-
自1858年Sorby提出包裹体地质温度计原理和方法后,随着一系列包裹体观察和测温仪器及方法的研究取得重大进展,包裹体研究理论逐渐趋于完善,在包裹体地球化学、成矿流体演化及矿床成因方面均具有重要意义(Smith,1952; Ingerson,1954; Roedder et al.,1963; 卢焕章等,2004)。从流体包裹体的组分来看,其主要流体组分为H2O、挥发分气体和盐类,根据这些组分的组合体系,可分为一元-多元流体体系。针对于金属矿床,流体包裹体多为H2O-NaCl-CO2体系,局部可见盐类子晶等固态矿物或熔体包裹体存在(卢焕章等,2015,2016,2018),同时在包裹体成分中,可测得CH4等气态成分,在国内外矿床研究中报道过一些矿床中富甲烷流体的存在,但多集中于铜铅锌等碱金属矿床中(Fan Hongrui et al.,2004; 王天刚等,2008; Shen Ping et al.,2010; 王国光等,2011; Zhong Richen et al.,2013; Cao Mingjian et al.,2014; Lang Xinghai et al.,2014; Mathias et al.,2017),金矿中鲜有报道,金矿中流体体系多为H2O-NaCl-CO2±CH4,甲烷为次要气体组分且含量可变(Edward,1998; McCuaig et al.,1998; 赵胜金,2009; Lawrence et al.,2013; Sakthi et al.,2017; 闫馨云等,2019; Natalia et al.,2020; 王建等,2020)。本次研究在内蒙古柴胡栏子金矿床发现了大量的单相甲烷包裹体群,为赤峰-朝阳金矿成矿带内首次发现。
-
柴胡栏子金矿自20世纪60年代投入开发后,经过长期的勘探与科学研究,对柴胡栏子及周边红花沟、莲花山金矿矿床地质特征、成矿物质来源、矿床成因及成矿规律等进行了相关的研究(李延河等,1991; 艾永德等,1994; 姜能,1994; 杨忆等,1999; 梁俊红等,2000; 佘宏全等,2000; 曾建国等,2002; 李春贵等,2008; 王书春等,2012; 张彦生,2012; 张宝印,2018; 唐庆宇,2018)。研究认为,红花沟金矿成矿流体为岩浆水和大气降水的混合水,以大气降水为主(李延河等,1991; 唐庆宇,2018),成矿流体以H2O-NaCl-CO2体系为主,成矿温度为中低温,对于其成矿物质来源,李延河等(1991)、邱玉民等(1992)认为成矿物质来源于太古代建平群变质岩,唐庆宇(2018)认为红花沟金矿与壳幔相互作用相关的深部流体活动以及地幔排气作用具有密切的关系,其成矿物质并非来自于太古代建平群变质岩,而主要来自于深部的地幔或下地壳,具有深源的特征; 莲花山金矿成矿物质来源于太古代建平群小塔子沟组,成矿流体主要来源于大气降水,成矿过程中可能有少量的岩浆水的加入,成矿流体以H2O-NaCl-CO2体系为主,成矿温度为中低温,为中—低温浅成石英脉型金矿床(姜能,1994; 梁俊红等,2000)。而本次研究的柴胡栏子金矿稳定同位素及流体包裹体研究仅集中于20世纪90年代(李延河等,1991; 艾永德等,1994; 杨忆等,1999),研究表明柴胡栏子金矿成矿流体以H2O-NaCl-子晶体系为主,为高盐流体(艾永德等,1994),成矿温度为中低温,对于其成矿物质来源及成矿流体特征,李延河等(1991)、艾永德等(1994)认为成矿物质来源于闪长岩体岩浆硫和地层中沉积硫,成矿流体为岩浆水、变质水和大气降水的混合,碳同位素组成显示石英包裹体中有一定量的甲烷或大理岩、围岩中的石墨或岩体中碳进入了流体中,水岩反应为金沉淀的主要机制; 杨忆等(1999)认为成矿物质来源于太古宇建平群变质岩,混入了少量的岩浆物质,成矿热液以岩浆水为主,同时混入了少量大气降水。
-
以上对柴胡栏子及周边金矿床研究中多认为其成矿流体为H2O-NaCl-CO2-子晶体系,成矿流体为岩浆水、大气降水或加入了变质水,但对于其成矿物质来源存在较大的争议,同时成矿流体的演化及成矿机理存在不明确的地方。因此,本次研究在详细的野外工作基础上,通过对含石墨绢云母片岩中金矿体进行详细的岩石学和流体包裹体研究,同时基于区域地质、矿床地质研究的基础,以成矿流体为研究对象,对矿床中富甲烷流体包裹体成分、来源及演化进行研究,探讨柴胡栏子金矿流体系统的特征和与围岩的关系,对成矿机理进行分析研究,为区域成矿及找矿提供新的方向。
-
1 区域地质
-
赤峰-朝阳金矿集区位于华北克拉通(NCC)北缘中段和兴蒙造山带的结合部位(图1a),为北东向的大兴安岭构造带与东西向阴山-燕山构造带的交汇部位(陈伟军等,2006; 孙珍军,2013; 杨帆,2019; 申俊峰等,2020)。区域地层主要有太古宇建平群、古生代和中新生代地层(图1b)。建平群从老到新分为小塔子沟组、大营子组和瓦子峪组,分布在赤峰开源断裂的南部,为华北克拉通太古宙结晶基底,呈北东向条带状产于红花沟、安家营子以及金厂沟梁等地,其主要岩性为一套变质的孔兹岩系; 古生代地层仅分布在赤峰-开源断裂以北,主要为石炭系的朝吐沟组、白家店组,二叠系的大石寨组、于家北沟组,其岩性以火山岩-沉积岩系为主; 中生代地层分布于区内隆起区两侧,为一套火山沉积盖层,从老到新分别为侏罗纪的兴隆沟组、北票组、海房沟组、蓝旗组、土城子组。
-
受中生代古太平板块俯冲的远程效应,赤峰-朝阳地区发育非常明显的NNE向的构造(Davis et al.,2001),将整个区域划分为三个明显的NNE向的断块,自东向西分别为努鲁儿虎山、马鞍山、铭山3个断隆带(图1b),控制着区域的岩浆和矿床的分布。该组断裂在区域上常常表现为韧性剪切带,年龄为134~126 Ma(王新社等,2005,2006),多出现在变质核杂岩两侧,如喀喇沁变质核杂岩,代表区域构造处于伸展阶段。同时受区域构造作用影响,区内岩浆岩基本分布在上述3个断隆带上,其中铭山隆起主要分布晚古生代到早中生代的辉长岩和闪长岩(272~225 Ma; 佘宏全等,2000); 马鞍山隆起主要分布早中生代的大营子闪长岩(223~219 Ma; 韩庆军等,2000)和早白垩世的安家营子花岗岩体(138~132 Ma; 李永刚等,2003a); 努鲁尔虎隆起带内主要发育三叠纪中基性脉岩(228 Ma)和侏罗纪娄上辉石闪长岩(161 Ma)及早白垩世对面沟石英二长岩岩体(128 Ma; 付乐兵,2012)。
-
图1 赤峰-朝阳金矿带区域大地位置(a)及地质简图(b)(据杨忆等,1999修改)
-
Fig.1 Tectonic location (a) and geological map (b) of Chifeng-Chaoyang gold metallogenc belt (modified after Yang Yi et al., 1999)
-
区域金矿床的展布同样受NNE向构造的影响,划分的三个金矿化带与区内努鲁儿虎山、马鞍山、铭山3个断隆带上的构造-岩浆带相一致(图1b; 彭大明,2002; 冯德胜,2014)。其中努鲁儿虎山金矿化带位于北票、朝阳以西至建平一线,是3个金矿化带中延展最长,矿床(点)最多,金矿储量最为集中的矿化带,自南往北又可分为长皋、东五家子、金厂沟梁、平房-迷力营子4个金矿化区(张佳楠等,2012; 张雪松等,2012; 李秋叶,2013); 马鞍山金矿化带位于八里罕至赤峰市以东的建昌营一线,矿化带中花岗岩类分布面积最广,且地跨华北陆块与兴蒙造山带,带内金矿床数量虽不多,但类型最为复杂多样,南部有热水金矿化区,中部有安家营子金矿化区,北部有撰山子金矿化区(张林等,1998; 李永刚等,2003a,2003b; 张宇等,2014,2020; 刘丽,2020); 西部铭山矿化带位于赤峰市以西40 km处,矿化带北东展延长达60 km,南有红花沟、莲花山、柴胡栏子矿化区,北有解放营子矿点(姜能,1994; 佘宏全等,2002; 唐庆宇,2018)。
-
2 矿区地质
-
柴胡栏子金矿位于铭山断隆带北东地段,赤峰开源深大断裂南侧,距赤峰市初头朗镇北西约13 km。矿区内出露地层主要为太古宙建平群大营子组以及新生代地层(图2b),其中大营子组主要分布在矿区南侧,根据岩性可将其划分为上、下两个岩性段,下岩段主要出露于初头朗-大营子一带,岩性为斜长角闪片麻岩,局部可见混合岩化片麻岩,其顶部为一层含石墨绢云母片岩夹大理岩透镜体,柴胡栏子金矿主要矿体均赋存于这套含石墨片岩中,上岩段的出露较少,分布于温家地一带,岩性主要为大理岩,夹部分石英岩(图2c)。矿区内花岗岩分布十分广泛,主要为北部铜匠沟二长花岗岩和紧邻铜匠沟岩体产出的闪长岩,其侵位年代均为中二叠世(264.6±2.2 Ma,262.1±2.9 Ma,数据未发表),其中闪长岩中包含大量的基性麻粒岩包体,两者具有相似的地球化学特征,基性麻粒岩和寄主岩石辉石闪长岩与金矿床形成的密切时空关系显示底侵作用对柴胡栏子金矿含矿流体形成、运移和矿质富集有重要控制作用(佘宏全等,2006)。此外,区内不同类型脉岩十分发育,主要有花岗正长岩、花岗闪长岩、闪长岩以及煌斑岩脉等,中基性脉岩同柴胡栏子金矿关系密切,多与金矿同时期形成或稍晚于金矿形成时间。
-
图2 红花沟金矿田地质简图(a),柴胡栏子金矿矿区地质简图(b)和地层柱状图(c)(据张宇,2015修改)
-
Fig.2 Geological map of the Honghuagou gold deposit (a) , geological schematic diagram (b) and stratigraphic histogram (c) of the Chaihulanzi gold deposit (modified after Zhang Yu, 2015)
-
柴胡栏子金矿及周边构造较为发育,主断裂均近EW向分布,由北往南依次为阴河断裂、暗板沟断裂和舍路嘎断裂(图2a)。矿区内主要为NW、NNW、EW以及NEE向脆性断裂,控制柴胡栏子金矿脉和脉岩的分布。其中NNW构造为主要的控矿构造,典型代表为F1断层(图2b),走向约340°,倾向SW,倾角70°~75°,长1200 m,宽3~9 m,岩性为构造角砾岩及断层泥,断层性质为右行逆断层,断层两侧次一级裂隙发育。区内EW及NEE向的构造多为后期构造,出现大量无矿脉岩充填,并且对矿体的破坏较为明显,断距可达50~60 m。
-
根据矿体赋存位置及地质特征可将柴胡栏子金矿床分为六个主要矿体,矿石类型均为黄铁矿化石英脉和蚀变片岩。其中1、2、3、5、6号矿走向310°~315°,倾向南西,倾角40°~72°,矿体呈脉状、似层状产出(图3),沿走向和倾向呈舒缓波状延伸,走向最大长度近1000 m; 4号矿体为深部盲矿体,走向350°,倾向西南,倾角30°,矿体呈脉状、似层状产出,沿走向最大长度近300 m。
-
矿石类型主要有石英脉型和蚀变岩型矿石。石英脉型金矿石分为乳白色石英脉和含铅石英脉两种类型,其中乳白色石英脉中几乎不含硫化物(图4a),局部可见围岩碎块以及薄片状片岩(图4b),品位较低(<1×10-6); 含方铅矿石英脉呈灰黑色(图4c),品位相对较高且较稳定(~5×10-6),少见黄铁矿,常见自然金和方铅矿共生(图4d)。蚀变岩型矿石主要为蚀变片岩,其原岩为含石墨绢云母片岩(图4e),主要由石英、绢云母和大量的硫化物组成(图4f),局部可见少量石榴子石颗粒(图4g),硫化物主要为磁黄铁矿和黄铁矿,两者紧密共生(图4h),基本不含贱金属,该类型矿石品位较高,通常大于10×10-6,镜下可观察到少量的自然金发育(图4i)。
-
