en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

丁毅,男,1957年生。教授,从事火山岩、金伯利岩、陨石坑研究。E-mail:chinakimberlite@126.com;robertding@shaw.ca。

参考文献
Bai Zhida, Wang Jianmin, Liu Lei, Xu Debin. 2008. Quaternary volcano cluster of Wulanhada, right-back-banner, Chahaer, Inner Mongolia. Acta Petrologica Sinica, 24(11): 2585~2594.
参考文献
Bai Zhida, Tan Qingwei, Xu Guiling, Xu Debin, Wang Yan. 2012. Late Quaternary volcanic activity and neotectonics in the eastern Inner Mongolia. Acta Petrologica Sinica, 28(4): 1099~1107 (in Chinese with English abstract).
参考文献
BeatoS, Poblete A M, Marino J L. 2018. A geotouristic route to discover the maars of the Medias Lunas Range (Campo de Calatrava Volcanic Field, Central Spain). Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 16~17.
参考文献
Blaikie T N, Van-Otterloo J, Ailleres L, Betts P G, Cas R A F. 2015. The erupted volumes of tephra from maar volcanoes and estimates of their VEI magnitude: examples from the Late Cenozoic newer volcanics province, south-eastern Australia. Journal of Volcanology and Geothermal Research, 301: 81~89.
参考文献
Bolos X, Mart J. 2008. Abstracts Volume of the Seventh International Maar Conference-Olot, Catalonia, Spain.
参考文献
Brown R J, Manya S, Buisman I, Fontana G, Field M, Mac Niocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania). Bulletin of Volcanology, 74: 1621~1643.
参考文献
Brown R J, Valentine G A. 2013. Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geological Society of America Bulletin, 125: 1224~1238.
参考文献
Cotton C A. 1944. Volcanoes as landscape forms. Withcombe and Tombs Pubblication, Christchurch, 416.
参考文献
De Moor J M, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martínez M, Giudice G, Fischer T P. 2016. Short-period volcanic gas precursors to phreatic eruptions, insights from Poás Volcano, Costa Rica. Earth and Planetary Science Letters, 442: 218~227.
参考文献
De Silva S, Lindsay J M. 2015. Primary volcanic landforms. In: Sigurdsson H, Houguton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 273~297.
参考文献
Decker B B. 2020. Volcano. Retrieved from https: //www. britannica. com/science/volcano on 2020-12-15.
参考文献
Ding Yi. 2019. Understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65(5): 1~7 (in Chinese with English abstract).
参考文献
Ding Yi. 2020a. Satellite image index of kimberlite and its application. Geology and Exploration, 56(5): 1050~1056(in Chinese with English abstract).
参考文献
Ding Yi. 2020b. Discussion on key points in diamond prospecting based on case studies in Canada. Acta Geologica Sinica, 94(9): 2763~2771 (in Chinese with English abstract).
参考文献
Ding Yi, Wu Yunxia, Li Jicheng, Hao Zhiping, Dai Taojie. 2019a. Discovery and significance of Maars in Zhuozi County, Inner Mongolia. Geological Review, 65(6): 1431~1434(in Chinese with English abstract).
参考文献
Ding Yi, Yang Xianzhong. 2019b. KIM methods of heavy minerals in sediments and the significances in mineral resources prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459 (in Chinese with English abstract).
参考文献
Houghton B, White J D L, Van-Eaton A R. 2015. Phreatomagmatic and related eruption styles. In: Sigurdsson H, Houghton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 537~552.
参考文献
Jamtveit B, Svensen H, Podladchikov Y Y, Planke S. 2004. Hydrothermal vent complexes associated with sill instrusions in sedimentary basins. In: Breitkreuz D, Petford N, eds. Physical Geology of High-level Magmatic Systems. Geological Society, London, Special Plublication, 234, 229~232.
参考文献
Jolly A D, Jousset P, Lyons J J, Carniel R, Fournier N, Fry B, Miller C. 2014. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: an example from the 2012 Tongariro eruption. Journal of Volcanology and Geothermal Research, 286: 331~347.
参考文献
Kereszturi G, Jordan G, Németh K, Donizpaez J F. 2012. Syn-eruptive morphometric variability of monogenetic scoria cones. Bulletion of Volcanology, 74, 2171~2185.
参考文献
Kereszturi G, Guilbaud M, Pullanagari R, Siebe C, Salinas S. 2018. Exploring eruptive and erosional features of monogenetic scoria cones using principal component analysis and machine learning. seventh international maar conference-olot, catalonia, Spain. Abstract: 16~17.
参考文献
Kshirsagar P, Sieb, C, Guilbaud M N, Salinas S. 2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). Journal of Volcanology and Geothermal Research, 318: 114~133.
参考文献
Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 101~122.
参考文献
Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes: standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.
参考文献
Liu J Q, Liu D S, Chu G Q, Xiao J L, Luo X J. 1996. Maar lake and varve chronology. Quaternary Sciences, 16(4): 353~358 (in Chinese with English abstract).
参考文献
Lorenz V. 1973. On the formation of maars. Bulletin Volcanologique, 37: 138~204.
参考文献
Lorenz V, Kurszlaukis S. 2007. Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. Journal of Volcanology and Geothermal Research, 150: 4~32.
参考文献
Lorenz V, Suhr P, Suhr S. 2017. Phreatomagmatic maar-diatreme-volcanoes and their incremental growth: model. In: Nemeth K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 29~59.
参考文献
Nemeth K, Carrasco-Numez G, Aranda-Gomez J J, Smith I E M. 2017. Monogenetic Volcanism. Geological Society, London, Special Publications, 446.
参考文献
Ollier C. 1970. Volcanoes. An Introduction to Systematic Geomorphology. Cambridge: Mit Press, 370.
参考文献
Pering T D, Tehnuka I, Liu E. 2019. Periodicity in volcanic gas plumes: a review and analysis. Geosciences (Switzerland), 9(9): 394.
参考文献
Poblete M A, Beato S, Marino J L. 2018. A proposal for a classification of types of hydrovolcanoes based on geomorphic criteria. Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 64~65.
参考文献
Stovall W K, Driedger C L, Westby E G, Faust L M. 2019. Living with volcano hazards: U. S. Geological Survey Fact Sheet 2018~3075, https: //doi. org/10. 3133/fs20183075.
参考文献
Strata Editors of Inner Mongolia Autonomous Region. 1978. Regional Stratigraphic Table of North China-Inner Mongolia Stratification. Beijing: Geological Publishing House, 86 (in Chinese).
参考文献
Valentine G A, White J D L. 2012. Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology, 40: 1111~1114.
参考文献
Valentine G A, Connor C B. 2015. Basaltic volcanic fields. In: Sigurdsson H, Houghton B, Mcnutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 423~439.
参考文献
Vulkaneifel UNESCO Global Geopark. 2020. https: //www. geopark-vulkaneifel. de/en/geo-area/maar-lakes-and-geotopes. html. Retrieved on 2020. 10. 07.
参考文献
White J D, Ross P S. 2011. Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research, 201: 1~29.
参考文献
Yamaoka K, Geshi N, Hashimoto T, Ingebritsen S E, Oikawa T. 2016. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”. Earth, Planets, and Space, 68, doi: 10. 1186/s40623-016-0548-4.
参考文献
Zhang Jikui, Li Ni, Bai Zhida, Zhao Yongwei, Zhang Fanghua. 2019. Research on the accumulation sequence and eruptive process of Late Quaternary Maars in eastern Inner Mongolia. Acta Petologica et Mineralogica, 38(3): 339~353.
参考文献
Zhang Wenjuan, Han Baofu. 2010. K-Ar chronology and geochemistry of Jining Cenozoic basalts, Inner Mongolia and geodynamics implications. Acta Petrologica Sinica, 22(6): 1597~1607 (in Chinese with English abstract).
参考文献
白志达, 王剑民, 许桂玲, 刘磊, 徐德斌. 2008. 内蒙古察哈尔右翼后旗乌兰哈达第四纪火山群. 岩石学报, 24(11): 2585~2594.
参考文献
白志达, 谭庆伟, 许桂玲, 徐德斌, 王妍. 2012. 内蒙东部晚第四纪火山活动与新构造. 岩石学报, 28(4): 1099~1107.
参考文献
丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65(5): 1~7.
参考文献
丁毅. 2020a. 金伯利岩的卫星影像识别标志及应用实例. 地质与勘探, 56(5): 1050~1056.
参考文献
丁毅. 2020b. 加拿大案例探讨寻找金刚石矿的三个关键点. 地质学报, 94(9): 2763~2771.
参考文献
丁毅, 吴云霞, 李继成, 郝志平, 戴涛杰. 2019a. 内蒙卓资县玛珥式火山口群的发现和意义. 地质论评, 65(6): 1431~1434.
参考文献
丁毅, 杨献忠. 2019b. 沉积物中重矿物KIM的找矿方法和意义. 地质找矿论丛, 34(3): 453~459.
参考文献
内蒙古自治区地层表编写组. 1978. 华北地区区域地层表-内蒙古分层. 北京: 地质出版社.
参考文献
刘嘉麒, 刘东生, 储国强, 肖举乐, 骆祥君. 1996. 玛珥湖与纹泥年代学. 第四纪研究, 16(4): 353~358.
参考文献
张文娟, 韩宝福. 2010. 内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6): 1597~1607.
参考文献
张进奎, 李霓, 白志达, 赵勇伟, 张方华. 2019. 内蒙古东部晚第四纪玛珥式火山的堆积序列喷发过程研究. 岩石矿物学杂志, 38(3): 339~353.
目录contents

