en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王强,男,1988年生。在读博士研究生,从事勘查地球化学研究。E-mail:wqgeochemistry@163.com。

通讯作者:

王学求,男,1963年生。博士,研究员,从事勘查地球化学研究。E-mail:wangxueqiu@igge.cn。

参考文献
Anand R R, Phang C, Wildman J E, Lintern M J. 1997. Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration. Australian Journal of Earth Sciences, 44(1): 87~103.
参考文献
Anand R R, Cornelius M, Phang C. 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, Western Australia: a contribution towards understanding metal transportation processes. Geochemistry: Exploration, Environment, Analysis, 7(3): 267~288.
参考文献
Anand R R, Butt C R. M. 2010. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 57(8): 1015~1114.
参考文献
Anand R R, Lintern M, Hough R, Noble R, Verrall M, Salama W, Radford N. 2017. The dynamics of gold in regolith change with differing environmental conditions over time. Geology, 45(2): 127~130.
参考文献
Anand R R, Salama W. 2018. Gold dispersion in transported cover sequences linked to landscape history of the Yilgarn Craton. Conference: Gold18@Perth, At Perth, Australia, 1~4.
参考文献
Anand R R, Hough R M, Salama W, Aspandiar M F, Butt C R M, Gonzalez-Alvarez I, Metelka V. 2019. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: a review with new concepts. Ore Geology Reviews, 104: 294~355.
参考文献
Anderson C, Moreno F, Geurts F, Wreesmann C, Ghomshei M, Meech J. 2005. A comparative analysis of gold-rich plant material using various analytical methods. Microchemical Journal, 81(1): 81~85.
参考文献
Arhin E, Torkonoo S, Zango M S, Kazapoe R. 2018. Gold in Plant: a biogeochemical approach in detecting gold anomalies undercover—a case study at Pelangio Gold Project at Mamfo Area of Brong Ahafo, Ghana. Ghana Mining Journal, 18(1): 39~48.
参考文献
Borovitskiy V P, Shemyakhin V N. 1966. Trial application of carbonate survey in prospecting for gold in Aldan area. International Geology Review, 8(9): 1037~1038.
参考文献
Buskard J, Reid N, Gray D. 2019. Parts per trillion (ppt) gold in groundwater: can we believe it, what is anomalous and how do we use it? Geochemistry: Exploration, Environment, Analysis, Geochem, 201032.
参考文献
Butt C R M. 2005. Geochemical dispersion, process and exploration models. Regolith Expression of Australian Ore Systems. CRC LEME, 8~106.
参考文献
Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7~32.
参考文献
Cao Jianjin. 2011. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, southern China. Geochemical Journal Gj, 45(3): 9~13.
参考文献
Carver R N, Chenoweth L M, Mazzucchelli R H, Oates C J, Robbins T W. 1987. ‘Lag’—a geochemical sampling medium for arid terrain. Journal of Geochemical Exploration, 28: 183~199.
参考文献
Chen Ying, Guo Yingying, Liu Guangliang, Song Maoyong, Cai Yong, Yin Yongguang. 2019. Dissolved organic matter-mediated reduction of ionic Au(III) to elemental Au nanoparticles and their growth to visible granules. Chinese Chemical Letters, 31(7): 1970~1973.
参考文献
Dart R C. 2009. Gold-in-calcrete: a continental to profile scale study of regolith carbonates and their association with gold mineralisation. Doctor thesis of the University of Adelaide.
参考文献
Dart R C, Barovich K M, Chittleborough D J, Hill S M. 2007. Calcium in regolith carbonates of central and southern Australia: its source and implications for the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 322~334.
参考文献
Dart R C, Barovich K M, Hill S M, Chittleborough D J. 2012. Sr-isotopes as a tracer of Ca sources and mobility in profiles hosting regolith carbonates from southern Australia. Australian Journal of Earth Sciences, 59(3): 373~382.
参考文献
Darwish M A G. 2017. Stream sediment geochemical patterns around an ancient gold mine in the Wadi El Quleib area of the Allaqi region, south Eastern Desert of Egypt: Implications for mineral exploration and environmental studies. Journal of Geochemical Exploration, 175: 156~175.
参考文献
Darwish M A G, Poellmann H. 2010. Geochemical exploration for gold in the Nile Valley Block(A) area, Wadi Allaqi, south Egypt. Geochemistry, 70(4): 353~362.
参考文献
Davy R, El-Ansary M. 1986. Geochemical patterns in the laterite profile at the Boddington gold deposit, Western Australia. Journal of Geochemical Exploration, 26: 119~144.
参考文献
Doherty M E. 2000. Seasonal variations in soil gas, sagebrush and soils: implications for geochemical dispersion processes. Great Basin, Nevada, Geological Society of Nevada Symposium, Geochemical Methods for Buried Ore Deposits, Short Course Notes. Association of Exploration Geochemists, 22.
参考文献
Doherty M E, Bratland C T, Highsmith R P, Jaacks J A. 2000. Detection of buried gold mineralization by selective extractions of soil samples, sagebrush and soil gases. Geological Society of Nevada, Geology and Ore Deposits 2000: The Great Basin and Beyond Symposium Program With Abstracts, 44~45.
参考文献
Duniway M C, Herrick J E, Monger H C. 2010. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience. Oecologia, 163(1): 215~226.
参考文献
Dunn C E. 1995. Mineral exploration beneath temperate forests: the information supplied by trees. Exploration and Mining Geology, 3(4): 197~204.
参考文献
Dunn C E, Christie A B. 2019. Tree ferns and tea trees in biogeochemical exploration for epithermal Au and Ag in New Zealand. Geochemistry: Exploration, Environment, Analysis, 20(3): 299~314.
参考文献
Edgecombe D. 1997. Challenger Gold Deposit. Primary Industries and Resources, South Australia. MESA Journal, 4: 8~11.
参考文献
El-Makky A M, Sediek K N. 2012. Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural resources research, 21(1): 95~115.
参考文献
Embui V, Omang B, Che V, Nforba M, Suh E. 2013. Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, Northern Cameroon (West Africa). Natural Science, 5: 282~290.
参考文献
Erdman J A, Olson J C. 1985. The use of plants in prospecting for gold: a brief overview with a selected bibliography and topic index. Journal of Geochemical Exploration, 24(3): 281~304.
参考文献
Franceschi V R, Nakata P A. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology, 56: 41~71.
参考文献
Glasson M J, Lehne R W, Wellmer F W. 1988. Gold exploration in the callion area, eastern goldfields, Western Australia. Journal of Geochemical Exploration, 31: 1~19.
参考文献
Govett G J S. 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely spaced surface soil samples. Journal of Geochemical Exploration, 6: 359~382.
参考文献
Heberlein D R, Samson H. 2010. An assessment of soil geochemical methods for detecting copper-gold porphyry mineralization through Quaternary glaciofluvial sediments at the Kwanika Central Zone, north-central British Columbia. Report, 2010~2013.
参考文献
Hough R M, Noble R R P, Reich M. 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1): 55~61.
参考文献
Hu Guai, Cao Jianjin, Jiang Tao, Wang, Zhengyang, Yi Zebang. 2017. Prospecting application of nanoparticles and nearly nanoscale particles within plant tissues. Resource Geology, 67(3): 316~329.
参考文献
Iglesias Martínez M, Ordóñez Casado B, Berrezueta E, Pérez Garrido C. 2018. Morphological and compositional characterization of gold contained in ferricretes of a weathered profile (Minvoul greenstone belt, Gabon). [Macla: 23]. Conference: XXXVII Reunión Científica de la Sociedad Española de Mineralogía. At Madrid.
参考文献
Kasthuri J, Kathiravan K, Rajendiran N. 2009. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research, 11(5): 1075~1085.
参考文献
Keeling J L, Hartley K L. 2005. Poona and Wheal Hughes Cu deposits, Moonta, South Australia. Regolith Expression of Australian Ore Systems, 383~385.
参考文献
Kelley D L, Hall G E, Closs L G, Hamilton I C, McEwen R M. 2003. The use of partial extraction geochemistry for copper exploration in northern Chile. Geochemistry: Exploration, Environment, Analysis, 3(1): 85~104.
参考文献
Kovalevskii A L, Kovalevskaya O M. 1989. Biogeochemical haloes of gold in various species and parts of plants. Applied geochemistry, 4(4): 369~374.
参考文献
Kristiansson K, Malmqvist L. 1987. Trace elements in the geogas and their relation to bedrock composition. Geoexploration, 24(6): 517~534.
参考文献
Kuznetsova A, Khokhlova O. 2015. Dynamics and genesis of calcic accumulations in soils and sediments of the Argentinean Pampa. International Journal of Sediment Research, 30(3): 179~189.
参考文献
Lamplugh G W. 1902. Calcrete. Geological Magazine, 9: 75.
参考文献
Lee S Y, Krishnamurthy S, Cho C W, Yun Y S. 2016. Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustainable Chemistry & Engineering, 4(5): 2651~2659.
参考文献
Leybourne M I, Cameron E M. 2010. Groundwater in geochemical exploration. Geochemistry Exploration Environment Analysis, 10(2): 99~118.
参考文献
Leybourne M I, Cameron E M, Reich M, Palacios C, Faure K, Johannesson K H. 2013. Stable isotopic composition of soil calcite(O, C) and gypsum(S) overlying Cu deposits in the Atacama Desert, Chile: implications for mineral exploration, salt sources, and paleoenvironmental reconstruction. Applied geochemistry, 29: 55~72.
参考文献
Lintern M J. 1989. Study of the distribution of gold in soils at Mt. Hope, Western Australia. Restricted Report 24R. CSIRO/AMIRA Project P241. CSIRO Australia. Division of Exploration Geoscience, Perth, 40.
参考文献
Lintern M J. 2001. Exploration for gold using calcrete-lessons from the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis, 1(3): 237~252.
参考文献
Lintern M J. 2004a. Bounty gold deposit, Forrestania Greenstone belt, Western Australia. In: ButtC R M, Robertson I D M, Cornelius M, Scott K M, eds. A Compilation of Geochemical Case Histories and Conceptual Models. CRC LEME: Perth, 225~227.
参考文献
Lintern M J. 2004b. Steinway gold deposit, Kalgoorlie, Western Australia. In: Butt C, Robertson I, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 330~332.
参考文献
Lintern M J. 2005. Challenger gold prospect, Gawler Craton, South Australia. In: Butt C R M, Robertson I D M, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 236~238.
参考文献
Lintern M J. 2007. Vegetation controls on the formation of gold anomalies in calcrete and other materials at the Barns Gold Prospect, Eyre Peninsula, South Australia. Geochemistry: Exploration, Environment, Analysis, 7(3): 249~266.
参考文献
Lintern M J. 2015. The association of gold with calcrete. Ore Geology Reviews, 66: 132~199.
参考文献
Lintern M J, Sheard M J, Chivas A R. 2006. The source of pedogenic carbonate associated with gold-calcrete anomalies in the western Gawler Craton, South Australia. Chemical Geology, 235(3-4): 299~324.
参考文献
Lintern M J, Hough R M, Ryan C G, Watling J, Verrall M. 2009. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES. Geochimica et Cosmochimica Acta, 73(6): 1666~1683.
参考文献
Lintern M J, Sheard M, Buller N. 2011. The gold-in-calcrete anomaly at the ET gold prospect, Gawler Craton, South Australia. Applied Geochemistry, 26(12): 2027~2043.
参考文献
Lintern M J, Hough R M, Ryan C G. 2012. Experimental studies on the gold-in-calcrete anomaly at Edoldeh Tank gold prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 112: 189~205.
参考文献
Lintern M J, Anand R, Ryan C, Paterson D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature communications, 4: 2614.
参考文献
Liu Hanliang, Zhang Bimin, Liu Dongshen, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).
参考文献
Lu Mei, Ye Rong, Wang Zhenkai, Wang Xiaojia. 2019. Geogas prospecting for buried deposits under loess overburden: taking Shenjiayao gold deposit as an example. Journal of Geochemical Exploration, 197: 122~129.
参考文献
Lucas A, Rate A, Zhang H, Salmon S U, Radford N. 2012. Development of the diffusive gradients in thin films technique for the measurement of labile gold in natural waters. Analytical Chemistry, 84(16): 6994~7000.
参考文献
Luo Xiaoen, Cao Jianjin. 2018. Discovery of nano-sized gold particles in natural plant tissues. Environmental Chemistry Letters, 16(4): 1441~1448.
参考文献
Mann A. W, 1984. Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Economic Geology, 79(1): 38~49.
参考文献
McGillis J L. 1967. The Silver Content of Caliche on Alluvial Fans as a Regional Guide to Areas of Silver and Gold Mineralisation in the Basin and Range Province Part fulfilment of MSc. Thesis University of Nevada, Reno, USA 30.
参考文献
Mohammadnejad S, Provis J L, Van Deventer J S J. 2013. Reduction of gold(III) chloride to gold(0) on silicate surfaces. Journal of Colloid and Interface Science, 389(1): 252~259.
参考文献
Mumm A S, Reith F. 2004. The biogeochemistry of calcrete forming processes. In Ethnographic Praxis in Industry Conference Proceedings, 316~320.
参考文献
Mumm A S, Reith F. 2007. Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 92(1): 13~33.
参考文献
Muntean J, Taufen P. 2011. Geochemical exploration for gold through transported alluvial cover in Nevada: examples from the Cortez Mine. Economic Geology, 106: 809~833.
参考文献
Nadeau O, Harris J. 2019. Remobilization and adsorption of colloidal gold on nano-particulate chlorite at the Hardrock Archean orogenic gold deposits: a new tool for gold exploration. Journal of Geochemical Exploration, 204: 181~205.
参考文献
Nilson R H, Peterson E W, Lie K H, Burkhard N R, Hearst J R. 1991. Atmospheric pumping: a mechanism causing vertical transport of contaminated gases through fractured permeable media. Journal of Geophysical Research: Solid Earth, 96(B13): 21933~21948.
参考文献
Okujeni C D, Ackon P, Baugaard W, Langa N. 2005. Controls of element dispersion in aeolian sand and calcrete-dominated regolith associated with gold mineralization in the Kraaipan greenstone belt, South Africa. Geochemistry: Exploration, Environment, Analysis, 5(3): 223~231.
参考文献
Osovetsky B. 2017. Genesis of natural nanogold. In Natural Nanogold. Springer, 87~126.
参考文献
Phillips G N, Vearncombe J R, Anand R R, Butt C R M, Eshuys E, Groves D I, Smith R E. 2019. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia. Ore Geology Reviews, 103009.
参考文献
Phillips G N, Vearncombe J R, Eshuys E. 2019. Gold production and the importance of exploration success: Yilgarn Craton, Western Australia. Ore Geology Reviews, 105: 137~150.
参考文献
Priori S, Fantappiè M, Magini S, Costantini E A C. 2013. Using the arp-03 for high-resolution mapping of calcic horizons. International Agrophysics, 27(3): 313~321.
参考文献
Quade J, Chivas A R, McCulloch M T. 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(1): 103~117.
参考文献
Radford N W, Burton P E. 1999. The geochemistry of transported overburden: the time factor. An example from the Fender deposit, Big Bell, Western Australia. Journal of Geochemical Exploration, 66: 71~83.
参考文献
Reid N, Hill S M. 2013. Spinifex biogeochemistry across arid Australia: Mineral exploration potential and chromium accumulation. Applied Geochemistry, 29: 92~101.
参考文献
Reith F, Etschmann B, Dart R C, Brewe D L, Vogt S, Mumm A S, Brugger J. 2011. Distribution and speciation of gold in biogenic and abiogenic calcium carbonates—implications for the formation of gold anomalous calcrete. Geochimica et Cosmochimica Acta, 75(7): 1942~1956.
参考文献
Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Martinez-Criado G. 2009a. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the National Academy of Sciences, 106(42): 17757~17762.
参考文献
Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode P L, Gregg A, Southam G. 2010. Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology, 38(9): 843~846.
参考文献
Reith F, Stewart L, Wakelin S A. 2012. Supergene gold transformation: secondary and nano-particulate gold from southern New Zealand. Chemical Geology, 320: 32~45.
参考文献
Reith F, Wakelin S A, Gregg A L, Mumm A S. 2009b. A microbial pathway for the formation of gold-anomalous calcrete. Chemical Geology, 258(3-4): 315~326.
参考文献
Richards J H, Caldwell M M. 1987. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73(4): 486~489.
参考文献
Royer D L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 27(12): 1123~1126.
参考文献
Sanyal S K, Shuster J, Reith F. 2019. Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 190: 131~147.
参考文献
Shuster J, Bolin T, Maclean L C W, Southam G. 2014. The effect of iron-oxidizing bacteria on the stability of gold(I) thiosulphate complex. Chemical Geology, 376: 52~60.
参考文献
Shuster J, Southam G. 2015. The in-vitro “growth” of gold grains. Geology, 43(1): 79~82.
参考文献
Shuster J, Lengke M, Márquez-Zavalía M F, Southam G. 2016. Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Economic Geology, 111(6): 1485~1494.
参考文献
Shuster J, Reith F, Cornelis G, Parsons J E, Parsons J M, Southam G. 2017. Secondary gold structures: relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450: 154~164.
参考文献
Smee B W. 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61: 149~172.
参考文献
Smith B H, Keele R A. 1984. Some observations on the geochemistry of gold mineralization in the weathered zone at Norseman, Western Australia. Journal of Geochemical Exploration, 22: 1~20.
参考文献
Smith R E, Perdrix R L. 1983. Pisolitic laterite geochemistry in the Golden Grovemassive sulphide district, Western Australia. Journal of Geochemical Exploration, 18: 131~164.
参考文献
Tong Chunhan, Li Juchu. 1999. Geogas prospecting and its mechanism in the search for deep seated or concealed gold deposits. Chinese Journal of Geophysics, 42(1): 135~142(in Chinese with English abstract).
参考文献
Van der Hoek B G, Hill S M, Dart R C. 2012. Calcrete and plant inter-relationships for the expression of concealed mineralization at the Tunkillia gold prospect, central Gawler Craton, Australia. Geochemistry: Exploration, Environment, Analysis, 12, 361~372.
参考文献
Vural A. 2017. Gold and Silver Content of Plant Helichrysum Arenarium, Popularly Known as the Golden Flower, Growing in Gümüşhane, NE Turkey. Acta Physica Polonica A, 132(3): 978~980.
参考文献
Wang Xiaojia, Lu Mei, Wang Zhenkai, Ye Rong. 2016. Characteristics of geogas anomalies measured in the Shenjiayao gold deposit of Shan County, Henan Province. Geology and Exploration, 52(4): 667~677(in Chinese with English abstract).
参考文献
Wang Xueqiu. 1998a. Geochemical methods and application for giant ore deposits in concealed terrains. Geophysical & Geochemical Exploration, 22(2): 81~89 (in Chinese with English abstract).
参考文献
Wang Xueqiu. 1998b. Leaching of mobile forms of metals in overburden: development and application. Journal of Geochemical Exploration, 61: 39~55.
参考文献
Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.
参考文献
Wang Xueqiu, Xie Xuejin, Cheng Zhizhong, Liu Dawen. 1999. Delineation of regional geochemical anomalies penetrating through thick cover in concealed terrains—a case history from the olympic dam deposit, Australia. Journal of Geochemical Exploration, 66: 85~97.
参考文献
Wang Xueqiu, Xie Xuejin. 2000. Exploration Geochemistry of Gold Principles and Methodology: Tactics and Strategy. Jinan: Shandong Science and Technology Press (in Chinese).
参考文献
Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007a. Vertical variations and dispersion of elements in arid desertregolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.
参考文献
Wang Xueqiu, Chi Qinhua, Liu Hanliang, Nie Lanshi, Zhang Bimin. 2007b. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 153~161.
参考文献
Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112(in Chinese with English abstract).
参考文献
Wang Xueqiu, Zhang Bimin, Lin Xin, Xu Shanfa, Ye Rong. 2016a. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in china. Ore Geology Reviews, 73: 417~431.
参考文献
Wang Xueqiu, Zhang Bimin, Ye Rong. 2016b. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).
参考文献
Warren L A, Maurice P A, Parmar N, Ferris F G. 2001. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18(1): 93~115.
参考文献
Wen Xueqin, Wang Xueqiu, Ye Rong, Liu Zhanyuan, Chen Zhizhong, Chi Qinghua. 2010. Vertical variation and dispersion of metal elements in the arid desert regolith——a case study at the Jinwozi gold deposit, Xinjiang, China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 38~44 (in Chinese with English abstract).
参考文献
Wolff K, Tiddy C, Giles D, Hill S M, Gordon G. 2017. Distinguishing pedogenic carbonates from weathered marine carbonates on the Yorke Peninsula, South Australia: implications for mineral exploration. Journal of Geochemical Exploration, 181: 81~98.
参考文献
Yamashita M, Ohashi H, Kobayashi Y, Okaue Y, Kurisaki T, Wakita H, Yokoyama T. 2008. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold(Au(0)): analysis by Mössbauer spectroscopy and XPS. Journal of Colloid and Interface Science, 319(1): 25~29.
参考文献
Ye Rong, Wang Xueqiu, Zhao Lunshan, Chen Dexing, Fu Yuanhui. 2004. Deep penetration geochemistry methods in gobi-overburden terrain of the Jinwozi metallogenic belt. Geology and Prospecting, 40(6): 67~72 (in Chinese with English abstract).
参考文献
Yilmaz H, Sonmez F N, Carranza E J M. 2015. Discovery of Au-Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. Journal of Geochemical Exploration, 158, 55~73.
参考文献
Yuan Chungang, Huo Can, Yu Shuixin, Gui Bing. 2017. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E Low-dimensional Systems and Nanostructures, 85: 19~26.
参考文献
Zhang Bimin, Wang Xueqiu, Chi Qinghua, Lv Qingtian. 2011. Dispersion and migration of gold under land scape evolution in Gobi desert terrains. Geoscience, 25(3): 575~580 (in Chinese with English abstract).
参考文献
Zhang Bimin, Chi Qinghua, Zhang Yongqin. 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposit in arid desert terrains. Earth Science Frontiers, 19(3): 130~137(in Chinese with English abstract).
参考文献
Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.
参考文献
Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).
参考文献
Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019a. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and Their Significance. Minerals, 9(7): 414.
参考文献
Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019b. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).
参考文献
Zomorrodian M, Shayestehfar M R. 2019. Indicator ratios and additive composite halos in stream sediment samples as a geochemical indicator for identifying promising epithermal gold deposit in the north of Kashmar. Arabian Journal of Geosciences, 12(11): 331.
参考文献
刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.
参考文献
童纯菡, 李巨初. 1999. 地气测量寻找深部隐伏金矿及其机理研究. 地球物理学报, 42(1): 135~142.
参考文献
王晓佳, 鲁美, 王振凯, 叶荣. 2016. 申家窑金矿床地气测量异常特征. 地质与勘探, 52(4): 667~677.
参考文献
王学求. 1998a. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用. 物探与化探, 22(2): 81~89.
参考文献
王学求, 谢学锦. 2000. 金的勘查地球化学理论与方法·战略与战术. 济南: 山东科学技术出版社.
参考文献
王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.
参考文献
王学求, 张必敏, 刘雪敏. 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.
参考文献
王学求, 张必敏, 叶荣. 2016b. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.
参考文献
文雪琴, 王学求, 叶荣, 刘占元, 程志中, 迟清华. 2010. 干旱戈壁区金属元素的垂向变化与分散——以新疆金窝子金矿为例. 矿物岩石地球化学通报, 29(1): 38~44.
参考文献
叶荣, 王学求, 赵伦山, 陈德兴, 傅渊慧. 2004. 戈壁覆盖区金窝子矿带深穿透地球化学方法研究. 地质与勘探, 40(6): 67~72.
参考文献
张必敏, 王学求, 迟清华, 吕庆田. 2011. 戈壁覆盖区景观演化与Au的分散迁移. 现代地质, 25(3): 575~580.
参考文献
张必敏, 迟清华, 张永勤. 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130~137.
参考文献
张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.
参考文献
张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019b. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.
目录contents

