-
华北平原上新世以来沉积了巨厚的松散沉积物,记录了重要的地质信息。由于受构造运动-气候旋回及物源变化影响(Chen Wanghe et al.,1985; Wu Chen,2001; Deng Qidong et al.,2002; Wang Qiang et al.,2003; Yang Jilong et al.,2015; Xu Qinmian et al.,2017; Huang Meng et al.,2019; Xiao Guoqiao et al.,2020),上新世沉积过程较为复杂,不同构造单元沉积相和沉积结构差异明显,主要地质界线埋深差异较大,为地层划分和区域对比、古环境演化过程重建带来诸多困难。从已有研究结果揭示的第四系界线埋深来看(图1),雄安新区东部GB014孔埋深仅为135 m(Liu Kaiming et al.,2020),而北京ZK12-2孔埋深达到465 m(Zhao Yong et al.,2013; Liu Kaiming et al.,2020),两个钻孔同在冀中坳陷,第四系界线埋深相差三百多米。沧县隆起第四系底界埋深以海河断裂为界,以南Bz2孔埋深为162 m(Yao Zhengquan et al.,2006),以北QHJ01孔埋深为240 m(Huang Meng et al.,2019)。埕宁隆起CK3孔埋深仅为176 m(Xu Qinmian et al.,2017),黄骅坳陷北部Bg10孔埋深为476 m(Yuan Guibang et al.,2014)。因此,依据单个或者几个钻孔年代结果和岩性特征难以进行区域地层划分和古环境演化过程重建,需要建立更多的第四系综合研究剖面。
-
综合相关研究结果看,华北平原上新世以来沉积物研究主要存在以下情况:① 高质量深孔记录缺少,研究时空分布不均匀,山前和滨海地带揭穿第四系的钻孔研究相对较多(Cai Xiangmin et al.,2010; Zhao Hongmei et al.,2014; Wang Fu et al.,2015; Xu Qinmian et al.,2017; Li Ruijie et al.,2019; Yang Jilong et al.,2020),其他地区揭穿第四系的钻孔数量稀少,并且多数钻孔研究主要集中在晚第四纪,需要建立更多长序列的钻孔地质剖面; ② 近年来,随着磁性地层研究领域实验条件和测试技术的不断发展,在上新世不同类型沉积物的年代学研究中取得重要进展,采用以热退磁为主,交变退磁为辅的退磁方式,并利用超导磁力仪测量剩磁,成为建立长尺度地层年代框架的主要手段,提高了磁性地层年代框架精度(Deng Chenglong et al.,2006,2019; Zhu Rixiang et al.,2007; Xu Qinmian et al.,2017; Wu Bailing et al.,2018; Jiang Xingyu et al.,2020; Yang Jilong et al.,2020); ③ 因华北平原基底构造差异性和不同构造单元沉积环境复杂性,年代地层与岩石地层划分尚未建立统一的关系,以前很多研究将归属上新世的地层划分到了第四系范围内(Wang Qiang et al.,2003; Liu Lijun et al.,2010; Zhang Zhaoyi et al.,2015),影响了地下水系统划分及水循环研究和地面沉降等地质灾害发生机理的研究(Cao Guoliang et al.,2016; Matsumoto et al.,2018; Wang Yunlong et al.,2020)。
-
鉴于以上原因,本文研究了冀中坳陷东部SFQ1钻孔沉积物,建立高分辨率的磁性地层年代框架,结合华北平原不同构造单元已报道的深钻孔研究结果,初步揭示了华北平原第四系底界埋深分布特征,探讨了上新世以来沉积环境演化、区域地层结构特征及对水文地质条件的制约影响等,有助于区域构造活动厘定、地下水系统划分和国土空间规划等。
-
1 区域地质概况
-
从华北平原构造简图可以看出(图1),华北断坳被众多纵横交错的二级及次级断裂所切割,形成了多个隆起和坳陷,多次级构造单元凸起和凹陷相间排列,主要构造走向多为北东向和北西西。冀中坳陷西侧为太行山,以太行山山前断裂为界,东侧冀中坳陷、沧县隆起、黄骅坳陷依次分布,黄骅坳陷东南部分布有埕宁隆起和济阳坳陷。以大城-武清断裂为界,自西向东分布有徐水凹陷、廊固凹陷、容城凸起、牛驼镇凸起、武清霸县凹陷、大成凸起。
-
图1 华北平原构造简图(据Xu Qinmian et al.,2017)和SFQ1及已报道钻孔位置图
-
Fig.1 Sketch map showing the tectonic pattern (after Xu Qinmian et al., 2017) and the location of SFQ1 borehole and a number of reported boreholes in North China Plain
-
冀中坳陷在古近纪主要为断陷时期,在凹陷区形成平均厚度约3000 m的沉积物,钻孔揭露的基岩埋深最浅为490 m,最深5900 m,凸起区存在沉积缺失,凹陷和凸起区沉积差异较大; 新近纪至第四纪主要为裂陷时期,整体处于热沉降,地层厚度差异减小,沉积厚度一般在200~900 m(Qi Jiafu et al.,2010; Mao Liguang et al.,2017)。
-
2 材料与方法
-
2.1 钻孔岩芯
-
2.1.1 钻孔基本情况
-
SFQ1孔位于河北省廊坊市胜芳镇尚家堡村(图1),钻孔坐标:39°05′54.46″N,116°41′23.11″E,孔口高程为4.32 m。采用旋转机械钻全孔取芯,岩芯管直径108 mm,终孔深度450 m,孔斜小于0.4°,取芯率96.5%,满足磁性地层研究条件。
