挤压加剧,雪峰山进一步抬升,形成Y型构造。泥盆纪到中三叠世,华南大陆发生大规模海侵,雪峰山地区在水下接受陆源碎屑沉积。晚三叠世开始的印支运动,受秦岭-大别造山带碰撞挤压影响,雪峰山北缘发生冲断推覆,华南地块开始抬升,一直持续到燕山运动早期,形成沿基底的大型滑脱构造,张家界断裂形成(Wang Yuejun et al., 2005;Chu Yang et al., 2015;Zheng Chen et al., 2019)。白垩纪以来的晚期燕山运动,使加里东期形成的褶皱带活化,湘鄂西基底以上盖层部分形成复背斜、复向斜,而雪峰山地区地壳缩短,岩浆底侵,拆沉作用,使地表伸展发育断陷。并在燕山末期,沿三套滑脱层(中下寒武统、志留系、中下三叠统)向四川盆地滑覆(Chu Yang et al., 2012;Tang Meihua et al., 2017)。这种先推覆后滑覆的动力学模式,使得雪峰山以西湘鄂西地区滑覆后露出古生代地层,发育隔槽式褶皱,川东地区中生代地层加厚,发育隔挡式褶皱,而雪峰山基底隆升,上覆盖层被剥蚀殆尽,仅部分地区保留了寒武系—中奥陶统部分地层(受伸展断陷影响)。而新近纪以来,雪峰山地区受喜马拉雅运动影响微弱,进入陆内稳定阶段,局部板内沉降(Yang Xin et al., 2011)。受早期裂谷阶段控制,雪峰山地区在寒武纪初期广泛海侵,普遍沉积一套富有机质细粒岩系——牛蹄塘组。在雪峰山隆起北部,下寒武统牛蹄塘组可分为两段,底部为黑色泥岩夹深灰色硅质泥岩,顶部为黑色泥质页岩。下伏地层为震旦系留茶坡组灰黑色硅质岩(图2)。

  • 2 方法和样品

  • 2.1 地球化学指标测定

  • 本文系统采集XAD1井37个牛蹄塘组泥页岩样品用于有机质族组分分析、岩石热解分析、及测定主量元素、微量元素、稀土元素和总有机碳的质量分数。其中族组分分析、岩石热解分析及有机碳测定在中国石油大学(北京)油气资源与探测国家重点实验室完成;元素质量分数测定在国家地质实验测试中心完成。主量元素质量分数使用等离子光谱仪PE300进行检测,微量元素、稀土元素质量分数使用等离子质谱仪PE300Q进行检测。稀土元素计算时采用澳大利亚太古宙平均页岩(PAAS)的稀土元素质量分数进行标准化(McLennan et al., 1989)。

  • 2.2 古温标样品信息及测试方法

  • 本次研究自下而上采集了XAD1井6个泥页岩样品用以镜质组反射率(或沥青反射率、类镜质体反射率)测试,2个南沱组冰碛岩样品用以分选锆石进行(U-Th)/He年龄的测试。反射率测试在中国石油大学(北京)油气资源与探测国家重点实验室完成。对于缺乏镜质组的下古生界则测试了类镜质体(Rv)及沥青的反射率(Rb),应用公式Requ=1.26Rv+0.21(Rv<0.75%); Requ=0.28Rv+1.03(0.75%<Rv<1.50%); Requ=0.81Rv+0.18 (Rv>1.50%)(Xiao Xianming et al., 2000)与Requ=0.6569Rb+0.3364(Feng Guoxiu et al.,1988)进行转换。锆石(U-Th)/He测试在墨尔本大学地球科学学院完成,实验主要分为4个步骤进行:样品制备;矿物晶体的释气和He浓度测试;U-Th(Sm)含量测试和(U-Th)/He年龄计算。首先从分选出来的重矿物精矿中挑选自形锆石晶体,挑选时尽量确保锆石晶体不含包裹体,并在显微镜下测量矿物颗粒的大小,计算α校正因子(FT)。其后将矿物颗粒装入用酸处理过的金属铂容器中,用激光束将单颗粒样品加热以提取He。将提取出来的He利用四极质谱仪进行测定。一般情况下测试完He后的样品放入经过校准的 235U和229Th溶液,然后将锆石样品在HNO3和HF溶液中溶解,最后得到的溶液用同位素稀释法通过ICP-MS来分析235U、238U和232Th,从而得到晶体中U和Th的含量。详细的操作流程见Gleadow et al.(2015)

  • 图1 雪峰山隆起地质背景构造图 (据Liu Liping et al., 2012修改)

  • Fig.1 Generalized geologic setting of the Xuefeng Mountains (modified after Liu Liping et al., 2012)

  • (a)—研究区位置;(b)—雪峰山构造位置及典型单井位置;1—岩浆岩;2—元古宇;3—寒武系—侏罗系;4—白垩系;5—主断裂;6—二级断裂;7—井位;8—Ⅰ型褶皱;9—Ⅱ型褶皱

  • (a)—Location of the study area in the Yangtze Plate and South China Plate; (b)—structural map of Xuefeng Mountains and location of typical well XAD1; 1—igneous rocks; 2—Proterozoic strata; 3—Cambrian-Jurassic strata; 4—Cretaceous strata; 5—the main fracture; 6—the secondary fracture; 7—well; 8—type Ⅰ fold; 9— type Ⅱ fold

  • 3 雪峰山北缘早期热液活动的地球化学证据

  • 判别热事件的存在是热史恢复中的关键环节。雪峰山地区构造热演化研究显示,古生代早期研究区处于拉张环境,岩石圈的减薄会形成一段时间的热流高峰。而中奥陶世沿雪峰山形成的古丈断裂更是为深部热液上涌提供了垂向运移通道。加之广西运动造成的酸性岩浆侵入,都表明雪峰山地区在早古生代时期的热流值远高于处于克拉通阶段的扬子地台。并且在研究区周围发育的潘公潭铀矿床和松桃地区的铅锌矿床等,都证明了早期热液活动的存在(Zhang Zilong et al., 2015;Wu Shiqing et al., 2020)。为证明早期热液活动对雪峰山影响的存在,本文利用XAD1井牛蹄塘组页岩的稀土元素配分模式、微量元素富集特征等指标综合分析。现有研究表明,受还原性极强的高温热水流体(>200℃)影响的沉积物稀土配分模式常呈右倾型,具有显著的Eu正异常(Elderfield et al., 1982;Olivarez et al., 1991;Bau et al., 1996; She Haidong et al., 2018)。另外,海水中热液活动还可以造成沉积物中Cu、Sb、As和Hg等亲铜元素及Co和Ni等铁族元素明显富集(Sun Xingli et al., 2003;Zhang Yuxiang et al., 2018)。