    摘要

    在隐伏金矿的地球化学勘查中,常用的采样介质包括岩石、水系沉积物、土壤、植物和地气等。近几十年,澳大利亚在半干旱—干旱地区以钙积层作为隐伏金矿床地球化学勘查的采样介质,并取得了成功。本文对以钙积层作为隐伏金矿地球化学勘查采样介质的理论和勘查进展进行总结,其勘查理论基础是土壤剖面中金-钙高度相关性,其成因机理较合理地解释为:原生金矿或金矿化通过风化作用形成金的各种络合物、纳米金以及其胶体等,这些金受蒸发蒸腾、植物根系、电化学、地气、地震泵等作用由深部迁移至浅表,浅层土壤中的这部分金早期与钙质相关性弱;在湿润期,在微生物分解有机质过程中,金可以形成金-氨基酸络合物或者胶体金呈溶解态,在干旱期由于金络合物和胶体失稳而与碳酸钙等一起沉淀;最终,在植物、微生物、气候综合作用下形成钙积层金异常。然而,我国的相关研究表明,钙积层中金异常的形成会受到黏土矿物以及石膏含量的影响,金-钙并非呈正相关关系,黏土矿物会使金发生富集,石膏或碳酸钙大量存在会使金发生贫化,且地形也会对钙质层中金异常的形成产生影响。因此,该方法能否应用于澳大利亚以外地区仍需做进一步的研究和尝试。

    Abstract

    Commonly sampling media in gold geochemical exploration include rock, stream sediment, soil, plant, and gas. In recent decades, calcrete has been successfully used as a sampling medium in geochemical exploration of concealed gold deposits in semi-arid and arid areas in Australia. In this paper, the theory and advances in the use of calcrete as the sampling medium in geochemical exploration of concealed gold deposits are summarized. This method is based on the high correlation of gold with calcium in the soil profile. A probable explanation for the genetic mechanism is as follows: the weathering of primary gold deposits or mineralization forms various gold complexes, nano gold, and its colloids. Then, the dissolved gold and nano gold can be migrated from deep to shallow horizon by evaporation and transpiration, plant roots, electrochemistry, earth gas, seismic pumping, and other functions. In a wet sub-period, gold could form gold amino acid complex or gold colloid with the help of microbial breakdown of plant organic material. There is no correlation between gold and calcium in soils at early time; in drying sub-periods, the destabilization of gold amino acid complex or gold colloid gold results in co-deposition of gold and calcium. Finally, combined plant-microorganism-climate effect leads to form gold anomaly in calcrete. Notably, the research in China suggested that the contents of gold and calcium are not positively correlated since the presence of clay would promote gold enrichment, and the presence of plaster and calcium carbonate would prompt gold depletion; in addition, topography will also affect the formation of gold anomaly in calcrete. Therefore, it still needs to be tested if the method could be applied outside Australia.