图3 柴胡栏子金矿床典型地质剖面图(据赤峰柴胡栏子黄金矿业有限公司报告❶修改)
-
Fig.3 Typical geological profile of the Chaihulanzi gold deposit (modified after report from Chifeng Chaihulanzi Gold Mining Co. LTD❶)
-
在对柴胡栏子金矿的研究中,徐贵忠等(2001)将金成矿阶段划分为四个阶段,分别为石英阶段、石英-黄铁矿阶段、石英-多金属硫化物阶段以及碳酸盐阶段; 李德亭等(2005)将金成矿期次划分为石英-绢云母阶段、石英-黄铁矿(硫化物)阶段、乳白色石英阶段以及黄铁矿-碳酸盐阶段; Qu Yunwei et al.(2021)将金成矿阶段划分为石英阶段、绢云母-石英-硫化物阶段、石英-碳酸盐阶段。通过野外观察,柴胡栏子金矿床中含矿石英脉与蚀变岩无明显穿插关系,且矿物组合未发生明显突变,包裹体测温结果也无明显区别,因此,本次研究仅对柴胡栏子金矿划分为两个成矿阶段,其中主成矿阶段包括各种石英脉及蚀变岩型的矿石矿物组合,为上述绢云母-石英-多金属硫化物阶段,而成矿晚阶段为无矿石英-方解石脉组合,为上述划分的石英-黄铁矿-碳酸盐阶段。
-
3 流体包裹体特征
-
3.1 样品采集和分析方法
-
本次流体包裹体研究工作共采集了35件光薄片鉴定标本,19件流体包裹体片进行研究,经流体包裹体岩相学观察,选取6件典型包裹体片进行了详细的显微测温和激光拉曼研究,其中,主成矿阶段共采集5件样品,成矿晚阶段采集1件样品,采集样品详细特征见表1。
-
岩相学、显微测温计激光拉曼均在中国科学院地质与地球物理研究所完成。显微测温是在Linkam THMS 600型冷热台上进行的,并利用美国FLUID INC公司提供的人工合成流体包裹体标准样品对冷热台进行了温度标定,该冷热台在-120~-70℃温度区间的测定精度为±0.5℃、-70~100℃区间为±0.2℃,在100~500℃区间为±2℃。流体包裹体测试过程中,升温速率一般为0.2~5℃/min,含CO2包裹体在其相转变温度(如固态CO2和笼合物熔化温度)附近升温速率降低为0.2℃/min,水溶液包裹体在其冰点和均一温度附近的升温速率为0.2~0.5℃/min,以准确记录它们的相变温度。
-
单个包裹体的激光拉曼分析使用法国JobinYevon公司生产的LabRAM HR可见显微共焦拉曼光谱仪上完成的,使用Ar+离子激光器,波长532 nm,输出功率为44 mV,所测光谱的计数时间为3 s,每1 cm-1(波数)计数一次,100~4000 cm-1全波段一次取峰,激光束斑大小约为1 μm,光谱分辨率0.65 cm-1,测试之前使用单晶硅片对拉曼光谱进行校正,经校正使单晶硅片的拉曼位移对应520.7。其中CO2(双峰)、CH4的特征峰分别为~1282 cm-1(v1)、~1386 cm-1(v2)和2913 cm-1(Wopenka et al.,1987; Burke,2001)。
-
流体包裹体群体分析在中国科学院地质与地球物理研究所完成。通过分阶段加热爆裂法提取100~240℃、240~330℃、330~500℃三个温度范围的气液体进行测试。其中气相成分分析采用日本真空技术株式会社RG202型四极质谱仪,具体测试方法参见朱和平等(2001,2003); 液相成分分析采用日本岛津HIC 6A型离子色谱仪,具体测试方法参见张静等(2007)。后期数据处理利用Quadstar TM 422分析软件进行。
-
图4 柴胡栏子金矿床典型矿石及镜下照片
-
Fig.4 Typical minerals and microphotographs of the Chaihulanzi gold deposit
-
(a)—乳白色石英脉;(b)—乳白色石英脉及围岩碎块;(c)—灰色含方铅矿石英脉;(d)—含铅石英脉中方铅矿及自然金发育;(e)—蚀变的含石墨绢云母片岩;(f)—含石墨绢云母片岩正交偏光及反光镜下照片;(g)—含石墨绢云母片岩硅化石英中发育石榴子石;(h)—磁黄铁矿和黄铁矿紧密共生(BSE);(i)—蚀变片岩中磁黄铁矿与黄铁矿共生,局部自然金发育(BSE)
-
(a) —Milky quartz veins; (b) —opalescent quartz vein and surrounding rock fragments; (c) —gray leaded quartz veins; (d) —galena and the development of natural gold in the lead bearing quartz veins; (e) —gltered graphitic sericite schist; (f) —photographs of graphitic sericite schist under orthogonal polarized light and reflector; (g) —development of garnet in graphitic sericite schist silicide quartz; (h) —tight symbiosis of pyrite and pyrite (BSE) ; (i) —symbiosis of pyrrhotite and pyrite in altered schist, local natural gold developments (BSE)
-
3.2 流体包裹体岩相学
-
柴胡栏子金矿主成矿阶段石英中包裹体通常成群分布,大小5~20 μm,多出现大量的单相的包裹体,同气液两相包裹体对比非常明显,没有过渡相比例的包裹体出现。成矿晚阶段方解石中包裹体也成群分布,主要为气液两相的包裹体,缺乏主成矿阶段特征的单相包裹体。根据包裹体在室温的相态、降温和升温状态下的相变特征以及激光拉曼的分析,柴胡栏子金矿流体包裹体的类型划分为以下两个类型。
-
气液两相的水包裹体(Type-1类型):根据其均一方式,本研究将其分为两个亚类,为Type-1a和Type-1b,分别代表均一到液相和临界均一的包裹体。
-
纯甲烷的单相包裹体(Type-2类型):室温下该类包裹体为单相,降温到-100℃左右时,出现气相和液相的甲烷组合。
-
主成矿阶段石英主要识别出了三种包裹体组合:① 单一的Type-1包裹体的组合(图5d); ② 单一的Type-2包裹体的组合(图5b); ③ Type-1包裹体和Type-2包裹体的组合(图5a、c),常常在同一石英颗粒,同一视域中出现大量水盐两相包裹体和纯甲烷包固体的现象,同时未见明显的裂隙和线性分布现象,所以这两类包裹体在部分样品中代表典型的沸腾包裹体组合。成矿晚阶段的方解石中仅有Type-1的包裹体的组合(图5e)。
-
3.3 显微测温结果
-
本次研究对柴胡栏子金矿主成矿阶段和成矿晚阶段样品中各类流体包裹体进行了详细的显微测温,共获得219个均一温度数据(表2、图6)。Type-1a、Type-1b型气液两相包裹体的盐度、密度利用Steele(2012)编制的HokieFlincs_H2O-NaCl计算软件获得。
-
主成矿阶段石英中包裹体类型主要是水溶液包裹体和纯甲烷包裹体。根据水溶液包裹体均一到液相和临界均一的状态,分为Type-1a和Type-1b两种类型的包裹体,其中Type-1a包裹体的冰点为-10.1~-1.8℃,平均为-5.8℃(n =137),均一到液相的温度为135~377℃,平均为256℃(n =137),盐度为3.06%~14.04%,平均值8.88%,密度为0.637~0.991 g/cm3,平均0.863 g/cm3,均一温度和盐度变化均较大,密度变化较小; Type-1b包裹体极少发育,都均一到临界状态,其均一温度为397~403℃(n =2),盐度为7.45%~7.59%,平均值7.52%,密度为0.606~0.616 g/cm3,平均0.611 g/cm3,均一温度和盐度变化均较小,密度中等,基本无变化。主成矿阶段Type-2包裹体在降温的过程中,只有当温度到达-185℃时,才会完全固结,其均一温度为-107.6~-79℃,平均为-88.8℃(n =41),所有的包裹体都均一到液相甲烷,为纯甲烷包裹体,同时样品中有5个包裹体的均一温度高于纯甲烷的包裹体的均一温度-82.5℃(Holloway,1984; Mishra et al.,2008),为-82~-79℃,说明其中含有少量其他三相点较高的成分,如CO2等,但该类包裹体仅局部少量存在。纯甲烷包裹体密度为0.172~0.323 g/cm3,平均0.256 g/cm3,密度较小且变化不大。
-
图5 柴胡栏子金矿典型包裹体镜下照片
-
Fig.5 Typical inclusionoscope image of the Chaihulanzi gold deposit
-
(a)—主成矿阶段石英中Type-1包裹体和Type-2包裹体共生,视域温度为-71.6℃,Type-2仍然为单相,Type-1气泡已变小且被冻住;(b)—主成矿阶石英中Type-2包裹体独立出现,视域温度为-109.7℃,Type-2包裹体均变为两相;(c)—主成矿阶石英中Type-1包裹体和Type-2包裹体共生,视域温度为26.5℃,Type-1包裹体均为气液两相,Type-2包裹体为单相;(d)—主成矿阶石英中Type-1包裹体独立出现,视域温度为25.2℃,Type-1包裹体均为气液两相;(e)—成矿晚阶段方解石中Type-1包裹体独立出现,视域温度为7.4℃,Type-1包裹体均为气液两相
-
(a) —The Type-1 inclusions and Type-2 inclusions are symbiotic in quartz in the main ore-forming stage, the view temperature is-71.6℃. Type-2 is still single-phase and Type-1 bubbles have become smaller and frozen; (b) —the Type-2 inclusions in the main ore-forming stepstone quartz occur independently, the view temperature is-109.7℃, the Type-2 inclusions are two-phase; (c) —the Type-1 inclusions and Type-2 inclusions are symbiotic in the main ore-forming step-stone quartz, the view temperature is 26.5℃. The Type-1 inclusions are all gas-liquid phase, and the Type-2 inclusions are single phase; (d) —the Type-1 inclusions in the main ore-forming stepstone quartz occur independently with the view temperature of 25.2℃, and all the Type-1 inclusions are gas-liquid phase; (e) —Type-1 inclusions occur independently in calcite at the late mineralization stage, the view temperature is 7.4℃. All Type-1 inclusions are gas-liquid phase