  • 3.1 微量元素证据

  • 在雪峰山北缘,牛蹄塘组的岩性特征和地球化学特征呈明显的上下两段。以XAD1井为例,从GR曲线和岩性上显示,牛蹄塘组以800m为界可分为上下两部分(图3)。从判断沉积水体氧化还原环境的指标Ni/Co、V/Cr和U/Th的分布特征可以看出,牛蹄塘组下部样品基本处于强厌氧环境中,而上部样品主体处于贫氧环境,且部分顶部样品属于富氧环境(Tonger et al., 2004)(图2)。

  • 图2 雪峰山北缘XAD1井综合柱状图

  • Fig.2 Composite column of lithology, logging and geochemistry of well XAD1at the northern margin of Xuefeng Mountains

  • 同样,热液指示指标Co+Ni也有明显的上下两段之分。牛蹄塘组下部Co+Ni平均值为204.30 μg/g,上部平均值为85.94 μg/g。虽然受热液作用的影响,牛蹄塘组Co+Ni平均值整体都高于不受热液影响的烟溪组(13.624 μg/g)(Wu Shiqing et al., 2020),但牛蹄塘组下部受深部物源供应更充足,热液作用的影响程度明显高于上部。并且Co+Ni、Sb和TOC之间存在良好的相关性(图3),说明热液活动对牛蹄塘组黑色页岩有机质的富集产生了积极影响,在牛蹄塘组沉积时期,热液为水体提供了热能并携带了大量微量元素和营养物质到地表,使水中生物更加繁盛,有助于富有机质黑色页岩的发育。

  • 3.2 稀土元素证据

  • 稀土元素的富集程度与配分模式对热液作用有良好的显示,在使用时为更好地判别富集程度的高低,需要参考标准页岩进行标准化。由于相似的地球化学特征,扬子地区下寒武统页岩通常选用澳大利亚太古宙平均页岩(PAAS)作为标准页岩,用下标SN标注(McLennan et al., 1989)。常用的判别热液作用的参数有轻稀土元素(La-Eu)总质量分数比重稀土元素(Tb-Lu)总质量分数ΣLREE/ΣHREE,元素Ce、Eu、Y的质量分数与PAAS的比值(CeSN、EuSN、YSN)。当轻重稀土元素质量分数比值大于1时为右倾型,小于1时为左倾型。当单元素标准化比值大于1时为正异常,小于1时为负异常。另外,用球粒状陨石作为标准化岩石(CN)可以更好地说明太古宇—元古宇边界Eu的损失情况,是判断热液作用的有利指标(Bau et al., 1996)。当热液温度大于250℃时, (Eu/Eu*)CN大于1;当热液温度小于250℃时,(Eu/Eu*)CN小于1。

  • 图3 雪峰山北缘牛蹄塘组Sb富集系数(a)、Co+Ni元素质量分数(b)与TOC质量分数相关性

  • Fig.3 Correlation between the mass fractions of Sb (a) and Co+Ni (b) versus the mass fraction of TOC of the Niutitang Formation in the northern margin of Xuefeng Mountains

  • XAD1井牛蹄塘组下段稀土元素配分模式HREE富集程度比LREE略高,呈轻度左倾,有显著的Ce负异常、Eu正异常和Y正异常(图4a)。(Eu/Eu*)CN平均值为1.037,略微大于1,但843.4m、847.5m和862.5m样品中明显大于1,是受热液影响的有力证据(表1)。而上段牛蹄塘组页岩稀土元素的配分模式整体表现平稳式(图4b),略微右倾,无Ce、Eu异常,有轻微Y正异常,(Eu/Eu*)CN平均值为0.63(表1),热液作用影响显示微弱。

  • 4 雪峰山北缘早古生代以来的热历史

  • 4.1 镜质组反射率重建最高古地温剖面

  • 根据实测镜质组反射率(Ro),重建XAD1井的最高古地温剖面。研究结果显示,雪峰山北缘由南华系至今的热历史受到抬升剥蚀作用和盆地热效应(裂陷作用、岩浆活动)的双重作用(图5)。一方面,最高古地温剖面斜率与现今地温剖面斜率相近,表明雪峰山隆起的现今热背景状况与中寒武世—早奥陶世相似。雪峰山隆起受晚期燕山运动影响发生岩浆底侵作用,使得研究区后期的热背景远高于湘鄂西地区和湘中地区(Chu Yang et al., 2012;Tang Meihua et al., 2017),造成雪峰山隆起现今较高的地温梯度。另一方面,古、今地温剖面在现今地表处(不整合面,即剥蚀面上)不相交,且差值超出了古、今地表温度可能的差异范围,表明存在剥蚀。其剥蚀量(E)可根据最高古地温时的古地表温度(Ts)和古地温剖面在不整合面上的截距(Ti)予以估计:

  • 表1 XAD1井牛蹄塘组样品稀土元素特征值计算结果

  • Table1 Calculation results of rare earth element of Niutitang Formation samples from well XAD1

  • E=Ti-Ts/(dT/dz)m

  • 式中,(dT/dz)m代表最高古地温时的古地温梯度。根据Ro重建的最高古地温剖面,研究区最高古地温梯度为34.87℃/km,晚奥陶世以来的剥蚀量为6.45km。

  • 图4 XAD1井牛蹄塘组页岩样品稀土元素配分模式

  • Fig.4 The rare-earth element partitioning model for the shale samples of Niutitang Formation in well XAD1

  • (a)—牛蹄塘组顶部澳大利亚太古代平均页岩标准化后稀土元素质量分数;(b)—牛蹄塘组底部澳大利亚太古代平均页岩标准化后稀土元素质量分数

  • (a)—The rare-earth element mass fraction after standardization of the average Australian Archean shale at the top of the Niutitang Formation; (b)—the rare-earth element mass fraction after standardization of the average Australian Archean shale at the bottom of the Niutitang Formation

  • 图5 XAD1井实测镜质组反射率剖面与最高古地温剖面

  • Fig.5 Vitreous reflectance profile and maximum paleotemperature profile of well XAD1

  • 4.2 古温标联合反演重建热史路径

  • 本文选取了XAD1井南沱组两个冰碛岩样品进行锆石(U-Th)/He年龄的测定(图2取样点)。测试结果显示:样品XA-02共测得4个锆石颗粒(U-Th)/He年龄(97.6~136.4Ma,平均年龄为118.2Ma);样品XA-03共测得5个锆石颗粒(U-Th)/He年龄(92.8~128.2Ma,平均年龄为103.8Ma)(表2)。两个样品测得的He年龄均远小于样品地层年龄,说明样品经历了He的全扩散,记录了样品最后通过部分保留带的时间,其He年龄反应了颗粒开始冷却的时间。即样品XA-02和XA-03分别大约在118.2Ma和103.8Ma通过170~190℃的温度范围(Reiners, 2005)。