-
2.1.2 岩性特征
-
SFQ1孔野外钻探施工为每2 m一个回次,钻取的岩芯,整米断开,剖成两半,按顺序排列照相,而后进行钻探编录和岩芯描述,根据沉积物颜色、沉积构造、沉积环境、沉积旋回等特征,可将钻孔分为6个沉积段:
-
0~14.5 m:以灰色、棕色黏土质粉砂为主,局部有机质含量高。其中,下部14.5~10.3 m为灰色粉砂质黏土,局部粉砂含量略高,可见大量的钙核胶结; 10.3~9.5 m为深黑灰色泥炭层,有机质含量高; 9.5 m以上为棕色、棕黄色黏土质粉砂,局部有机质含量高,普遍发育锈染。
-
14.5~54.0 m:以黄棕色、浅灰绿色黏土质粉砂和粉质黏土为主,局部粉细砂含量高。其中,下部54.0~52.5 m为黄棕色粉砂质黏土,多钙核、多锈染; 52.5~42.1 m为橄榄棕色、黄棕色、浅灰绿色粉砂、黏土质粉砂及粉质黏土,由下向上颗粒逐渐变细; 42.1~32.9 m为浅橄榄棕色粉细砂,顶部颗粒变细,为黏土质粉砂; 32.9~28.6 m为浅黄棕色粉质黏土,多钙核、多锈染; 28.6~14.5 m为浅橄榄棕色粉细砂和黏土质粉砂,局部黏土含量高,多锈染,少见生物碎屑。
-
54.0~71.0 m:以棕色粉质黏土和橄榄棕色黏土质粉砂为主。其中,下部71.0~65.3 m为橄榄棕色黏土质粉砂,局部粉砂含量高; 上部65.3~54.0 m 为棕色粉质黏土,多锈染,少见钙核。
-
71.0~197.8 m:以棕色、黑棕色、灰绿色粉质黏土、黏土质粉砂和橄榄棕色、黄棕色细砂、中细砂为主,沉积环境以泛滥平原相为主,局部钙核发育,少见生物碎屑,从下向上构成4个沉积旋回,其中,182.0~173.4 m、141.0~127.6 m、115.4~105m、87.2~82.0 m发育河流相,为细砂和中细砂。
-
197.8~328.7 m:以浅棕黄色、黑棕色、灰绿色粉砂质黏土、黏土质粉砂和橄榄棕色、灰色细砂、中细砂为主,沉积环境以泛滥平原相为主,局部钙核发育,偶见生物碎屑,从下往向上构成2个沉积旋回,其中,314.8~287.0 m、254.2~247.3 m发育河流相,为细砂和中细砂,局部显水平层理,230.0~200.0 m发育浅湖相沉积。
-
328.5~450.0 m:以棕色、黄棕色粉质黏土、黏土质粉砂和浅橄榄棕色细砂、中细砂为主,沉积环境以泛滥平原相和河流相为主,局部钙质胶结发育,从下向上构成3个沉积旋回,其中,450.0~444.5 m、428.0~421.3 m、382.5~374.1 m发育河流相,为细砂和中细砂,显水平层理和斜层理。
-
2.2 样品采集及测试
-
在SFQ1孔埋深10.0~10.2 m处采集14C样品1件,岩性为灰黑色块状黏土,测试对象为其中的有机质,实验在美国Beta实验室完成。
-
在剖开的新鲜岩芯面上采集古地磁定向块状样品,最后在室内加工成2 cm×2 cm×2 cm的样品。采样的确切位置视岩芯状况而定,尽量采集钻探过程中无扰动的岩芯。样品主要在黏性土、粉质黏性土和黏土质粉砂层段采集,砂层一般不采用,样品间隔为0.2~0.5 m。每个采样点平行采集两块样品,共采集平行样品625组。
-
古地磁测试在中国科学院地质与地球物理研究所古地磁与地质年代学实验室完成。实验采用逐步热退磁方法,按照10~50℃间隔进行退磁,从室温退至680℃。系统热退磁使用TD-48型全自动热退磁炉完成,剩磁测量在2G-755卧式低温超导磁力仪上进行。整个实验过程在零磁空间(<300 nT)完成。
-
3 结果与分析
-
3.1 AMS 14C年代结果
-
SFQ1孔埋深10.0~10.2 m处泥炭层有机质测得校正年龄值为7.73 ka BP,为全新世早期沉积物。
-
3.2 古地磁结果
-
SFQ1孔代表性样品的剩磁矢量正交投影和剩磁衰减曲线图2显示,189个样品(占30%)在150~250℃之间可退掉粘滞剩磁,热退磁样品在300~560℃区间内可获得稳定的特征剩磁方向。106个样品(占17%)的特征剩磁可保持到600~680℃,部分样品直到680℃,剩磁强度才趋于零。其余53%未能分离出特征剩磁的样品主要为磁性较弱的样品(图2)。古地磁测试结果分析采用主成分分析法(Kirschvink,1980),通过最小二乘法拟合得到每个样品的特征剩磁方向,选择的退磁步骤至少为4个连续的温度点,最大角偏差(MAD)大于15°的样品予以剔除(图3)。
-
图2 华北平原冀中坳陷东部SFQ1孔代表性样品(a~l)的退磁正交矢量投影图
-
Fig.2 Orthogonal vector plots of stepwise thermal demagnetizations of NRM for representative samples (a~l) from the SFQ1 borehole, east of Jizhong depression, North China Plain
-
实心圆和空心圆分别代表在水平面和垂直面的投影; NRM为天然剩磁
-
The solid (open) circles represent the horizontal (vertical) planes; NRM is the natural remanent magnetization
-
图3 华北平原冀中坳陷东部SFQ1钻孔磁性年代结果和岩性特征
-
Fig.3 Magnetostratigraphic chronology and lithological characteristics of SFQ1 borehole, east of Jizhong depression, North China Plain
-