-
成矿晚阶段方解石脉中仅发育Type-1a包裹体,冰点温度为-6.2~-0.9℃,平均为-2.4℃(n =39),均一到液相的温度为175~313℃,平均为250℃(n =39),盐度为1.57%~9.47%,平均值3.92%,密度为0.693~0.946 g/cm3,平均0.824 g/cm3,均一温度和盐度变化均较大,密度变化较小。
-
图6 柴胡栏子金矿主成矿阶段和成矿晚阶段均一温度及盐度柱状图
-
Fig.6 Histogram of uniform temperature and salinity at Main metallogenic stage and late metallogenic stage of the Chaihulanzi gold deposit
-
(a)—主成矿阶段均一温度频数分布直方图;(b)—主成矿阶盐度频数分布直方图;(c)—成矿晚阶段均一温度频数分布直方图;(d)—成矿晚阶段盐度频数分布直方图
-
(a) —Frequency distribution histogram of homogenization temperature in the main mineralization stage; (b) —frequency distribution histogram of salinity in the main mineralization stage; (c) —frequency distribution histogram of homogenization temperature in the late mineralization stage; (d) —frequency distribution histogram of salinity in the late mineralization stage
-
3.4 激光拉曼分析结果
-
激光拉曼用来检测主成矿阶段矿石中的各类包裹体的气相成分。其中Type-1包裹体中的气相成分主要以水为主,包含少量的CO2(图7a、b),极少量包裹体显示了明显的甲烷和水的峰值(图7c、d)。在大部分Type-2包裹体中,CH4是唯一的成分,出现非常明显的2913 cm-1单一峰,没有水峰的出现(图7e、f),这一点同显微测温的获得大部分的单相CH4包裹体的均一温度低于-82.5℃一致,共同表明这类单相的包裹体为纯CH4的包裹体。也有部分Type-2包裹体中同时出现了CO2和CH4的的特征峰(图7g),这与单相包裹体测温结果中的部分包裹体均一温度为-82.5~-79℃结果一致,表明这类包裹体并非纯CH4包裹体,而是混入了部分的CO2,使其均一温度升高。此外,还有部分在显微测温中没有观察到的单相纯CO2包裹体出现(图7h),所以激光拉曼分析结果显示成矿流体除了水和甲烷以外,可能还有大量CO2出现。
-
图7 柴胡栏子金矿流体包裹体拉曼图片(a~h)
-
Fig.7 Raman spectra of the fluid inclusion (a~h) from the Chaihulanzi gold deposit
-
3.5 流体包裹体群体分析
-
本次流体包裹体群体分析共对5件样品进行测试,均为主成矿阶段包裹体样品,测试结果显示(表3),其主要成分为H2O,含量在88.92%~93.07%之间,均值90.56%,其他成分除极少量Ar、C2H6、H2S、N2外,主要为CO2、CH4,不含O2。其中CO2含量在2.051%~6.948%之间,均值3.986%,CH4含量在2.970%~8.233%之间,均值5.27%。通过流体包裹体气相成分群体分析显示,包裹体内除了CH4以外,还存在大量的CO2,CO2/CH4为0.25~1.82,与激光拉曼中检测到CH4的现象符合,补充了显微测温的结果,表明柴胡栏子金矿成矿流体为H2O-NaCl-CH4-CO2体系。
-
4 同位素地球化学特征
-
4.1 样品采集和分析方法
-
本次研究选取了柴胡栏子主成矿阶段不同类型的6件石英样品进行了氢氧同位素分析,均在中国科学院地质与地球物理研究所完成,样号及样品岩性见表4。氢同位素的测定采取热爆法,先从样品中提取包裹体中的H2O,并使之与金属铬在高温下反应生成H2,然后用质谱仪进行氢同位素的测定。氧同位素的测试分析采用BrF5法,先将样品与BrF5在高温下反应生成O2,之后与碳棒发生反应生成CO2,最后使用质谱仪测定其氧同位素组成。C、H同位素测定使用的质谱仪为美国ThermoFisher Scientific 公司制造的MAT-253型气体同位素质谱仪,分析精度为±0.2‰。选取了9件硫化物样品进行硫同位素测定,2件为未蚀变的绢云母片岩中的磁黄铁矿,2件为蚀变含石墨绢云母片岩中的黄铁矿,5件为石英脉型矿石中的黄铁矿和磁黄铁矿。将镜下挑选的硫化物样品在高温下与V2O5发生反应形成SO2后,利用MAT-253型气体同位素质谱仪进行分析测量,分析精度为±0.2‰。
-
4.2 测试结果
-
4.2.1 氢氧同位素
-
柴胡栏子主成矿阶段2件蚀变岩型样品的δ18OV-SMOW值为14.0‰~16.6‰,δDV-SMOW值为-94.3‰~-94.0‰,4件石英脉型样品δ18OV-SMOW值为13.3‰~18.2‰,δDV-SMOW值为-120‰~-107‰(表4)。根据石英-水氧同位素分馏方程:10001nα石英-水=3.38×106/T2-2.90(Clayton et al.,1972)和包裹体测温结果,将柴胡栏子金矿δD值和值投影到-δD关系图解上(图8)。总体上样品的范围较窄(4.13‰~9.03‰),位于岩浆水的范围内,但是δD值范围较宽(-120‰~-94‰)。蚀变岩型矿石中的δD值较高且稳定,石英脉型矿石中的δD展示出较大的变化范围,较蚀变岩型矿石明显降低,这一现象可能与石英脉型矿石中包含较多大量后期次生包裹体有关,这些次生包裹体的流体主要来自于大气降水,δD值相对较低,在包裹体的群体分析中会影响结果,而δ18O的值来自石英,受次生包裹体的影响较小,蚀变岩型的矿石由于产在断裂两侧,内部并未形成大量的裂隙,在一定程度上受后期流体影响较小,δD值较高且稳定。
-
注:测试单位为中国科学院地质与地球物理研究所; *表示未检出结果。
-
注:测试单位为中国科学院地质与地球物理研究所。
-
4.2.2 硫同位素
-
本次研究共采取9件硫化物样品进行硫同位素测定(表5、图9)。结果显示:未蚀变的绢云母片岩围岩中的磁黄铁矿δ34S值为-0.7‰~0.6‰,蚀变片岩中的黄铁矿δ34S值为5.0‰~5.5‰,石英脉型矿石中的黄铁矿和磁黄铁矿δ34S值为6.1‰~8.3‰。上述结果表明,矿石中的硫同位素同围岩中的硫同位素差距较大,表明成矿过程S主要来源于外部流体,蚀变岩中的硫同位素较石英脉稍低,可能是由于混合了少量围岩中的硫所致。根据本次研究成果,认为柴胡栏子金矿成矿流体中的硫并非来自围岩的淋滤,更可能来自深部岩浆作用。
-
注:测试单位为中国科学院地质与地球物理研究所。
-
图8 柴胡栏子金矿-δD图解
-
Fig.8 vs. δD plot of ore-fluid from the Chaihulanzi gold deposit
-
图9 柴胡栏子金矿硫同位素分布直方图
-
Fig.9 Histogram of sulfur isotope distribution in the Chaihulanzi gold deposit
-
5 讨论
-
5.1 成矿流体性质及其演化
-
通过包裹体岩相学和显微测温分析,柴胡栏子金矿主成矿阶段流体包裹体以水盐两相包裹体和单相纯甲烷包裹体为主,激光拉曼和气相成分群体分析则显示流体中的挥发分除了大量的CH4以外,还存在大量未被显微测温发现的CO2,晚阶段出现大量方解石脉也证明了体系中存在CO2,所以柴胡栏子金矿成矿流体为H2O-NaCl-CH4-CO2体系。水盐包裹体除了2个包裹体临界均一,均一温度为397~403℃,盐度7.45%~7.59%,其余都均一到液相,均一温度为135~377℃,平均为256℃,盐度为3.06%~14.04%; 甲烷包裹体均一到液相,均一温度为-107.6~-79℃,平均为-88.8℃,少量包裹体均一温度高于-82.5℃,为-82~-79℃,表明单相甲烷包裹体内混有少量的CO2等三相点更高的气体。成矿晚阶段则均为水盐两相包裹体,均一到液相的温度为175~313℃,平均为250℃,盐度为1.57%~9.47%。成矿流体从主成矿阶段演化到成矿晚阶段,从H2O-NaCl-CH4-CO2体系演变为简单的H2O-NaCl体系,从水盐包裹体温度-盐度-密度相图(图10)可见,虽然均一温度的平均值没有明显变化,但是晚阶段流体明显缺乏高温段的包裹体(>300℃),显示了成矿流体有降温的趋势,而盐度则有明显的降低趋势,表明柴胡栏子金矿从主成矿阶段向成矿晚阶段演化过程中,成矿流体性质由复杂变为简单,温度、盐度也逐渐降低,符合热液型矿床成矿流体演化的趋势。
-
图10 柴胡栏子金矿水盐包裹体温度-盐度-密度相图
-
Fig.10 Temperature-salinity-density phase diagram of water-salt inclusions in the Chaihulanzi gold deposit
-
通过包裹体岩相学研究,主成矿阶段存在大量原生水盐两相包裹体和纯甲烷单相包裹体共生的现象(图5),由于在含碳质流体体系中,一般热液流体温度压力条件下(≤300 MPa和400℃),只会有少量的CH4(≤5 mol%)可以溶于流体中(Naden et al.,1989),所以在成矿流体和围岩石墨进行反应时,体系的温度压力条件已经进入了不混溶区间,也就是说石墨和流体反应后,甲烷可能直接以气态存在,造成成矿流体发生强烈的沸腾现象,造成了金的巨量沉淀,共生的水盐两相包裹体和纯甲烷单相包裹体在这一条件下同时被捕获,利用其等容线相交的方法,可以算出流体的真实捕获温压。本次等容线计算选择5-2和4301-2两个样品,显微测温时观察到的大量水盐两相包裹体和纯甲烷包裹体均为原生包裹体,且空间上非常接近,常常出现在同一视域中,所以可以代表沸腾条件下同时捕获的包裹体。利用均一温度和盐度数据进行压力计算,得出了两组等容线数据,将其投在图11中,盐度及压力数据均利用FLINCOR软件(Brown,1989)进行计算,其中Type-1包裹体使用的是Zhang Yonggang et al.(1987)的状态方程,Type-2使用的是Holloway(1981)的状态方程。通过投图计算出的样品在相互重叠部位可作为含金流体最有可能的捕获温压条件,由此可得出柴胡栏子金矿主成矿阶段流体的捕获温度为264~340℃,平均值为302℃,压力为102~154 MPa,平均值为128 MPa。根据孙丰月等(2000)提出的脉状热液金矿床深度与压力关系的拟合估算公式,其成矿深度为8.34~10.40 km。
-