  • 本次研究应用HeFTy软件对样品的热史进行了模拟,并对同一样品的锆石 (U-Th)/He年龄和等效镜质组反射率同时进行模拟。模拟过程采用蒙特卡洛随机反演法对于每一个样品模拟5000到10000条时间-温度路径,当计算古温标值与实测古温标值拟合程度最好时,该温度-时间路径被认为是该样品的热历史。锆石(U-Th)/He年龄模拟采用Reiners模型(Reiners et al., 2005),等效镜质组反射率模拟采用EASY%Ro模型(Sweeney et al.,1990)。模拟过程中假定从古至今地表温度不变,均设定为20℃,岩性参数、分层数据、地层底界年龄等基础地质参数来自完井报告。

  • 表2 XAD1井南沱组冰碛岩锆石(U-Th)/He年龄测试数据表

  • Table2 Measured zircon (U-Th)/He ages of Nantuo Formation tillite in well XAD1

  • 注:测试标样采用Fish Canyon Tuff Zircon Standard。FT为α射出校正因子 (Farley et al., 1996)。

  • 图6 XAD1井XA-02、XA-03样品热历史反演结果

  • Fig.6 Paleo-temperature paths of samples XA-02, XA-03of well XAD1

  • 左图:绿色路径—可接受温度路径,GOF>0.5;红色路径—拟合较好温度路径,GOF>0.8;黑色路径—拟合最好温度路径。右图为锆石He扩散曲线,GOF为拟合度

  • The left graph: green lines—acceptable fit (GOF>0.5); red lines—good fit (GOF>0.8); black line—best fit.The right graph is the helium diffusional profile, GOF—goodness of fit

  • 模拟结果显示,雪峰山北缘自古生代以来先后经历了三次升温—降温过程(图6)。三次热演化高峰依次出现在晚奥陶世末期、中三叠世末期和早白垩世末期,峰值大小依次降低。晚奥陶世之前的裂谷阶段,受地壳减薄和热液上涌的双重影响,热演化程度迅速达到最高值。晚奥陶世到早志留世,后期加里东运动使研究区快速抬升,遭受剥蚀作用。晚志留世到中三叠世的稳定沉积阶段,地层埋深在中三叠世达到最大,地层温度也随埋深再次增加,但缺少热事件的影响,热演化程度没有超过前期热演化阶段。晚三叠世以来,雪峰山地区全面进入抬升剥蚀阶段,地层热演化停滞,地层温度分阶段降低。而早白垩世的岩浆底侵作用使得研究区地层经历了第三次热演化过程,但由于上覆盖层遭受大规模剥蚀,研究区第三次热演化的程度低于第二次。正是由于最后一次热事件的影响,使得雪峰山北缘的现今地温梯度与寒武纪—早奥陶世相似,远高于周围区域的现今热状况,与前述最高古地温剖面揭示的结果一致。

  • 5 雪峰山北缘牛蹄塘组烃源岩热演化特征

  • 5.1 牛蹄塘组页岩地球化学特征

  • 雪峰山北缘下寒武统牛蹄塘组黑色页岩是研究区潜力最大的烃源岩层系。地球化学特征分析显示,研究区牛蹄塘组页岩现今处于过成熟阶段,但有机质类型优越,残余有机碳含量较高,都展现出牛蹄塘组良好的生烃能力。实验分析显示,牛蹄塘组页岩的镜质组反射率大于4%,逼近生烃死限;岩石热解参数热解峰温(Tmax)分布在380~500℃,氢指数(HI)异常偏低(<20mg/g)(图2)。由于岩石中可热降解的有机质大多已经裂解成气使得可溶烃S1、热解烃S2峰值极低(<0.1mg/g),用于判别有机质类型的HI-Tmax图版也失去有效性。根据干酪根显微组分和碳同位素分析,牛蹄塘组母质以菌藻类低等水生生物等有机质输入为主,有机质类型主要为Ⅱ1型和I型(Zhang Lin et al., 2008;Peng Zhongqin et al., 2019;Zhang Peng et al., 2019, 2020),是优质的烃源岩类型。并且即使在过成熟阶段,牛蹄塘组页岩的残余有机碳含量(TOC)分布在2.16%~19.69%(图2),平均值为7.48%,达到了优质有机质丰度的标准。

  • 5.2 雪峰山北缘沉积埋藏过程

  • 在牛蹄塘组页岩有机质具备生烃能力的基础条件下,地层的埋藏沉积过程和有机质的成熟度热演化过程是影响页岩气生成后是否与保存条件同期匹配的决定因素。根据研究区及周缘构造演化特征,结合恢复的剥蚀量和热路径,本此研究重建了XAD1井的埋藏演化过程(图7)。XAD1井整体经历了两沉两抬的演化过程,通过EASY%Ro模型模拟计算的 Ro剖面与实测Ro值吻合,验证了恢复埋藏史的可靠性。其中模拟所需的地层、岩性、年龄参数来自录井资料,剥蚀量恢复自最高古地温剖面并参考前人文献成果(Tang Shuangli et al., 2014;Zou Yaoyao et al., 2018; Wang Yannan et al., 2018),热流或地温梯度采用本文古温标恢复的热史路径,岩石热导率参考研究区已发表的测试数据(Tang Boning et al., 2019)和笔者在研究区前期的研究成果。震旦纪—志留纪早期是第一期沉积阶段,也是牛蹄塘组页岩快速成熟阶段,整体可以分为震旦纪—早奥陶世的裂谷沉积阶段和中奥陶世—早志留世的缓慢沉积阶段。不论是裂谷阶段较高的热背景还是志留纪早期的酸性岩浆侵入,都使得下寒武统的页岩虽然只有3000m的埋藏深度却快速演化至过成熟阶段。晚志留世的加里东运动是第一期抬升剥蚀阶段,使得晚奥陶世—早志留世的沉积地层剥蚀殆尽,而由扬子板块与华南板块的汇聚作用产生的逆冲断层也在这一剥蚀阶段成为下寒武统页岩早期聚集烃类的散失通道。泥盆纪—中三叠世是第二期沉积阶段,华南大陆在这一时期发生大规模海侵,雪峰山地区在水下接受陆源碎屑沉积。而晚三叠世以来到现今是第二期抬升剥蚀阶段,也是决定现今地层沉积现状的关键阶段。受印支运动和燕山运动的影响,雪峰山地区长期遭受抬升剥蚀作用,使得泥盆系—三叠系全部遭受剥蚀,仅在部分地表断陷区残存部分地层。