本次测试共有295个样品获得稳定的特征剩磁方向,华北平原多个钻孔的古地磁研究结果也表明,新近纪以来钻孔岩芯的产状基本水平,所测的倾角并未受到地层倾斜的影响(Cai Xiangmin et al.,2010; Liu Kaiming et al.,2020)。因此,利用上述295个样品的磁倾角建立了SFQ1孔的磁性地层序列。为了避免取样或测试过程中可能存在个别样品方向颠倒的情况,这里所定义的极性段均至少包含连续两个极性相同的样品,连续两个以上的样品出现反极性时,才可定义一次漂移或极性亚时,四个以上样品出现反极性时定义一次极性时。两个处于正负极性的点间距较大时,极性确认取其中间平均深度。
-
3.3 磁性地层
-
SFQ1孔的磁性地层学结果见图3,共划分出8个正极性段(N1~N8)和8个负极性段(R1~R8)。从以往的研究结来看(Cai Xiangmin et al.,2010; Yuan Guibang et al.,2014; Xu Qinmian et al.,2018; Liu Kaiming et al.,2020; Yang Jilong et al.,2020),冀中坳陷中尚未发现地层存在因较长时间的地层间断而导致极性时缺失的情况。因此,在不考虑极性时缺失的情况下,本次研究获得的极性统计结果与地磁极性年表(Hilgen et al.,2012)约5.0 Ma以来的极性序列可依次较好对应(图3)。0~71.0 m(N1)为正极性时,测定10.0~10.2 m泥炭层AMS 14C校正年龄为7.73 ka BP,说明这一段对应于布容(Brunhes)正极性时。71.0~197.8 m沉积物以负极性为主,在不考虑地层缺失的情况下,对应于松山(Matuyama)负极性时,期间两个正极性段N2和N3应分别对应贾拉米洛(Jaramillo)和奥尔都维(Olduvai)正极性亚时。167.0~328.7 m以正极性为主,可与高斯(Gauss)正极性时对应,其中,N4、N5和N6可分别与C2An.1n、C2An.2n和C2An.3n极好对应,R4和R5可与高斯正极性时中的凯纳(Kaena)和马莫斯(Mammoth)极性亚时对应。328.7~450.0 m 对应吉尔伯特(Gilbert)负极性时。由于此段古河道发育,砂层较多,部分层段存在样品缺失,没能获取古地磁数据,仅划定N7和N8两个正极性亚时,可分别与柯奇蒂(Cochiti)和努尼瓦克(Nunivak)两个正极性亚时对应,据N8段沉积速率外推,钻孔底部450.0 m处年龄约为4.74 Ma。
-
SFQ1钻孔中10.0~10.2 m为泥炭层,测定其AMS 14C校正年龄为7.73 ka BP,为末次冰后期沉积物(图4)。10.2 m以下11.5~13.5 m灰色粉砂质黏土,致密,含有大量钙质结核(图4),对应区域上末次盛冰期形成的硬黏土沉积(Wang Qiang et al.,2009)。10.2~11.5 m为灰色黏土质粉砂,应是末次冰消期—冰后期早期的沉积物。综上,将11.5 m界定为全新统底界。
-
按照不同阶段氧同位素期(Marine isostope stage,MIS)沉积特点,钻孔中30.0~33.2 m、52.5~55.0 m为黄棕色粉质黏土、多锈染,可见大量钙质结核(图4),依据沉积岩性和沉积物颜色,30.0~33.2 m、52.5~55.0 m沉积段对应氧同位素MIS 4和MIS 6两个阶段沉积物,33.2~52.5 m对应MIS 5阶段沉积物,MIS 5其开始年代大致相当古地磁Blake亚时,约0.128 Ma(Zhao Songlin et al.,1978),即晚更新世的开始时限,因此,将上更新统底部界限定在52.5 m。
-
因此,根据上述对比方案和讨论结果,确定SFQ1孔全新统底界埋深为11.5 m,上更新统底界埋深为52.5 m,中更新统底界埋深为71.0 m(B/M界线),下更新统底界埋深为197.8 m(M/Ga界线),上上新统底界埋深在328.7 m(Ga/Gi界线),钻孔底部年龄约为4.74 Ma,进入上新统底部。
-
图4 华北平原冀中坳陷东部SFQ1孔0~30 m(a)和30~60 m(b)照片
-
Fig.4 Photographs of 0~30 m (a) and 30~60 m (b) of SFQ1 borehole, east of Jizhong depression, North China Plain
-
4 讨论
-
4.1 华北平原第四纪沉积特征及新构造运动表现
-
华北平原是长期下沉的坳陷盆地,在大地构造上属华北断坳,其中包括北东向的冀中坳陷、沧县隆起、黄骅坳陷和埕宁隆起等次级构造单元。四个不同构造单元多个揭穿第四系钻孔的古地磁结果显示,不论是在坳陷区还是隆起区,存在第四系下更新统底界埋深差异较小的情况(图5),例如,冀中坳陷G01孔为183.7 m(Dai Peng et al.,2019)、PGZ05孔为181.3 m(Zhao Yong et al.,2019)、ZK18孔为192.5 m(Zhang Lei et al.,2014)、SFQ1孔为197.8 m(本文研究),沧县隆起BZ2孔为162.5 m(Yao Zhengquan et al.,2006),埕宁隆起G4孔为183.7 m、CK3孔为176.4 m(Xu Qinmian et al.,2017),黄骅坳陷G3孔为239.6 m(Yang Jilong et al.,2020)。以上现象表明第四纪初华北平原地势变得较为平坦,区域上出现相对水平的等时基准面,这对于在区域上进行第四纪地层对比划分具有一定的指导意义。
-
图5 华北平原典型钻孔第四系底界埋深对比图
-
Fig.5 Comparison of the lower boundary of the Quaternary sediments in North China Plain