  • 在金的地球化学勘查采样过程中,常见的采样介质包括:水系沉积物、土壤、地气以及植物等。其中,样品采集是最基础、也是最重要的部分,成功优质的样品采集是后续地球化学测试以及数据分析的基石。针对不同景观条件,地球化学工作者建立了不同的采样介质标准和方法,如干旱沙漠区的地气法(采样介质为地气)(Tong Chunhan et al.,1999; Zhang Bimin et al.,201120122016; Cao Jianjin,2011; Wang Xueqiu et al.,201120122016a2016b; Wang Xiaojia et al.,2016; Lu Mei et al.,2019)、红壤区与干旱黄土区找矿的常规土壤采样法以及金活动态测量法(采样介质为土壤B层,深度20~30 cm或10~20 cm)(Wang Xueqiu,1998; Zhang Bimin et al.,20152019b; Liu Hanliang et al.,2016)、热带和亚热带条件下铁结砾岩(Anand et al.,201720182019; Iglesias Martínez et al.,2018)、古冰川景观下的冰积物(Heberlein et al.,2010)、河流发育地区的水系沉积物(Darwish et al.,2010; El-Makky et al.,2012; Embui et al.,2013; Yilmaz et al.,2015; Darwish,2017; Zomorrodian et al.,2019)、地下水发育地区水样(Leybourne et al.,2010; Lucas et al.,2012; Buskard et al.,2019)以及植被覆盖区的植物地球化学勘查(采样介质为树枝或树叶)(Wang Xueqiu et al.,2000; Lintern et al.,2013; Hu Guai et al.,2017; Vural,2017; Arhin et al.,2018; Luo Xiaoen et al.,2018; Dunn et al.,2019)。

  • 澳大利亚由于存在厚层的古风化层,常规的地球物理和地球化学勘查成本较高,急需一种低成本、高效益的勘查技术,以解决与高度风化地体相关的勘查难题。澳大利亚金地球化学勘查工作者经过大量实践,包括:采集风化壳中的铁质成分并分析其中的砷指导金勘查; 采集不同的铁质成分如红土残余、腐泥土等以提高贱金属靶区圈定(Smith et al.,1983; Davy et al.,1986; Carver et al.,1987); 厚覆盖地区NAMEG(地气中的纳米金属)和MOMEO(覆盖层中的活动态金属)法低密度采样圈定区域异常(Wang Xueqiu et al.,1999),以及将钙积层(calcrete)作为采样介质(采集钙积层中的细粒钙质成分),最终发现土壤或近地表的钙积层是半干旱—干旱地区金勘查的最佳采样介质(Govett,1976; Mann,1984; Smith et al.,1984; Lintern,19892015; Kuznetsova et al.,2015; Phillips et al.,2019a),这一发现在澳大利亚的金勘查中发挥了重要作用,在澳大利亚更是将这一认识作为金矿勘查的6大地学突破中采样介质突破的重要组成部分(地质方面:定年和构造控矿、有利的围岩以及金相关蚀变; 风化层环境:景观演化、金地球化学和目标采样介质(Phillips et al.,2019a,2019b)。在澳大利亚以外地区,如南非的Kraiipan绿岩带(Okujeni et al.,2005)、美国内华达州的Marigold金矿、Gold Bar金矿和Cortez金矿(Smee,1998; Doherty,2000; Doherty et al.,2000; Muntean et al.,2011),研究也表明Au-Ca之间存在强相关性。

  • “钙积层”一词最早是由Lamplugh(1902)提出,代表一种砾岩,主要是由碳酸钙沉淀胶结地表沙或砾石而形成,它在半干旱—干旱地区广泛分布。根据最新Lintern(2015)的描述,钙积层是指土壤或近地表物质中的碳酸盐沉积,不排除地下水碳酸盐、泉华、钙华和洞穴沉积,包括块状、豆状、卵石花纹状、结节状、层状(板状)或粉末状,或多或少地与其他土壤物质混合,如沙、黏土和泥沙等,在酸测试中产生泡沫。然而,不同景观和气候条件下,钙质层的发育特征和层位具有较大的差异。对澳大利亚的Challenger金矿、Tunkillia金矿区以及中国金窝子金矿风化层和钙质层的特征进行了对比(图1)。三个典型地区的剖面对比可以发现:Challenger金矿主要为原地残余型风化壳,浅表只有薄层沙覆盖,钙质成分形态多样,分布在黏土层中,为易碎富含方解石聚集体,包裹黏土颗粒。Tunkillia金矿区钙质层分布在地表或被风成沙和冲洪积物(厚度小于50 cm)覆盖,因此在采样时其剖面深度通常小于50 cm,个别深度达到1 m。我国的干旱荒漠区的金窝子金矿则具有较厚的厚层风成沙和冲洪积物覆盖,且钙质层为硬钙质胶结冲积层,分布在外来迁移覆盖层中。很明显,中国金窝子金矿风化层和钙质层特征不同于澳大利亚典型矿区。

  • 本文将对澳大利亚金的地球化学勘查中以钙积层为采样介质的研究进展和问题等做简要的总结,完善了钙质层中金异常成因机制,并结合我国的相关研究提出黏土矿物和石膏的存在会对钙质层中金异常的形成产生不可忽略的影响,在特定地区富黏土层作为采样介质可能要优于钙质层。因此,该方法能否应用于澳大利亚以外地区仍需做进一步的研究和尝试。

  • 1 成因机理

  • 1.1 Au来源(深部至浅表)

  • 迁移而来的覆盖层会对地球化学采样程序产生重大影响,即使是薄层(<1 m)的迁移覆盖层,也会影响金属垂向迁移至地表的能力(Radford et al.,1999; Anand et al.,2007),因此需要了解覆盖层的深度、时代和类型,但在多数情况下这些信息都是未知的。在这种情形中,勘探公司采取两个基本策略。第一种方法是钻穿外来覆盖层进行下伏基岩研究。这种方法是资源密集型的,通常用于已识别出矿化的远景区尺度。第二种方法是采集地表或近地表的物质(包括钙积层)。矿化部位的成矿元素及指示元素可以通过多种机制迁移到达浅表:

  • (1)成岩或沉积后较老沉积物的风化作用使得指示元素或目标元素能够有足够的时间通过大量路径迁移至地表(Cameron et al.,2004); 这些元素通过一些介质(如气体)由矿体部位向上扩散,金属主要被气体吸附带至地表,包括两种类型:地气(Kristiansson et al.,1987),这一机制在中国多数地区成功应用(Wang Xueqiu et al.,1997; Wang Xueqiu,1998a1998b; Tong et al.,1999; Zhang Bimin et al.,20152019a)或者纳米颗粒以“类气相”形式迁移(Wang Xueqiu et al.,2016); 气压泵,由于气候导致压差不同,气体沿着断层向上运移,进而携带金属至地表(Nilson et al.,1991)。

  • (2)生物扰动和毛细管作用逐步迁移金属经由外来覆盖层至近地表,如植物根系的水力提升机制(根系发育较深的植物可以将溶元素带至地表并释放进入土壤)(Richards et al.,1987; Kelley et al.,2003)。

  • 图1 澳大利亚Challenger金矿、Tunkillia金矿区和中国金窝子金矿典型风化剖面(据Wang Xueqiu et al.,2007a; Lintern et al.,2006; Van der Hoek et al.,2012

  • Fig.1 Typical regolith of Challenger and Tunkillia gold deposits in Australia and Jinwozi gold deposit in China (after Wang Xueqiu et al., 2007a; Lintern et al., 2006; Van der Hoek et al., 2012)

  • (3)干旱地区的电化学诱导扩散机制,深部形成的阳离子可以迁移至地表并重新分布形成“兔耳朵”型异常(Govett,1976; Smee,1998)。

  • 1.2 碳酸盐来源

  • 钙积层中的碳酸盐成分主要是方解石和白云石,还包含菱镁矿和极少量的菱锶矿。它的形成过程是特定环境条件下多种因子在不同尺度下综合作用的结果,如基质或土壤类型、降雨、蒸发率、钙源、地貌等(Anand et al.,1997)。

  • (1)Ca和碱土金属:Sr同位素(87Sr/86Sr)被广泛用于识别钙积层中碱土金属的来源。Sr能够替代方解石晶格中的Ca,因此通常与Ca和/或Mg具有高度相关性。Sr同位素研究表明,澳大利亚东南部钙积层碱土金属具有基岩和大气(海洋)混合来源,其中大气来源占据主导地位(Quade et al.,1995; Dart et al.,2007; )。在Gawler克拉通地区,Challenger金矿和其他矿区的研究表明大气来源Sr的贡献变化范围为40.8%~99.7%(Lintern et al.,2006)。由此推断,Ca主要源自大气灰尘或者是降雨,其他研究也支持这一结论(Lintern,2007; Dart et al.,2012)。

  • (2)碳来源:对于钙积层中碳的来源,主要是采集C同位素来协助确定两种可能的来源:大气和生物成因CO2。但是,土壤中植物的呼吸作用和微生物有机质降解作用导致的CO2通量要比大气高出几个数量级。只有在植被密度低以及充气良好的土壤中大气对碳同位素的影响才显著。Leybourne et al.(2013)对Challenger钙积层和背景区域的C同位素进行了研究,发现钙积层C同位素为C3和C4古植物混合来源,与Sr同位素数据不同,δC13PDB值不具有东西向趋势或海水影响。同样也进行了氧同位素研究,显示与地震活动期间地下水上涌有关。此外,还要注意区分成岩碳酸盐和风化的海洋碳酸盐,因为成岩碳酸盐才是目标采样介质; 就Yorke半岛而言,成岩碳酸盐具有较低的Ca/Mg值(<28)和Ca/Sr值(<650); 而海相碳酸盐为:Ca/Mg值>35,Ca/Sr值>1260(Wolff et al.,2017)。

  • 1.3 金-钙异常形成机制

  • 以钙积层为采样介质的金地球化学勘查在澳大利亚取得了巨大的成功,大大促进了成因理论方面的研究。已有研究表明,钙积层中金为离子态以及金属态金,离子态和金属态金可以通过氧化还原反应而相互转换,决定离子态Au和金属态金的比例的因素尚未清楚,但是比较合理的解释是二者平衡取决于土壤湿度、有机碳和生物活性(Lintern et al.,2009; Reith et al.,2011; Mohammadnejad et al.,2013; Shuster et al.,20162017; Osovetsky,2017; Sanyal et al.,2019; Chen Ying et al.,2019)。离子态金以各种络合物的形式溶解于水中迁移,而金属态金则以纳米金胶体的形式迁移,随后由于物理化学条件等变化而沉淀(Hough et al.,2011; Reith et al.,2012; Shuster et al.,2015; Nadeau et al.,2019)。

  • 1.3.1 植物作用

  • 近几十年来通过分析植物的组织已证明植物能够吸收Au(Erdman et al.,1985; Kovalevskii et al.,1989; Dunn,1995; Anderson et al.,2005; Kasthuri et al.,2009; Reid et al.,2013; Lintern et al.,2013; Lee et al.,2016; Yuan Chungang et al.,2017)。一方面,植物的根际是植物生命活动重要部分,附近生存着大量的微生物,同时植物根也释放一些分泌物能够引起一些元素(包括Ca和Au)的活化迁移。另一方面,植物(树皮、树叶、树枝等)降解产物也可以促进Au和Ca由风化层的深部循环进入土壤和钙积层。此外,叶子渗出液也可能含Au,补充Au进入土壤和钙积层。因此,植物对于钙积层中Au异常的形成可能十分重要。

  • Lintern et al.(2013)通过对隐伏金矿上方桉树研究提出生物参与的Au异常是气候作用导致的:首先,深根性树种从深部隐伏矿床吸收和运移Au(离子态)至地表浅层,主要是通过植物脉管系统以亚毒性浓度水平运移,然后还原为Au0,沉淀赋存在植物细胞中,Au出现在树的各个部位,但植物叶中具有最高的Au浓度(静水压力波动大),金晶体可能会由于离子Au还原和自催化沉淀而生长; 植物落叶、消亡等因素使Au进入土壤,部分再次进入植物,部分由于生物降解作用形成弱Au异常; 最后Au通过物理侵蚀和化学扩散发生垂向或侧向迁移,由于蒸发作用水分被去除,Au和钙质发生沉淀,从而在钙积层中形成Au异常。因此,植物根际系统将Au迁移至地表并进入钙质土壤从而形成Au异常可能是一种十分重要的机制。

  • 另一种潜在机制是草酸代谢。草酸钙晶体以多种晶体形式存在,并且存在于多种植被类型中。在植物中,它是一种相对不溶的化学物质,被认为参与钙的调节、有毒金属的局部调节等有关(Franceschi et al.,2005)。天然植物和实验室植物中的一些金颗粒与叶片中的草酸钙晶体有关(Lintern et al.,2013)。但Au-钙草酸盐晶体在土壤中的结局尚不清楚,尚需进一步研究。

  • 1.3.2 微生物作用

  • 微生物是地球上碳、氮、硫和金属循环的关键驱动因素。它们通过代谢活动直接或间接地参与元素循环。在元素循环过程中产生的微生物产物(如有机酸、氰化物、硫酸盐、铵、硫化铁/羟基氧化物和锰氧化物)在金活化迁移中发挥重要作用。并且研究表明,众多微生物参与了金生物化学循环(图2)(Reith et al.,2009a2010; Sanyal et al.,2019)。

  • 微生物广泛参与金的生物化学循环。不同学者尝试模拟野外天然条件,为了获得足够浓度的产物,研究者常会大幅增加化学试剂浓度和微生物数量以加速反应速率。这些研究有可能为合理机制提供一些启示。Warren et al.(2001)试验结果表明形成孢子的细菌能够介导钙积层中金异常的形成。Reith et al.(2009b)以及Mumm et al.(2004,2007)试验研究表明,碳酸盐的形成涉及有机质降解、尿素释放、尿素分解(异养细菌产生的尿素酶分解尿素),随后产生碳酸氢盐和氨气(以及pH升高)是方解石在土壤中形成的途径。同时,在此过程中也涉及到土壤中Au-氨基酸复合物的形成(植物有机质的微生物分解),Au-氨基酸复合物由于微生物分解有机质变得不稳定,进而发生沉淀。最终得到的结论是,生物介导和无机作用相耦合导致钙积层中形成金异常(图3)。这一机制也存在问题:有机质主要在近地表而碳酸盐矿物则形成于剖面较深部位; 在钙积层中尚未能分离出Au-氨基酸配合物以及Au-氰化络合物; 微生物活动的季节性等。Reith et al.(2011)通过采用同步加速微X射线荧光(S-1XRF)和微观X射线吸收近边缘结构光谱法(l-XANES)等方法对金异常钙积层进行精细观察分析发现:① 钙积层中存在丰富的钙化微化石,这些微化石与实验室采用天然样品所形成的钙华细胞和生物薄膜相似; ② 金在钙质中是均匀分布,且与其他贱金属的分布不同,即金与贱金属的行为特征是不同的,发生了分离。由此认为活跃的微生物过程将生物成因的钙碳的生成与金的沉淀结合在一起,推动金异常钙质的形成。

  • 图2 砂金颗粒生物膜上发现的细菌类群环形系统发育树(据Sanyal et al.,2019

  • Fig.2 A neighbor-joining circular phylogenetic tree of bacterial taxa detected on placer gold particles biofilms (after Sanyal et al., 2019)

  • 1.3.3 综合成因

  • Lintern(2015)结合前人研究成果对钙积层金异常成因机理进行了总结:深根植物吸收作用导致金从深部矿化部位迁移至浅表植物枝叶中,进而进入土壤中; 有机质产生氨基酸能够与金形成配合物,微生物降解氨基酸产生CO2同时引发Au氨基酸配合物失稳,导致Au、Ca发生共同沉淀,此外蒸发作用也会导致溶解态Au和Ca过饱和而沉淀,形成钙积层中Au异常(图4)。

  • 将金从深部迁移至浅部的机制纳入钙积层金异常成因机理中(图5),其具体过程为:原生金矿或金矿化通过物理、化学、生物化学风化作用形成溶解态金,包括金的各种络合物、纳米金以及纳米金胶体等,其中溶解态金可以蒸发蒸腾作用、植物根系或者电化学等由深部迁移至浅表,而纳米金颗粒则可以通过地气、地震泵等作用向上垂向迁移至地表呈活动态或吸附态,达到浅表的各种形式金此时与钙无相关性; 在湿润期(强降雨作用),微生物代谢分解有机质作用增强,一方面释放金进入土壤,另一方面有机质分解可以产生腐殖酸、氨基酸等能够与离子金形成各种络合物,部分离子态金则可能被有机质还原为纳米Au0,并在有机质的保护下形成胶体金; 在干旱期,细菌过度分解有机质以及物理化学条件变化引起金氨基酸络合物以及纳米金胶体等失稳,导致金和钙共沉淀,最终在植物-细菌-气候综合作用下形成钙积层金异常。需要注意的是,在此过程中不排除其他因素的影响,如铁锰氧化物在金氧化还原中的作用(Yamashita et al.,2008; Shuster et al.,2014)、硅酸盐矿物还原作用(Mohammadnejad et al.,2013)等,但是这些因素并不占据主导地位。

