en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周雄,男。博士,副研究员,矿物学、岩石学、矿床学专业,主要从事矿床学、地球化学研究。E-mail:zhouxiong27@163.com。

参考文献
Allegre C J, Michard G. 1974. Introduction to Geochemistry (Geophysics and Astophysics Monographx). Dordrecht: Reidel Publishing Company.
参考文献
Bai Xianzhou, He Mingyou, Wang Yuting, Yang Xuejun. 2010. On thegeochemical characteristics, provenance and paleoweathering degree of Triassic Xikang Group in Ruoergai area in Sichuan Province. Geoscience, 24(1): 151~157(in Chinese with English abstract).
参考文献
Barshad I. 1966. The effect of a variation in precipitation on the nature of clay minerals formation in soils from acid and basic igneous rocks. In: Proceeding International Clay Conference. Jerusalem. Israel: Israel Program for Scientific Translations, 167~173.
参考文献
Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House, 1~662 (in Chinese with English abstract).
参考文献
Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611~627.
参考文献
Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45(1-2): 97~113.
参考文献
Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181~193.
参考文献
Boynton W V. 1984. Geochemistry of the rare earth elements: meteoritestudies. In: Henderson P. E. Rare Earth Element Geochemistry. Amsterdam: Elsevier.
参考文献
Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganzi flysch (central China): provenance and tectonic correlations. Earth and Planetary Science Letters, 152: 217~231.
参考文献
Chen Longyao, Luo Yuling, Liu Xiaochun, Qu Wei, Hu Juan. 2014. LA-ICP-MS U-Pb geochronology of detrital zircons from the Liuling Group in the South Qinling tectonic belt and its tectonic significance. Geological Bulletin of China, 33(9): 1363~1378(in Chinese with English abstract).
参考文献
Chen Weinan, Pei Xianzhi, Liu Chengjun, Li Ruibao, Li Zuochen, Wei Bo, Xu Xiaochun, Liu Tujie, Wang Yuanyuan, Ren Houzhou. 2014. U-Pb ages of detrital zircons from Taiyangsi Rock Group in Shujiaba area of West Qinling Mountains and their geological significance. Geology in China, 41(3): 741~755(in Chinese with English abstract).
参考文献
Chen Yibing, Zhang Guowei, Lu Rukui, Liang Wentian, Diwu Chunrong, Guo Xiufeng. 2010. Detrital zircon U-Pb geochronology of Dacaotan Group in the conjunction area of North Qinling and Qilian. Acta Geologica Sinica, 84(7): 947~962(in Chinese with English abstract).
参考文献
Chen Yuelong, Tang Jinrong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2006. Elemental and Sm-Nd isotopic geochemistry of clastic sedimentary rocks in the Garzê-Songpan block and Longmen Mountains. Geology in China, 33(1): 109~118 (in Chinese with English abstract).
参考文献
Chen Yuelong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2007. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains. Frontiers of Earth Science in China, 1(1): 60~68.
参考文献
Chen Yuelong, Li Dapeng, Zhou Jian, Zhang Hongfei, Liu Fei, Nie Lanshi, Jiang Liting, Liu Xiaoming. 2008. U-Pb ages of zircons in western Qinling Mountain, China, and their tectonic implications. Earth Science Frontiers, 15(4): 88~107(in Chinese with English abstract).
参考文献
Cox R, Lowe D R, Culers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919~2940.
参考文献
Cui Jiawei, Zheng Youye, Tian Liming, Sun Junyi, Dong Jun. 2016. Geochemical characteristics and Zircon U-Pb ages of the Bayankalashan Group in the Ganglong area of the northern Songpan-Ganzi orogenic belt: implication for its provenance and tectonic environment. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 719~742(in Chinese with English abstract).
参考文献
Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Pang Weihua. 2020. Multiple tectonothermal events recorded in the early precambrian cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45(8): 3054~3069(in Chinese with English abstract).
参考文献
Dai Zongming. 2000. Problems need to be noted in the new round of geological survey in the flysch province. Journal of Chengdu University of Technology, 27(Suppl): 223~227(in Chinese with English abstract).