-
图6 华北平原不同构造单元钻孔联合剖面
-
Fig.6 Correlation of the magnetostratigraphic frameworks obtained from different tectonic units in North China Plain
-
已有研究揭示3.6~3.0 Ma期间,因青藏高原隆升扩展影响(Li Jijun et al.,2014),导致华北唐县期夷平面解体,华北地区多个钻孔对这期构造活动均有记录(Wang Sumin et al.,2001; Pan Baotian et al.,2005; Xiao Guoqiang et al.,2014)。太行山、燕山山前地带普遍存在“泥包砾”或砂砾石沉积地层(Cai Xiangmin et al.,2010; Zhao Yong et al.,2013; Dai Peng et al.,2019),亦是这期构造运动作用形成的产物。综合以上论述可以得出,第四纪初华北平原之所以变得较为平坦,主要是受3.6~3.0 Ma期间构造运动影响,致使碎屑物质增多,河流体系发育,为盆地快速充填夷平提供了物质基础。
-
进入第四纪以后,由于新构造运动的继承性发展,导致不同区域第四纪沉积物厚度出现明显差异,第四纪等时面表现出波状起伏。第四纪沉积较厚的区域主要出现在新构造活动带附近,一般情况下第四系底界埋深大于250 m的钻孔,主要处于新构造活动导致的下沉带。北京平原南口-孙河断裂带ZK17孔下更新统Ga/M界线埋深为309 m,而断裂另一侧ZK18孔仅为192.5 m(Zhang Lei et al.,2014),顺义断裂带ZK12-2孔Ga/M界线埋深为465 m(Zhao Yong et al.,2013; Liu Kaiming,2020),断裂另一侧ZK12-1孔仅为232.0 m(Bai Lingyan et al.,2014)。黄骅坳陷东北段的南堡凹陷Bg10孔Ga/M界线埋深为476 m(Yuan Guibang et al.,2014),而西南段的板桥凹陷G3孔Ga/M界线埋深为239.6 m(Yang Jilong et al.,2020)。除此之外,沧县隆起北段QHJ01孔Ga/M界线埋深为240.0 m(Huang Meng et al.,2019),海河断裂以南BZ2孔Ga/M界限埋深为163 m(Yao Zhengquan et al.,2006)。值得一提的是,处于华北平原北部凹陷区的钻孔具有一个共同沉积特征,进入第四纪沉积速率明显加快,且钻孔中早更新世、中更新世湖相沉积较为发育,其沉降的主要原因可能是2.0 Ma以来张家口-蓬莱断裂活动加剧引起的构造下沉(Xu Qinmian et al,2017),同期,其他区域沉积速率并没有表现出明显增大情况。
-
4.2 华北平原上新世以来含水层结构特征
-
构造、气候和古地貌控制了上新世以来松散沉积物的成因类型,河流体系的发育直接决定了孔隙型地下水赋存介质的空间分布特征。从不同构造单元钻孔联合剖面图5可以看出,3.6~3.0 Ma期间,构造运动引起源区剥蚀速率增加,促使河流体系发育,沉积区颗粒由细变粗,砂层增多,在太行山、燕山山前地带和冀中坳陷、黄骅坳陷北部形成了较好的含水砂层(Zhao Yong et al.,2013; Xu Qinmian et al,2017; Dai Peng et al.,2019)。相反,隆起区和斜坡带受古地形地貌影响,含水砂层相对不发育,地下水赋存条件变差。以上沉积特征决定了从冀中坳陷经沧县隆起至黄骅坳陷,上新世至第四纪开始深层地下水含水层发育空间上存在不连续性(图6),从太行山补给的地下水,自西向东径流过程中,在冀中坳陷和沧县隆起过渡带,出现水平径流受阻,垂向径流加强的现象(Cao Guoliang et al.,2016; Matsumoto et al.,2018)。第四纪初始华北平原变得较为平坦,古河道空间延展性增大,自山前至平原地带,含水层发育且连续性增强,地下水以水平径流为主。
-
5 结论
-
(1)详细的古地磁研究建立了冀中坳陷东部SFQ1钻孔磁性地层年代框架,全新统底界埋深为11.5 m,上更新统底界埋深为52.5 m,中更新统底界埋深为71.0 m,下更新统底界埋深为197.8 m,上上新统底界埋深在328.7 m,钻孔底部年龄约为4.74 Ma,进入上新统底部。
-
(2)钻孔剖面研究表明3.6~3.0 Ma期间,因青藏高原隆升扩展影响,碎屑物质供给量增大,华北坳陷区被快速充填,至第四纪初华北平原地势已变得较为平坦,现今揭露的第四系界线埋深之所以表现出明显差异,主要是由于第四纪以来新构造运动继承性发展导致的。
-
(3)华北平原晚上新世以来构造运动和沉积结构对水文地质条件产生制约影响,建议在华北平原水文地质调查过程中加强第四系相关研究,合理划分水文地质单元,以提高水资源评价精度。
-
致谢:古地磁实验在中国科学院地质与地球物理研究所古地磁与地质年代学实验室完成,两位审稿人提出了宝贵意见,在此一并表示诚挚谢意!
-
参考文献
-
Bai Lingyan, Zhang Lei, Cai Xiangmin, Wang Jiming Yang Tianshui, Wu Huaichun, He Jing, Zhang Xiaoliang, Zhao Yong. 2014. Quaternary magnetostratigraphic time framework constraints on activity characteristics of the shunyi fault, Beijing Plain. Geoscience, 28(6): 1234~1242 (in Chinese with English abstract).