  • 图3 钙积层中Au和碳酸盐沉淀模型(据Mumm et al.,2007

  • Fig.3 The coupled biologically mediated and abiotic model for the Au enrichment in calcrete (after Mumm et al., 2007)

  • 图4 钙积层金异常综合成因模型,含真菌和植物根际作用(据Lintern,2015

  • Fig.4 The framework model of Au anomaly in calcrete, including the potential role of fungi and rhizosphere processes (after Lintern, 2015)

  • 2 方法概述

  • 2.1 发展历程

  • 以钙积层作为采样介质进行金属矿床(不包含金矿)的地球化学勘查起源于俄罗斯20世纪60年代晚期(McGillis,1967)。尽管钙质土壤中金的富集机理尚不清楚,但是已用于金矿勘查(Borovitskiy et al.,1966)。20世纪80年代,众多学者对Au-钙积层相关性进行了研究,但这些研究基本上是认为它是一种偶发机制——碎屑Au颗粒直接被钙积层物理包裹或者是包含在钙积层中的红土中,而不是与Ca 具有化学相关性(Mann,1984; Smith et al.,1984; Glasson et al.,1988)。虽然有大量的研究工作,但是勘探公司从没有系统地采集钙积层作为采样介质用于金勘查。

  • 1987年,CSIRO和一些勘探公司发起了一项研究项目,深化矿产勘查的地质、地球化学和地球物理方法研究,以低成本有效地定位隐伏、盲金矿或者是深度风化金矿,该项目由AMIRA执行。Lintern(1989)对Bounty金矿上方的钙积层进行了详细的研究,发现Au与Ca(钙积层)高度相关(图6),但直到1995年在Gawler克拉通以钙积层作为采样介质发现Challenger金矿(Edgecombe,1997),此方法的重要性才被广泛接受。随着成功案例的不断增加,在澳大利亚多个地区钙积层已成为金勘查的主要采样介质(Lintern,2004a2004b2005; Butt,2005; Keeling et al.,2005; Dart,2009; van der Hoeket al.,2012)。

  • 2.2 方法流程

  • 钙积层作为采样介质用于金地球化学勘查的理论基础是,在半干旱—干旱气候条件下土壤中钙积层与Au具有高度的相关性,即在埋藏的Au矿床上部的钙积层(或钙质土壤)中会形成Au异常。以钙积层为采样介质的金地球化学勘查的步骤分为以下几步(Lintern,2015)。

  • 图5 钙积层金地球化学勘查综合勘查模型以及成因机理三维示意图(据Lintern et al.,2012

  • Fig.5 3D demonstration of genesis of Au anomaly in calcrete (after Lintern et al., 2012)

  • 图6 西澳Bounty金矿上方风化层Au、Sr、Ca元素剖面图(据Lintern,1989

  • Fig.6 Soil profile of the variations of Au, Sr, Ca from the Bounty gold deposit, western Australia (after Lintern, 1989)

  • 前期工作:确定风化层类型,如迁移而来覆盖层、残余红土型等,进而确定是否存在钙积层在一些钙质特征不是特别明显的地区,可以采用10%的稀盐酸或者采用强酸与粉末样品进行测试进行确定(若存在碳酸盐则会起泡)。在新矿产勘查区,需要谨慎确定金与钙是相关的,通常是以大约10~20 cm的间隔对土壤剖面进行垂直采样。一旦建立了Au-Ca关系,就可以从土壤剖面中采集富含碳酸盐物质的样品,尽管Au和Ca之间的关系可能会有所不同。

  • 样品采集:采用动力钻钻井或者挖一个浅孔,取钙积层组合岩屑样品,采样重量约500~1000 g; 注意简单地表土壤采样或者常规钻井特定深度采样是不合适的,可能忽略与Au异常相关的钙积层。

  • 样品制备:样品制备的程序是多样的,重要的是保证分析方法的一致性。在分析之前,对样品进行干燥以除去水分,防止在研磨过程中产生污染。主要是采样钙积层中的细粒物质,若样品含有大量砂,则需要筛除。对于富含黏土的土壤中,最好的方法是将大块样品中的代表性部分粉碎而不进行预筛分。

  • 分析方法:适用方法包括王水溶解提取后AAS分析、火法测定、氰化物浸出后ICP-MS分析和中子活化,其中王水-ICP-MS方法Au的检测限可以达到0.1×10-9。在风成沙丘等地区推荐采用高精度方法或者进行预富集。应先将样品粉碎,以释放出被碳酸盐碎片、锂或其他物质吸附的Au,注意在酸解过程中要确保有足够酸溶解碳酸盐和Au; 同时研究表明:相比于总体酸解的方法,其他偏提取和选择性提取技术如碘化物、活动态金属提取、酶浸出、HCl和乙酸羟胺并未显示出更好的效果。分析所需样品量相对较小(如10 g),因为与碳酸盐相关的Au通常为亚微米级。

  • 数据分析:通过作各元素的散点图和回归分析对地球化学数据进行初步分析,尤其是Ca/Mg/Sr-Au相关图解。不同地区和环境条件下,Au-Ca关系是复杂的,可能受到多种因素影响(图7)。并且,即使单个土壤剖面中Ca-Au具有强相关性,整个勘查区样品的Ca-Au很难显示出强正相关性,很多背景样品具有高Ca低Au的特征。此外,石膏中所含的钙也会导致Ca-Au之间弱相关性; 如果分析了S含量,则能够识别这种情况。推荐在分析测试中分析Fe元素含量,有助于解释相关指示元素,并且可能与Au有关。

  • 但是,在以钙积层为采样介质的金勘查中也面临着一些问题,需要注意以下几点。

  • (1)钙积层中的金可以侧向运移达几百米,也就是说钙积层中金异常并不一定指示其下部存在Au矿化(Van der Hoek et al.,2012; Lintern,2015)。

  • (2)目前的经验表明,如果迁移而来的覆盖层厚度超过10 m(也有例外,Freddo远景区外来覆盖层厚度达到35 m(Lintern,2013))或者存在湖相沉积物,钙积层则可能是一种无效的采样介质。

  • (3)对风化层背景(景观类型)的分类和制图也至关重要,它是正确解释钙积层中金异常形成原因的基础。

  • (4)在野外如何准确识别钙积层也具有一定难度,因为钙积层(包括钙质土壤)成分变化较大,这主要取决于基质性质以及方解石和白云石的沉淀量(Lintern,2015)。

  • 2.3 勘查模型

  • 景观对风化层中金异常的扩散以及Ca的迁移沉淀等具有一系列复杂的影响(生物、物理和化学作用)。如斜坡会对水成分散(溶解元素如Ca)和风化层物理侵蚀(由于重力作用沿斜坡迁移Au和Ca)产生强烈、可预测的影响。在这些方面,钙积层与其他土壤成分没有区别。重要的是,钙积层易溶解、集聚和机械迁移。由于他的溶解性,它的成分可通过毛细管作用垂向上升。钙积层可以为液态迁移形式的Au以及不同尺寸的机械迁移或包裹的Au颗粒提供栖息地。因此可以在与金矿相关的不同景观位置发现钙积层中存在Au异常。因此,我们将景观划分为四种基本类型(图8)。T类代表存在外来覆盖层; A类代表含红土剖面的风化基岩; B类代表不含红土剖面的风化基岩; C类代表含薄层残余土壤的腐泥岩-基岩。需要注意的是,A类、B类和C类可以出现在迁移而来覆盖层的下部,迁移而来覆盖层是确定采样技术时所要考虑的主导因素。

  • 不同景观条件下的勘查模型如图8所示(Butt,2005; Anand et al.,2010)。A类是红土残余中形成钙积层Au异常,红土残余本身存在Au异常。B类是红土残余被剥蚀的风化剖面,从而在残余土壤中形成钙积层Au异常。T类代表外来迁移覆盖层风化剖面,在矿化上部迁移而来的沉积物中形成钙积层Au异常。对A类和B类景观的勘查模型,存在湿热时期形成的红土残渣(及其降解产物)和铁质至关重要,这些物质通常含有与邻近或远端矿化相关的Au和指示元素的积累,因此,在这些景观区,铁质是矿物勘查的目标。C类通常缺乏铁质及其地球化学异常足迹; TC类由于化学扩散减弱也很难勘查。简单来说,长期的干旱气候会缓缓侵蚀或改变红土剖面,如铁质通常会扩散或被钙积层替代。总体来说,在红土残余、腐泥土或薄层砂岩为主的地区(A类、B类和部分C类)钙积层金异常是强且一致; 并且,T类风化层背景下,Au-Ca相关性可能弱于残积型环境(A类、B类和C类),这可能是由于存在碎屑Au以及诸如周期性洪水造成的物理化学环境不同等因素造成的。

  • 图7 四种土壤剖面的理论地球化学结果

  • Fig.7 Series of theoretical geochemical results for four soil profiles

  • (a)—在崩积层中发现Au(×10-9)和Ca(%)极强的相关性; 不受大金颗粒影响;(b)—Au和Ca具有强相关性,但个别样品Au含量高得多。这些类型的地球化学分布图存在于冲积层和崩积层中,其中可能存在残留或碎屑金颗粒;(c)—Au和Ca是变化的。这些分布在矿床附近,表明存在残留的颗粒金;(d)—Au和Ca不相关,存在强竞争元素如铁或非相关钙(如石膏中的钙)(据Lintern,2015

  • (a) —Strong and mature Au (×10-9) and Ca (%) relationship found in colluvium; unaffected by large Au particles; (b) —Au and Ca are strongly related except for one or two samples when Au is much higher. These types of geochemical profiles are found in alluvium and colluvium where residual or detrital Au particles may be present; (c) —Au and Ca are variable. These profiles are found close to ore deposits and are indicative of residual particulate Au; (d) —Au and Ca are not correlated. These profiles are found when there is a strong competing element e.g. Fe or non-related Ca mineral e.g. gypsum (after Lintern, 2015)

  • 图8 风化层剖面类型示意图以及不同风化层背景下金矿化和钙积层中Au异常模式图(据Lintern,2015

  • Fig.8 Schematic diagram showing regolith section and models and three examples of regolith settings with Au mineralization and Au anomalies in calcrete from southern Yilgarn Craton (after Lintern, 2015)

  • 3 澳大利亚找矿进展

  • 勘查实践及理论研究已证明钙积层是金地球化学勘查的良好介质,但是相对于其他采样介质优劣是我们需要关注和研究的重点。在土壤覆盖区,Au地球化学勘查的采样介质通常还包括钻屑、土壤和植物。

  • 对澳大利亚Gawler克拉通ET金矿(Lintern et al.,2011)以及Gawler克拉通Tunkillia金远景区进行不同化探介质采样,包括钻屑、钙积层、土壤和植物(表1)。Au含量的统计指标和平面分布对比表明:

  • (1)钻屑能够很好地识别Au异常,但是需要钻孔且样品量大,成本较高,同时钻井剖面也表明在垂向剖面上Au含量总体呈现高—低高的特征,这也是其他三种介质采样的理论基础。

  • (2)相比于其他采样介质,考虑到Ca和Au能够发生侧向运移,钙积层能够很好地圈定空间上的较大异常,适合区域采样。

  • (3)以土壤为采样介质能够很好地圈定主要的钙积层Au异常,主要是在薄层覆盖区或者是靠近(或包含)钙积层。

  • (4)植物作为采样介质,能够反映存在Au异常,甚至是矿化深度达到超过40 m形成的异常。其缺点是Au的含量总体偏低且需要勘查区存在广泛的采集目标植物的分布。并且,它与土壤和钙积层Au异常相关性差,在部分Au高异常区(其他方法圈定)植物Au含量异常低,而在低异常区则显示出Au高异常,因此无法准确圈定或遗漏高异常区,降低了它的可信度。Van der Hoek et al.(2012)认为以植物为采样介质适用于区域Au地球化学勘查。

  • 表1 澳大利亚Gawler克拉通ET金矿与Tunkillia金矿远景区不同采样介质Au 含量(×10-9)对比(据Lintern et al.,2011; van der Hoek et al.,2012)

  • Table1 Au content (×10-9) of different sample medium in ET gold prospect and Tunkillia gold prospect in Gawler Craton, Australia (after Lintern et al., 2011; van der Hoek et al., 2012)

  • 就圈定异常效果而言,钙积层仅次于钻屑,优于土壤和植物。但是钙积层作为采样介质需要详细的前期工作以准确识别其分布位置。钙积层的分布是复杂的,除了降雨量外,还受其他因素诸如风化剥蚀、植被发育情况等影响,总体来说其采样深度是大于土壤的采样深度(图9)。综合考虑成本和勘查效果,钙积层略优于土壤(表2)。

  • 使得钙积层作为金地球化学勘查采样介质的一个主要因素就是它们通常出现在较浅的深度,但钙积层出现的深度是变化的。自然地理因素对碳酸钙的迁移和沉淀至关重要,这些因素包括降雨(频率和类型)、蒸发作用、土壤类型、山坡坡度以及覆盖植被的范围和类型等。前人的分析表明土壤的微观环境(如pH、pCO2、盐度和温度)决定碳酸盐矿物的沉淀和溶解。钙积层和土壤中的碳酸盐通常出现在半干旱—干旱地区,降雨量不超过400~500 mm/a。降雨和风带来大量的碱土金属,但是如果降雨量相对于蒸发量过大,这些碳酸盐成分会溶解进入地下水或风化层的深部; 如果降雨量太少,很难渗透进入土壤下部。实际情况则更为复杂,降雨量少的地区钙积层出现的深度甚至会超过降雨量高的地区(Royer,1999)。

  • 图9 存在Au异常的钙积层分布深度统计(收集了35个 Au-Ca具有较好相关性的剖面,深度值采用Ca峰值深度)(据Lintern,200120072015; Mumm et al.,2007; Lintern et al.,200620122013

  • Fig.9 The depth statistics of calcrete with gold anomaly (collected 35 soil section with good Au-Ca relationship) (after Lintern, 2001, 2007, 2015; Mumm et al., 2007; Lintern et al., 2006, 2012, 2013)