    摘要

    在内蒙古乌兰察布市辉腾锡勒草原上分布着上百个负地形的玛珥式火山口。它们数量多、分布密集、保存好。它们的主要特征是所有的火山口都是负地形,火山口不存在高出地表的口沿。盖层岩石碎块覆盖在火山口的斜坡和底部,火山口的边缘的小断崖也是盖层岩石。地球物理检查结果表明,被土壤覆盖的下面和火山口的斜坡上的碎块也是盖层岩石。岩芯钻探揭示了至少存在五个岩石破碎带,这表明岩浆流体没有将这些破碎带的块体胶结而是水汽地下爆炸的结果。综合分析认为,岩浆在上升过程中遇到了丰富的含水层,产生了水汽,在遇到阻挡层后积聚能量,导致地下爆炸。地表岩石的崩塌始于中心,并导致周围岩石呈楔形崩塌。较大的玛珥式火山口的形成比小的经历了更多次的爆炸。本研究认为,这些玛珥式火山口形成于同一时代,具有相同的成因。全球对玛珥式火山口的研究表明,喷出的碎屑数量是由水参与岩浆活动的量决定的。然而,对于岩浆遇到丰富水层的情况下,由蒸汽冲撞地层和地下爆炸所形成的玛珥式火山口的研究很少。本文对辉腾锡勒玛珥式火山口的研究是对玛珥式火山口成因研究的贡献。

    Abstract

    In the Huitengxile grassland of the Wulanchabu City, Inner Mongolia, there are hundreds of Maar craters with negative topography. They are numerous, densely distributed and well preserved. Their main features are all negative terrain and no crater rim above the surface rock. Basaltic layer and its fragments as the caprock cover the slope and bottom of the crater and there are small cliffs at the edge of the crater, which also have the composition of the caprock. Geophysical examination results also show that basaltic fragments hidden by soils cover the bottom and slope of the crater. Core drilling revealed at least five rock fracture zones, indicating that the possible magmatic fluid would have cemented these blocks. A comprehensive analysis shows that the magma encountered rich aquifer, produced water vapor, which accumulated energy after encountering barrier layer in the process of rising and led to underground explosions. The collapse of the surface rock began at the center of the crater and resulted in a wedge-shaped collapse around it. The larger Maar crater experienced more explosions than the smaller one. The authors also believe that these Maar craters have the same formation age and origin. Global studies on Maar craters show that the number of ejected debris is determined by amount of the water mixing with the magma. However, there is a lack of research on Maar craters formed by dash and break of steam only when magma encounters water rich layers. This study of the Maars in the Huitengxile basin is an important contribution to the formation of the Maar craters.

    关键词

    玛珥式火山水汽乌兰察布内蒙中国

    Keywords

    MaarphreaticUlanqabInner MongoliaChina

  • “玛珥(Maar)”是德国西埃菲尔地区居民对当地小型湖泊的称谓,德国地质学家Lorenz(1973)论证了它们是火山成因,在全球许多地方都发现有玛珥式火山口和玛珥式火山口群。然而,对于完全负地形的玛珥式火山口的成因研究较少。中国湖光岩和龙岗湖的研究论证了其是玛珥式火山口,开创了中国的玛珥式火山口的研究(Liu Jiaqi et al.,1996),Bai Zhida et al.(2012)和Zhang Jinkui et al.(2019)先后对内蒙东部玛珥式火山进行了野外调查,指出该地区存在具有各种火山碎屑沉积层理的低平火山口。乌兰察布市首府集宁区65 km的西部存在上百个负地形玛珥式火山口群(Ding et al.,2019a),分布在乌兰察布市察哈尔右翼中旗和卓资县之间的近200 km2的辉腾锡勒草原盆地内,行政区划属于察哈尔右翼中旗、卓资县、后旗。这是一群地貌非常特别的火山口,也是认识程度和研究程度较低的火山口分布区。本文在以前工作的基础上,进行了详细的野外观察和测量,用遥感和无人机方法辅助观察和测量火山口地形,统计和进行火山口的编号,挑选其中三个火山口进行磁法测量,一个火山口实施钻孔取芯工作,试图用多种手段综合的分析方法和结合国际研究成果探讨玛珥式火山口群的成因。