-
Cai Xiangmin, Guo Gaoxuan, Luan Yingbo, Sun Zhiming, Liang Yanan, Jiang Longqun. 2010. Forming time for the Yongding River. Quaternary Sciences, 30(1): 167~174 (in Chinese with English abstract).
-
Cao Guoliang, Han Dongmei, Currell Matthew J, Zheng Chunmiao. 2016. Revised conceptualization of the North China Basin groundwater flow system: groundwater age, heat and flow simulations. Journal of Asian Earth Sciences, 127: 119~136.
-
Chen Wanghe, Ni Mingyun, Shi Diguang, Wang Jinhai. 1985. Some problems on Quaternary geology of the Hebei Plain. Quaternary Sciences, 1: 2~14 (in Chinese with English abstract).
-
Dai Peng, Deng Xiaohong, Wang Shengdong, Wu Junjie, Zhangquan. 2019. Core characteristics and stratigraphic classification of G01 borehole in Gu'an, Hebei Plain. Quaternary Sciences, 39: 399~407 (in Chinese with English abstract).
-
Deng Chenglong, Wei Qi, Zhu Rixiang, Wang Hongqiang, Zhang Rui, Ao Hong, Chang Liao, Pan Yongxin. 2006. Magnetostratigraphic age of the Xiantai Paleolithic site in the Nihewan basin and implications for early human colonization of Northeast Asia. Earth and Planetary Science Letters, 244 (1-2): 336~348.
-
Deng Chenglong, Hao Qingzhen, Guo Zhengtang, Zhu Rixiang. 2019. Quaternary integrative stratigraphy and timescale of China. Science China Earth Sciences, 49: 330~352 (in Chinese with English abstract).
-
Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2002. Basic characteristics of active tectonics of China. Science in China(Series D), 32(12): 1020~1030 (in Chinese with English abstract).
-
Hilgen F J, Lourens L J, Van Dam J A. 2012. The neogene period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg Gabi M, eds. The Geologic Time Scale. Amsterdam: Elsevier, 923~978.
-
Huang Meng, Li Mingchen, Fan Hangyu, Zhang Xiaofei, Li Jijun, Xu Qinmian. 2019. Late Cenozoic climate and sedimentary environment evolution of the northwestern coast of the Bohai Bay revealed by borehole QHJ01. Acta Geologica Sinica, 93(4): 899~914 (in Chinese with English abstract).
-
Jiang Xingyu, Wang Lin, Hao Xiudong, Wang Fu, Tian Lizhu, Shi Peixin, Cheng Yongsheng, Wang Hong, Li Jianfen, Shang Zhiwen. 2020. Late Pliocene palynological record and paleoenvironmental change from the borehole HLL02 in the south coast of Laizhou Bay, Bohai Sea, China. Geological Survey and Research, 43(4): 341~347 (in Chinese with English abstract).
-
Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62: 699~718.
-
Li Jijun, Fang Xiaoming, Song Chunhui, Pan Baotian, Ma Yuzhen, Yan Maodu. 2014. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81(3): 400~423.
-
Li Ruijie, Zhao Yong, Wei Bo, Sun Yonghua, Wang Qiang. 2019. Stratigraphic geochronology of ACX02 borehole in the middle and lower region of the Yongding River, the north of the Langgu depression. Journal of Geomechanics, 35(2): 249~256 (in Chinese with English abstract).
-
Liu Kaiming, Xu Qinmian, Duan Liangfeng, Niu Wenchao, Teng Fei, Wang Xiaodan, Zhang Wei, Dong Jie. 2020. Quaternary stratigraphic architecture and sedimentary evolution from borehole GB014 in the western Xiong'an New Area. Chinese Science Bulletin, 65: 2145~2160 (in Chinese with English abstract).
-
Liu Lijun, Xu Haizhen, Cui Qiuping, Wang Juan. 2010. Study on Quaternary stratigraphic division on Hebei Plain. Geography and Geo-Information Science, 26(2): 54~57 (in Chinese with English abstract).
-
Mao Liguang, Xiao Ancheng, Zhang Hongwei, Wu Zhankui, Yi Liufu, Wu Lei, Zhao Xianzheng. 2017. Structural patterns of the Late Mesozoic crustal detachment system in the Raoyang Sag, Bohai Bay basin, eastern China: new insights from 3D seismic data. Marine and Petroleum Geology, 84: 215~224.
-
Matsumotoa T, Chen Zongyu, Wei Wen, Yang Guomin, Hu Shuiming, Zhang Xiangyang. 2018. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth and Planetary Science Letters, 493: 208~217.
-
Pan Baotian, Wang Junping, Gao Hongshan, Guan Qingyu, Wang Yong, Su Huai, Li Bingyuan, Li Jijun. 2005. Paleomagnetic dating of the topmost terrace in Kouma, henan and its indication to the Yellow River's running through sanmen gorges. Chinese Science Bulletin, 50: 255~261(in Chinese with English abstract).
-
Qi Jiafu, Yang Qiao. 2010. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Marine and Petroleum Geology, 27: 757~771.
-
Wang Fu, Li Jianfen, Chen Yongsheng, Fang Jing, Zong Yongqiang, Shang Zhiwen, Wang Hong. 2015. The record of mid-Holocene maximum landward marine transgression in the west coast of Bohai Bay, China. Marine Geology, 359: 89~95.