  • 5.3 牛蹄塘组热演化过程及生烃关键时期

  • 根据XAD1井恢复的埋藏史、热史,进一步恢复牛蹄塘组的热演化过程。研究区牛蹄塘组成熟度演化最显著的特征表现为最高埋深与最高温度不同期(图7)。受早期裂谷阶段和岩浆活动的控制,牛蹄塘组页岩在第一期沉积阶段经历快速热演化阶段,在早志留世末期最大成熟度,即现今成熟度。虽然在中二叠世末期牛蹄塘组的埋藏深度达到最大,但热状况低于早期,地层温度没有超过第一期沉积阶段,且晚白垩世的岩浆底侵活动对牛蹄塘组页岩的影响也远低于裂谷背景和岩浆活动的双重作用。因此,研究区的牛蹄塘组页岩在寒武纪—早志留世快速经历了生油高峰、原油裂解高峰等生烃关键时期。

  • 从生烃时期与区域构造演化的时间匹配来看,虽然在整个埋藏演化过程中第二次抬升剥蚀持续时间最长、剥蚀程度最大,但是对烃类保存影响作用最大的是烃类生成后的第一次抬升剥蚀。与湘鄂西构造带相比,地层整体的沉积抬升模式相似,只是各阶段抬升时间的早晚有一定差别。但是,湘鄂西构造带在早期处于克拉通阶段,没有裂谷作用和岩浆作用对区域热背景的影响(Mei Lianfu et al.,2010;Zou Yaoyao et al., 2018),因此主要的生烃作用发生在最大埋深阶段。后期抬升剥蚀的影响更多地作用在巨厚的上覆沉积层中,对牛蹄塘组及其封盖层的改造作用有限。而雪峰山北缘地区由于生烃关键时期发生在早期热演化阶段,随后紧接的抬升剥蚀作用直接作用在烃源岩的盖层上,极有可能形成有利于气体扩散的裂缝或断层通道。在后续的研究中可以通过选择相邻区域与雪峰山北缘埋藏过程相似的牛蹄塘组页岩样品,对于页岩储集空间及储集物性演化的差异性,进一步对本文的研究结论补充验证。在现有结论的支撑下,对中扬子地区牛蹄塘组页岩气的勘探应该排除早古生代热背景异常高的区域,晚期生烃可以避免第一阶段抬升作用的影响,页岩气的保存效率得以提高。

  • 图7 XAD1井埋藏史、热史及牛蹄塘组底部黑色页岩成熟度演化

  • Fig.7 Burial history, thermal history, and maturity evolution of bottom black shale of Niutitang Formation of well XAD1

  • 6 结论

  • (1)雪峰山北缘自古生代以来先后经历了三次升温—降温过程。三次热演化高峰依次出现在晚奥陶世末期、中三叠世末期和早白垩世末期,所达到的最高温度依次降低。

  • (2)三次升温过程分别受到早古生代拉张作用和岩浆活动、晚古生代—早中生代快速沉降作用和早白垩世岩浆活动的控制。早期和晚期热事件的存在分别由微量元素、稀土元素异常分布和较晚的He年龄值证明。

  • (3)受沉积埋藏作用和早期热事件的影响,牛蹄塘组页岩在寒武纪—早志留世快速经历了生油高峰、原油裂解高峰等生烃关键时期,在晚奥陶世达到过成熟阶段。随后第一次的抬升剥蚀作用,破坏了页岩及上覆盖层的封闭性,形成有利于气体扩散的裂缝或断层通道,使得烃类散失。

  • 参考文献

    • Aboubacar M S I, Cai Zhongxian, Harouna M, Yakubu Y. 2020. Thermo-tectonic history of the Northeast Sichuan basin, Southwest China, using apatite fission-track analysis, vitrinite reflectance, and basin modelling: implications for hydrocarbon prospectivity. Geological Journal, 55(9): 6049~6065.

    • Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transcaal Supergroup, South Africa. Precambrian Research, 79: 37~55.

    • Chu Yang, Faure M, Lin Wei, Wang Qingchen, Ji Wenbin. 2012. Tectonics of the Middle Triassic intracontinental Xuefengshan belt, South China: new insights from structural and chronological constraints on the decollement zone. Int. J. Earth Sci. (Geol Rundsch), 101: 2125~2150.

    • Chu Yang, Lin Wei, Faure M, Wang Qingchen. 2015. Early Mesozoic intracontinental orogeny: example of the Xuefengshan-Jiuling belt. Acta Petrologica Sinica, 31(8): 2145~2155 (in Chinese with English abstract).

    • Elderfield H, Greaves M J. 1982. The rare earth elements in seawater. Nature, 296: 214~219.

    • Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21): 4223~4229.

    • Feng Dongjun, Hu Zongquan, Li Shuangjian, Du Wei, Shi Yuan. 2021. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan basin. Geological Review, 67(1): 144~158 (in Chinese with English abstract).

    • Feng Guoxiu, Chen Shenji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(8): 20~25 (in Chinese with English abstract).

    • Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: a new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.

    • Li Sanzhong, Wang Tao, Jin Chong, Dai Liming, Liu Xin, Zhou Xiaojun, Wang Yuejun, Zhang Guowei. 2011. Features and causes of Indosinian intracontinental structures in the Xuefengshan Precambrian basement and its neighboring regions. Journal of Jilin University (Earth Science Edition), 41(1): 93~105 (in Chinese with English abstract).

    • Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017. Mesozic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers, 24(4): 213~225 (in Chinese with English abstract).

    • Liu Liping, Li Sanzhong, Dai Liming, Suo Yanhui, Liu Bo, Zhang Guowei, Wang Yuejun, Liu Enshan. 2012. Geometry and timing of Mesozoic deformation in the western part of the Xuefeng tectonic belt, South China: implications for intra-continental deformation. Journal of Asian Earth Sciences, 49: 330~338.

    • Liu Xishun. 2008. Characteristics and hydrocarbon generation model of Upper Paleozoic carbonate source rocks in Xiangzhong depression. Marine Origin Petroleum Geology, 13(1): 13~17 (in Chinese with English abstract).

    • McLennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. Review of Mineralogy, 21: 169~200.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Olivarez A M, Owen R M. 1991. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chemical Geology, 92: 317~328.

    • Peng Zhongqin, Tian Wei, Miao Fengbin, Wang Baozhong, Wang Chuanshang. 2019. Geological features and favorable area prediction of shale gas in Lower Cambrian Niutitang Formation of Xuefeng ancient uplift and its periphery. Earth Science, 44(10): 3512~3528 (in Chinese with English abstract).

    • Qiu Nansheng, Liu Wen, Xu Qiuchen, Liu Yifeng, Chang Jian. 2018. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata. Earth Science, 43(10): 3511~3525 (in Chinese with English abstract).