  • 1 区域地质

  • 辉腾锡勒草原的玛珥式火山口群位于集宁区的西部70 km的一个四周为丘陵的盆地中(图1a),距离北京约320 km,大地构造位置位于华北克拉通北缘。境内出露的地层有太古宇变质岩,侵入岩有白垩纪花岗岩,玄武熔岩流覆盖整个盆地,熔岩流喷溢中心的位置在卫星影像上清晰(图1a中圆圈)。1972年和1973年内蒙古自治区地质局对这一地区进行了1∶20 万区域地质调查❶❷内蒙古自治区地层表编写组(1978) 将这一地区分布的玄武岩定为中新世汉诺坝玄武岩(图1c)。白志达等(2008) 对辉腾锡勒盆地东北部60 km的乌兰哈达火山口群进行了研究,认为火山形成的年代在晚更新世和全新世。张文娟等(2010) 将乌兰察布市集宁区的新生代玄武岩分为三个喷发旋回,分别形成在33 Ma、22.8~22.1 Ma、12.2~9.4 Ma。

  • 2 工作方法和结果

  • 2.1 野外地质工作

  • 火山口群分布区处于辉腾锡勒草原约200 km2的盆地中。对区域内每一个火山口进行了系统编号和分区。当地居民称这些火山口为“海子”,对一些浅的海子又被当地老乡开发种田的海子没有统计和测量在内。对火山口内侧面斜坡上堆砌的岩石进行了详细的野外观察和室内薄片鉴定,野外测量和统计了海子的直径、高度、坡度,并利用无人机观察和结合遥感卫星资料的核实、定位和对比。

  • 这些火山口的共同特点是:① 绝大多数火山口都是口沿没有高出地面的负地形(图2a、c); ② 无论从野外实地观察、无人机和卫星照片观察,火山口均为圆形或椭圆形; ③ 个别位于盆地东部火山口口沿高出地面的组成岩石碎块也为地表的盖层玄武岩,没有发现新的火山熔岩碎块,火山口周围也没有岩浆喷溢所形成的流动和渣堆地貌; ④ 西碱海子(图1的“80”)的东侧斜坡口沿处有碎屑堆积层,在其中尚未发现比盖层玄武岩新的火山角砾; ⑤ 火山口内侧面斜坡上堆积有盖层碎块(图2f),有棱角形的和圆滑形的,均为盖层橄榄玄武岩,斜坡上许多地段可以发现碎块被浮土掩埋; ⑥ 在这200 km2的面积上,火山口为188个,其中在中新世火山口周围密集分布,火山口西侧的14 km2分布有35个火山口(图1中的A区),北东侧的13.25 km2分布有37个火山口(图1中的B区); ⑦ 国际研究文献中对玛珥式火山口直径的测量都是口沿对口沿的,对辉腾锡勒草原盆地中直径大于50 m的116个火山口的统计:平均直径为268 m,最大火山口直径为962 m(大贾家子为椭圆形,南北向口沿对口沿的长度,图1a中的“51”),火山口的直径集中在100~400 m之间,其中100~199 m之间的有35座,200~299 m之间的有33座,200~399 m之间的有21座; ⑧ 坡度(即“盘子侧面坡和水平面的夹角”)在4°~12°之间; ⑨ 火山口底部到火山口上部(口沿对口沿所形成的平面)的高度,也就是火山口的深度在3~25 m,直径越小的火山口的深度越小,深度和坡度都与火山口的直径成正比; ⑩火山口底部平整,为黑灰色的土壤(图2c),夏秋季节雨水多时积水(图2a)。据当地居民观察发现,20年前有常年积水,有99泉之称。现在火山口内坡上还残留有明显的湖岸线(图2c)。

  • 2.2 钻孔取芯

  • 对白尖海子(图1a中的“67”)进行了186 m深度的钻探取芯,XY-4型岩芯钻机用的是金刚石钻头,开孔直径98 mm,岩芯管直径76 mm,岩芯直径为48 mm。图3为钻孔岩芯柱状图,显示为两组不同年代的地层组成:以片麻岩、角闪岩为主的太古宙地层和以气孔-杏仁状玄武岩、致密状玄武岩、泥岩为代表的新生代地层。新生代玄武岩由早至晚有三个形成期,分别位于103.8~115.2 m,55.5~58.4 m,9.6~42.4 m,最后一期的玄武岩可分为三个次旋回的火山活动,次旋回层均以上部气孔和底部熔岩为组合特征。岩芯中至少存在五个破碎岩芯层,其特点是岩石碎块断口是不能相互拼接的旧的断口,这与由于器械运作所造成的岩芯新的断口(断口能对的上)有着明显的不同。破碎带中的岩块没有被岩浆液体胶结,呈现独立、有棱角和无棱角。

  • 2.3 火山口内磁场测量

  • 对枪旗海子(图2e)、侯辉海子、安详海子(图2d)(图1中编号分别是26、55、93的位置)分别进行了磁法测量。具体方法是以海子为中心,布设十字剖面,测线布置采用差分GPS结合测绳方式进行,点距5 m。磁测采用的仪器为加拿大生产的GSM-19T高精度质子磁力仪,仪器灵敏度<0.1 nT,分辨率为0.01 nT,绝对精度0.2 nT。测量参数为地球磁场总强度T,经日变改正、高度改正、正常梯度改正及基点改正后获取磁参量ΔT,根据ΔT直接绘制剖面图。其中ΔT为地球磁场总强度T与正常场T0的模量差。磁强度变化显示有如下2个特点:① 磁场高点对称。野外检查,高点为盖层玄武岩碎块的分布带,在分布带上有的地段碎块露出有的地方碎块被浮土掩埋(图2e中的的虚线黑圈); ② 椭圆形海子中心的磁场强度大,则说明喷气口呈长条状分布(图2d中的的虚线黑圈); ③ 火山口内存在磁场弱的地段(图2d、e中的绿圈)。

  • 图1 辉腾锡勒盆地玛珥式火山口分布区解析的卫星照片(a)(图中虚线圈内为中新世火山口,其周围为玛珥式火山口分布区,具有数字的圆圈位置为本文提及到的玛珥式火山口,A、B、C区为本文讨论的区域); 辉腾锡勒盆地位置图(b); 辉腾锡勒盆地地质图(c)(据内蒙古自治区地质局(1972)1∶20万区域地质图修改)

  • Fig.1 The interpreted satellite photo of the distribution area of maar craters in Huitengxile (a) (in which the dotted circle indicates the Miocene crater, around it Maar craters distributed densely; circles with numbers are the craters that will be discussed in this paper) ; the location map of Huitenxile (b) ; and the geological map of Huitengxile (c) (after the geological map of 1∶200000 by Inner Mongolia Autonomous Region, 1972)