-
Wang Qiang, Liu Lijun, Xu Hhaizhen, Ma Zhen, Zhi Taiping, Lan Ziting, Wang Yabin, Liu Xuesong, Lin Pei, Dong Dianwei. 2003. Re-study on the Lower boundary of quaternary system in the North Chia Plain. Geological Survey and Research, 26(1): 52~60 (in Chinese with English abstract).
-
Wang Qiang, Li Cunxian. 2009. The type of Quaternary sequence in the east China coastal plain. Marine Geology & Quaternary Geology, 26(4): 39~51(in Chinese with English abstract).
-
Wang Suming, Wu Xihao, Zhang Zhenke, Jiang Fuchu, Xue Bin, Tong Guobang, Tian Guoqiang. 2001. Sedimentary records of environmental evolution in the Sanmen Lake basin and the Yellow River running through the Sanmenxia Gorge eastward into the sea. Science in China(Series D), 31: 760~768 (in Chinese with English abstract).
-
Wang Yunlong, Guo Haipeng, Meng Jing, Chen Ye, Zang Xisheng, Zhu Juyan, Fan Gaodong. 2020. A study on compression and consolidation behaviors of soils in typical landsubsidence area in Cangzhou. Geological Survey and Research, 43(3): 246~250+278 (in Chinese with English abstract).
-
Wu Bailing, Deng Chenglong, Kong Yanfen, Liu Sunzhen, Sun Lu, Li Shihu, Ge Junyi, Wang Yuan, Jin Changzhu, Zhu Rixiang. 2018. Magnetostratigraphy of the fluvio-lacustrine sequence on the Guangongtan section in Longzhong basin, NW China. Chinese Journal of Geophysics, 61(4): 1390~1399 (in Chinese with English abstract).
-
Wu Chen. 2001. Changes of river system and newtectonic movement in North China mountains area. North China Earthquake Sciences, 19(4): 1~6 (in Chinese with English abstract).
-
Xiao Guoqiang, Yang Jilong, Zhao Changrong, Wang Qiang, Xu Qinmian, Hu Yunzhuang, Qin Yafei, Li Jing, Xiao Guoqiao. 2014. Magnetostratigraphy of drill hole G2 in the Tianjin coastal area and its tectonic significance. Geological Bulletin of China, 33(10): 1642~1650 (in Chinese with English abstract).
-
Xiao Guoqiao, Sun Yu Qi, Yang Jilong, Yin Qiuzhen, Dupont-Nivet G, Licht A, Kehew A E, Hu Yunzhuang, Geng Jianzhen, Dai Gaowen, Zhao Qingyu, Wu Zhipeng. 2020. Early Pleistocene integration of the Yellow River I: detrital-zircon evidence from the North China Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 546109691.
-
Xu Qinmian, Yuan Guibang, Yang Jilong, Xin Houtian, Yi Liang, Deng Chenglong. 2017. Plio-Pleistocene magnetostratigraphy of northern Bohai Bay and its implication to tectonic events since about 2. 0 Ma. Journal of Geodynamics, 111: 1~14.
-
Xu Qinmian, Yang Jilong, Hu Yunzhuang, Yuan Guibang, Deng Chenglong. 2018. Magnetostratigraphy of two deep boreholes in southwestern Bohai Bay: tectonic implications and constraints on the ages of volcanic layers. Quaternary Sciences. 43: 102~114.
-
Yang Jilong, Qin Yafei, Xu Qinmian, Zhou Xinying, Hun Yunzhuang, Du Dong, Meng Lishan. 2015. Palaeovegetation evolution features of the Tianjin coastal region since 7. 65 Ma BP. Acta Geologica Sinica, 89(6): 1134~1143 (in Chinese with English abstract).
-
Yang Jilong, Liang Meiyan, Algeo T J, Xu Qinmian, Hu Yunzhuang, Yuan Haifan, Xiao Guoqiao. 2020. Upper Miocene-Quaternary magnetostratigraphy and magnetic susceptibility from the Bohai Bay basin (Eastern China) and implications for regional volcanic and basinal subsidence history. Palaeogeogr Palaeoclimatol Palaeoecol, 538: 109469.
-
Yao Zhengquan, Guo Zhengtang, Chen Yukun, Xiao Guoqiao, Shao Yongxin, Wang Xulong, Hao Qingzhen, Lu Yanchou. 2006. Magnetostratigraphy of marine-terrigenous facies deposits in Bohai Bay. Marine Geology & Quaternary Geology, 26(1): 9~15 (in Chinese with English abstract).
-
Yuan Guibang, Xu Qinmian, Wang Yan, Yang Jilong, Qin Yafei, Du Dong. 2014. Magnetostratigraphy and tectonic significance of Bg10 borehole in northern coast of Bohai Bay. Acta Geologica Sinica, 88: 285~298 (in Chinese with English abstract).
-
Zhang Lei, Bai Lingyan, Cai Xiangmin, Wang Jiming, Liu Yu, Guo Gaoxuan, Yang Tianshui, Wu Huaichun, He Jing, Zhao Yong. 2014. Magnetostratigraphy study on the south segment of Nankou-Sunhe fault at Beijing plain and its implications for the fault activity during quaternary. Quaternary Sciences, 34(2): 381~390 (in Chinese with English abstract).
-
Zhang Zhaoyi, Fan Yanen, Jin Song, Xu Yongli, Yang Hongbin, Bi Li, Hu Jianzhong. 2015. Establishment of the Mid-Pleistocene Weixian Formation of non-marine sedimentary system in the Mid-West Hebei Plain. Geological Survey and Research, 38: 89~99 (in Chinese with English abstract).
-
Zhao Hongmei, Zhao Hua, Mao Hongliang, Fan Shuxian, Wang Chengmin, Ji Yunping. 2014. Quaternary stratigraphy division of hutuohe alluvial fan deposits in the North China Plain. Journal of Stratigraphy, 38(2): 137~146 (in Chinese with English abstract).