  • 表2 不同采样介质成本效果对比分析(据Lintern et al.,2011; Van der Hoek et al.,2012

  • Table2 Comparative analysis of exploration cost with different sampling media (after Lintern et al., 2011; Van der Hoek et al., 2012)

  • 总之,在金地球化学勘查四种常规的采样介质——钻屑、土壤、钙积层和植物中,钙积层作为采样介质是一种成本相对较低(低于钻屑、高于土壤)、效果相对较好(次于钻屑、略优于土壤)勘查方法,能够很好地圈定空间上的较大异常,适合金的区域性勘查工作。

  • 4 中国的适用性

  • Wang Xueqiu et al.(2007a)Wen Xueqin et al.(2010)对中国新疆干旱荒漠区金窝子金矿矿体上方风化层和非矿上方的垂直剖面中的各种金属元素的总量及活动态含量(包括水提取态、土壤吸附与可交换态及铁锰氧化物包裹的金属)进行了详细的分析(图10)。剖面a分析结果表明,在矿体上方金主要在浅部的金主要为吸附和可交换金,浅层的水提取态金含量极低,即金发生垂向迁移至浅表被黏土物质和铁锰氧化物膜所吸附而形成异常。理论上,钙质层应该是分布在含膏岩层的下部,即3号样品所代表的层位,其总金含量明显低于浅部富黏土层,其水提取态金含量略高,但在总金中所占比例极低。因此,在金窝子金矿矿体上方钙质层并不是最佳采样层位,富黏土层才是最佳采样介质。

  • 图10 金窝子金矿矿体正上方和非矿体上方剖面中金含量分布特征(据Wang Xueqiu et al.,2007a

  • Fig.10 Vertical variation of gold content in the regolith over the orebody and the blank area in the Jinwozi gold deposit (after Wang Xueqiu et al., 2007a)

  • (a)—矿体正上方剖面中总金含量;(b)—矿体正上方剖面中水提取态金含量;(c)—矿体正上方剖面中吸附和可交换金含量;(d)—非矿体上方剖面中总金含量;(e)—非矿体上方剖面中水提取态金含量;(f)矿体上方剖面中吸附和可交换金含量;(d)、(e)和(f)中4号样品代表钙质层样品

  • (a) —Total Au content in the regolith over the orebody; (b) —water-extractable Au content in the regolith over the orebody; (c) —absorbed and exchangeable Au content in the regolith over the orebody; (d) —total Au content in the regolith over the blank area; (e) —water-extractable Au content in the regolith over blank area; (f) —absorbed and exchangeable Au content in the regolith over the blank area; and No.4 in (d) , (e) and (f) represents the hard caliche-cemented alluvium in the blank area

  • 图11 金窝子金矿非矿体上方(a)以及Bounty金矿垂直剖面(b)中Au(×10-9),CaO(%)和Fe2O3(%)相关性(据Wang Xueqiu et al.,2007b; Lintern et al.,2009

  • Fig.11 The relationship between Au (×10-9) , CaO (%) and Fe2O3 (%) in a vertical profile over the Jinwozi gold deposit and Bounty gold deposit (after Wang Xueqiu et al., 2007b; Lintern et al., 2009)

  • 在金窝子金矿非矿体上方风化层剖面b中,钙积层中总金含量较高,但略低于浅部的富黏土层; 而水提取金除在基岩和风化岩异常高外,其他层位属钙积层金含量最高。值得注意的是,吸附和可交换金虽然在浅部富黏土层中较高,但在总金中所占比例极低。

  • Wang Xueqiu et al.(2007b)对金窝子金矿非矿上方剖面中不同元素相关性进行了详细的研究,发现Au和Ca含量总体上具有弱相关性(图11a)。金含量最高的层位为3号样品所代表的含石膏富黏土层,钙质胶结层(4号样品)中金的含量反而低于浅部富黏土层。其中,最为明显的是5号样品所代表的富含石膏层中CaO含量极高但是金较低。在整个剖面中Fe2O3与金含量没有相关性。

  • 在西澳的Bounty金矿上方的风化剖面(图11b)中,金与Ca具有极高的相关性,且Fe2O3与金含量也没有相关性,在浅层金含量高的部位反而含量低(Lintern et al.,2009)。造成黏土矿物对金异常影响较小的原因在于,Bounty金矿上方为原地型风化层,黏土矿物在整个剖面中广泛均匀分布,因此其影响不显著。

  • 金窝子金矿的戈壁覆盖层主要由坡-冲积层和冲-洪积层的互层构成(Ye Rong et al.,2004),黏土矿物的发育和分布是不规则的,因此它对金富集的影响也比较显著和复杂。

  • 此外,金窝子金矿为典型的干旱荒漠区,植被稀少,深根植物不发育,因此,植物在金窝子金矿钙积层金异常形成中发挥的作用十分有限植被在钙积层中金异常形成中贡献有多大仍需作进一步的研究。我国干旱地区风化剖面的研究对于钙质层中金异常的形成具有以下启示:① 在干旱气候区风化层中,黏土矿物会对金异常的形成产生重要影响,同时也受景观和风化层类型影响,比较复杂,需要进一步研究; ② 强胶结钙积层中石膏或碳酸钙的大量存在会使金贫化,对Au-Ca相关性造成干扰; ③ 样品金的连续提取结果表明,吸附与可交换金在富含黏土层的地表富集,总金和水提取金在风化层底部富集,因此,金在风化剖面中的含量呈双层模式或“C”型模式,即剖面底层和近地表含量高,中间层位低; ④ 金的迁移主要以纳米微粒形式由蒸发作用或地气流携带至地表,植物对钙质层中金异常的形成作用有待进一步研究; ⑤ 富含黏土的弱胶结钙基层是理想采样层位。

  • 5 结论

  • (1)澳大利亚学者通过对钙积层为采样介质的金地球化学勘查方法的理论研究、勘探实践以及不同采样介质对比研究表明,钙积层作为采样介质是针对半干旱—干旱地区隐伏金矿的一种有效的地球化学勘查方法。

  • (2)钙积层中金异常成因机理较为合理的解释是地气、地震泵、电化学、深根植物等将深部金迁移至浅层土壤,在气候-细菌-植物综合作用下,进一步重新分配在钙质层中形成金异常。

  • (3)中国金窝子金矿地区的剖面研究表明:钙积层中黏土和石膏的含量会对金的富集或稀释产生重要影响。黏土矿物会对金起到富集作用; 石膏或碳酸钙的大量存在会对金起到稀释作用,对Au-Ca相关性造成干扰,因此富含黏土的弱胶结钙积层是理想采样层位。未来可以对重点剖面进行密集采样分析,以厘定钙积层-黏土矿物-石膏三者之间的关系。

  • (3)以钙积层为采样介质的金地球化学勘查方法研究和应用主要集中在澳大利亚地区的西部和南部如Mulline、Callion、MararoaReef、Challenger、SafariBore、Panglo等。在某一勘查区确定以钙积层为采样介质的金地球化学勘查方法是否适用之前,除了气候和降雨量等因素外,还需全球土壤中无机碳分布情况,若含量太低,则不适宜采用此方法。这些潜在勘查地包括中国西北部、中亚、中东、北非、南非西南部、南美洲南部以及北美西南部(Duniway et al.,2010)。总之,以钙积层为采样介质的金地球化学勘查方法在澳大利亚以外地区的推广应用,任重道远。

  • (4)在以钙积层作为Au地球化学勘查的采样介质时,需要注意:该方法仅适用于半干旱—干旱地区,降雨量过大,钙积层形成于较深部位会加大采样成本,而在干旱地区虽然蒸发作用以及地气流等可以将Au迁移至浅表,植被不发育且微生物作用也较弱,无法保证Au-Ca相关性,此时采集相对富集黏土层位或地气法明显要优于以钙积层为采样介质的金地球化学勘查方法; 附近若出露金矿,风化作用带来的颗粒金等会破坏Au-Ca相关性,导致曲线十分复杂,需要进一步详细研究; 在斜坡部位,Au和Ca会在斜坡下部有利部位沉淀形成异常,因此,在解释异常时需要考虑地形等因素。

  • (5)在钙积层表征方面,Priori et al.(2013)提出一种快速、经济的方法高分辨率表征钙质层空间分布,即采用ARP-03(电阻率自动剖面传感)采用常规的克里格法对三个拟深度范围(0~50 cm,0~100 cm和0~170 cm)的钙质层进行表征。这一方法首次成功应用于意大利一葡萄园土壤钙质层表征,但对于金地球化学勘查野外应用的可行性,尚有待验证。

  • 参考文献

    • Anand R R, Phang C, Wildman J E, Lintern M J. 1997. Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration. Australian Journal of Earth Sciences, 44(1): 87~103.

    • Anand R R, Cornelius M, Phang C. 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, Western Australia: a contribution towards understanding metal transportation processes. Geochemistry: Exploration, Environment, Analysis, 7(3): 267~288.

    • Anand R R, Butt C R. M. 2010. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 57(8): 1015~1114.

    • Anand R R, Lintern M, Hough R, Noble R, Verrall M, Salama W, Radford N. 2017. The dynamics of gold in regolith change with differing environmental conditions over time. Geology, 45(2): 127~130.

    • Anand R R, Salama W. 2018. Gold dispersion in transported cover sequences linked to landscape history of the Yilgarn Craton. Conference: Gold18@Perth, At Perth, Australia, 1~4.

    • Anand R R, Hough R M, Salama W, Aspandiar M F, Butt C R M, Gonzalez-Alvarez I, Metelka V. 2019. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: a review with new concepts. Ore Geology Reviews, 104: 294~355.

    • Anderson C, Moreno F, Geurts F, Wreesmann C, Ghomshei M, Meech J. 2005. A comparative analysis of gold-rich plant material using various analytical methods. Microchemical Journal, 81(1): 81~85.

    • Arhin E, Torkonoo S, Zango M S, Kazapoe R. 2018. Gold in Plant: a biogeochemical approach in detecting gold anomalies undercover—a case study at Pelangio Gold Project at Mamfo Area of Brong Ahafo, Ghana. Ghana Mining Journal, 18(1): 39~48.

    • Borovitskiy V P, Shemyakhin V N. 1966. Trial application of carbonate survey in prospecting for gold in Aldan area. International Geology Review, 8(9): 1037~1038.

    • Buskard J, Reid N, Gray D. 2019. Parts per trillion (ppt) gold in groundwater: can we believe it, what is anomalous and how do we use it? Geochemistry: Exploration, Environment, Analysis, Geochem, 201032.

    • Butt C R M. 2005. Geochemical dispersion, process and exploration models. Regolith Expression of Australian Ore Systems. CRC LEME, 8~106.

    • Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7~32.

    • Cao Jianjin. 2011. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, southern China. Geochemical Journal Gj, 45(3): 9~13.

    • Carver R N, Chenoweth L M, Mazzucchelli R H, Oates C J, Robbins T W. 1987. ‘Lag’—a geochemical sampling medium for arid terrain. Journal of Geochemical Exploration, 28: 183~199.

    • Chen Ying, Guo Yingying, Liu Guangliang, Song Maoyong, Cai Yong, Yin Yongguang. 2019. Dissolved organic matter-mediated reduction of ionic Au(III) to elemental Au nanoparticles and their growth to visible granules. Chinese Chemical Letters, 31(7): 1970~1973.

    • Dart R C. 2009. Gold-in-calcrete: a continental to profile scale study of regolith carbonates and their association with gold mineralisation. Doctor thesis of the University of Adelaide.

    • Dart R C, Barovich K M, Chittleborough D J, Hill S M. 2007. Calcium in regolith carbonates of central and southern Australia: its source and implications for the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 322~334.

    • Dart R C, Barovich K M, Hill S M, Chittleborough D J. 2012. Sr-isotopes as a tracer of Ca sources and mobility in profiles hosting regolith carbonates from southern Australia. Australian Journal of Earth Sciences, 59(3): 373~382.

    • Darwish M A G. 2017. Stream sediment geochemical patterns around an ancient gold mine in the Wadi El Quleib area of the Allaqi region, south Eastern Desert of Egypt: Implications for mineral exploration and environmental studies. Journal of Geochemical Exploration, 175: 156~175.

    • Darwish M A G, Poellmann H. 2010. Geochemical exploration for gold in the Nile Valley Block(A) area, Wadi Allaqi, south Egypt. Geochemistry, 70(4): 353~362.

    • Davy R, El-Ansary M. 1986. Geochemical patterns in the laterite profile at the Boddington gold deposit, Western Australia. Journal of Geochemical Exploration, 26: 119~144.

    • Doherty M E. 2000. Seasonal variations in soil gas, sagebrush and soils: implications for geochemical dispersion processes. Great Basin, Nevada, Geological Society of Nevada Symposium, Geochemical Methods for Buried Ore Deposits, Short Course Notes. Association of Exploration Geochemists, 22.

    • Doherty M E, Bratland C T, Highsmith R P, Jaacks J A. 2000. Detection of buried gold mineralization by selective extractions of soil samples, sagebrush and soil gases. Geological Society of Nevada, Geology and Ore Deposits 2000: The Great Basin and Beyond Symposium Program With Abstracts, 44~45.

    • Duniway M C, Herrick J E, Monger H C. 2010. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience. Oecologia, 163(1): 215~226.

    • Dunn C E. 1995. Mineral exploration beneath temperate forests: the information supplied by trees. Exploration and Mining Geology, 3(4): 197~204.

    • Dunn C E, Christie A B. 2019. Tree ferns and tea trees in biogeochemical exploration for epithermal Au and Ag in New Zealand. Geochemistry: Exploration, Environment, Analysis, 20(3): 299~314.

    • Edgecombe D. 1997. Challenger Gold Deposit. Primary Industries and Resources, South Australia. MESA Journal, 4: 8~11.

    • El-Makky A M, Sediek K N. 2012. Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural resources research, 21(1): 95~115.

    • Embui V, Omang B, Che V, Nforba M, Suh E. 2013. Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, Northern Cameroon (West Africa). Natural Science, 5: 282~290.

    • Erdman J A, Olson J C. 1985. The use of plants in prospecting for gold: a brief overview with a selected bibliography and topic index. Journal of Geochemical Exploration, 24(3): 281~304.

    • Franceschi V R, Nakata P A. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology, 56: 41~71.

    • Glasson M J, Lehne R W, Wellmer F W. 1988. Gold exploration in the callion area, eastern goldfields, Western Australia. Journal of Geochemical Exploration, 31: 1~19.

    • Govett G J S. 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely spaced surface soil samples. Journal of Geochemical Exploration, 6: 359~382.