参考文献
Deng Fei, Jia Dong, Luo Liang, Li Haibin, Li Yiquan, Wu Long. 2008. The contrast between provenances of Songpan-Garze and western Sichuan foreland basin in the Late Triassic: clues to the tectonics and palaeogeography. Geological Review, 54(4): 561~573(in Chinese with English abstract).
参考文献
Ding L, Yang D, Cai F, Pullen A, Kapp P, Gehrels G, Zhang L, Zhang Q, Lai Q, Yue Y, Shi R. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32 (1): 34~48.
参考文献
Enkelmann E, Weislogel A, Ratschbacher L, Eide E, Renno A, Wooden J. 2007. How was the Triassic Songpan-Ganzi basin filled? a provenance study. Tectonics. 26(4): TC4007.
参考文献
Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921~924.
参考文献
Gao Chunyun, Guo Anlin, Li Xinghui, Li Kan, Liu Weigang. 2015. LA-ICP-MS U-Pb dating of detrital zircon from Liuyehe basin in North Qin-ling Mountains. Geological Bulletin of China, 34(9): 1689~1698(in Chinese with English abstract).
参考文献
Girty G. 1994. Provenance determined by REE, Th, and Sc analyses of metasedimentary rocks, boyden cave boof pendant, central Sierra Nevada, California. Journal of Sedimentary Research, 64B(1): 68~73.
参考文献
Gong Daxing, Guo Jia, Luo Junfeng, Yue Xiangyuan, Zhou Xiong, Zhou Jiayun. 2019. Sedimentary characteristics and model of the Triassic Songpan-Ganzi flysch basin, in Maerkang-Jinchuan area, western Sichuan. Acta Sedimentologica Sinica, 37(6): 1210~1223(in Chinese with English abstract).
参考文献
Gong Daxing, Wu Chihua, Zou Hao, Zhou Xiong, Zhou Yu, Tan Hongqi, Yue Xiangyuan. 2021. Provenance analysis of Late Triassic turbidites in the eastern Songpan-Ganzi flysch complex: sedimentary record of tectonic evolution of the eastern Paleo-Tethys ocean. Marine and Petroleum Geology, https: //doi. org/10. 1016/j. marpetgeo. 2021. 104927.
参考文献
Gu X X. 1994. Geochemical characteristics of the tethys 2 turbidites in northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58 (21): 4615~4631.
参考文献
Gu X X, Liu J M, Zheng M H, Tang J X, Qi L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research, 72 (3): 393~407.
参考文献
Hao Decheng, Gao Zhaokui, Han Yaoquan, Zhou Hong, Ding Zhenju. 2020. Zircon U-Pb age and its geological significance of the Anjiacha formation in Xicheng lead zinc ore field, western Qinling. Geoscience. doi: 10. 19657/j. geoscience. 1000-8527. 2020. 053(in Chinese with English abstract).
参考文献
Huang Jiqing, Chen Bingwei. 1987. Evolution of Tethys Sea in China and Its Adjacent Areas. Beijing: Geological Publishing House (in Chinese).
参考文献
Johnsson M J, Basu A C. 1993. Processes controlling the composition of clastic sediments. Boulder, CO: Geological Society of America Special Paper, 284: 1~19.
参考文献
Lan Zhongwu, Chen Yuelong, Su Benxun, Liu Fei, Zhang Hongfei. 2006. The origin of sandstones from the Songpan-Ganze basin, Sichuan, China: evidence from SHRIMP U-Pb dating of clastic zircons. Acta Sedimentologica Sinica, 24(3): 321~332(in Chinese with English abstract).
参考文献
Li Kang, Guo Anlin, Gao Chunyun, Li Xinghui. 2015. A tentative discussion on the source area of the Late Triassic Liuyehe basin in North Qin-ling Mountains and its relationship with the Ordos basin: evidence from LA-ICP-MS U-Pb dating of detrital zircons. Geological Bulletin of China, 34(8): 1426~1437(in Chinese with English abstract).