为了更深入地讨论成矿流体的性质,通过pH-图解(图12)对Fe-C-O-H-S体系的平衡反应、金溶解度曲线进行解释,体系的温压条件利用等容线相交图解(图11)计算的捕获温度和压力进行计算,其中T =302℃,P =128 MPa,体系盐度利用主成矿阶段水盐包裹体平均值8.857%进行换算,得到m NaCl=1.51 mol/kg,总硫∑S采用0.01 mol/kg。利用R语言程序包CHNOSZ计算表6中的相边界方程,并绘制成pH-图解(图12),其中金溶解度数据来自Williams et al.(2009),其余数据均来自SUPCRT92(Johnson et al.,1992)。由于柴胡栏子金矿中出现大量CH4,成矿流体显示出较强的还原性,与矿石中出现大量磁黄铁矿和黄铁矿共生的现象一致,所以成矿流体的可能在CH4/CO2的反应线与Py/Po的反应线附近(图12),为强还原性的流体。中性水在302℃条件下,pH为5.05(孙福明等,1994),含金成矿流体一般偏弱酸性(Seward,1973; 胡庆成等,2012),所以估算柴胡栏子金矿成矿流体主成矿阶段pH值小于5.05,考虑到该区域金的溶解度随着pH的降低而降低(图12),尤其是进入AuHS相区,低氧逸度流体的金溶解度均<10×10-9,可能无法形成金矿,所以我们推测柴胡栏子金的络合物以Au(HS)2-为主,pH为4.25~5.05,为-34.85~-34.54,金的溶解度为10×10-9~46.6×10-9,低于黄铁矿大量出现的金矿。
-
图11 柴胡栏子金矿流体包裹体的等容线相交图解
-
Fig.11 Isovolumetric intersections of fluid inclusions in the Chaihulanzi gold deposit
-
综上所述,柴胡栏子金矿成矿流体为中温、低盐度H2O-NaCl-CH4-CO2体系,成矿流体金的溶解度较低,这与矿区整体品位不高相符,主成矿阶段流体与石墨发生强烈反应,生成大量CH4和CO2,使得流体还原性急剧降低,同时流体发生强烈不混溶,导致了金矿的形成。
-
5.2 成矿流体与成矿物质来源
-
根据H-O-S同位素分析显示,矿石内黄铁矿和磁黄铁矿与围岩中磁黄铁矿δ34S值相差较大,同时成矿流体具有较强的还原性,不太可能出现硫化物与硫酸盐之间的同位素分馏,结合柴胡栏子金矿发育大量基性脉岩,部分与金矿同构造产出,所以可以判断柴胡栏子金矿成矿流体与基性脉岩相关(余建国等,2021),主要来源于岩浆水,成矿物质主要来自深源岩浆。
-
中温脉状金矿成矿流体一般为H2O-NaCl-CO2体系(Vanden et al.,2001; Phillips et al.,2009)。CO2能够对成矿流体pH起到明显的缓冲作用(Naden et al.,1989; McCuaig et al.,1998; Diamond,2001),使金的硫络合物始终保持稳定,确保其从深部源区经过长距离的搬运到地壳浅部合适的位置集中卸载成矿,但对于CH4而言,其成矿流体对pH没有这样的缓冲作用,其不混溶的温压范围比CO2更广(Naden et al.,1989)。成矿流体在运移过程中很容易因为温度压力的变化,使其内的金络合物分解,无法在浅部形成规模较大的金矿,本文认为深源的富甲烷流体并不能充当金矿成矿流体,因此讨论柴胡栏子金矿甲烷的来源对整个成矿作用具有极为重要的意义。
-
注:Hem—赤铁矿; Mag—磁铁矿; Po—磁黄铁矿; Py—黄铁矿。
-
富CH4的流体主要有两种来源:地幔的去气(Shen Ping et al.,2010; Cao Mingjian et al.,2014)和含石墨地层的变质作用或外来流体和含石墨围岩的交代反应(如C-H-O流体和石墨的平衡)(Holloway,1984; Fan Hongrui et al.,2000; Mishra et al.,2008; Zhong Richen,2013)。地幔来源已被前面证明不适用于柴胡栏子金矿,同时矿区发育大量与金矿同期的基性岩脉,代表伸展环境,也不可能由区域变质作用产生,所以柴胡栏子金矿成矿流体内的甲烷可能来自深源流体与围岩石墨的交代反应。矿区含矿围岩大营子组中富含大量晶质石墨,野外和镜下观察发现,越靠近矿体,围岩中的石墨含量越低,强烈交代的黄铁绢英岩中未见任何晶质石墨,表明成矿流体与含石墨的围岩发生了明显的反应,石墨转化为CH4和CO2进入流体,其反应方程可能为2C+2H2O=CH4+CO2,虽然在显微测温中没有发现明显的含CO2包裹体,但是激光拉曼和群体成分中均可见大量CO2,同时成矿晚阶段也有大量方解石产出,所以表明成矿流体中可能同时存在大量CH4和CO2,符合这一反应的结果。同时在矿石和包裹体中均未发现热液成因的石墨,表明成矿流体处于CH4与CO2平衡的条件下。pH-图解(图12)也显示在柴胡栏子金矿捕获温压条件下,体系中没有石墨的区域,C只能以CH4、CO2和HCO3-的形式存在。
-
综上,柴胡栏子金矿成矿流体和成矿物质主要来自深源岩浆,但流体中的甲烷主要来自深源流体与含石墨围岩的交代反应。
-
5.3 成矿机理
-
柴胡栏子金矿南侧的莲花山和红花沟金矿成矿流体为H2O-NaCl-CO2体系(姜能,1996; 梁俊红等,2000; 孙珍军,2013),未发现大量CH4,硫化物以大量出现黄铁矿为特征,未出现大规模磁黄铁矿,金的沉淀主要由流体不混溶引起,金的平均品位为6.47×10-6~20.69×10-6(曹广利,2001; 唐庆宇,2018)。CH4比CO2更易发生不混溶,尤其在中低温条件下,其不混溶的程度更彻底(Naden et al.,1989),所以在相同金浓度的流体的条件下,含大量CH4的流体可以比含CO2的流体沉淀更多金。但是在实际的采矿过程中发现,柴胡栏子金矿的品位较低,含金石英脉的品位为1×10-6~2×10-6,蚀变岩型的矿石品位稍高(~10×10-6),比矿区南侧的莲花山和红花沟金矿低得多。从图12也可以看出,柴胡栏子金矿由于甲烷和磁黄铁矿的大量出现,流体氧逸度偏低,金溶解度约10×10-9~46.6×10-9,而莲花山和红花沟金矿则可能大于100×10-9,是柴胡栏子金矿的2.15~10倍以上。因此,可推测柴胡栏子金矿中与石墨相反应的是含金较低的流体。
-
图12 柴胡栏子金矿pH-图解
-
Fig.12 The pH- diagram of the Chaihulanzi gold deposit
-
反应曲线条件:T =302℃; P =128 MPa; mNaCl=1.51 mol/kg; ∑S=0.01 mol/kg; 黄色曲线代表黄铁矿(Py)—磁黄铁矿(Po)—磁铁矿(Mt)—褐铁矿(Hm)相边界曲线; 红色曲线代表HSO-4-SO2-4-HS--H2S相边界曲线; 蓝色曲线代表金络合物(AuCl2-AuOH-AuHS-Au(HS)-2)相边界曲线; 黑色曲线代表CO2-CH4-HCO-3相边界曲线; 黑色虚线代表金溶解度; 绿色框线代表金矿形成区间
-
Reaction curve conditions:T =302℃; P =128 MPa; m NaCl=1.51 mol/kg; ∑S=0.01 mol/kg; the yellow curve represents the boundary curve of pyrite (Py) —pyrrhotite (Po) —magnetite (Mt) —limonite (Hm) phase; the red curve represents the phase boundary curve of HSO-4-SO2-4—HS--H2S; the blue curve represents the phase boundary curve of gold complex (AuCl2-AuOH-AuHS-Au (HS) -2) ; black curve represents CO2-CH4-HCO-3 phase boundary curve; the black dotted line represents gold solubility; the green box line represents the interval of gold formation
-
柴胡栏子金矿成矿机理可能为:深部来源含金较低的成矿流体沿断裂带向浅部运移至大营子组下段时,同含石墨绢云母片岩中石墨发生反应,产生了大量的CH4和CO2,流体发生了强烈的不混溶,促使体系中金沉淀,在靠近石墨片岩形成品位稍高的金矿体,而由于流体本身金含量较低,石英脉中只能形成低品位的金矿。
-
基于以上的研究,笔者发现柴胡栏子金矿可能由含金浓度较低的成矿流体形成,这一成矿机理具有较为重要的地质意义。首先,低浓度的含金流体也可以形成工业品位的金矿,但是需要遇到能够更深度改变其物理化学性质的条件,比如强还原的地层; 其次,低浓度的含金流体可能是高浓度含金流体通过深部金矿化后的残余流体,通过与南侧莲花山和红花沟金矿的对比发现,这类金矿的深部可能存在早期高品位金矿化,对于矿区的深部勘探具有理论指导意义。
-
6 结论
-
(1)柴胡栏子金矿属于典型的中温、低盐度H2O-NaCl-CH4-CO2体系的热液脉型矿床。包裹体以水盐两相包裹体、单相纯甲烷包裹体以及大量未在显微测温中发现的含CO2包裹体为主。主成矿阶段水盐包裹体均一温度为135~377℃,平均为256℃,盐度为3.06%~14.04%; 甲烷包裹体均一温度为-107.6~-79℃,平均为-88.8℃。主成矿阶段流体的捕获温度为264~340℃,平均值为302℃,压力为102~154 MPa,平均值为128 MPa,pH-图解显示成矿流体为-34.85~-34.54,金的络合物以Au(HS)2-为主,金的溶解度为10×10-9~46.6×10-9。
-
(2)H-O-S同位素分析显示,柴胡栏子金矿成矿流体主要来自岩浆水,成矿物质主要来自深源岩浆,成矿流体内的甲烷来自深源流体与含石墨围岩的交代反应,其反应方程可能为2C+2H2O=CH4+CO2,CO2在成矿晚阶段还以方解石的形式出现。
-
(3)深部含金较低的成矿流体与大营子组含石墨绢云母片岩的沸腾反应为柴胡栏子金沉淀成矿的主要机制。
-
致谢:北京大学张方华博士生在CHNOSZ软件使用方面提供了帮助; 野外工作得到了内蒙古自治区有色地质勘查局一○八队张彦生高级工程师和赤峰柴胡栏子黄金矿业有限公司孙立的帮助; 两位匿名审稿人给予了宝贵的修改意见,在此一并致以诚挚的谢意!
-
注释
-
❶ 赤峰柴胡栏子黄金矿业有限公司.2008. 内蒙古自治区赤峰市松山区柴胡栏子矿区金矿资源储量核实报告.
-
参考文献
-
Ai Yongde, Wang Shiqi, Sun Chengzhi. 1994. The metallogenic regularity of gold deposits in Archean metamorphic rocks in Chifeng-Chaoyang districts. Collected Works of Gold Geology in China (2)—the Northern margin of North China Continental Platform. Beijing: Geological Publishing House, 1~40(in Chinese with English abstract).
-
Brown P E. 1989. FLINCOR—a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist, 74(11-12): 1390~1393.
-
Burke E A. 2001. Raman microspectrometry of fluid inclusions. Lithos, 55(1-4): 139~158.
-