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • She Haidong, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2018. Migration and precipitation of rare earth elements in the hydrothermal fluids. Acta Petrologica Sinica, 34(12): 3567~3581 (in Chinese with English abstract).

    • Shen Chuanbo, Mei Lianfu, Guo Tonglou. 2007. Fission track analysis of Mesozoic-Cenozoic thermal history in northeast Sichuan basin. Natural Gas Industry, 27(7): 24~26 (in Chinese with English abstract).

    • Sun Xinglin, Chen Jianfa, Liu Wenhui, Zhang Shuichang, Wang Darui. 2003. Hydrothermal venting on the seafloor and formation of organic-rich sediments: evidence from the Neoproterozoic Xiamaling Formation, North China. Geological Review, 49(6): 588~595 (in Chinese with English abstract).

    • Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10): 1559~1570.

    • Tang Boning, Zhu Chuanqing, Xu Ming, Chen Tiange, Hu Shengbiao. 2019. Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China. Energy Exploration & Exploitation, 37(2): 691~720.

    • Tang Meihua, Wu Jianhua. 2017. Geological evidence for compression events in the middle period of early Cretaceous in Southeast China. Geotectonica et Metallogenia, 41(2): 258~271 (in Chinese with English abstract).

    • Tang Shuangli, Yan Danping, Qiu Liang, Gao Jianfeng, Wang Changliang. 2014. Partitioning of the Cretaceous Pan-Yangtze basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Research, 25: 1644~1659.

    • Tonger, Liu Wenhui, Xu Yongchang, Chen Jianfa. 2004. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentologica Sinica, 22(2): 365~372 (in Chinese with English abstract).

    • Tuo Xiusong, Chen Kongquan, Luo Sunshe, Tangjiguang, Zhang Douzhong, Shen Junjun. 2020. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan basin. Oil & Gas Geology, 41(5): 1017~1027 (in Chinese with English abstract).

    • Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Research, 122(1/4): 141~158.

    • Wang Yannan, Zhang Jin, Zhang Beihang, Zhao Heng. 2018. Cenozoic exhumation history of South China: a case study from the Xuefeng Mt. Range. Journal of Asian Earth Sciences, 151: 173~189.

    • Wang Yuejun, Zhang Yanhua, Fan Weiming, Peng Tuoping. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27: 985~998.

    • Wang Zhigang. 2019. Reservoir formation conditions and key efficient exploration & development technologies for marine shale gas fields in Fuling area, South China. Acta Petrolei Sinica, 40(3): 370~382 (in Chinese with English abstract).

    • Wu Shiqing, Guo Jianhua, Wang Xikai, Li Zhiyu, Liu Chensheng, Jiao Peng, Chen Guang. 2020. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan. Journal of Central South University (Science and Technology), 51(8): 2049~2060 (in Chinese with English abstract).

    • Xiao Xianming, Wilkins R W T, Liu Dehan, Liu Zhufa, Fu Jiamu. 2000. Investigation of thermal maturity of lower Paleozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim basin case study. Organic Geochemistry, 31(10): 1041~1052.

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.

    • Yang Xin, Liu Xingwang, Wang Yadong, Liu Yanhong, Zheng Jianjing. 2011. The tectonic controls on the distribution of marine oil and gas in the adjacent areas of Xuefeng Mountain. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4): 7~12 (in Chinese with English abstract).

    • Zhang Changjiang, Liu Guanglin, Guan Honglin, Fang Chengmin, Deng Mo. 2006. Genetic types of natural gas of Xiangzhong depression. Natural Gas Geoscience, 17(6): 829~833 (in Chinese with English abstract).

    • Zhang Junfeng, Xu Hao, Zhou Zhi, Ren Pengfei, Guo Jingzhen, Wang Qiong. 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei. Acta Petrolei Sinica, 40(8): 887~899 (in Chinese with English abstract).

    • Zhang Lin, Wei Guoqi, Han Long, Wang Lilong, Wang Dongliang. 2008. Evaluation of the high and over matured Sinian-lower Palaeozoic source rocks in the Sichuan basin. Petroleum Geology & Experiment, 30(3): 286~291 (in Chinese with English abstract).

    • Zhang Peng, Huang Yuqi, Zhang Jinchuan, Li Bo, Liu Hongyang, Yang Junwei. 2020. Study on shale heterogeneity in western Hunan and Hubei: a case study of the Longmaxi Formation in well Ld1. Acta Geologica Sinica, 94(5): 1568~1577 (in Chinese with English abstract).

    • Zhang Peng, Huang Yuqi, Zhang Jinchuan, Wei Xiaoliang, Yang Junwei, He Rui, Hu Yang. 2019. Difference analysis of hydrocarbon generation and reservoir capacity between the Cambrian Niutitang Formation and the Silurian Longmaxi Formation in Northwest Guizhou. Marine Origin Petroleum Geology, 24(3): 83~90 (in Chinese with English abstract).

    • Zhang Yanlin, Duan Ke, Liu Zaoxue, Jin Chunshuang, Chen Ke, Luo Fan. 2019. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology & Experiment, 41(5): 691~698 (in Chinese with English abstract).

    • Zhang Yuxiang, Zeng Zhigang, Yin Xuebo, Li He, Qi Haiyan, Wang Xiaoyuan, Chen Shuai. 2018. Geochemical records of hydrothermal activities in the sediment fillings within pumice's vesicles in the vicinity of a seafloor hydrothermal field in the Okinawa Trough. Marine Geology & Quaternary Geology, 38(5): 102~111 (in Chinese with English abstract).

    • Zhang Zilong, Qi Fucheng, Fu Jin, Li Zhixing. 2015. Metallogenic perspect prognostication of Carbonaceous-siliceous-argillaceous type uranium deposit in the northwestern margin of Xuefengshan uplift belt. Uranium Geology, 31(5): 483~490 (in Chinese with English abstract).

    • Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 43(4): 499~510 (in Chinese with English abstract).

    • Zheng Chen, Xu Changhai, Brix M R, Zhou Zuyi. 2019. Evolution and provenance of the Xuefeng intracontinental tectonic system in South China: constraints from detrital zircon fission track thermochronology. Journal of Asian Earth Sciences, 176: 164~273.

    • Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. 43(6): 2007~2018 (in Chinese with English abstract).

    • 褚杨, 林伟, Faure M, 王清晨. 2015. 华南板块早中生代陆内造山过程——以雪峰山-九岭为例. 岩石学报, 31(8): 2145~2155.

    • 冯动军, 胡宗全, 李双建, 杜伟, 师源. 2021. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用. 地质论评, 67(1): 144~158.

    • 丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(8): 20~25.

    • 李三忠, 藏艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213~225.