    • Heberlein D R, Samson H. 2010. An assessment of soil geochemical methods for detecting copper-gold porphyry mineralization through Quaternary glaciofluvial sediments at the Kwanika Central Zone, north-central British Columbia. Report, 2010~2013.

    • Hough R M, Noble R R P, Reich M. 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1): 55~61.

    • Hu Guai, Cao Jianjin, Jiang Tao, Wang, Zhengyang, Yi Zebang. 2017. Prospecting application of nanoparticles and nearly nanoscale particles within plant tissues. Resource Geology, 67(3): 316~329.

    • Iglesias Martínez M, Ordóñez Casado B, Berrezueta E, Pérez Garrido C. 2018. Morphological and compositional characterization of gold contained in ferricretes of a weathered profile (Minvoul greenstone belt, Gabon). [Macla: 23]. Conference: XXXVII Reunión Científica de la Sociedad Española de Mineralogía. At Madrid.

    • Kasthuri J, Kathiravan K, Rajendiran N. 2009. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research, 11(5): 1075~1085.

    • Keeling J L, Hartley K L. 2005. Poona and Wheal Hughes Cu deposits, Moonta, South Australia. Regolith Expression of Australian Ore Systems, 383~385.

    • Kelley D L, Hall G E, Closs L G, Hamilton I C, McEwen R M. 2003. The use of partial extraction geochemistry for copper exploration in northern Chile. Geochemistry: Exploration, Environment, Analysis, 3(1): 85~104.

    • Kovalevskii A L, Kovalevskaya O M. 1989. Biogeochemical haloes of gold in various species and parts of plants. Applied geochemistry, 4(4): 369~374.

    • Kristiansson K, Malmqvist L. 1987. Trace elements in the geogas and their relation to bedrock composition. Geoexploration, 24(6): 517~534.

    • Kuznetsova A, Khokhlova O. 2015. Dynamics and genesis of calcic accumulations in soils and sediments of the Argentinean Pampa. International Journal of Sediment Research, 30(3): 179~189.

    • Lamplugh G W. 1902. Calcrete. Geological Magazine, 9: 75.

    • Lee S Y, Krishnamurthy S, Cho C W, Yun Y S. 2016. Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustainable Chemistry & Engineering, 4(5): 2651~2659.

    • Leybourne M I, Cameron E M. 2010. Groundwater in geochemical exploration. Geochemistry Exploration Environment Analysis, 10(2): 99~118.

    • Leybourne M I, Cameron E M, Reich M, Palacios C, Faure K, Johannesson K H. 2013. Stable isotopic composition of soil calcite(O, C) and gypsum(S) overlying Cu deposits in the Atacama Desert, Chile: implications for mineral exploration, salt sources, and paleoenvironmental reconstruction. Applied geochemistry, 29: 55~72.

    • Lintern M J. 1989. Study of the distribution of gold in soils at Mt. Hope, Western Australia. Restricted Report 24R. CSIRO/AMIRA Project P241. CSIRO Australia. Division of Exploration Geoscience, Perth, 40.

    • Lintern M J. 2001. Exploration for gold using calcrete-lessons from the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis, 1(3): 237~252.

    • Lintern M J. 2004a. Bounty gold deposit, Forrestania Greenstone belt, Western Australia. In: ButtC R M, Robertson I D M, Cornelius M, Scott K M, eds. A Compilation of Geochemical Case Histories and Conceptual Models. CRC LEME: Perth, 225~227.

    • Lintern M J. 2004b. Steinway gold deposit, Kalgoorlie, Western Australia. In: Butt C, Robertson I, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 330~332.

    • Lintern M J. 2005. Challenger gold prospect, Gawler Craton, South Australia. In: Butt C R M, Robertson I D M, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 236~238.

    • Lintern M J. 2007. Vegetation controls on the formation of gold anomalies in calcrete and other materials at the Barns Gold Prospect, Eyre Peninsula, South Australia. Geochemistry: Exploration, Environment, Analysis, 7(3): 249~266.

    • Lintern M J. 2015. The association of gold with calcrete. Ore Geology Reviews, 66: 132~199.

    • Lintern M J, Sheard M J, Chivas A R. 2006. The source of pedogenic carbonate associated with gold-calcrete anomalies in the western Gawler Craton, South Australia. Chemical Geology, 235(3-4): 299~324.

    • Lintern M J, Hough R M, Ryan C G, Watling J, Verrall M. 2009. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES. Geochimica et Cosmochimica Acta, 73(6): 1666~1683.

    • Lintern M J, Sheard M, Buller N. 2011. The gold-in-calcrete anomaly at the ET gold prospect, Gawler Craton, South Australia. Applied Geochemistry, 26(12): 2027~2043.

    • Lintern M J, Hough R M, Ryan C G. 2012. Experimental studies on the gold-in-calcrete anomaly at Edoldeh Tank gold prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 112: 189~205.

    • Lintern M J, Anand R, Ryan C, Paterson D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature communications, 4: 2614.

    • Liu Hanliang, Zhang Bimin, Liu Dongshen, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).

    • Lu Mei, Ye Rong, Wang Zhenkai, Wang Xiaojia. 2019. Geogas prospecting for buried deposits under loess overburden: taking Shenjiayao gold deposit as an example. Journal of Geochemical Exploration, 197: 122~129.

    • Lucas A, Rate A, Zhang H, Salmon S U, Radford N. 2012. Development of the diffusive gradients in thin films technique for the measurement of labile gold in natural waters. Analytical Chemistry, 84(16): 6994~7000.

    • Luo Xiaoen, Cao Jianjin. 2018. Discovery of nano-sized gold particles in natural plant tissues. Environmental Chemistry Letters, 16(4): 1441~1448.

    • Mann A. W, 1984. Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Economic Geology, 79(1): 38~49.

    • McGillis J L. 1967. The Silver Content of Caliche on Alluvial Fans as a Regional Guide to Areas of Silver and Gold Mineralisation in the Basin and Range Province Part fulfilment of MSc. Thesis University of Nevada, Reno, USA 30.

    • Mohammadnejad S, Provis J L, Van Deventer J S J. 2013. Reduction of gold(III) chloride to gold(0) on silicate surfaces. Journal of Colloid and Interface Science, 389(1): 252~259.

    • Mumm A S, Reith F. 2004. The biogeochemistry of calcrete forming processes. In Ethnographic Praxis in Industry Conference Proceedings, 316~320.

    • Mumm A S, Reith F. 2007. Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 92(1): 13~33.

    • Muntean J, Taufen P. 2011. Geochemical exploration for gold through transported alluvial cover in Nevada: examples from the Cortez Mine. Economic Geology, 106: 809~833.

    • Nadeau O, Harris J. 2019. Remobilization and adsorption of colloidal gold on nano-particulate chlorite at the Hardrock Archean orogenic gold deposits: a new tool for gold exploration. Journal of Geochemical Exploration, 204: 181~205.

    • Nilson R H, Peterson E W, Lie K H, Burkhard N R, Hearst J R. 1991. Atmospheric pumping: a mechanism causing vertical transport of contaminated gases through fractured permeable media. Journal of Geophysical Research: Solid Earth, 96(B13): 21933~21948.

    • Okujeni C D, Ackon P, Baugaard W, Langa N. 2005. Controls of element dispersion in aeolian sand and calcrete-dominated regolith associated with gold mineralization in the Kraaipan greenstone belt, South Africa. Geochemistry: Exploration, Environment, Analysis, 5(3): 223~231.

    • Osovetsky B. 2017. Genesis of natural nanogold. In Natural Nanogold. Springer, 87~126.

    • Phillips G N, Vearncombe J R, Anand R R, Butt C R M, Eshuys E, Groves D I, Smith R E. 2019. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia. Ore Geology Reviews, 103009.

    • Phillips G N, Vearncombe J R, Eshuys E. 2019. Gold production and the importance of exploration success: Yilgarn Craton, Western Australia. Ore Geology Reviews, 105: 137~150.

    • Priori S, Fantappiè M, Magini S, Costantini E A C. 2013. Using the arp-03 for high-resolution mapping of calcic horizons. International Agrophysics, 27(3): 313~321.

    • Quade J, Chivas A R, McCulloch M T. 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(1): 103~117.

    • Radford N W, Burton P E. 1999. The geochemistry of transported overburden: the time factor. An example from the Fender deposit, Big Bell, Western Australia. Journal of Geochemical Exploration, 66: 71~83.

    • Reid N, Hill S M. 2013. Spinifex biogeochemistry across arid Australia: Mineral exploration potential and chromium accumulation. Applied Geochemistry, 29: 92~101.

    • Reith F, Etschmann B, Dart R C, Brewe D L, Vogt S, Mumm A S, Brugger J. 2011. Distribution and speciation of gold in biogenic and abiogenic calcium carbonates—implications for the formation of gold anomalous calcrete. Geochimica et Cosmochimica Acta, 75(7): 1942~1956.

    • Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Martinez-Criado G. 2009a. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the National Academy of Sciences, 106(42): 17757~17762.

    • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode P L, Gregg A, Southam G. 2010. Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology, 38(9): 843~846.

    • Reith F, Stewart L, Wakelin S A. 2012. Supergene gold transformation: secondary and nano-particulate gold from southern New Zealand. Chemical Geology, 320: 32~45.

    • Reith F, Wakelin S A, Gregg A L, Mumm A S. 2009b. A microbial pathway for the formation of gold-anomalous calcrete. Chemical Geology, 258(3-4): 315~326.

    • Richards J H, Caldwell M M. 1987. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73(4): 486~489.

    • Royer D L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 27(12): 1123~1126.

    • Sanyal S K, Shuster J, Reith F. 2019. Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 190: 131~147.

    • Shuster J, Bolin T, Maclean L C W, Southam G. 2014. The effect of iron-oxidizing bacteria on the stability of gold(I) thiosulphate complex. Chemical Geology, 376: 52~60.

    • Shuster J, Southam G. 2015. The in-vitro “growth” of gold grains. Geology, 43(1): 79~82.

    • Shuster J, Lengke M, Márquez-Zavalía M F, Southam G. 2016. Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Economic Geology, 111(6): 1485~1494.

    • Shuster J, Reith F, Cornelis G, Parsons J E, Parsons J M, Southam G. 2017. Secondary gold structures: relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450: 154~164.

    • Smee B W. 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61: 149~172.

    • Smith B H, Keele R A. 1984. Some observations on the geochemistry of gold mineralization in the weathered zone at Norseman, Western Australia. Journal of Geochemical Exploration, 22: 1~20.

    • Smith R E, Perdrix R L. 1983. Pisolitic laterite geochemistry in the Golden Grovemassive sulphide district, Western Australia. Journal of Geochemical Exploration, 18: 131~164.

    • Tong Chunhan, Li Juchu. 1999. Geogas prospecting and its mechanism in the search for deep seated or concealed gold deposits. Chinese Journal of Geophysics, 42(1): 135~142(in Chinese with English abstract).

    • Van der Hoek B G, Hill S M, Dart R C. 2012. Calcrete and plant inter-relationships for the expression of concealed mineralization at the Tunkillia gold prospect, central Gawler Craton, Australia. Geochemistry: Exploration, Environment, Analysis, 12, 361~372.

    • Vural A. 2017. Gold and Silver Content of Plant Helichrysum Arenarium, Popularly Known as the Golden Flower, Growing in Gümüşhane, NE Turkey. Acta Physica Polonica A, 132(3): 978~980.

    • Wang Xiaojia, Lu Mei, Wang Zhenkai, Ye Rong. 2016. Characteristics of geogas anomalies measured in the Shenjiayao gold deposit of Shan County, Henan Province. Geology and Exploration, 52(4): 667~677(in Chinese with English abstract).

    • Wang Xueqiu. 1998a. Geochemical methods and application for giant ore deposits in concealed terrains. Geophysical & Geochemical Exploration, 22(2): 81~89 (in Chinese with English abstract).

    • Wang Xueqiu. 1998b. Leaching of mobile forms of metals in overburden: development and application. Journal of Geochemical Exploration, 61: 39~55.

    • Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.

    • Wang Xueqiu, Xie Xuejin, Cheng Zhizhong, Liu Dawen. 1999. Delineation of regional geochemical anomalies penetrating through thick cover in concealed terrains—a case history from the olympic dam deposit, Australia. Journal of Geochemical Exploration, 66: 85~97.

    • Wang Xueqiu, Xie Xuejin. 2000. Exploration Geochemistry of Gold Principles and Methodology: Tactics and Strategy. Jinan: Shandong Science and Technology Press (in Chinese).

    • Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007a. Vertical variations and dispersion of elements in arid desertregolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.

    • Wang Xueqiu, Chi Qinhua, Liu Hanliang, Nie Lanshi, Zhang Bimin. 2007b. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 153~161.

    • Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112(in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Lin Xin, Xu Shanfa, Ye Rong. 2016a. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in china. Ore Geology Reviews, 73: 417~431.

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2016b. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).

    • Warren L A, Maurice P A, Parmar N, Ferris F G. 2001. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18(1): 93~115.

    • Wen Xueqin, Wang Xueqiu, Ye Rong, Liu Zhanyuan, Chen Zhizhong, Chi Qinghua. 2010. Vertical variation and dispersion of metal elements in the arid desert regolith——a case study at the Jinwozi gold deposit, Xinjiang, China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 38~44 (in Chinese with English abstract).

    • Wolff K, Tiddy C, Giles D, Hill S M, Gordon G. 2017. Distinguishing pedogenic carbonates from weathered marine carbonates on the Yorke Peninsula, South Australia: implications for mineral exploration. Journal of Geochemical Exploration, 181: 81~98.

    • Yamashita M, Ohashi H, Kobayashi Y, Okaue Y, Kurisaki T, Wakita H, Yokoyama T. 2008. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold(Au(0)): analysis by Mössbauer spectroscopy and XPS. Journal of Colloid and Interface Science, 319(1): 25~29.

    • Ye Rong, Wang Xueqiu, Zhao Lunshan, Chen Dexing, Fu Yuanhui. 2004. Deep penetration geochemistry methods in gobi-overburden terrain of the Jinwozi metallogenic belt. Geology and Prospecting, 40(6): 67~72 (in Chinese with English abstract).

    • Yilmaz H, Sonmez F N, Carranza E J M. 2015. Discovery of Au-Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. Journal of Geochemical Exploration, 158, 55~73.

    • Yuan Chungang, Huo Can, Yu Shuixin, Gui Bing. 2017. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E Low-dimensional Systems and Nanostructures, 85: 19~26.

    • Zhang Bimin, Wang Xueqiu, Chi Qinghua, Lv Qingtian. 2011. Dispersion and migration of gold under land scape evolution in Gobi desert terrains. Geoscience, 25(3): 575~580 (in Chinese with English abstract).