Cao Guangli. 2001. Analysis on the fault control of the newly found altered type gold ore body in the Honghuagou gold deposits, Inner Mongolia. World Geology, 20(4): 353~355(in Chinese with English abstract).
-
Cao Mingjian, Qin Kezhang, Li Guangming, Jin Luying, Evans N J, Yang Xiangrong. 2014. Baogutu: an example of reduced porphyry Cu deposit in western Junggar. Ore Geology Reviews, 56: 159~180.
-
Chen Weijun, Liu Hongtao. 2006. Major types and geological features of gold mineralization occurred in the Chifeng-Chaoyang gold concentration region. Gold Science and Technology, 14(5): 1~7 (in Chinese with English abstract).
-
Clayton R N, O'Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057~3067.
-
Davis G A, Zheng Yadong, Wang Cong, Darby B J, Zhang Changhou. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, northern China: Paleozoic and Mesozoic Tectonic evolution of Central Asia: from continental assembly to intracontinental deformation. Geological Society of America Memoir, 194: 171~192.
-
Diamond L W. 2001. Review of the systematics of CO2-H2O fluid inclusions. Lithos, 55(1-4): 69~99.
-
Edward J M. 1998. Hydrothermal transport and depositional processes in Archean lode-gold systems: a review. Ore Geology Reviews, 13: 307~321.
-
Fan Hongrui, Groves D I, Mikucki E J, McNaughton N J. 2000. Contrasting fluid types at the nevoria gold deposit in the southern cross greenstone belt, western australia: implications of auriferous fluids depositing ores within an archean banded iron-formation. Economic Geology, 95(7): 1527~1536.
-
Fan Hongrui, Xie Yihan, Wang Kaiyi, Wilde S A. 2004. Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, northern China. Ore Geology Reviews, 25(3): 301~309.
-
Feng Desheng. 2014. Geochemical characteristics and genesis of gold deposits of Daiwangshan, Inner Aohanqi. Master thesis of Jinlin University (in Chinese with English abstract).
-
Fu Lebing. 2012. Mesozoic tectono-magmatic evolution and gold mineralization in the Chifeng-Chaoyang area, northern margin of the North China Craton. PhD dissertation of China University of Geoscience (Wuhan) (in Chinese with English abstract).
-
Han Qingjun, Shao Ji'an, Zhou Rui. 2000. Petrology, geochemistry and petrogenesis of Early Mesozoic diorites in Harqin area, Inner Mongolia. Acta Petrologica Sinica, 16(3) : 385~391 (in Chinese with English abstract).
-
Holloway J R. 1981. Compositions and volumes of supercritical fluids in the Earth's crust. In: Hollister L S, Crawford M L, eds. Fluid Inclusions: Applications to Petrology. The Mining Association of Canada, Short Couse Handbook, Volume 6: 13~38.
-
Holloway J R. 1984. Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions. Geology, 12(8): 455~458.
-
Hu Qingcheng, Lü Xinbiao, Gao Qi, Liu Hong, Zhu Jiang, Yang Enlin. 2012. Dissolution and migration of Au in hydrothermal: ore deposit: a review. Advances in Earth Science, 27(8): 847~856 (in Chinese with English abstract).
-
Ingerson E. 1954. Nature of the ore-forming fluids at various stages—a suggested approach. Ecomomic Geology, 49: 727~773.
-
Jiang Neng. 1994. Ore-forming fluid properties and genesis of Lianhuashan gold deposit in Chifeng, Inner Mongolia. Mineralogy, Petrology and Geochemistry Communication, 4: 201~202.
-
Johnson J W, Oelkers E H, Helgeson H C. 1992. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000℃. Computers & Geosciences, 18(7): 899~947.
-
Lang Xinghai, Tang Juxing, Xie Fuwei, Ding Feng. 2014. CH4-rich fluid of the No. 1 porphyry copper-gold deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet, PRC. Acta Geologica Sinica (English Edition), 88(s2): 547~548.
-
Lawrence D M, Treloar P J, Rankin A H, Boyce A, Harbidge P. 2013. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits. Economic Geology, 108: 229~257.
-
Li Chungui, Chen Dongjie, Kou Yunfei. 2008. Geological characteristics and metallogenic regularity of Honghuagou gold deposit in Chifeng City, Inner Mongolia. Science, Technology and Economy, 20: 9~10 (in Chinese).
-
Li Deting, Xu Jiuhua, Yuan Huaiyun. 2005. Study on the mineralization feature and characteristic of metal mineral trace element in deep Chaihulanzi gold deposit, Chifeng area. Gold, 26(8): 12~15 (in Chinese with English abstract).
-
Li Qiuye. 2013. Ore-controlling structure characteristics and prospecting prediction of Erdaogou-Jinchanggouliang gold deposit, western Liaoning Province. Master thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).
-
Li Yanhe, Ding Tiping, Ai Yongde. 1991. Genesis and characteristics of isotopic geochemistry of Chaihulanzi gold ore deoosit, Chifeng, Liaoling. Contributions to Geology and Mineral Resources Research, 6(1): 67~75 (in Chinese with English abstract).
-
Li Yonggang, Zhai Mingguo, Miao Laicheng, Zhu Jiawei, Xue Liangwei. 2003a. Relationship between intrusive rocks and gold mineralization of the Anjiayingzi gold deposit, Inner Mongolia and its implications for geodynamics. Acta Petrologica Sinica, 19(4): 808~816 (in Chinese with English abstract).