  • 图2 辉腾锡勒玛珥式火山口和德国境内玛珥式火山口照片

  • Fig.2 Photos of Maar craters in Huitengxile and in Germany

  • (a)—辉腾锡勒草原玛珥式火山口UAV照片;(b)—德国西埃菲尔地区玛珥式火山口群UAV照片;(c)—枪旗海子(图1a“26”)和兰大海子(图1a“27”)的UAV照片,具有清晰的湖岸线;(d)—安详海子(图1a“93”)磁法测量解析卫星照片,白色断线圈划出了喷口堆积着玄武岩碎块,绿断线圈标出火山口内有比玄武岩碎块磁性弱的区域;(e)—枪旗海子(图1a“26”)ΔT磁异常曲线,高点呈中心对称,也存在与安详海子类似的磁性弱的区域;(f)—白尖海子(图1a“67”)实地照片,内侧坡上岩石碎块堆积;(g)—兰大海子(图1a“27”)实地照片,口沿部位的断崖; h—盆地西部(图1a中C区)卫星照片,直径小于50 m的火山口呈线状分布

  • (a) —UAV photo of maar craters in Huitengxile; (b) —UAV photo of maar craters in West Eiffel, Germany; (c) —UAV photo of Qiangqi Haizi (“26” in Fig.1a) and Landa Haizi (“27” in Fig.1a) , showing clear lake shorelines; (d) —the analysed satellite photo of magnetic measurement in Anxiang Haizi (“93” in Fig.1a) , in which the white broken lines indicate the basalt fragments accumulated in the vent. The green broken lines circle the area of weaker magnetism; (e) —the chart of magnetism on the Qiangqi Haizi (“26” in Fig.1a) , where the magnetic peaks show symmetric in the crater where exists the area (green dotted cycle) with similar weaker magnetism than basalt fragmens; (f) —field photo shows fragments of the caprocks on the inner side of Baijian Haizi (“67” in Fig.1a) ; (g) —field photo shows the small cliff at the margin of Landa Haizi (“27” in Fig.1a) ; (h) —the satellite photo displays the small maars arranged in line in the west of the plain (area C in Fig.1a) .

  • 图3 白尖海子(图1a中“67”)总长186 m的岩芯柱状图

  • Fig.3 The186 m core column diagram on Baijian Haizi (“67” in Fig.1a)

  • 左边为岩芯照片,岩芯破碎部位用爆炸符号标注,箭头指向相对应的岩石柱状图位置

  • With the core photo on the left, the broken part of the core is marked with the explosion symbol, and the arrow points to the corresponding positions in the column

  • 3 讨论

  • 3.1 玛珥式火山

  • Lorenz(1973)定义了玛珥式火山:由火山灰组成的低口沿、100~2000 m直径、10~200 m深的火山口。在这之后,玛珥式火山的研究取得了许多新的进展:玛珥式火山包括由岩浆汽液喷发(Phreatomagmatic)带出新的岩浆碎屑,形成具有一定口沿高度但口沿高度与火山口直径之比较小的低平火山锥,也包括由于含水量较高以水汽喷射(Phreatic)为主,形成口沿低的火山口,在纵向剖面上用玛珥-火山管道(Maar-diatreme)来形容(Lorenz et al.,2007; White et al.,2011; Valentine et al.,20122015)。Lorenz et al.(2017)回顾了整个玛珥式火山口的科学认识过程,水汽是上侵岩浆侵入近地表含水层(Aquifer)后产生的,由于水的参与量和岩浆的成分不同,形成了从高出地面的低平锥状体到口沿不高的玛珥式火山口的变化(图4a~e)。辉腾锡勒草原盆地上分布的完全负地形的玛珥式火山口群是一种岩浆活动中地下水参与较多所形成的世界上罕见的火山口群。

  • 在加拿大萨省的金伯利岩群中有正地形和完全负地形的地貌形式,在形状和大小上与玛珥式火山口没有区别(Brown et al.,2013; Ding Yi,2020b),因此玛珥-火山管道的概念又包括了金伯利质玛珥-管道火山(Kimberlite Maar-diatreme volcanoes)和非金伯利质玛珥-管道火山(Non-kimberlite Maar-diatreme volcanoes)。金伯利岩浆多数冲破地表形成火山喷发相,由于深部形成的矿物在地表不稳定,即使最初口沿高出地面也很容易被风化掉了,因此金伯利质火山-管道体的上部通常为负地形(Ding Yi,2020a)。辉腾锡勒草原位于华北克拉通北缘,有学者认为华北克拉通已经减薄并遭到破坏。但是地下深部金刚石有可能在克拉通减薄之前就形成,只要岩浆起源深或穿过富含金刚石层,就有可能捕虏富集金刚石层碎块,并携带到上地壳形成含金刚石的金伯利岩筒,另一方面这片火山口的地貌形态非常像金伯利岩质火山岩的喷发相(Ding Yi,2019)。金伯利岩的指示矿物所形成的分散晕大(Ding Yi et al.,2019b),对一个地区是否存在金伯利岩体有敏感的指示意义,但在辉腾锡勒草原的附近的流水和干涸水系的重砂样品中,没有发现镁铝榴石、铬铁矿等金伯利岩指示矿物,当地牧民除了在玻璃脑包(图1a中东北角)附近有人捡过石英晶体,没有发现其他包括金伯利岩的岩体喷发相的金伯利角砾的块体。因此,可以排除这些火山口是金伯利质玛珥-管道体上部的喷发相。

  • 3.2 辉腾锡勒草原玛珥式火山口

  • 辉腾锡勒草原的火山口的野外调查表明,地表不存在与盖层玄武岩不同的火山碎屑岩块,也没有发现由新的岩浆碎屑所组成的火山层理。这些火山口由“盘边”和“平底”组成,“盘边”上堆砌着盖层岩石碎块(图2f),这些岩石碎块都是盖层橄榄玄武岩,多数直径300 m以上和深度在15 m以上的口沿处都存在火山管道塌陷所带动口沿塌陷而造成的断崖(图2g),断崖的岩石也是地表盖层橄榄玄武岩。排除浮土覆盖厚度对浮土下面岩石碎块磁力的影响,火山口内部表层土下与火山口内侧面斜坡堆积的岩石在磁性上没有明显的差别,这些都暗示火山口内和斜坡上的岩石碎块全是地表盖层橄榄玄武岩。野外观测有些岩石碎块裸露在斜坡上,大部分地段为浮土覆盖,但是显示出岩石碎块以火山口为中心呈环状排列,这一点为磁法测量所佐证:ΔT磁异常曲线所显示的高点对称说明浮土下平底的岩石碎块也呈围绕喷口呈椭圆形排列(图2d白虚线圈)和环状排列(图2e白虚线圈),暗示地下水汽爆炸形成火口塌陷后,塌陷的碎块造成喷气口暂时封闭,水汽持续喷射形成小而新的喷口后,仍然持续喷气,将堵塞在喷口上方的碎块抛向高空,使得这些碎块坠落呈圆形分布或堵塞在喷口附近。磁法测量结果也显示由于水汽喷射作用导致火山口内存在碎块岩石分布不均匀的部位(图2d、e绿虚线圈)。钻孔岩芯中发现5层岩石破碎带(图3),破碎的岩石没有被岩浆胶结,显示为水汽活动的结果而并非岩浆热液参与,因为后者的液体会将冲碎的集块或角砾岩石胶结在一起,这一现象在金伯利岩管道体的喷发相很常见,如形成爆破角砾岩和爆破集块岩(Ding Yi,2019)。在辉腾锡勒盆地的西碱海子(图1a中的“80”)的口沿处所见到的碎屑沉积层中没有发现新喷发的熔岩块体,初步断定这些层理的主要组成是由喷射的汽体带出围岩碎屑和地表沉积物,这种层理可能与内蒙东部许多大型玛珥火山口口沿存在爬升层理和平行层理(Zhang Jinkui et al.,2019)不同。在世界许多地区都发现玛珥式火山口的口沿为水汽喷发形成的围岩碎屑或地表沉积物堆积,而在碎屑沉积层中不存在以火山弹和火山饼等的新的岩浆块体(Jamtveit et al.,2004; Lefebvre et al.,2013; Beato et al.,2018)。