-
Zhao Songlin, Yang Guangfu, Cang Shuxi, Zhang Hongcai, Huang Qingfu, Xia Dongxing, Wang Yongji, Liu Fushou, Liu Fucheng. 1978. On Marine stratigraphy and shoreline in west coast of Bohai Bay. Oceanologia et Limnologia Sinica, 9(1): 15~25 (in Chinese with English abstract).
-
Zhao Yong, Cai Xiangmin, Wang Jiming, Wu Huaichun, Bai Lingyan, Zhang Lei, He Jing, He Fubing. 2013. Quaternary magnetostratigraphy of the Shunyi area in Beijing plain using ZK12-2 borehole profile. Acta Geologica Sinica, 87: 288~294 (in Chinese with English abstract).
-
Zhao Yong, Wang Qiang, Li Ruijie, Wei Bo, Xu Jixiang, Sun Yonghua, Zhang Xiaoliang, Wang Chunjun, Zhou Xinyuan, You Shina, Lv Jinbo. 2018. Quaternary stratigraphic division and its environmental significance of Borehole PGZ01 in southern Beijing plain area. Journal of Palaeogeography, 20: 337~348 (in Chinese with English abstract).
-
Zhao Yong, Li Ruijie, Wei Bo, Wang Chunjun, Sun Yonghua, Fang Tongming. 2019. Magnetostratigraphy of borehole PGZ05 in southern Daxing uplift, Beijing plain. Geoscience, 33(1): 56~62 (in Chinese with English abstract).
-
Zhu Rixiang, Deng Chenglong, Pan Yongxin. 2007. Magnetochronology of the fluvio-lacustrine sequences in the Nihewan basin and its implications for early human colonization of Northeast Asia. Quaternary Sciences, 27(6): 922~944 (in Chinese with English abstract).
-
白凌燕, 张磊, 蔡向民, 王继明, 杨天水, 吴怀春, 何静, 张晓亮, 赵勇. 2014. 磁性地层年代对北京平原顺义断裂第四纪活动性的约束. 现代地质, 28(6): 1234~1242.
-
蔡向民, 郭高轩, 栾英波, 孙知明, 梁亚南, 姜龙群. 2010. 永定河形成时代研究. 第四纪研究, 30(1): 167~174.
-
陈望和, 倪明云, 施迪光, 王金海. 1985. 河北平原第四纪地质的若干问题. 第四纪研究, 1: 2~14.
-
代鹏, 邓晓红, 王盛栋, 武军杰, 张全. 2019. 河北平原区固安G01孔岩芯特征及第四纪地层划分. 第四纪研究, 39: 399~407.
-
邓成龙, 郝青振, 郭正堂, 朱日祥. 2019. 中国第四纪综合地层和时间框架. 中国科学: 地球科学, 49: 330~352.
-
邓起东, 张培震, 冉勇康, 杨晓平, 闵伟, 楚全芝. 2002. 中国活动构造基本特征. 中国科学(D辑), 32(12): 1020~1030.
-
黄猛, 李明辰, 樊航宇, 张晓飞, 李继军, 胥勤勉. 2019. 渤海湾西北岸QHJ01孔记录的晚新生代气候与沉积环境演化. 地质学报, 93(4): 899~914.
-
姜兴钰, 王琳, 郝秀东, 王福, 田立柱, 施佩歆, 陈永胜, 王宏, 李建芬, 商志文. 2020. 晚上新世以来莱州湾南岸HLL02钻孔的孢粉记录及其古环境演变. 地质调查与研究, 43(4): 341~347.
-
李瑞杰, 赵勇, 魏波, 孙永华, 王强. 2019. 永定河中下游廊固凹陷北部ACX02钻孔地层年代学研究. 地质力学学报, 35(2): 249~256.
-
刘开明, 胥勤勉, 段连峰, 牛文超, 滕飞, 王小丹, 张伟, 董杰. 2020. 雄安新区西部GB014孔第四纪地层结构与演化过程. 科学通报, 65: 2145~2160.
-
刘立军, 徐海振, 崔秋苹, 王娟. 2010. 河北平原第四纪地层划分研究. 地理与地理信息科学, 26(2): 54~57.
-
潘保田, 王均平, 高红山, 管清玉, 王勇, 苏怀, 李炳元, 李吉均. 2005. 河南扣马黄河最高级阶地古地磁年代及对黄河贯通时代的指示. 科学通报, 50: 255~261.
-
王强, 刘立军, 徐海振, 马震, 职太平, 兰自亭, 王亚斌, 刘雪松, 林沛, 董殿伟. 2003. 华北平原第四系下限的再研究. 地质调查与研究, 26(1): 52~60.
-
王强, 李从先. 2009. 中国东部沿海平原第四系层序类型. 海洋地质与第四纪地质, 26(4): 39~51.
-
王苏民, 吴锡浩, 张振克, 蒋复初, 薛滨, 童国榜, 田国强. 2001. 三门古湖沉积记录的环境变迁与黄河贯通东流研究. 中国科学(D辑), 31: 760~768.
-
王云龙, 郭海朋, 孟静, 陈晔, 臧西胜, 朱菊艳, 樊高栋. 2020. 沧州典型地面沉降区土体压缩与固结特征研究. 地质调查与研究, 43(3): 246~250+278.
-
吴百灵, 邓成龙, 孔艳芬, 刘素贞, 孙蕗, 李仕虎, 葛俊毅, 王元, 金昌柱, 朱日祥. 2018. 甘肃陇中盆地会宁关公滩剖面磁性地层年代学研究. 地球物理学报, 61(4): 1390~1399.