    • 李三忠, 王涛, 金宠, 戴黎明, 刘鑫, 周小军, 王岳军, 张国伟. 2011. 雪峰山基底隆升带及其邻区印支期陆内构造特征与成因. 吉林大学学报(地球科学版), 41(1): 93~105.

    • 刘喜顺. 2008. 湘中坳陷上古生界碳酸盐岩烃源岩特征及生烃模式. 海相油气地质, 13(1): 13~17.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形来自裂变径迹和平衡剖面的证据. 地球科学—中国地质大学学报, 35(2): 161~174.

    • 彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测. 地球科学, 44(10): 3512~3528.

    • 邱楠生, 刘雯, 徐秋晨, 刘一锋, 常健. 2018. 深层-古老海相层系温压场与油气成藏. 地球科学, 43(10): 3511~3525.

    • 佘海东, 范宏瑞, 胡芳芳, 杨奎锋, 杨占峰, 王其伟. 2018. 稀土元素在热液中的迁移与沉淀. 岩石学报, 34(12): 3567~3581.

    • 沈传波, 梅廉夫, 郭彤楼. 2007. 川东北地区中、新生代热历史的裂变径迹分析. 天然气工业, 27(7): 24~26.

    • 孙省利, 陈践发, 刘文汇, 张水昌, 王大锐. 2003. 海底热水活动与海相富有机质层形成的关系: 以华北新元古界青白口系下马岭组为例. 地质论评, 49(6): 588~595.

    • 唐梅华, 巫建华. 2017. 华南内陆早白垩世中期挤压构造事件的地质证据. 大地构造与成矿学, 41(2): 258~271.

    • 腾格尔, 刘文汇, 徐永昌, 陈践发. 2004. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例. 沉积学报, 22(2): 365~372.

    • 庹秀松, 陈孔全, 罗顺社, 汤济广, 张斗中, 沈均均. 2020. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件. 石油与天然气地质, 41(5): 1017~1027.

    • 王志刚. 2019. 涪陵大型海相页岩气田成藏条件及高效勘探开发关键技术. 石油学报, 40(3): 370~382.

    • 吴诗倩, 郭建华, 王玺凯, 李智宇, 刘辰生, 焦鹏, 陈广. 2020. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理. 中南大学学报(自然科学版), 51(8): 2049~2060.

    • 杨鑫, 刘兴旺, 王亚东, 刘燕红, 郑建京. 2011. 构造活动对雪峰山邻区海相油气分布的控制. 西南石油大学学报(自然科学版), 33(4): 7~12.

    • 张君峰, 许浩, 周志, 任鹏飞, 郭景震, 王琼. 2019. 鄂西宜昌地区页岩气成藏地质特征. 石油学报, 40(8): 887~899.

    • 张林, 魏国齐, 韩龙, 王立龙, 王东良. 2008. 四川盆地震旦系—下古生界高过成熟度烃源岩评价. 石油实验地质, 30(3): 286~291.

    • 张鹏, 黄宇琪, 张金川, 李博, 刘洪洋, 杨军伟. 2020. 湘鄂西页岩非均质性研究——以Ld1井龙马溪组为例. 地质学报, 94(5): 1568~1577.

    • 张鹏, 黄宇琪, 张金川, 魏晓亮, 杨军伟, 何瑞, 呼阳. 2019. 黔西北寒武系牛蹄塘组与志留系龙马溪组页岩生烃和储集能力差异分析. 海相油气地质, 24(3): 83~90.

    • 张焱林, 段轲, 刘早学, 金春爽, 陈科, 罗凡. 2019. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素. 石油实验地质, 41(5): 691~698.

    • 张玉祥, 曾志刚, 殷学博, 李禾, 齐海燕, 王晓媛, 陈帅. 2018. 冲绳海槽海底热液区附近浮岩气孔充填沉积物中热液活动的地球化学记录. 海洋地质与第四纪地质, 38(5): 102~111.

    • 张长江, 刘光祥, 管宏林, 方成名, 邓模. 2006. 湘中坳陷天然气成因类型分析. 天然气地球科学, 17(6): 829~833.

    • 张字龙, 漆富成, 付锦, 李治兴. 2015. 雪峰山隆起带西北缘碳硅泥岩型铀矿远景预测. 铀矿地质, 31(5): 483~490.

    • 赵文智, 李建忠, 杨涛, 王淑芳, 黄金亮. 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, (43)4: 499~510.

    • 邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中—新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.

  • 参考文献

    • Aboubacar M S I, Cai Zhongxian, Harouna M, Yakubu Y. 2020. Thermo-tectonic history of the Northeast Sichuan basin, Southwest China, using apatite fission-track analysis, vitrinite reflectance, and basin modelling: implications for hydrocarbon prospectivity. Geological Journal, 55(9): 6049~6065.

    • Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transcaal Supergroup, South Africa. Precambrian Research, 79: 37~55.

    • Chu Yang, Faure M, Lin Wei, Wang Qingchen, Ji Wenbin. 2012. Tectonics of the Middle Triassic intracontinental Xuefengshan belt, South China: new insights from structural and chronological constraints on the decollement zone. Int. J. Earth Sci. (Geol Rundsch), 101: 2125~2150.

    • Chu Yang, Lin Wei, Faure M, Wang Qingchen. 2015. Early Mesozoic intracontinental orogeny: example of the Xuefengshan-Jiuling belt. Acta Petrologica Sinica, 31(8): 2145~2155 (in Chinese with English abstract).

    • Elderfield H, Greaves M J. 1982. The rare earth elements in seawater. Nature, 296: 214~219.

    • Farley K A, Wolf R A, Silver L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21): 4223~4229.

    • Feng Dongjun, Hu Zongquan, Li Shuangjian, Du Wei, Shi Yuan. 2021. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan basin. Geological Review, 67(1): 144~158 (in Chinese with English abstract).

    • Feng Guoxiu, Chen Shenji. 1988. Relationship between the reflectance of bitumen and vitrinite in rock. Natural Gas Industry, 8(8): 20~25 (in Chinese with English abstract).

    • Gleadow A, Harrison M, Kohn B, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: a new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.

    • Li Sanzhong, Wang Tao, Jin Chong, Dai Liming, Liu Xin, Zhou Xiaojun, Wang Yuejun, Zhang Guowei. 2011. Features and causes of Indosinian intracontinental structures in the Xuefengshan Precambrian basement and its neighboring regions. Journal of Jilin University (Earth Science Edition), 41(1): 93~105 (in Chinese with English abstract).

    • Li Sanzhong, Zang Yibo, Wang Pengcheng, Suo Yanhui, Li Xiyao, Liu Xin, Zhou Zaizheng, Liu Xiaoguang, Wang Qian. 2017. Mesozic tectonic transition in South China and initiation of Palaeo-Pacific subduction. Earth Science Frontiers, 24(4): 213~225 (in Chinese with English abstract).