-
Li Yonggang, Zhai Mingguo, Yang Jinhui, Miao Laicheng, Guan Hong. 2003b. Gold mineralization age of the Anjiayingzi gold deposit in Chifeng County, Inner Monolia: implications for Mesozoic metallogenic explosion in North China. Science in China (Series D), 33(10): 960~966 (in Chinese).
-
Li Yonggang, Zhai Mingguo, Miao Laicheng, Xue Liangwei, Zhu Jiawei, Guan Hong. 2004. Ore-forming fluids of the Anjiayingzi gold deposit in Chifeng region, Inner Mongolia. Acta Petrologica Sinica, 20(4): 961~968 (in Chinese with English abstract).
-
Liang Junhong, Yao Yunzeng, Jin Chengzhu, Wang Jianguo. 2000. Fluid geochemistry characteristics of Lianhuashan district in Honghuagou gold deposit. Gold Journal, 2(1): 6~9 (in Chinese with English abstract).
-
Liu Li. 2020. Two periods of Mesozoic gold mineralization in Aohan area, Inner Mongolia: a case study of the Zhuanshanzi and Jinchanggouliang gold deposit. PhD dissertation of China University of Geoscience (Beijing) (in Chinese with English abstract).
-
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusion. Beijing: Science Press (in Chinese).
-
Lu Huanzhang, Shan Qiang. 2015. Composition of ore forming fluids in metal deposits and fluid inclusion. Acta Petrologica Sinica, 31(4): 1108~1116 (in Chinese with English abstract).
-
Lu Huanzhang, Bi Xianwu, Wang Die, Shan Qiang. 2016. Ore-forming fluids of porphyry copper (molybdenum-gold) deposits. Mineral Deposits, 35(5): 933~952 (in Chinese with English abstract).
-
Lu Huanzhang, Chi Guoxiang, Zhu Xiaoqing, Guha J, Archambault G, Wang Zhonggang. 2018. Geological characteristics and ore forming fluids of orogenic gold deposits. Geotectonica et Metallogenia, 42(2): 244~265 (in Chinese with English abstract).
-
Mathias B, Axel G, Benjamin F W, Udo N, Michael F, Gregor M. 2017. Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geology Reviews, 81: 42~61.
-
McCuaig T C, Kerrich R. 1998. P-T-T-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematic. Ore Geology Reviews, 12: 381~453.
-
Mishra B, Pal N. 2008. Metamorphism, fluid flux, and fluid evolution relative to gold mineralization in the Hutti-Maski greenstone belt, eastern Dharwar Craton, India. Economic Geology, 103(4): 801~827.
-
Naden J, Shepherd T J. 1989. Role of methane and carbon-dioxide in gold deposition. Nature, 342(6251): 793~795.
-
Natalia N A, Ekaterina E P, Svetlana N S. 2020. Fluid inclusion evidences for the P-T conditions of quartz veins formation in the Black Shale-Hosted gold deposits, Bodaybo ore region. Russia. Journal of Earth Science, 31(3): 514~522.
-
Phillips G N, Powell R. 2009. Formation of gold deposits: review and evaluation of the continuum model. Earth-Science Reviews, 94(1-4): 1~21.
-
Qiu Yuming, Xie Xicai. 1992. Isotopic geological characteristics and genesis of the Honghuagou gold deposit in Inner Mongolia. Mineral Resources and Geology, 6(4): 318~325 (in Chinese with English abstract).
-
Qu Yunwei, Xie Yuling, Yu Chao, Xia Jiaming, Xu Daoxue, Li Xu. 2021. Geology, geochronology and tectonic setting of the Chaihulanzi gold deposit in Inner Mongolia, China. Ore Geology Reviews, 134: 104~152.
-
Roedder E, Ingram B, Hall W E. 1963. Studies of fluid inclusion Ⅲ: extraction and qualitative analysis of inclusion in the milligram range. Ecomomic Geology, 58: 343~374.
-
Sakthi S C, Biswajit M. 2017. Genetic implications of fluid-deposited disordered graphite and methane-rich inclusions in the Jonnagiri granodiorite-hosted gold deposit, eastern Dharwar Craton, India. Ore Geology Reviews, 89: 587~593.
-
Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta, 37(3): 379~399.
-
She Hongquan, Zhang Dequan, Feng Chengyou, Xu Wenyi, Yan Shenghao, Li Daxin, Dong Yingjun. 2002. Discussion on relationship between underplating and metallogenetic geodynamics of Honghuagou gold field. Mineral Deposits, 21(S1): 654~657(in Chinese with English abstract).
-
She Hongquan, Wang Yiwen, Li Qinghuan, Zhang Dequan, Feng Chengyou, Li Daxin. 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolian, China. Acta Geologica Sinica, 80(6): 863~875(in Chinese with English abstract).
-
Shen Junfeng, Li Shengrong, Xu Kexin, Wang Yehan, Zhang Shiquan, Xu Yuanquan, He Zeyu, Chi Lei, Wu Jinchao. 2020. Uplifting and denudation of the Chifeng-Chaoyang gold ore zone in western Liaoning Province since the Early Cretaceous and the implication. Earth Science Frontiers, 27(5): 151~170 (in Chinese with English abstract).
-
Shen Ping, Shen Yuanchao, Wang Jingbin, Zhu Heping, Wang Lijuan, Meng Lei. 2010. Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China. Chemical Geology, 275(1-2): 78~98.
-
Smith F G. 1952. Determination of the temperature and pressure of formation of minerals by the decrepitometric method. Mining Eengineering, 4: 703~708.
-
Sun Fengyue, Jin Wei, Li Bile. 2000. Deep thinking about the metallogenesis of vein-type thermal gold deposits. Journal of Jilin University (Earth Science Edition), 30(Special Issue): 27~30(in Chinese).
-
Sun Fuming, Ruan Xian. 1994. Logarithmic function equation of pH value and temperature in neutral water. Chongqing Environmental Science, 16(6): 56~57(in Chinese).
-
Sun Zhenjun. 2013. Study on gold mineralization in Chifeng-Chaoyang area, northern margin of North China Craton. PhD dissertation of Jinlin University (in Chinese with English abstract).
-
Steele M M, Lecumberri S P, Bodnar R J. 2012. HOKIEFLINCS_H2O-NaCl: a microsoft excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Computers & Geosciences, 49: 334~337.
-
Tang Qingyu. 2018. Geological characteristics and genesis of Honghuagou gold deposit, Inner Mongolia, China. Master thesis of Hebei University of Geosciences (in Chinese with English abstract).
-
Peng Daming. 2002. Discussion on gold mineralization in Golden Triangle Area of Inner Mongolia-Liaoning-Hebei. Gold Geology, 8(1): 60~67 (in Chinese with English abstract).
-
Vanden K A, Thiéry R. 2001. Carbonic inclusions. Lithos, 55(1-4): 49~68.
-
Wang Guoguang, Ni Pei, Zhao Kuidong, Liu Jiarun, Xie Guoai, Xu Jihui, Zhang Zhihui. 2011. Comparison of fluid inclusions in coexisting sphalerite quartz from Yinshan deposit, Dexing, northeast Jiangxi Province. Acta Petrologica Sinica, 27(5): 1387~1396 (in Chinese with English abstract).
-
Wang Jian, Zhu Lixin, Ma Shengming, Wang Bing, Zhang Liangliang, Tang Shixin, Duan Zhuang. 2020. Hydrothermal alteration associated with Mesozoic Linglong-type granite-hosting gold mineralization at the Haiyu gold deposit, Jiaodong gold province. Geological Bulletin of China, 39(11): 1807~1826 (in Chinese with English abstract).
-
Wang Shuchun, Wang Ruiteng, Sun Shuti. 2012. The orebody occurrence characteristics and deep prediction in Chaihulanzi gold deposit, Inner Mongolia. Gold Science & Technology, 20(4): 109~112 (in Chinese with English abstract).
-
Wang Tiangang, Niu Pei, Wang Guoguang, Zhang Ting. 2008. Identification and significance of methane-rich inclusions in Changba Pb-Zn deposit. Gansu Province. Acta Petrologica Sinica, 24(9): 2105~2112 (in Chinese with English abstract).
-
Wang Xinshe, Zheng Yadong. 2005. 40Ar/39Ar age constraints on the ductile deformation of the detachment system of the Louzidian core complex, southern Chifeng, China. Geological Review, 51(5): 574~582 (in Chinese with English abstract).
-
Wang Xinshe, Zheng Yadong, Liu Yulin, Ritts B, Friedman S. 2006. Formation age of chloritization zone in Louzidian detachment fault system in southern Chifeng, Inner Mongolia. Progress in Natural Science, 16(7): 902~906 (in Chinese).
-
Williams A E, Bowell R J, Migdisov A A. 2009. Gold in solution. Elements, 5(5): 281~287.
-
Wopenka B, Pasteris J D. 1987. Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe. Analytical Chemistry, 59(17): 2165~2170.
-
Xu Guizhong, She Hongquan, Zhou Rui, Yang Zhengde, Wang Yifen, Yan Danping, Yang Yi. 2001. A new viewpoint on metallogenetic dynamics of Lianhuashan Area. Chinese Journal of Geology, 36(4): 414~423 (in Chinese with English abstract).
-
Yan Xinyun, Jiao Jiangang, Dong Yibo, Qi Dong, Leng Xin, Liu Chao. 2019. Geological characteristics and fluid inclusions of the Wujiawan gold deposits in Northern Hanyin, Shanxi. Northwestern Geology, 52(4): 182~193 (in Chinese with English abstract).
-
Yang Fan. 2019. Mineralization of epithermal gold deposits in Chifeng-Chaoyang area in the eastern part of the Taipei margin of North China Platform. PhD dissertation of Jinlin University (in Chinese with English abstract).
-
Yang Yi, She Hongquan, Xu Guizhong, Zheng Dexue, Fu Dongcai, Chui Cai. 1999. Yanshannian magrnatic rocks and gold deposits of Chaihulanzi gold field, Inner Mongolia. Acta Petrologica Sinica, 15(3): 475~482 (in Chinese with English abstract).