-
吴忱. 2001. 华北山地的水系变迁与新构造运动. 华北地震科学, 19(4): 1~6.
-
肖国强, 杨吉龙, 赵长荣, 王强, 胥勤勉, 胡云壮, 秦雅飞, 李静, 肖国桥. 2014. 天津滨海地区G2孔磁性地层年代及其构造指示. 地质通报, 33(10): 1642~1650.
-
杨吉龙, 秦雅飞, 胥勤勉, 周新郢, 胡云壮, 杜东, 孟利山. 2015. 7. 65 Ma BP以来天津滨海地区的植被演变特征. 地质学报, 89(6): 1134~1143.
-
姚政权, 郭正堂, 陈宇坤, 肖国桥, 邵永新, 王旭龙, 郝青振, 卢演俦. 2006. 渤海湾海陆交互相沉积的磁性地层学. 海洋地质与第四纪地质, 26(1): 9~15.
-
袁桂邦, 胥勤勉, 王艳, 杨吉龙, 秦雅飞, 杜东. 2014. 渤海湾北岸Bg10孔磁性地层研究及其构造意义. 地质学报, 88: 285~298.
-
张磊, 白凌燕, 蔡向民, 王继明, 刘予, 郭高轩, 杨天水, 吴怀春, 何静, 赵勇. 2014. 北京平原南口-孙河断裂南段第四纪活动性的磁性地层学研究. 第四纪研究, 34(2): 381~390.
-
张兆祎, 樊延恩, 靳松, 徐永利, 杨红宾, 毕立, 胡建忠. 2015. 河北平原中西部中更新世非海相沉积体系魏县组的建立. 地质调查与研究, 38: 89~99.
-
赵红梅, 赵华, 毛洪亮, 范淑贤, 王成敏, 吉云平. 2014. 华北平原滹沱河冲积扇第四纪地层划分. 地层学杂志, 38(2): 137~146.
-
赵松林, 杨光复, 苍树溪, 张宏才, 黄庆福, 夏东兴, 王永吉, 刘福寿, 刘成福. 1978. 关于渤海湾西岸海相地层与海岸线问题. 海洋与湖沼, 9(1): 15~25.
-
赵勇, 蔡向民, 王继明, 吴怀春, 白凌燕, 张磊, 何静, 何付兵. 2013. 北京平原顺义ZK12-2钻孔剖面第四纪磁性地层学研究. 地质学报, 87: 288~294.
-
赵勇, 王强, 李瑞杰, 魏波, 徐吉祥, 孙永华, 张晓亮, 王纯君, 周圆心, 尤世娜, 吕金波. 2018. 北京平原南部PGZ01孔第四纪地层划分及其环境意义. 古地理学报, 20: 337~348.
-
赵勇, 李瑞杰, 魏波, 王纯君, 孙永华, 方同明. 2019. 北京大兴凸起南部PGZ05钻孔剖面第四纪磁性地层学研究. 现代地质, 33(1): 56~62.
-
朱日祥, 邓成龙, 潘永信. 2007. 泥河湾盆地磁性地层定年与早期人类演化. 第四纪研究, 27(6): 922~944.
-
摘要
可靠的地层年代标尺对于研究华北平原晚上新世以来沉积物记录的沉积环境演化、新构造运动及古气候演化具有重要意义。本文通过测定冀中坳陷东部的SFQ1钻孔岩芯古地磁,建立高分辨率磁性地层年代框架,并探讨其地质意义。结果表明:SFQ1孔中更新统底界埋深为71.0 m(布容期B/松山期M界线),下更新统底界埋深为197.8 m(松山期M/高斯期Ga界线),上上新统底界埋深在328.7 m(高斯期Ga/吉尔伯特Gi期界线),钻孔底部年龄约为4.74 Ma。不同构造单元钻孔联合剖面揭示,3.6~3.0 Ma期间受青藏高原隆升扩展影响,华北坳陷区被快速充填,至第四纪初地势已变得较为平坦,区域上出现相对水平的等时基准面,现今揭露的第四系底界埋深之所以表现出明显差异,主要是由于第四纪以来新构造运动继承性发展导致的。华北平原晚上新世以来构造运动和沉积结构对水文地质条件产生制约影响,建议在华北平原水文地质调查过程中加强第四系相关研究,以提高水资源评价精度。
Abstract
A reliable chronostratigraphic framework is crucial for better understanding the evolution history of paleoenvironment,neotectonics, and climate change in the North China Plain (NCP). In this study, we established a high-resolution chronostratigraphic framework for the SFQ1 borehole located in the east of Jizhong depression, NCP, and discussed its far-reaching geological significance. In the SFQ1 borehole, the Mid/Lower Pleistocene boundary (0.78 Ma) is placed at 71.0 m depth, the Pliocene/Pleistocene boundary (2.58 Ma) at 197.8 m depth, and the Gilbert/Gauss boundary (3.58 Ma) at 328.7 m depth. The borehole bottom is dated to around 4.74 Ma. Borehole joint sections, across different structural units revealed that the depressions in NCP were rapidly filled up and the NCP had become relatively flat at the beginning of the Quaternary, due to the tectonic uplift effect of the Tibetan Plateau during 3.6~3.0 Ma. Nevertheless, because of the inherited development of neotectonic movement, the study results revealed that the depth of the bottom of the Quaternary shows obvious differences. As the tectonic movement and sedimentary structure of the NCP had a restrictive effect on hydrogeological conditions since late Pliocene, we suggest that Quaternary research should be strengthened during hydrogeological survey in NCP to improve the accuracy of water resources evaluation.