    • Liu Liping, Li Sanzhong, Dai Liming, Suo Yanhui, Liu Bo, Zhang Guowei, Wang Yuejun, Liu Enshan. 2012. Geometry and timing of Mesozoic deformation in the western part of the Xuefeng tectonic belt, South China: implications for intra-continental deformation. Journal of Asian Earth Sciences, 49: 330~338.

    • Liu Xishun. 2008. Characteristics and hydrocarbon generation model of Upper Paleozoic carbonate source rocks in Xiangzhong depression. Marine Origin Petroleum Geology, 13(1): 13~17 (in Chinese with English abstract).

    • McLennan S M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary process. Review of Mineralogy, 21: 169~200.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Olivarez A M, Owen R M. 1991. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chemical Geology, 92: 317~328.

    • Peng Zhongqin, Tian Wei, Miao Fengbin, Wang Baozhong, Wang Chuanshang. 2019. Geological features and favorable area prediction of shale gas in Lower Cambrian Niutitang Formation of Xuefeng ancient uplift and its periphery. Earth Science, 44(10): 3512~3528 (in Chinese with English abstract).

    • Qiu Nansheng, Liu Wen, Xu Qiuchen, Liu Yifeng, Chang Jian. 2018. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata. Earth Science, 43(10): 3511~3525 (in Chinese with English abstract).

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • She Haidong, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2018. Migration and precipitation of rare earth elements in the hydrothermal fluids. Acta Petrologica Sinica, 34(12): 3567~3581 (in Chinese with English abstract).

    • Shen Chuanbo, Mei Lianfu, Guo Tonglou. 2007. Fission track analysis of Mesozoic-Cenozoic thermal history in northeast Sichuan basin. Natural Gas Industry, 27(7): 24~26 (in Chinese with English abstract).

    • Sun Xinglin, Chen Jianfa, Liu Wenhui, Zhang Shuichang, Wang Darui. 2003. Hydrothermal venting on the seafloor and formation of organic-rich sediments: evidence from the Neoproterozoic Xiamaling Formation, North China. Geological Review, 49(6): 588~595 (in Chinese with English abstract).

    • Sweeney J J, Burnham A K. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10): 1559~1570.

    • Tang Boning, Zhu Chuanqing, Xu Ming, Chen Tiange, Hu Shengbiao. 2019. Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China. Energy Exploration & Exploitation, 37(2): 691~720.

    • Tang Meihua, Wu Jianhua. 2017. Geological evidence for compression events in the middle period of early Cretaceous in Southeast China. Geotectonica et Metallogenia, 41(2): 258~271 (in Chinese with English abstract).

    • Tang Shuangli, Yan Danping, Qiu Liang, Gao Jianfeng, Wang Changliang. 2014. Partitioning of the Cretaceous Pan-Yangtze basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Research, 25: 1644~1659.

    • Tonger, Liu Wenhui, Xu Yongchang, Chen Jianfa. 2004. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentologica Sinica, 22(2): 365~372 (in Chinese with English abstract).

    • Tuo Xiusong, Chen Kongquan, Luo Sunshe, Tangjiguang, Zhang Douzhong, Shen Junjun. 2020. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan basin. Oil & Gas Geology, 41(5): 1017~1027 (in Chinese with English abstract).

    • Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia breakup. Precambrian Research, 122(1/4): 141~158.

    • Wang Yannan, Zhang Jin, Zhang Beihang, Zhao Heng. 2018. Cenozoic exhumation history of South China: a case study from the Xuefeng Mt. Range. Journal of Asian Earth Sciences, 151: 173~189.

    • Wang Yuejun, Zhang Yanhua, Fan Weiming, Peng Tuoping. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27: 985~998.

    • Wang Zhigang. 2019. Reservoir formation conditions and key efficient exploration & development technologies for marine shale gas fields in Fuling area, South China. Acta Petrolei Sinica, 40(3): 370~382 (in Chinese with English abstract).

    • Wu Shiqing, Guo Jianhua, Wang Xikai, Li Zhiyu, Liu Chensheng, Jiao Peng, Chen Guang. 2020. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan. Journal of Central South University (Science and Technology), 51(8): 2049~2060 (in Chinese with English abstract).

    • Xiao Xianming, Wilkins R W T, Liu Dehan, Liu Zhufa, Fu Jiamu. 2000. Investigation of thermal maturity of lower Paleozoic hydrocarbon source rocks by means of vitrinite-like maceral reflectance—a Tarim basin case study. Organic Geochemistry, 31(10): 1041~1052.

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.

    • Yang Xin, Liu Xingwang, Wang Yadong, Liu Yanhong, Zheng Jianjing. 2011. The tectonic controls on the distribution of marine oil and gas in the adjacent areas of Xuefeng Mountain. Journal of Southwest Petroleum University (Science & Technology Edition), 33(4): 7~12 (in Chinese with English abstract).

    • Zhang Changjiang, Liu Guanglin, Guan Honglin, Fang Chengmin, Deng Mo. 2006. Genetic types of natural gas of Xiangzhong depression. Natural Gas Geoscience, 17(6): 829~833 (in Chinese with English abstract).

    • Zhang Junfeng, Xu Hao, Zhou Zhi, Ren Pengfei, Guo Jingzhen, Wang Qiong. 2019. Geological characteristics of shale gas reservoir in Yichang area, western Hubei. Acta Petrolei Sinica, 40(8): 887~899 (in Chinese with English abstract).

    • Zhang Lin, Wei Guoqi, Han Long, Wang Lilong, Wang Dongliang. 2008. Evaluation of the high and over matured Sinian-lower Palaeozoic source rocks in the Sichuan basin. Petroleum Geology & Experiment, 30(3): 286~291 (in Chinese with English abstract).

    • Zhang Peng, Huang Yuqi, Zhang Jinchuan, Li Bo, Liu Hongyang, Yang Junwei. 2020. Study on shale heterogeneity in western Hunan and Hubei: a case study of the Longmaxi Formation in well Ld1. Acta Geologica Sinica, 94(5): 1568~1577 (in Chinese with English abstract).

    • Zhang Peng, Huang Yuqi, Zhang Jinchuan, Wei Xiaoliang, Yang Junwei, He Rui, Hu Yang. 2019. Difference analysis of hydrocarbon generation and reservoir capacity between the Cambrian Niutitang Formation and the Silurian Longmaxi Formation in Northwest Guizhou. Marine Origin Petroleum Geology, 24(3): 83~90 (in Chinese with English abstract).