-
Yu Jianguo, Zhang Baolin, Lu Guxian, Zhang Qipeng, Shi Xiaoming, Wei Junbin, Wang Cuizhi, Bi Minfeng, Zhang Tengfei, Lei Wuchao, Jiao Jiangang, Su Yanping. 2021. Zircon U-Pb geochronology of neutral dike rocks in Chaihulanzi gold deposit, Chifeng area, Inner Mongolia and its geological significance. Mineral Rock Geochemical Conditions, 40(4): 889~902. (in Chinese with English abstract).
-
Zeng Jianguo, Liu Guochun, Liu Yongli, Li Guoliang. 2002. Genesis of the Honghuagou gold deposit, Chifeng, Inner Mongolia. Geology and Geochemistry, 30(3): 13~18 (in Chinese with English abstract).
-
Zhang Baoyin. 2018. Geological characteristics and prospecting criteria of the gold deposit in Wenjiadixiyan gold section of Chaihuranzi gold deposit. Inner Mongolia Science Technology & Economy, 231(10): 61~62(in Chinese).
-
Zhang Jianan, Wang Li. 2012. Study on characteristics of fluid inclusions in Dongwujiazi gold deposit, Liaoning. Gold, 33(6): 17~21 (in Chinese with English abstract).
-
Zhang Jing, Qi Jinping, Qiu Jianjun, You Shina, Li Guoping. 2007. Compositional study on ore fluid of the Yindongou silver deposit in Neixiang County, Henan Province, China. Acta Petrologica Sinica, 23(9): 2217~2226 (in Chinese with English abstract).
-
Zhang Lin, Wu Qiong, Yang Chunlei. 1998. Metallogenic prognosis and structure control of metallogenic in Zhuanshanzi gold mine, Inner Mongolia. Geology and Exploration, 34(2): 11~14 (in Chinese with English abstract).
-
Zhang Xuesong, Zhao Guochun, Li Qiuye, Wang Haitao. 2012. Study on ore-controlling structure of Erdaogou gold deposit in western Liaoning Province. Mineral Deposits, 31(S1): 819~820 (in Chinese with English abstract).
-
Zhang Yansheng. 2012. Mineralization and alteration characteristics of Chaihulanzi gold deposit, Chifeng, Inner Mongolia. Inner Mongolia Science Technology & Economy, 5: 55~57(in Chinese).
-
Zhang Yu. 2015. Genesis of typical vein gold deposits in Chifeng area: a case study of Anjiayingzi, Chaihulanzi and Zhuanshanzi gold deposits. PhD dissertation of University of Chinese Academy of Sciences (in Chinese with English abstract).
-
Zang Yu, Li Yonggang, Li Fei, Zhang Hongtao, Chong Songshu. 2014. Characteristic and essence of rubefication in wall rock alteration of Anjiayingzi gold deposit in Harqin banner, Inner Mongolia. Acta Petrologica Sinica, 30(2): 576~588 (in Chinese with English abstract).
-
Zhang Yu, Huang Fei, Ye Ping, Yang Xiao. 2020. Fluid inclusions and stable isotope geochemistry of the Anjiayingzi gold deposit in Chifeng region, Inner Mongolia. Mineral Resources and Geology, 34(2): 236~246.
-
Zhang Yonggang, Frantz J D. 1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chemical Geology, 64(3-4): 335~350.
-
Zhao Shengjin. 2009. Mineralogy and fluid inclusion of the Sandaowanzi gold telluride deposit, Heilongjiang. Master thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).
-
Zhong Richen, Li Wenbo, Chen Yanjing, Yue Dechen, Yang Yongfei. 2013. P-T-X conditions, origin, and evolution of Cu-bearing fluids of the shear zone-hosted Huogeqi Cu-(Pb-Zn-Fe) deposit, Northern China. Ore Geology Reviews, 50: 83~97.
-
Zhu Heping, Wang Lijuan. 2001. Determination of fluid inclusions in the gas phase composition with a quadrupole mass spectrometer. Science in China (Series D), 31(7): 586~590 (in Chinese).
-
Zhu Heping, Wang Lijuan, Liu Jianmin. 2003. Determination of quadrupole mass spectrometer for gaseous composition of fluid inclusion from different mineralization stages. Acta Petrologica Sinica, 19(2): 314~318 (in Chinese with English abstract).
-
艾永德, 王时麒, 孙承志. 1994. 赤峰—朝阳地区太古宙变质岩中金矿成矿规律. 中国金矿地质研究文集(2)—华北陆台北缘地区. 北京: 地质出版社, 1~40.
-
曹广利. 2001. 内蒙红花沟金矿蚀变岩型金矿体控矿构造分析. 世界地质, 20(4): 353~355.
-
陈伟军, 刘红涛. 2006. 赤峰-朝阳金矿化集中区主要金矿类型及地质特征研究. 黄金科学技术, 14(5): 1~7.
-
冯德胜. 2014. 内蒙古敖汉旗岱王山金矿床地球化学特征及矿床成因. 吉林大学硕士学位论文.
-
付乐兵. 2012. 华北克拉通北缘赤峰—朝阳地区中生代构造岩浆演化与金成矿. 中国地质大学(武汉)博士学位论文.
-
韩庆军, 邵济安, 周瑞. 2000. 内蒙古喀喇沁早中生代闪长岩的岩石学、地球化学及其成因. 岩石学报, 16(3): 385~391.
-
胡庆成, 吕新彪, 高奇, 刘洪, 朱江, 杨恩林. 2012. 热液金矿金的溶解和迁移研究进展. 地球科学进展, 27(8): 847~856.
-
姜能. 1994. 内蒙赤峰莲花山金矿床成矿流体性质及矿床成因. 矿物岩石地球化学通讯, 4: 201~202.
-
李春贵, 陈东杰, 寇云飞. 2008. 赤峰市红花沟金矿床地质特征及成矿规律. 内蒙古科技与经济, 20: 9~10.
-
李德亭, 徐九华, 袁怀雨. 2005. 赤峰柴胡栏子金矿床深部矿化及金属矿物微量元素特征. 黄金, 26(8): 12~15.
-
李秋叶. 2013. 辽西二道沟—金厂沟梁金矿田控矿构造特征与找矿预测. 中国地质大学(北京)硕士学位论文.
-
李延河, 丁悌平, 艾永德. 1991. 赤峰柴胡栏子金矿床的同位素地球化学特征及成因. 地质找矿论丛, 6(1): 67~75.
-
李永刚, 翟明国, 苗来成, 朱嘉伟, 薛良伟. 2003a. 内蒙古安家营子金矿与侵入岩的关系及其地球动力学意义. 岩石学报, 19(4): 808~816.
-
李永刚, 翟明国, 杨进辉, 苗来成, 关鸿. 2003b. 内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义. 中国科学(D辑: 地球科学), 33(10): 960~966.
-
李永刚, 翟明国, 苗来成, 薛良伟, 朱嘉伟, 关鸿. 2004. 内蒙古赤峰地区安家营子金矿成矿流体研究. 岩石学报, 20(4): 961~968.
-
梁俊红, 姚玉增, 金成洙, 王建国. 2000. 红花沟金矿田莲花山矿区流体地球化学特征. 黄金学报, 2 (1): 6~9.
-
刘丽. 2020. 内蒙古敖汉地区中生代两期金成矿作用——以撰山子和金厂沟梁金矿床为例. 中国地质大学(北京)博士学位论文.
-
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社.
-
卢焕章, 单强. 2015. 金属矿床的成矿流体成分和流体包裹体. 岩石学报, 31(4): 1108~1116.
-
卢焕章, 毕献武, 王蝶, 单强. 2016. 斑岩铜(钼-金)矿床的成矿流体. 矿床地质, 35(5): 933~952.
-
卢焕章, 池国祥, 朱笑青, Guha J, Archambault G, 王中刚. 2018. 造山型金矿的地质特征和成矿流体. 大地构造与成矿学, 42(2): 244~265.
-
邱玉民, 谢锡才. 1992. 内蒙红花沟金矿床同位素地质特征及矿床成因探讨. 矿产与地质, 6(4): 318~325.
-
佘宏全, 徐贵忠, 周瑞, 王艺芬, 颜丹平, 杨振德, 杨忆. 2000. 内蒙东部红花沟金矿田早中生代构造-岩浆活动及对金成矿的控制作用. 现代地质, 14(4): 408~416.
-
佘宏全, 张德全, 丰成友, 徐文艺, 闫升好, 李大新, 董英君. 2002. 底侵作用与红花沟金矿田金成矿的动力学关系探讨. 矿床地质, 21(S1): 654~657.
-
佘宏全, 王义文, 李庆环, 张德全, 丰成友, 李大新. 2006. 内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义. 地质学报, 80(6): 863~875.
-
申俊峰, 李胜荣, 徐渴鑫, 王业晗, 张士全, 许元全, 何泽宇, 迟雷, 吴晋超. 2020. 辽西赤峰—朝阳金矿带早白垩世以来的隆升剥蚀及启示意义. 地学前缘, 27(5): 151~170.
-
孙丰月, 金巍, 李碧乐. 2000. 关于脉状热液金矿床成矿深度的思考. 长春科技大学学报, 30(专辑): 27~30.
-
孙福明, 阮贤. 1994. 中性水体pH值与温度关系的对数函数方程. 重庆环境科学, 16(6): 56~57.
-
孙珍军. 2013. 华北克拉通北缘赤峰—朝阳地区金矿成矿作用研究. 吉林大学博士学位论文.
-
唐庆宇. 2018. 内蒙古红花沟金矿床地质特征及成因探讨. 河北地质大学硕士学位论文.
-
彭大明. 2002. 内蒙古辽冀金三角金矿床成矿探讨. 黄金地质, 8(1): 60~67.
-
王国光, 倪培, 赵葵东, 刘家润, 解国爱, 徐积辉, 张志辉. 2011. 江西银山铅锌矿床闪锌矿与石英流体包裹体对比研究. 岩石学报, 27(5): 1387~1396.
-
王建, 朱立新, 马生明, 王兵, 张亮亮, 唐世新, 段壮. 2020. 胶东三山岛北海域金矿床热液蚀变作用研究. 地质通报, 39(11): 1807~1826.