  • 如上负地形的地貌形态、火山口内和斜坡上的岩石碎块带和断崖、钻孔岩芯岩层破碎带、物探所检测出的盖层呈环形排列,这些都说明:岩浆上升过程中遇到丰富的含水层,含水层消耗岩浆能量的同时,产生了地下压力较大的水汽,在继续上冲时遇到阻挡层后,由于水汽处于封闭状态,体积膨胀压力加大,水汽能量聚集而导致地下爆炸,地下岩层破碎后上覆地层在中心首先下沉,而后带动边缘持续性的楔形塌陷(图5)。多次爆炸形成大的玛珥式火山口,在大的玛珥式火山口附近(图2a中小的)、盖层裂隙发育地段、玄武岩盖层较薄的地段所形成小的玛珥式火山口(图1a的C区(图2h)),其可能只经历了一次地下爆炸。

  • 德国“瓦卡内菲尔世界地质公园”中的西埃菲尔地区存在负地形即没有高出地面口沿的玛珥式火山,也存在高出地面的口沿火山碎屑堆积圈(图2b)(Vulkaneifel,2020),在坦桑尼亚所发现的全新世金伯利质火山口为保存完好的正地形玛珥式火山(Brown et al.,2012),加拿大萨省发现的白垩纪金伯利质火山口群受风化破坏小,地貌形态多种多样(Ding Yi,2020b)。世界上有许多玛珥式火山口存在正地形和负地形共存的现象(Kereszturi et al.,20122018)。喷出的碎屑量与岩浆来源深度和岩性、上升通道所遇到围岩的性质、断裂是否发育有关,而主要与地下水参与岩浆活动的量有关,这一论点为包括本文作者的大多数学者所认同(Blaikie et al.,2015; Houghton et al.,2015; Kshirsagar et al.,2016; Kurszlaukis et al.,2017)。但是,对于完全没有火山口沿、呈负地形的火山口群研究不足。辉腾锡勒盆地内绝大多数火山口都为负地形是世界上罕见的,是岩浆上侵到近地表含水量较大的地层,岩浆呈岩床面状延展,形成水汽,多点上冲,遇到阻挡层后气体膨胀,导致地下爆炸的结果,它们的形成一定是水汽喷射结果,水汽喷出没有带出新的岩浆碎屑。在盆地东部个别火山口的口沿虽然高出地面,组成口沿的碎块是盖层玄武岩碎块,这也是水汽喷射的结果。水汽喷射将地表岩石碎屑抛到上空后堆砌成火山口沿。

  • 岩浆遇到丰富的含水层,形成强烈的水汽喷射,产生地下爆炸、地表塌陷。从某种角度来看,这些喷口(Vents)应当用“水汽喷射口”描述似乎更贴切。然而,从火山定义的角度来看,这些喷汽口是岩浆地下活动的结果。火山定义从最初只对喷发碎屑和溢流熔岩的火山认识(Cotton,1944)、各种火山地貌的初步总结(Ollier,1970)、到近些年全球火山地质研究成果的广泛交流,使得更精准、更具代表性和简单地给“火山”下一个定义:地球和其他行星地壳上的“喷口”,喷出熔融的岩浆、热的岩石碎屑、热气体。火山活动是一个星体内部释放热的过程(Decker,2020)。这一最新的定义包括人们所熟知的由岩浆喷出的火山灰、火山角砾、火山块体组成的火山渣堆,同时也强调“喷口”仅喷出旧的围岩碎屑形成以喷口为中心的环状层理堆积和喷口仅仅是水汽喷射的多种形式。 2018年在西班牙召开的玛珥式火山的会议上,岩浆与地下水相互作用形成了各种类型的玛珥式火山口,由地下岩浆活动所形成的水汽喷发越来越多地成为地质科学所关注的议题(Bolos et al.,2008)。近十年持续还在喷发水汽的火山有:美国的Tongariro(Jolly et al.,2014)、哥斯达黎加的Poás Volcano(De Moor et al.,2016),日本的Mount Ontake(Yamaoka et al.,2016),以及美国的黄石火山地质公园(Stovall et al.,2019)。岩浆与地下水混合产生水汽,水汽膨胀在地下爆炸,冲破盖层形成喷口,持续射汽,是近几年的地质科学研究的共识。水汽喷发已经被认为是火山活动的一种重要表现形式。水汽喷射在辉腾锡勒盆地曾发生过,现在全球许多地区仍然存在水汽喷射。全球有许多火山喷发只喷出气体,不容易引起注意。火山喷发时释放的大部分气体是水蒸气,但火山也会产生二氧化碳、二氧化硫、硫化氢、氟气、氟化氢和其他气体。所有这些气体在一定的条件下都是危险的,甚至是致命的(Pering et al.,2019)。

  • 图4 玛珥-管道火山地貌

  • Fig.4 Landforms of Maar-diatreme volcano

  • 由于地下水参与岩浆活动的量不同,(a)—玛珥-管道火山由低火山锥体,(b~e)—到低平火山体(据 Kurszlaukis et al.,2017),(f)—地下水参与较多时为水汽喷射,形成完全负地形的玛珥式火山

  • Owing to amount increase of mixed water with magma, (a) —the landforms of Maar-diatreme change from low cone, (b~e) —low and flat cone (after Kurszlaukis et al., 2017) , (f) —the Maar with negative terrain formed when much of the amount of underground water participate

  • 图5 辉腾锡勒草原玛珥式火山口成因模式图

  • Fig.5 Genetic model of Huitengxile Maar craters

  • 钻孔位置是白尖海子(图1a“27”)中心,总进尺186 m; 火山口沿直径593 m,火山口直径283 m,火山口深度22 m

  • The location of drilling rig is the center of Baijian Haizi (“27”in Fig.1a) , with the drilling length is 186 m; the diameter of the crater (margin to margin) is 593 m, the diameter of the crater vent 283 m, and the depth 22 m