    • Zhang Bimin, Chi Qinghua, Zhang Yongqin. 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposit in arid desert terrains. Earth Science Frontiers, 19(3): 130~137(in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.

    • Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).

    • Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019a. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and Their Significance. Minerals, 9(7): 414.

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019b. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).

    • Zomorrodian M, Shayestehfar M R. 2019. Indicator ratios and additive composite halos in stream sediment samples as a geochemical indicator for identifying promising epithermal gold deposit in the north of Kashmar. Arabian Journal of Geosciences, 12(11): 331.

    • 刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.

    • 童纯菡, 李巨初. 1999. 地气测量寻找深部隐伏金矿及其机理研究. 地球物理学报, 42(1): 135~142.

    • 王晓佳, 鲁美, 王振凯, 叶荣. 2016. 申家窑金矿床地气测量异常特征. 地质与勘探, 52(4): 667~677.

    • 王学求. 1998a. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用. 物探与化探, 22(2): 81~89.

    • 王学求, 谢学锦. 2000. 金的勘查地球化学理论与方法·战略与战术. 济南: 山东科学技术出版社.

    • 王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.

    • 王学求, 张必敏, 刘雪敏. 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.

    • 王学求, 张必敏, 叶荣. 2016b. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.

    • 文雪琴, 王学求, 叶荣, 刘占元, 程志中, 迟清华. 2010. 干旱戈壁区金属元素的垂向变化与分散——以新疆金窝子金矿为例. 矿物岩石地球化学通报, 29(1): 38~44.

    • 叶荣, 王学求, 赵伦山, 陈德兴, 傅渊慧. 2004. 戈壁覆盖区金窝子矿带深穿透地球化学方法研究. 地质与勘探, 40(6): 67~72.

    • 张必敏, 王学求, 迟清华, 吕庆田. 2011. 戈壁覆盖区景观演化与Au的分散迁移. 现代地质, 25(3): 575~580.

    • 张必敏, 迟清华, 张永勤. 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130~137.

    • 张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.

    • 张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019b. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.

  • 参考文献

    • Anand R R, Phang C, Wildman J E, Lintern M J. 1997. Genesis of some calcretes in the southern Yilgarn Craton, Western Australia: implications for mineral exploration. Australian Journal of Earth Sciences, 44(1): 87~103.

    • Anand R R, Cornelius M, Phang C. 2007. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, Western Australia: a contribution towards understanding metal transportation processes. Geochemistry: Exploration, Environment, Analysis, 7(3): 267~288.

    • Anand R R, Butt C R. M. 2010. A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 57(8): 1015~1114.

    • Anand R R, Lintern M, Hough R, Noble R, Verrall M, Salama W, Radford N. 2017. The dynamics of gold in regolith change with differing environmental conditions over time. Geology, 45(2): 127~130.

    • Anand R R, Salama W. 2018. Gold dispersion in transported cover sequences linked to landscape history of the Yilgarn Craton. Conference: Gold18@Perth, At Perth, Australia, 1~4.

    • Anand R R, Hough R M, Salama W, Aspandiar M F, Butt C R M, Gonzalez-Alvarez I, Metelka V. 2019. Gold and pathfinder elements in ferricrete gold deposits of the Yilgarn Craton of Western Australia: a review with new concepts. Ore Geology Reviews, 104: 294~355.

    • Anderson C, Moreno F, Geurts F, Wreesmann C, Ghomshei M, Meech J. 2005. A comparative analysis of gold-rich plant material using various analytical methods. Microchemical Journal, 81(1): 81~85.

    • Arhin E, Torkonoo S, Zango M S, Kazapoe R. 2018. Gold in Plant: a biogeochemical approach in detecting gold anomalies undercover—a case study at Pelangio Gold Project at Mamfo Area of Brong Ahafo, Ghana. Ghana Mining Journal, 18(1): 39~48.

    • Borovitskiy V P, Shemyakhin V N. 1966. Trial application of carbonate survey in prospecting for gold in Aldan area. International Geology Review, 8(9): 1037~1038.

    • Buskard J, Reid N, Gray D. 2019. Parts per trillion (ppt) gold in groundwater: can we believe it, what is anomalous and how do we use it? Geochemistry: Exploration, Environment, Analysis, Geochem, 201032.

    • Butt C R M. 2005. Geochemical dispersion, process and exploration models. Regolith Expression of Australian Ore Systems. CRC LEME, 8~106.

    • Cameron E M, Hamilton S M, Leybourne M I, Hall G E M, McClenaghan M B. 2004. Finding deeply buried deposits using geochemistry. Geochemistry: Exploration, Environment, Analysis, 4(1): 7~32.

    • Cao Jianjin. 2011. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, southern China. Geochemical Journal Gj, 45(3): 9~13.

    • Carver R N, Chenoweth L M, Mazzucchelli R H, Oates C J, Robbins T W. 1987. ‘Lag’—a geochemical sampling medium for arid terrain. Journal of Geochemical Exploration, 28: 183~199.

    • Chen Ying, Guo Yingying, Liu Guangliang, Song Maoyong, Cai Yong, Yin Yongguang. 2019. Dissolved organic matter-mediated reduction of ionic Au(III) to elemental Au nanoparticles and their growth to visible granules. Chinese Chemical Letters, 31(7): 1970~1973.

    • Dart R C. 2009. Gold-in-calcrete: a continental to profile scale study of regolith carbonates and their association with gold mineralisation. Doctor thesis of the University of Adelaide.

    • Dart R C, Barovich K M, Chittleborough D J, Hill S M. 2007. Calcium in regolith carbonates of central and southern Australia: its source and implications for the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 322~334.

    • Dart R C, Barovich K M, Hill S M, Chittleborough D J. 2012. Sr-isotopes as a tracer of Ca sources and mobility in profiles hosting regolith carbonates from southern Australia. Australian Journal of Earth Sciences, 59(3): 373~382.

    • Darwish M A G. 2017. Stream sediment geochemical patterns around an ancient gold mine in the Wadi El Quleib area of the Allaqi region, south Eastern Desert of Egypt: Implications for mineral exploration and environmental studies. Journal of Geochemical Exploration, 175: 156~175.

    • Darwish M A G, Poellmann H. 2010. Geochemical exploration for gold in the Nile Valley Block(A) area, Wadi Allaqi, south Egypt. Geochemistry, 70(4): 353~362.

    • Davy R, El-Ansary M. 1986. Geochemical patterns in the laterite profile at the Boddington gold deposit, Western Australia. Journal of Geochemical Exploration, 26: 119~144.

    • Doherty M E. 2000. Seasonal variations in soil gas, sagebrush and soils: implications for geochemical dispersion processes. Great Basin, Nevada, Geological Society of Nevada Symposium, Geochemical Methods for Buried Ore Deposits, Short Course Notes. Association of Exploration Geochemists, 22.

    • Doherty M E, Bratland C T, Highsmith R P, Jaacks J A. 2000. Detection of buried gold mineralization by selective extractions of soil samples, sagebrush and soil gases. Geological Society of Nevada, Geology and Ore Deposits 2000: The Great Basin and Beyond Symposium Program With Abstracts, 44~45.

    • Duniway M C, Herrick J E, Monger H C. 2010. Spatial and temporal variability of plant-available water in calcium carbonate-cemented soils and consequences for arid ecosystem resilience. Oecologia, 163(1): 215~226.

    • Dunn C E. 1995. Mineral exploration beneath temperate forests: the information supplied by trees. Exploration and Mining Geology, 3(4): 197~204.

    • Dunn C E, Christie A B. 2019. Tree ferns and tea trees in biogeochemical exploration for epithermal Au and Ag in New Zealand. Geochemistry: Exploration, Environment, Analysis, 20(3): 299~314.

    • Edgecombe D. 1997. Challenger Gold Deposit. Primary Industries and Resources, South Australia. MESA Journal, 4: 8~11.

    • El-Makky A M, Sediek K N. 2012. Stream sediments geochemical exploration in the northwestern part of Wadi Allaqi Area, South Eastern Desert, Egypt. Natural resources research, 21(1): 95~115.

    • Embui V, Omang B, Che V, Nforba M, Suh E. 2013. Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, Northern Cameroon (West Africa). Natural Science, 5: 282~290.

    • Erdman J A, Olson J C. 1985. The use of plants in prospecting for gold: a brief overview with a selected bibliography and topic index. Journal of Geochemical Exploration, 24(3): 281~304.

    • Franceschi V R, Nakata P A. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology, 56: 41~71.

    • Glasson M J, Lehne R W, Wellmer F W. 1988. Gold exploration in the callion area, eastern goldfields, Western Australia. Journal of Geochemical Exploration, 31: 1~19.

    • Govett G J S. 1976. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely spaced surface soil samples. Journal of Geochemical Exploration, 6: 359~382.

    • Heberlein D R, Samson H. 2010. An assessment of soil geochemical methods for detecting copper-gold porphyry mineralization through Quaternary glaciofluvial sediments at the Kwanika Central Zone, north-central British Columbia. Report, 2010~2013.

    • Hough R M, Noble R R P, Reich M. 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1): 55~61.

    • Hu Guai, Cao Jianjin, Jiang Tao, Wang, Zhengyang, Yi Zebang. 2017. Prospecting application of nanoparticles and nearly nanoscale particles within plant tissues. Resource Geology, 67(3): 316~329.

    • Iglesias Martínez M, Ordóñez Casado B, Berrezueta E, Pérez Garrido C. 2018. Morphological and compositional characterization of gold contained in ferricretes of a weathered profile (Minvoul greenstone belt, Gabon). [Macla: 23]. Conference: XXXVII Reunión Científica de la Sociedad Española de Mineralogía. At Madrid.

    • Kasthuri J, Kathiravan K, Rajendiran N. 2009. Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. Journal of Nanoparticle Research, 11(5): 1075~1085.

    • Keeling J L, Hartley K L. 2005. Poona and Wheal Hughes Cu deposits, Moonta, South Australia. Regolith Expression of Australian Ore Systems, 383~385.

    • Kelley D L, Hall G E, Closs L G, Hamilton I C, McEwen R M. 2003. The use of partial extraction geochemistry for copper exploration in northern Chile. Geochemistry: Exploration, Environment, Analysis, 3(1): 85~104.

    • Kovalevskii A L, Kovalevskaya O M. 1989. Biogeochemical haloes of gold in various species and parts of plants. Applied geochemistry, 4(4): 369~374.

    • Kristiansson K, Malmqvist L. 1987. Trace elements in the geogas and their relation to bedrock composition. Geoexploration, 24(6): 517~534.

    • Kuznetsova A, Khokhlova O. 2015. Dynamics and genesis of calcic accumulations in soils and sediments of the Argentinean Pampa. International Journal of Sediment Research, 30(3): 179~189.

    • Lamplugh G W. 1902. Calcrete. Geological Magazine, 9: 75.

    • Lee S Y, Krishnamurthy S, Cho C W, Yun Y S. 2016. Biosynthesis of gold nanoparticles using Ocimum sanctum extracts by solvents with different polarity. ACS Sustainable Chemistry & Engineering, 4(5): 2651~2659.

    • Leybourne M I, Cameron E M. 2010. Groundwater in geochemical exploration. Geochemistry Exploration Environment Analysis, 10(2): 99~118.

    • Leybourne M I, Cameron E M, Reich M, Palacios C, Faure K, Johannesson K H. 2013. Stable isotopic composition of soil calcite(O, C) and gypsum(S) overlying Cu deposits in the Atacama Desert, Chile: implications for mineral exploration, salt sources, and paleoenvironmental reconstruction. Applied geochemistry, 29: 55~72.

    • Lintern M J. 1989. Study of the distribution of gold in soils at Mt. Hope, Western Australia. Restricted Report 24R. CSIRO/AMIRA Project P241. CSIRO Australia. Division of Exploration Geoscience, Perth, 40.

    • Lintern M J. 2001. Exploration for gold using calcrete-lessons from the Yilgarn Craton, Western Australia. Geochemistry: Exploration, Environment, Analysis, 1(3): 237~252.

    • Lintern M J. 2004a. Bounty gold deposit, Forrestania Greenstone belt, Western Australia. In: ButtC R M, Robertson I D M, Cornelius M, Scott K M, eds. A Compilation of Geochemical Case Histories and Conceptual Models. CRC LEME: Perth, 225~227.

    • Lintern M J. 2004b. Steinway gold deposit, Kalgoorlie, Western Australia. In: Butt C, Robertson I, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 330~332.

    • Lintern M J. 2005. Challenger gold prospect, Gawler Craton, South Australia. In: Butt C R M, Robertson I D M, Cornelius M, Scott K M (Eds. ). Regolith Expression of Australian Ore Systems. CRC LEME: Perth, 236~238.

    • Lintern M J. 2007. Vegetation controls on the formation of gold anomalies in calcrete and other materials at the Barns Gold Prospect, Eyre Peninsula, South Australia. Geochemistry: Exploration, Environment, Analysis, 7(3): 249~266.

    • Lintern M J. 2015. The association of gold with calcrete. Ore Geology Reviews, 66: 132~199.

    • Lintern M J, Sheard M J, Chivas A R. 2006. The source of pedogenic carbonate associated with gold-calcrete anomalies in the western Gawler Craton, South Australia. Chemical Geology, 235(3-4): 299~324.

    • Lintern M J, Hough R M, Ryan C G, Watling J, Verrall M. 2009. Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES. Geochimica et Cosmochimica Acta, 73(6): 1666~1683.

    • Lintern M J, Sheard M, Buller N. 2011. The gold-in-calcrete anomaly at the ET gold prospect, Gawler Craton, South Australia. Applied Geochemistry, 26(12): 2027~2043.

    • Lintern M J, Hough R M, Ryan C G. 2012. Experimental studies on the gold-in-calcrete anomaly at Edoldeh Tank gold prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 112: 189~205.

    • Lintern M J, Anand R, Ryan C, Paterson D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nature communications, 4: 2614.

    • Liu Hanliang, Zhang Bimin, Liu Dongshen, Wang Xueqiu, Zhang Zhenhai, Han Zhixuan. 2016. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province. Geophysical and Geochemical Exploration, 40(1): 33~39 (in Chinese with English abstract).

    • Lu Mei, Ye Rong, Wang Zhenkai, Wang Xiaojia. 2019. Geogas prospecting for buried deposits under loess overburden: taking Shenjiayao gold deposit as an example. Journal of Geochemical Exploration, 197: 122~129.