-
王书春, 王瑞腾, 孙树提. 2012. 内蒙古柴胡栏子金矿床矿体赋存特征及深部预测. 黄金科学技术, 20(4): 109~112.
-
王天刚, 倪培, 王国光, 张婷. 2008. 甘肃厂坝铅锌矿富甲烷流体包裹体的发现及其意义. 岩石学报, 24(9): 2105~2112.
-
王新社, 郑亚东. 2005. 楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束. 地质论评, 51(5): 574~582.
-
王新社, 郑亚东, 刘玉琳, Ritts B, Friedman S. 2006. 内蒙赤峰南部楼子店拆离断层系绿泥石化带的形成时代. 自然科学进展, 16(7): 902~906.
-
徐贵忠, 佘宏全, 周瑞, 杨振德, 王艺芬, 颜丹平, 杨忆. 2001. 莲花山地区成矿作用动力学背景的新认识. 地质科学, 36(4): 414~423.
-
闫馨云, 焦建刚, 董一博, 祁东, 冷馨, 刘超. 2019. 汉阴北部吴家湾金矿地质特征及流体包裹体研究. 西北地质, 52(4): 182~193.
-
杨帆. 2019. 华北地台北缘东段赤峰—朝阳地区浅成热液金矿床成矿作用研究. 吉林大学博士学位论文.
-
杨忆, 佘宏全, 徐贵忠, 郑德学, 傅东才, 崔才. 1999. 内蒙古柴胡栏子金矿田燕山期岩浆岩与金矿床. 岩石学报, 15(3): 475~482.
-
余建国, 张宝林, 吕古贤, 张启鹏, 史晓鸣, 魏竣滨, 王翠芝, 毕珉烽, 张腾飞, 雷武超, 焦建刚, 苏艳平. 2021. 内蒙古赤峰地区柴胡栏子金矿区中性脉岩锆石U-Pb年代学研究及其地质意义. 矿物岩石地球化学通报, 40(4): 889~902.
-
曾建国, 刘国春, 刘永利, 李国良. 2002. 内蒙古赤峰红花沟金矿田矿床成因. 地质地球化学, 30(3): 13~18.
-
张宝印. 2018. 柴胡栏子矿区温家地西岩金矿段金矿床地质特征和找矿标志. 内蒙古科技与经济, 10: 61~62.
-
张佳楠, 王力. 2012. 辽宁东五家子金矿床流体包裹体特征研究. 黄金, 33(6): 17~21.
-
张静, 祁进平, 仇建军, 尤世娜, 李国平. 2007. 河南省内乡县银洞沟银矿床流体成分研究. 岩石学报, 23(9): 2217~2226.
-
张林, 吴琼, 杨春雷. 1998. 内蒙撰山子金矿构造控矿规律与成矿预测. 地质与勘探, 34(2): 11~14.
-
张雪松, 赵国春, 李秋叶, 王海涛. 2012. 辽西二道沟金矿控矿构造研究. 矿床地质, 31(S1): 819~820.
-
张彦生. 2012. 内蒙古赤峰柴胡栏子金矿矿化及蚀变特征研究. 内蒙古科技与经济, 5: 55~57.
-
张宇. 2015. 赤峰地区脉状金矿典型矿床成因研究: 以安家营子、柴胡栏子、撰山子金矿为例. 中国科学院大学博士学位论文.
-
张宇, 李永刚, 李飞, 张洪涛, 种松树. 2014. 内蒙古喀喇沁旗安家营子金矿红化蚀变的特征及其实质. 岩石学报, 30(2): 576~588.
-
张宇, 黄斐, 叶萍, 杨骁. 2020. 内蒙古安家营子金矿流体包裹体及氢氧硫同位素研究. 矿产与地质, 34(2): 236~246.
-
赵胜金. 2009. 黑龙江三道湾子碲化物型金矿床矿物学及流体包裹体研究. 中国地质大学(北京)硕士学位论文.
-
朱和平, 王莉娟. 2001. 四极质谱测定流体包裹体中的气相成分. 中国科学(D辑: 地球科学), 31(7): 586~590.
-
朱和平, 王莉娟, 刘建明. 2003. 不同成矿阶段流体包裹体气相成分的四极质谱测定. 岩石学报, 19(2): 314~318.
-
摘要
柴胡栏子金矿位于华北克拉通北缘赤峰-朝阳金矿集区西段,是区内典型的石英脉型为主的金矿床,也是赤峰-朝阳地区首次发现的含大量单相甲烷包裹体群的金矿床。矿体呈脉状产于太古宙建平群大营子组下岩段含石墨绢云母片岩切层断裂中,金主要产出在蚀变含石墨绢云母片岩和石英脉中。根据野外观察和包裹体测温结果,将柴胡栏子金矿流体成矿过程划分为主成矿阶段和成矿晚阶段,分别为石英脉及蚀变岩型的矿石和无矿石英-方解石脉组合。流体包裹体岩相学和测温结果显示,主成矿阶段包裹体以水盐两相包裹体和单相纯甲烷包裹体为主,水盐包裹体均一到液相温度为135~377℃,平均256℃,盐度为3.06%~14.04%;甲烷包裹体均一温度为-107.6~-79℃,平均为-88.8℃。激光拉曼光谱分析显示,水盐包裹体气相成分主要以水为主,包含少量的CO2,极少量包裹体显示了明显的甲烷和水的峰值;甲烷包裹体中CH4是唯一的成分,没有水峰的出现,少量包裹体中同时出现了CO2和CH4的的特征峰。流体包裹体群体亦显示主成矿阶段包裹体以水溶液包裹体为主,富甲烷包裹体明显发育,同时包裹体成分中含较多的CO2和N2,与测温和激光拉曼光谱分析结果一致。成矿晚阶段方解石中仅发育水盐包裹体,均一温度为175~313℃,平均为250℃,盐度为1.57%~9.47%。H-O-S同位素分析显示,柴胡栏子金矿成矿流体主要来自岩浆水,成矿物质主要来自深源岩浆,成矿流体内的甲烷来自深源流体与含石墨围岩的交代反应。根据主成矿阶段水盐-甲烷包裹体共生组合的等容线相交图解,显示成矿流体的捕获温度为264~340℃,平均值为302℃,压力为102~154 MPa,平均值为128 MPa,pH-logfo2图解显示成矿流体pH为4.25~5.05,logfo2为-34.85~-34.54,金的络合物以Au(HS)2-为主,金的溶解度为10×10-9~46.6×10-9。根据上述研究,认为深部含金较低的成矿流体与大营子组含石墨绢云母片岩反应,反应方程可能为2C+2H2O= CH4+CO2,生成大量甲烷和CO2,由于甲烷在主成矿阶段温度压力条件下溶解度较低,致使含金流体产生沸腾反应为柴胡栏子金沉淀成矿的主要机制,而CO2在成矿晚阶段以方解石的形式出现。
Abstract
The Chaihulanzi gold deposit is located in the western section of the Chifeng-Chaoyang gold deposit on the northern margin of the NCC. It is a typical quartz vein type gold deposit, and is also the first gold deposit with a large number of single-phase methane inclusions found in the Chifeng-Chaoyang area. The ore body occurs in the fault, cutting across the quartz in the graphite-bearing sericite schist of the lower member of the Dayingzi Formation in the Archean Jianping Group. Gold occurs mainly in the altered graphite-bearing sericite schist and quartz veins. According to the results of field observation and inclusion temperature measurement, the fluid mineralization process of the Chaihulanzi gold deposit can be divided into the main mineralization period and the late mineralization stage, which are quartz vein and altered rock type ore and ore free quartz and calcite vein combination respectively. The results of fluid inclusion petrography and temperature measurement show that the inclusions in the main ore-forming stage are mainly water-salt two-phase inclusions and single-phase pure methane inclusions. The homogenization temperature of water-salt inclusions ranges from 135℃ to 377℃ with an average of 256℃, and the salinity ranges from 3.06% to 14.04%. The homogenization temperature of methane inclusions ranged from -107.6℃ to -79℃, with an average of -88.8℃. Laser Raman spectroscopy analysis showed that the gas phase composition of water-salt inclusions was mainly water, containing a small amount of CO2, and a very small amount of inclusions showed obvious peaks of methane and water. In the methane inclusions, CH4 is the only component, and there is no water peak. In a few inclusions, the characteristic peaks of CO2 and CH4 appear simultaneously. The fluid inclusion population also shows that the inclusions in the main ore-forming period are mainly aqueous solution inclusions, and the methane-rich inclusions are obviously developed. Meanwhile, the inclusions contain more CO2 and N2, which is consistent with the results of measurement temperature and laser Raman spectroscopy analysis. In the late mineralization period, only water-salt inclusions developed in the rocks, the homogenization temperature ranged from 175℃ to 313℃, with an average of 250℃, and the salinity ranged from 1.57% to 9.47%. The H-O-S isotope analysis shows that the ore-forming fluid of the Chaihulanzi gold deposit is mainly from magmatic water, the ore-forming materials are mainly from deep magma, and the methane in ore-forming fluid comes from the metasomatism reaction between deep source flow body and graphitic surrounding rock. According to the isovolumic intersection diagram of the symbiotic combination of water-salt-methane inclusions in the main ore-forming period, the capture temperature of ore-forming fluid is 264~340℃, the average is 302℃, the pressure is 102~154 MPa, the average is 128 MPa, pH-logfo2 diagram shows that the ore-forming fluid pH=4.25~5.05,logfo2=-34.85~-34.54, the gold complex is Au(HS)2-, and the solubility of gold is 10×10-9~46.6×10-9. Based on the above research, the low gold content deep ore-forming fluids reacts with graphite-bearing sericite schist of the Dayingzi Formation, the reaction equation is 2C+2H2O=CH4+CO2. The resulting methane has a low solubility under the temperature and pressure conditions in the main ore-forming stage, resulting in the boiling reaction of the gold-bearing fluid, which is the main mechanism of the Chaihulanzi gold precipitation and mineralization, and CO2 appeared in the form of calcite in the late mineralization stage.