  • 玛珥式火山口群是同时代同岩浆源的单成因火山活动(Monogenetic volcanism),这一观点也为大多数学者所接受(Nemeth et al.,2017)。本文所研究的辉腾锡勒盆地中火山口之间没有相互覆盖和叠加的关系,从其形状相似和成群出现来看应当是单一成因、同时代形成的火山口群。

  • 4 结论和今后的工作

  • 辉腾锡勒负地形的火山口群是岩浆遇到丰富的地下含水层产生上冲的水汽,水汽在地下聚集压力增大,产生地下爆炸,地表由中心开始带动边缘的阶梯式的楔形塌陷形成的玛珥式火山口群。大的火山口为地下多次爆炸结果,大的火山口旁小的和盖层较薄区域的小的火山口是经历了次数较少的地下爆炸所导致盖层塌陷的结果。在汽体喷射形成火山口后,汽体持续喷射。注重研究水汽喷射所喷发的有害物质的含量是我国地质工作应当重视的领域。

  • 辉腾锡勒玛珥式火山口群是同时代、由汽体地下能量聚集后爆炸单一成因的玛珥式火山口群。

  • 在火山口内外和个别火山沉积剖面上没有发现新的岩浆角砾碎块,岩浆溯源是个未来要解决的科学问题。对西碱海子沉积层剖面的详细研究和玻璃脑包实施钻孔取芯有助于解决这一问题。

  • 物探测量显示出火山口内岩石分布的不均匀,磁性弱异常区分布着什么岩石是没有解决的问题。

  • 致谢:刘嘉麒院士、张招崇教授和其他多位教授反复审稿并提出宝贵意见,李继成、郝志平、宋瑞祥、陈继雄、戴涛杰、蔡桂芳、张永升、张小春、刘云、王大和、陈树晓、王忠、周爱国、汪海、崔夏红等先后参与野外考察,在此一并表示感谢!

  • 注释

  • ❶ 内蒙古自治区地质局.1972.1∶20 万集宁区域地质测量报告.

  • ❷ 内蒙古自治区地质局.1973.1∶20 万乌兰察布市幅区域地质调查报告.

  • 参考文献

    • Bai Zhida, Wang Jianmin, Liu Lei, Xu Debin. 2008. Quaternary volcano cluster of Wulanhada, right-back-banner, Chahaer, Inner Mongolia. Acta Petrologica Sinica, 24(11): 2585~2594.

    • Bai Zhida, Tan Qingwei, Xu Guiling, Xu Debin, Wang Yan. 2012. Late Quaternary volcanic activity and neotectonics in the eastern Inner Mongolia. Acta Petrologica Sinica, 28(4): 1099~1107 (in Chinese with English abstract).

    • BeatoS, Poblete A M, Marino J L. 2018. A geotouristic route to discover the maars of the Medias Lunas Range (Campo de Calatrava Volcanic Field, Central Spain). Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 16~17.

    • Blaikie T N, Van-Otterloo J, Ailleres L, Betts P G, Cas R A F. 2015. The erupted volumes of tephra from maar volcanoes and estimates of their VEI magnitude: examples from the Late Cenozoic newer volcanics province, south-eastern Australia. Journal of Volcanology and Geothermal Research, 301: 81~89.

    • Bolos X, Mart J. 2008. Abstracts Volume of the Seventh International Maar Conference-Olot, Catalonia, Spain.

    • Brown R J, Manya S, Buisman I, Fontana G, Field M, Mac Niocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania). Bulletin of Volcanology, 74: 1621~1643.

    • Brown R J, Valentine G A. 2013. Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geological Society of America Bulletin, 125: 1224~1238.

    • Cotton C A. 1944. Volcanoes as landscape forms. Withcombe and Tombs Pubblication, Christchurch, 416.

    • De Moor J M, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martínez M, Giudice G, Fischer T P. 2016. Short-period volcanic gas precursors to phreatic eruptions, insights from Poás Volcano, Costa Rica. Earth and Planetary Science Letters, 442: 218~227.

    • De Silva S, Lindsay J M. 2015. Primary volcanic landforms. In: Sigurdsson H, Houguton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 273~297.

    • Decker B B. 2020. Volcano. Retrieved from https: //www. britannica. com/science/volcano on 2020-12-15.

    • Ding Yi. 2019. Understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65(5): 1~7 (in Chinese with English abstract).

    • Ding Yi. 2020a. Satellite image index of kimberlite and its application. Geology and Exploration, 56(5): 1050~1056(in Chinese with English abstract).

    • Ding Yi. 2020b. Discussion on key points in diamond prospecting based on case studies in Canada. Acta Geologica Sinica, 94(9): 2763~2771 (in Chinese with English abstract).

    • Ding Yi, Wu Yunxia, Li Jicheng, Hao Zhiping, Dai Taojie. 2019a. Discovery and significance of Maars in Zhuozi County, Inner Mongolia. Geological Review, 65(6): 1431~1434(in Chinese with English abstract).

    • Ding Yi, Yang Xianzhong. 2019b. KIM methods of heavy minerals in sediments and the significances in mineral resources prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459 (in Chinese with English abstract).

    • Houghton B, White J D L, Van-Eaton A R. 2015. Phreatomagmatic and related eruption styles. In: Sigurdsson H, Houghton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 537~552.

    • Jamtveit B, Svensen H, Podladchikov Y Y, Planke S. 2004. Hydrothermal vent complexes associated with sill instrusions in sedimentary basins. In: Breitkreuz D, Petford N, eds. Physical Geology of High-level Magmatic Systems. Geological Society, London, Special Plublication, 234, 229~232.

    • Jolly A D, Jousset P, Lyons J J, Carniel R, Fournier N, Fry B, Miller C. 2014. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: an example from the 2012 Tongariro eruption. Journal of Volcanology and Geothermal Research, 286: 331~347.

    • Kereszturi G, Jordan G, Németh K, Donizpaez J F. 2012. Syn-eruptive morphometric variability of monogenetic scoria cones. Bulletion of Volcanology, 74, 2171~2185.

    • Kereszturi G, Guilbaud M, Pullanagari R, Siebe C, Salinas S. 2018. Exploring eruptive and erosional features of monogenetic scoria cones using principal component analysis and machine learning. seventh international maar conference-olot, catalonia, Spain. Abstract: 16~17.

    • Kshirsagar P, Sieb, C, Guilbaud M N, Salinas S. 2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). Journal of Volcanology and Geothermal Research, 318: 114~133.

    • Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 101~122.

    • Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes: standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.

    • Liu J Q, Liu D S, Chu G Q, Xiao J L, Luo X J. 1996. Maar lake and varve chronology. Quaternary Sciences, 16(4): 353~358 (in Chinese with English abstract).

    • Lorenz V. 1973. On the formation of maars. Bulletin Volcanologique, 37: 138~204.

    • Lorenz V, Kurszlaukis S. 2007. Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. Journal of Volcanology and Geothermal Research, 150: 4~32.

    • Lorenz V, Suhr P, Suhr S. 2017. Phreatomagmatic maar-diatreme-volcanoes and their incremental growth: model. In: Nemeth K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 29~59.