    • Lucas A, Rate A, Zhang H, Salmon S U, Radford N. 2012. Development of the diffusive gradients in thin films technique for the measurement of labile gold in natural waters. Analytical Chemistry, 84(16): 6994~7000.

    • Luo Xiaoen, Cao Jianjin. 2018. Discovery of nano-sized gold particles in natural plant tissues. Environmental Chemistry Letters, 16(4): 1441~1448.

    • Mann A. W, 1984. Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Economic Geology, 79(1): 38~49.

    • McGillis J L. 1967. The Silver Content of Caliche on Alluvial Fans as a Regional Guide to Areas of Silver and Gold Mineralisation in the Basin and Range Province Part fulfilment of MSc. Thesis University of Nevada, Reno, USA 30.

    • Mohammadnejad S, Provis J L, Van Deventer J S J. 2013. Reduction of gold(III) chloride to gold(0) on silicate surfaces. Journal of Colloid and Interface Science, 389(1): 252~259.

    • Mumm A S, Reith F. 2004. The biogeochemistry of calcrete forming processes. In Ethnographic Praxis in Industry Conference Proceedings, 316~320.

    • Mumm A S, Reith F. 2007. Biomediation of calcrete at the gold anomaly of the Barns prospect, Gawler Craton, South Australia. Journal of Geochemical Exploration, 92(1): 13~33.

    • Muntean J, Taufen P. 2011. Geochemical exploration for gold through transported alluvial cover in Nevada: examples from the Cortez Mine. Economic Geology, 106: 809~833.

    • Nadeau O, Harris J. 2019. Remobilization and adsorption of colloidal gold on nano-particulate chlorite at the Hardrock Archean orogenic gold deposits: a new tool for gold exploration. Journal of Geochemical Exploration, 204: 181~205.

    • Nilson R H, Peterson E W, Lie K H, Burkhard N R, Hearst J R. 1991. Atmospheric pumping: a mechanism causing vertical transport of contaminated gases through fractured permeable media. Journal of Geophysical Research: Solid Earth, 96(B13): 21933~21948.

    • Okujeni C D, Ackon P, Baugaard W, Langa N. 2005. Controls of element dispersion in aeolian sand and calcrete-dominated regolith associated with gold mineralization in the Kraaipan greenstone belt, South Africa. Geochemistry: Exploration, Environment, Analysis, 5(3): 223~231.

    • Osovetsky B. 2017. Genesis of natural nanogold. In Natural Nanogold. Springer, 87~126.

    • Phillips G N, Vearncombe J R, Anand R R, Butt C R M, Eshuys E, Groves D I, Smith R E. 2019. The role of geoscience breakthroughs in gold exploration success: Yilgarn Craton, Australia. Ore Geology Reviews, 103009.

    • Phillips G N, Vearncombe J R, Eshuys E. 2019. Gold production and the importance of exploration success: Yilgarn Craton, Western Australia. Ore Geology Reviews, 105: 137~150.

    • Priori S, Fantappiè M, Magini S, Costantini E A C. 2013. Using the arp-03 for high-resolution mapping of calcic horizons. International Agrophysics, 27(3): 313~321.

    • Quade J, Chivas A R, McCulloch M T. 1995. Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(1): 103~117.

    • Radford N W, Burton P E. 1999. The geochemistry of transported overburden: the time factor. An example from the Fender deposit, Big Bell, Western Australia. Journal of Geochemical Exploration, 66: 71~83.

    • Reid N, Hill S M. 2013. Spinifex biogeochemistry across arid Australia: Mineral exploration potential and chromium accumulation. Applied Geochemistry, 29: 92~101.

    • Reith F, Etschmann B, Dart R C, Brewe D L, Vogt S, Mumm A S, Brugger J. 2011. Distribution and speciation of gold in biogenic and abiogenic calcium carbonates—implications for the formation of gold anomalous calcrete. Geochimica et Cosmochimica Acta, 75(7): 1942~1956.

    • Reith F, Etschmann B, Grosse C, Moors H, Benotmane M A, Monsieurs P, Martinez-Criado G. 2009a. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proceedings of the National Academy of Sciences, 106(42): 17757~17762.

    • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode P L, Gregg A, Southam G. 2010. Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology, 38(9): 843~846.

    • Reith F, Stewart L, Wakelin S A. 2012. Supergene gold transformation: secondary and nano-particulate gold from southern New Zealand. Chemical Geology, 320: 32~45.

    • Reith F, Wakelin S A, Gregg A L, Mumm A S. 2009b. A microbial pathway for the formation of gold-anomalous calcrete. Chemical Geology, 258(3-4): 315~326.

    • Richards J H, Caldwell M M. 1987. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73(4): 486~489.

    • Royer D L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology, 27(12): 1123~1126.

    • Sanyal S K, Shuster J, Reith F. 2019. Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 190: 131~147.

    • Shuster J, Bolin T, Maclean L C W, Southam G. 2014. The effect of iron-oxidizing bacteria on the stability of gold(I) thiosulphate complex. Chemical Geology, 376: 52~60.

    • Shuster J, Southam G. 2015. The in-vitro “growth” of gold grains. Geology, 43(1): 79~82.

    • Shuster J, Lengke M, Márquez-Zavalía M F, Southam G. 2016. Floating gold grains and nanophase particles produced from the biogeochemical weathering of a gold-bearing ore. Economic Geology, 111(6): 1485~1494.

    • Shuster J, Reith F, Cornelis G, Parsons J E, Parsons J M, Southam G. 2017. Secondary gold structures: relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450: 154~164.

    • Smee B W. 1998. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments. Journal of Geochemical Exploration, 61: 149~172.

    • Smith B H, Keele R A. 1984. Some observations on the geochemistry of gold mineralization in the weathered zone at Norseman, Western Australia. Journal of Geochemical Exploration, 22: 1~20.

    • Smith R E, Perdrix R L. 1983. Pisolitic laterite geochemistry in the Golden Grovemassive sulphide district, Western Australia. Journal of Geochemical Exploration, 18: 131~164.

    • Tong Chunhan, Li Juchu. 1999. Geogas prospecting and its mechanism in the search for deep seated or concealed gold deposits. Chinese Journal of Geophysics, 42(1): 135~142(in Chinese with English abstract).

    • Van der Hoek B G, Hill S M, Dart R C. 2012. Calcrete and plant inter-relationships for the expression of concealed mineralization at the Tunkillia gold prospect, central Gawler Craton, Australia. Geochemistry: Exploration, Environment, Analysis, 12, 361~372.

    • Vural A. 2017. Gold and Silver Content of Plant Helichrysum Arenarium, Popularly Known as the Golden Flower, Growing in Gümüşhane, NE Turkey. Acta Physica Polonica A, 132(3): 978~980.

    • Wang Xiaojia, Lu Mei, Wang Zhenkai, Ye Rong. 2016. Characteristics of geogas anomalies measured in the Shenjiayao gold deposit of Shan County, Henan Province. Geology and Exploration, 52(4): 667~677(in Chinese with English abstract).

    • Wang Xueqiu. 1998a. Geochemical methods and application for giant ore deposits in concealed terrains. Geophysical & Geochemical Exploration, 22(2): 81~89 (in Chinese with English abstract).

    • Wang Xueqiu. 1998b. Leaching of mobile forms of metals in overburden: development and application. Journal of Geochemical Exploration, 61: 39~55.

    • Wang Xueqiu, Cheng Zhizhong, Lu Yinxiu, Xu Li, Xie Xuejin. 1997. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration, 58(1): 63~72.

    • Wang Xueqiu, Xie Xuejin, Cheng Zhizhong, Liu Dawen. 1999. Delineation of regional geochemical anomalies penetrating through thick cover in concealed terrains—a case history from the olympic dam deposit, Australia. Journal of Geochemical Exploration, 66: 85~97.

    • Wang Xueqiu, Xie Xuejin. 2000. Exploration Geochemistry of Gold Principles and Methodology: Tactics and Strategy. Jinan: Shandong Science and Technology Press (in Chinese).

    • Wang Xueqiu, Wen Xueqin, Ye Rong, Liu Zhanyuan, Sun Binbin, Zhao Shanding, Shi Shujuan, Wei Hualing. 2007a. Vertical variations and dispersion of elements in arid desertregolith: a case study from the Jinwozi gold deposit, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 163~171.

    • Wang Xueqiu, Chi Qinhua, Liu Hanliang, Nie Lanshi, Zhang Bimin. 2007b. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 153~161.

    • Wang Xueqiu, Ye Rong. 2011. Findings of nanoscale metal particles: evidence for deep-penetrating geochemistry. Acta Geoscientica Sinica, 32(1): 7~12 (in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Liu Xuemin. 2012. Nanogeochemistry: deep-penetrating geochemical exploration through cover. Earth Science Frontiers, 19(3): 101~112(in Chinese with English abstract).

    • Wang Xueqiu, Zhang Bimin, Lin Xin, Xu Shanfa, Ye Rong. 2016a. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in china. Ore Geology Reviews, 73: 417~431.

    • Wang Xueqiu, Zhang Bimin, Ye Rong. 2016b. Nanogeochemistry for mineral exploration through covers. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 43~51 (in Chinese with English abstract).

    • Warren L A, Maurice P A, Parmar N, Ferris F G. 2001. Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18(1): 93~115.

    • Wen Xueqin, Wang Xueqiu, Ye Rong, Liu Zhanyuan, Chen Zhizhong, Chi Qinghua. 2010. Vertical variation and dispersion of metal elements in the arid desert regolith——a case study at the Jinwozi gold deposit, Xinjiang, China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(1): 38~44 (in Chinese with English abstract).

    • Wolff K, Tiddy C, Giles D, Hill S M, Gordon G. 2017. Distinguishing pedogenic carbonates from weathered marine carbonates on the Yorke Peninsula, South Australia: implications for mineral exploration. Journal of Geochemical Exploration, 181: 81~98.

    • Yamashita M, Ohashi H, Kobayashi Y, Okaue Y, Kurisaki T, Wakita H, Yokoyama T. 2008. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold(Au(0)): analysis by Mössbauer spectroscopy and XPS. Journal of Colloid and Interface Science, 319(1): 25~29.

    • Ye Rong, Wang Xueqiu, Zhao Lunshan, Chen Dexing, Fu Yuanhui. 2004. Deep penetration geochemistry methods in gobi-overburden terrain of the Jinwozi metallogenic belt. Geology and Prospecting, 40(6): 67~72 (in Chinese with English abstract).

    • Yilmaz H, Sonmez F N, Carranza E J M. 2015. Discovery of Au-Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. Journal of Geochemical Exploration, 158, 55~73.

    • Yuan Chungang, Huo Can, Yu Shuixin, Gui Bing. 2017. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E Low-dimensional Systems and Nanostructures, 85: 19~26.

    • Zhang Bimin, Wang Xueqiu, Chi Qinghua, Lv Qingtian. 2011. Dispersion and migration of gold under land scape evolution in Gobi desert terrains. Geoscience, 25(3): 575~580 (in Chinese with English abstract).

    • Zhang Bimin, Chi Qinghua, Zhang Yongqin. 2012. Three-dimensional geochemical distribution patterns in regolith over a concealed gold deposit in arid desert terrains. Earth Science Frontiers, 19(3): 130~137(in Chinese with English abstract).

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Zhou Jian, Liu Hanliang, Liu Dongsheng, Han Zhixuan, Lin Xin, Wang Zhenkai. 2015. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper-gold mine, southeastern China. Journal of Geochemical Exploration, 157: 184~193.

    • Zhang Bimin, Wang Xueqiu, Xu Shanfa, Yao Wensheng, Ye Rong. 2016. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins. Geology in China, 43(5): 1697~1709 (in Chinese with English abstract).

    • Zhang Bimin, Han Zhixuan, Wang Xueqiu, Liu Hanliang, Wu Hui, Feng Hui. 2019a. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and Their Significance. Minerals, 9(7): 414.

    • Zhang Bimin, Wang Xueqiu, Ye Rong, Yao Wensheng, Wang Wei. 2019b. Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies. Journal of Guilin University of Technology, 39(2): 301~310 (in Chinese with English abstract).

    • Zomorrodian M, Shayestehfar M R. 2019. Indicator ratios and additive composite halos in stream sediment samples as a geochemical indicator for identifying promising epithermal gold deposit in the north of Kashmar. Arabian Journal of Geosciences, 12(11): 331.

    • 刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 2016. 土壤微细粒全量测量在甘肃花牛山矿区的应用. 物探与化探, 40(1): 33~39.

    • 童纯菡, 李巨初. 1999. 地气测量寻找深部隐伏金矿及其机理研究. 地球物理学报, 42(1): 135~142.

    • 王晓佳, 鲁美, 王振凯, 叶荣. 2016. 申家窑金矿床地气测量异常特征. 地质与勘探, 52(4): 667~677.

    • 王学求. 1998a. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用. 物探与化探, 22(2): 81~89.

    • 王学求, 谢学锦. 2000. 金的勘查地球化学理论与方法·战略与战术. 济南: 山东科学技术出版社.

    • 王学求, 叶荣. 2011. 纳米金属微粒发现——深穿透地球化学的微观证据. 地球学报, 32(1): 7~12.

    • 王学求, 张必敏, 刘雪敏. 2012. 纳米地球化学: 穿透覆盖层的地球化学勘查. 地学前缘, 19(3): 101~112.

    • 王学求, 张必敏, 叶荣. 2016b. 纳米地球化学与覆盖区矿产勘查. 矿物岩石地球化学通报, 35(1): 43~51.

    • 文雪琴, 王学求, 叶荣, 刘占元, 程志中, 迟清华. 2010. 干旱戈壁区金属元素的垂向变化与分散——以新疆金窝子金矿为例. 矿物岩石地球化学通报, 29(1): 38~44.

    • 叶荣, 王学求, 赵伦山, 陈德兴, 傅渊慧. 2004. 戈壁覆盖区金窝子矿带深穿透地球化学方法研究. 地质与勘探, 40(6): 67~72.

    • 张必敏, 王学求, 迟清华, 吕庆田. 2011. 戈壁覆盖区景观演化与Au的分散迁移. 现代地质, 25(3): 575~580.

    • 张必敏, 迟清华, 张永勤. 2012. 干旱荒漠覆盖区隐伏金矿上方覆盖层三维地球化学分布模式. 地学前缘, 19(3): 130~137.

    • 张必敏, 王学求, 徐善法, 姚文生, 叶荣. 2016. 盆地金属矿穿透性地球化学勘查模型与案例. 中国地质, 43(5): 1697~1709.

    • 张必敏, 王学求, 叶荣, 姚文生, 王玮. 2019b. 土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨. 桂林理工大学学报, 39(2): 301~310.