    • Zhang Yanlin, Duan Ke, Liu Zaoxue, Jin Chunshuang, Chen Ke, Luo Fan. 2019. Characteristics of shale and main controlling factors of shale gas enrichment of Lower Cambrian Niutitang Formation in western Hubei. Petroleum Geology & Experiment, 41(5): 691~698 (in Chinese with English abstract).

    • Zhang Yuxiang, Zeng Zhigang, Yin Xuebo, Li He, Qi Haiyan, Wang Xiaoyuan, Chen Shuai. 2018. Geochemical records of hydrothermal activities in the sediment fillings within pumice's vesicles in the vicinity of a seafloor hydrothermal field in the Okinawa Trough. Marine Geology & Quaternary Geology, 38(5): 102~111 (in Chinese with English abstract).

    • Zhang Zilong, Qi Fucheng, Fu Jin, Li Zhixing. 2015. Metallogenic perspect prognostication of Carbonaceous-siliceous-argillaceous type uranium deposit in the northwestern margin of Xuefengshan uplift belt. Uranium Geology, 31(5): 483~490 (in Chinese with English abstract).

    • Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in South China. Petroleum Exploration and Development, 43(4): 499~510 (in Chinese with English abstract).

    • Zheng Chen, Xu Changhai, Brix M R, Zhou Zuyi. 2019. Evolution and provenance of the Xuefeng intracontinental tectonic system in South China: constraints from detrital zircon fission track thermochronology. Journal of Asian Earth Sciences, 176: 164~273.

    • Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. 43(6): 2007~2018 (in Chinese with English abstract).

    • 褚杨, 林伟, Faure M, 王清晨. 2015. 华南板块早中生代陆内造山过程——以雪峰山-九岭为例. 岩石学报, 31(8): 2145~2155.

    • 冯动军, 胡宗全, 李双建, 杜伟, 师源. 2021. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用. 地质论评, 67(1): 144~158.

    • 丰国秀, 陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(8): 20~25.

    • 李三忠, 藏艺博, 王鹏程, 索艳慧, 李玺瑶, 刘鑫, 周在征, 刘晓光, 王倩. 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213~225.

    • 李三忠, 王涛, 金宠, 戴黎明, 刘鑫, 周小军, 王岳军, 张国伟. 2011. 雪峰山基底隆升带及其邻区印支期陆内构造特征与成因. 吉林大学学报(地球科学版), 41(1): 93~105.

    • 刘喜顺. 2008. 湘中坳陷上古生界碳酸盐岩烃源岩特征及生烃模式. 海相油气地质, 13(1): 13~17.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形来自裂变径迹和平衡剖面的证据. 地球科学—中国地质大学学报, 35(2): 161~174.

    • 彭中勤, 田巍, 苗凤彬, 王保忠, 王传尚. 2019. 雪峰古隆起边缘下寒武统牛蹄塘组页岩气成藏地质特征及有利区预测. 地球科学, 44(10): 3512~3528.

    • 邱楠生, 刘雯, 徐秋晨, 刘一锋, 常健. 2018. 深层-古老海相层系温压场与油气成藏. 地球科学, 43(10): 3511~3525.

    • 佘海东, 范宏瑞, 胡芳芳, 杨奎锋, 杨占峰, 王其伟. 2018. 稀土元素在热液中的迁移与沉淀. 岩石学报, 34(12): 3567~3581.

    • 沈传波, 梅廉夫, 郭彤楼. 2007. 川东北地区中、新生代热历史的裂变径迹分析. 天然气工业, 27(7): 24~26.

    • 孙省利, 陈践发, 刘文汇, 张水昌, 王大锐. 2003. 海底热水活动与海相富有机质层形成的关系: 以华北新元古界青白口系下马岭组为例. 地质论评, 49(6): 588~595.

    • 唐梅华, 巫建华. 2017. 华南内陆早白垩世中期挤压构造事件的地质证据. 大地构造与成矿学, 41(2): 258~271.

    • 腾格尔, 刘文汇, 徐永昌, 陈践发. 2004. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例. 沉积学报, 22(2): 365~372.

    • 庹秀松, 陈孔全, 罗顺社, 汤济广, 张斗中, 沈均均. 2020. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件. 石油与天然气地质, 41(5): 1017~1027.

    • 王志刚. 2019. 涪陵大型海相页岩气田成藏条件及高效勘探开发关键技术. 石油学报, 40(3): 370~382.

    • 吴诗倩, 郭建华, 王玺凯, 李智宇, 刘辰生, 焦鹏, 陈广. 2020. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理. 中南大学学报(自然科学版), 51(8): 2049~2060.

    • 杨鑫, 刘兴旺, 王亚东, 刘燕红, 郑建京. 2011. 构造活动对雪峰山邻区海相油气分布的控制. 西南石油大学学报(自然科学版), 33(4): 7~12.

    • 张君峰, 许浩, 周志, 任鹏飞, 郭景震, 王琼. 2019. 鄂西宜昌地区页岩气成藏地质特征. 石油学报, 40(8): 887~899.

    • 张林, 魏国齐, 韩龙, 王立龙, 王东良. 2008. 四川盆地震旦系—下古生界高过成熟度烃源岩评价. 石油实验地质, 30(3): 286~291.

    • 张鹏, 黄宇琪, 张金川, 李博, 刘洪洋, 杨军伟. 2020. 湘鄂西页岩非均质性研究——以Ld1井龙马溪组为例. 地质学报, 94(5): 1568~1577.

    • 张鹏, 黄宇琪, 张金川, 魏晓亮, 杨军伟, 何瑞, 呼阳. 2019. 黔西北寒武系牛蹄塘组与志留系龙马溪组页岩生烃和储集能力差异分析. 海相油气地质, 24(3): 83~90.

    • 张焱林, 段轲, 刘早学, 金春爽, 陈科, 罗凡. 2019. 鄂西下寒武统牛蹄塘组页岩特征及页岩气富集主控因素. 石油实验地质, 41(5): 691~698.

    • 张玉祥, 曾志刚, 殷学博, 李禾, 齐海燕, 王晓媛, 陈帅. 2018. 冲绳海槽海底热液区附近浮岩气孔充填沉积物中热液活动的地球化学记录. 海洋地质与第四纪地质, 38(5): 102~111.

    • 张长江, 刘光祥, 管宏林, 方成名, 邓模. 2006. 湘中坳陷天然气成因类型分析. 天然气地球科学, 17(6): 829~833.

    • 张字龙, 漆富成, 付锦, 李治兴. 2015. 雪峰山隆起带西北缘碳硅泥岩型铀矿远景预测. 铀矿地质, 31(5): 483~490.

    • 赵文智, 李建忠, 杨涛, 王淑芳, 黄金亮. 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, (43)4: 499~510.

    • 邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中—新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.