    • Nemeth K, Carrasco-Numez G, Aranda-Gomez J J, Smith I E M. 2017. Monogenetic Volcanism. Geological Society, London, Special Publications, 446.

    • Ollier C. 1970. Volcanoes. An Introduction to Systematic Geomorphology. Cambridge: Mit Press, 370.

    • Pering T D, Tehnuka I, Liu E. 2019. Periodicity in volcanic gas plumes: a review and analysis. Geosciences (Switzerland), 9(9): 394.

    • Poblete M A, Beato S, Marino J L. 2018. A proposal for a classification of types of hydrovolcanoes based on geomorphic criteria. Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 64~65.

    • Stovall W K, Driedger C L, Westby E G, Faust L M. 2019. Living with volcano hazards: U. S. Geological Survey Fact Sheet 2018~3075, https: //doi. org/10. 3133/fs20183075.

    • Strata Editors of Inner Mongolia Autonomous Region. 1978. Regional Stratigraphic Table of North China-Inner Mongolia Stratification. Beijing: Geological Publishing House, 86 (in Chinese).

    • Valentine G A, White J D L. 2012. Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology, 40: 1111~1114.

    • Valentine G A, Connor C B. 2015. Basaltic volcanic fields. In: Sigurdsson H, Houghton B, Mcnutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 423~439.

    • Vulkaneifel UNESCO Global Geopark. 2020. https: //www. geopark-vulkaneifel. de/en/geo-area/maar-lakes-and-geotopes. html. Retrieved on 2020. 10. 07.

    • White J D, Ross P S. 2011. Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research, 201: 1~29.

    • Yamaoka K, Geshi N, Hashimoto T, Ingebritsen S E, Oikawa T. 2016. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”. Earth, Planets, and Space, 68, doi: 10. 1186/s40623-016-0548-4.

    • Zhang Jikui, Li Ni, Bai Zhida, Zhao Yongwei, Zhang Fanghua. 2019. Research on the accumulation sequence and eruptive process of Late Quaternary Maars in eastern Inner Mongolia. Acta Petologica et Mineralogica, 38(3): 339~353.

    • Zhang Wenjuan, Han Baofu. 2010. K-Ar chronology and geochemistry of Jining Cenozoic basalts, Inner Mongolia and geodynamics implications. Acta Petrologica Sinica, 22(6): 1597~1607 (in Chinese with English abstract).

    • 白志达, 王剑民, 许桂玲, 刘磊, 徐德斌. 2008. 内蒙古察哈尔右翼后旗乌兰哈达第四纪火山群. 岩石学报, 24(11): 2585~2594.

    • 白志达, 谭庆伟, 许桂玲, 徐德斌, 王妍. 2012. 内蒙东部晚第四纪火山活动与新构造. 岩石学报, 28(4): 1099~1107.

    • 丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65(5): 1~7.

    • 丁毅. 2020a. 金伯利岩的卫星影像识别标志及应用实例. 地质与勘探, 56(5): 1050~1056.

    • 丁毅. 2020b. 加拿大案例探讨寻找金刚石矿的三个关键点. 地质学报, 94(9): 2763~2771.

    • 丁毅, 吴云霞, 李继成, 郝志平, 戴涛杰. 2019a. 内蒙卓资县玛珥式火山口群的发现和意义. 地质论评, 65(6): 1431~1434.

    • 丁毅, 杨献忠. 2019b. 沉积物中重矿物KIM的找矿方法和意义. 地质找矿论丛, 34(3): 453~459.

    • 内蒙古自治区地层表编写组. 1978. 华北地区区域地层表-内蒙古分层. 北京: 地质出版社.

    • 刘嘉麒, 刘东生, 储国强, 肖举乐, 骆祥君. 1996. 玛珥湖与纹泥年代学. 第四纪研究, 16(4): 353~358.

    • 张文娟, 韩宝福. 2010. 内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6): 1597~1607.

    • 张进奎, 李霓, 白志达, 赵勇伟, 张方华. 2019. 内蒙古东部晚第四纪玛珥式火山的堆积序列喷发过程研究. 岩石矿物学杂志, 38(3): 339~353.

  • 参考文献

    • Bai Zhida, Wang Jianmin, Liu Lei, Xu Debin. 2008. Quaternary volcano cluster of Wulanhada, right-back-banner, Chahaer, Inner Mongolia. Acta Petrologica Sinica, 24(11): 2585~2594.

    • Bai Zhida, Tan Qingwei, Xu Guiling, Xu Debin, Wang Yan. 2012. Late Quaternary volcanic activity and neotectonics in the eastern Inner Mongolia. Acta Petrologica Sinica, 28(4): 1099~1107 (in Chinese with English abstract).

    • BeatoS, Poblete A M, Marino J L. 2018. A geotouristic route to discover the maars of the Medias Lunas Range (Campo de Calatrava Volcanic Field, Central Spain). Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 16~17.

    • Blaikie T N, Van-Otterloo J, Ailleres L, Betts P G, Cas R A F. 2015. The erupted volumes of tephra from maar volcanoes and estimates of their VEI magnitude: examples from the Late Cenozoic newer volcanics province, south-eastern Australia. Journal of Volcanology and Geothermal Research, 301: 81~89.

    • Bolos X, Mart J. 2008. Abstracts Volume of the Seventh International Maar Conference-Olot, Catalonia, Spain.

    • Brown R J, Manya S, Buisman I, Fontana G, Field M, Mac Niocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth (the Upper Pleistocene/Holocene Igwisi Hills volcanoes, Tanzania). Bulletin of Volcanology, 74: 1621~1643.

    • Brown R J, Valentine G A. 2013. Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geological Society of America Bulletin, 125: 1224~1238.

    • Cotton C A. 1944. Volcanoes as landscape forms. Withcombe and Tombs Pubblication, Christchurch, 416.

    • De Moor J M, Aiuppa A, Pacheco J, Avard G, Kern C, Liuzzo M, Martínez M, Giudice G, Fischer T P. 2016. Short-period volcanic gas precursors to phreatic eruptions, insights from Poás Volcano, Costa Rica. Earth and Planetary Science Letters, 442: 218~227.

    • De Silva S, Lindsay J M. 2015. Primary volcanic landforms. In: Sigurdsson H, Houguton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 273~297.

    • Decker B B. 2020. Volcano. Retrieved from https: //www. britannica. com/science/volcano on 2020-12-15.

    • Ding Yi. 2019. Understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65(5): 1~7 (in Chinese with English abstract).

    • Ding Yi. 2020a. Satellite image index of kimberlite and its application. Geology and Exploration, 56(5): 1050~1056(in Chinese with English abstract).

    • Ding Yi. 2020b. Discussion on key points in diamond prospecting based on case studies in Canada. Acta Geologica Sinica, 94(9): 2763~2771 (in Chinese with English abstract).

    • Ding Yi, Wu Yunxia, Li Jicheng, Hao Zhiping, Dai Taojie. 2019a. Discovery and significance of Maars in Zhuozi County, Inner Mongolia. Geological Review, 65(6): 1431~1434(in Chinese with English abstract).

    • Ding Yi, Yang Xianzhong. 2019b. KIM methods of heavy minerals in sediments and the significances in mineral resources prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459 (in Chinese with English abstract).

    • Houghton B, White J D L, Van-Eaton A R. 2015. Phreatomagmatic and related eruption styles. In: Sigurdsson H, Houghton B, McNutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 537~552.

    • Jamtveit B, Svensen H, Podladchikov Y Y, Planke S. 2004. Hydrothermal vent complexes associated with sill instrusions in sedimentary basins. In: Breitkreuz D, Petford N, eds. Physical Geology of High-level Magmatic Systems. Geological Society, London, Special Plublication, 234, 229~232.

    • Jolly A D, Jousset P, Lyons J J, Carniel R, Fournier N, Fry B, Miller C. 2014. Seismo-acoustic evidence for an avalanche driven phreatic eruption through a beheaded hydrothermal system: an example from the 2012 Tongariro eruption. Journal of Volcanology and Geothermal Research, 286: 331~347.

    • Kereszturi G, Jordan G, Németh K, Donizpaez J F. 2012. Syn-eruptive morphometric variability of monogenetic scoria cones. Bulletion of Volcanology, 74, 2171~2185.

    • Kereszturi G, Guilbaud M, Pullanagari R, Siebe C, Salinas S. 2018. Exploring eruptive and erosional features of monogenetic scoria cones using principal component analysis and machine learning. seventh international maar conference-olot, catalonia, Spain. Abstract: 16~17.

    • Kshirsagar P, Sieb, C, Guilbaud M N, Salinas S. 2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). Journal of Volcanology and Geothermal Research, 318: 114~133.

    • Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 101~122.

    • Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes: standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.

    • Liu J Q, Liu D S, Chu G Q, Xiao J L, Luo X J. 1996. Maar lake and varve chronology. Quaternary Sciences, 16(4): 353~358 (in Chinese with English abstract).

    • Lorenz V. 1973. On the formation of maars. Bulletin Volcanologique, 37: 138~204.

    • Lorenz V, Kurszlaukis S. 2007. Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes. Journal of Volcanology and Geothermal Research, 150: 4~32.

    • Lorenz V, Suhr P, Suhr S. 2017. Phreatomagmatic maar-diatreme-volcanoes and their incremental growth: model. In: Nemeth K, Carrasco-Nunez G, Aranda-Gomez J J, et al. , eds. Monogenetic Volcanism. Geological Society, London, Special Publication, 446, 29~59.

    • Nemeth K, Carrasco-Numez G, Aranda-Gomez J J, Smith I E M. 2017. Monogenetic Volcanism. Geological Society, London, Special Publications, 446.

    • Ollier C. 1970. Volcanoes. An Introduction to Systematic Geomorphology. Cambridge: Mit Press, 370.

    • Pering T D, Tehnuka I, Liu E. 2019. Periodicity in volcanic gas plumes: a review and analysis. Geosciences (Switzerland), 9(9): 394.

    • Poblete M A, Beato S, Marino J L. 2018. A proposal for a classification of types of hydrovolcanoes based on geomorphic criteria. Seventh International Maar Conference-Olot, Catalonia, Spain. Abstract: 64~65.

    • Stovall W K, Driedger C L, Westby E G, Faust L M. 2019. Living with volcano hazards: U. S. Geological Survey Fact Sheet 2018~3075, https: //doi. org/10. 3133/fs20183075.

    • Strata Editors of Inner Mongolia Autonomous Region. 1978. Regional Stratigraphic Table of North China-Inner Mongolia Stratification. Beijing: Geological Publishing House, 86 (in Chinese).

    • Valentine G A, White J D L. 2012. Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology, 40: 1111~1114.

    • Valentine G A, Connor C B. 2015. Basaltic volcanic fields. In: Sigurdsson H, Houghton B, Mcnutt S R, Rymer H, Stix J, eds. The Encyclopedia of Volcanoes. 2nd edition. San Diego: Academic Press, 423~439.

    • Vulkaneifel UNESCO Global Geopark. 2020. https: //www. geopark-vulkaneifel. de/en/geo-area/maar-lakes-and-geotopes. html. Retrieved on 2020. 10. 07.

    • White J D, Ross P S. 2011. Maar-diatreme volcanoes: a review. Journal of Volcanology and Geothermal Research, 201: 1~29.

    • Yamaoka K, Geshi N, Hashimoto T, Ingebritsen S E, Oikawa T. 2016. Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”. Earth, Planets, and Space, 68, doi: 10. 1186/s40623-016-0548-4.

    • Zhang Jikui, Li Ni, Bai Zhida, Zhao Yongwei, Zhang Fanghua. 2019. Research on the accumulation sequence and eruptive process of Late Quaternary Maars in eastern Inner Mongolia. Acta Petologica et Mineralogica, 38(3): 339~353.

    • Zhang Wenjuan, Han Baofu. 2010. K-Ar chronology and geochemistry of Jining Cenozoic basalts, Inner Mongolia and geodynamics implications. Acta Petrologica Sinica, 22(6): 1597~1607 (in Chinese with English abstract).

    • 白志达, 王剑民, 许桂玲, 刘磊, 徐德斌. 2008. 内蒙古察哈尔右翼后旗乌兰哈达第四纪火山群. 岩石学报, 24(11): 2585~2594.

    • 白志达, 谭庆伟, 许桂玲, 徐德斌, 王妍. 2012. 内蒙东部晚第四纪火山活动与新构造. 岩石学报, 28(4): 1099~1107.

    • 丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65(5): 1~7.

    • 丁毅. 2020a. 金伯利岩的卫星影像识别标志及应用实例. 地质与勘探, 56(5): 1050~1056.

    • 丁毅. 2020b. 加拿大案例探讨寻找金刚石矿的三个关键点. 地质学报, 94(9): 2763~2771.

    • 丁毅, 吴云霞, 李继成, 郝志平, 戴涛杰. 2019a. 内蒙卓资县玛珥式火山口群的发现和意义. 地质论评, 65(6): 1431~1434.

    • 丁毅, 杨献忠. 2019b. 沉积物中重矿物KIM的找矿方法和意义. 地质找矿论丛, 34(3): 453~459.

    • 内蒙古自治区地层表编写组. 1978. 华北地区区域地层表-内蒙古分层. 北京: 地质出版社.

    • 刘嘉麒, 刘东生, 储国强, 肖举乐, 骆祥君. 1996. 玛珥湖与纹泥年代学. 第四纪研究, 16(4): 353~358.

    • 张文娟, 韩宝福. 2010. 内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6): 1597~1607.

    • 张进奎, 李霓, 白志达, 赵勇伟, 张方华. 2019. 内蒙古东部晚第四纪玛珥式火山的堆积序列喷发过程研究. 岩石矿物学杂志, 38(3): 339~353.