参考文献
Li Yifei, Yang Chuanmao, Fan Jing, Zhao Ming. 2017. Geological signficance of detrital zircon U-Pb age of middle devonian proximal sedimentary rocks in Boyang Town, western Qinling orogenic belt. Northwestern Geology, 50(3): 92~104(in Chinese with English abstract).
参考文献
Ling Wenli, Duan Ruichun, Liu Xiaoming, Cheng Jianping, Mao Xinwu, Peng Lianhongm, Liu Zaoxue, Yang Hongmei, Ren Bangfang. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Sci Bull, 55(12): 1153~1161(in Chinese with English abstract).
参考文献
Liu Fei, Chen Yuelong, Su Benxun, Lan Zhongwu, Jiang Liting. 2006. Geochemistry and zircon ages of Triassic detrital sedimentary rocks from the Ganze-Songpan block. Acta Geoscientica Sinica, 27(4): 289~296(in Chinese with English abstract).
参考文献
Liu Zhihui, Luo Min, Chen Longyao, Qu Wei, Liu Xiaochun. 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks. Acta Petrologica Sinica, 34(5): 1484~1502(in Chinese with English abstract).
参考文献
Lu Songnian, Yang Chunliang, Li Huaikun, Li Humin. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123~131.
参考文献
Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the parametamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310(in Chinese with English abstract).
参考文献
McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. GSA Special Papers, 284: 21~40.
参考文献
Meng Qingreng, Qu Hongjie, Hu Jianming. 2007. Triassic deep-marine sedimentation in the western Qinling and Songpan terrane. Science in China: Series D: Earth Sciences, 37(S1): 209~223(in Chinese with English abstract).
参考文献
Nesbitt H W, Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885): 715~717
参考文献
Nie S, Yin A, Rowley D B, Jin Y. 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysh sequence, central China. Geology, 22: 999~1002.
参考文献
Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4): 423~449.
参考文献
Qin Yulong, Li Mingze, Xiong Changli, Zhan Hanyu, Xu Yunfeng, Wu Wenhui, Lu Zheng. 2020. Depositional provinces and tectonic background of the Zhuwo Formation in the Jiajika region, western Sichuan Province: evidence from detrital zircon U-Pb ages. Acta Geologica Sinica, 94(8): 2400~2409(in Chinese with English abstract).
参考文献
Rao Rongbiao. 1987. New progress in the study of "Xikang Group" in Western Sichuan. Journal of Stratigraphy. 11(1): 64~68(in Chinese).
参考文献
Ren Guangming, Pang Weihua, Wang Liquan, Sun Zhiming, Wang Baodi, Cui Xiaozhuang, Yin Fuguang, Ning Kuobu. 2020. Detrital zircons of 3. 8 Ga in Southwestern Yangtze block and its geological implications. Earth Science, 45(8): 3040~3053(in Chinese with English abstract).
参考文献
Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology, 94(5): 635~650.
参考文献
Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119~139.
参考文献
Rogers J, Santosh M. 2002. Configuration of Columbia, Mesoproterozoic supercontinent. Gondwana Research, 5: 5~22.
参考文献
She Zhenbing, Ma Changqian, Mason R, Li Jianwei, Wang Guocan, Lei Yuhong. 2006. Provenance of the Triassic Songpan-Ganzi flysch, West China. Chemical Geology, 231: 159~175.
参考文献
Su Benxun, Chen Yuelong, Liu Fei, Wang Qiaoyun, Zhang Hongfei, Lan Zhongwu. 2006. Geochemical characteristics and significance of Triassic sandstones of Songpan-Ganze block. Acta Petrologica Sinica, 22(4): 961~970(in Chinese with English abstract).
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
参考文献
Tan Xichou, Li Chunyu. 1959. Geological Records of Xikang, Sichuan. Beijing: Geological Publishing House, 1~228 (in Chinese).
参考文献
Tang Yan, Sang Longkang, Yuan Yanming, Zhang Yunpeng, Yang Yunlong. 2012. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi basin, western China: implications for source weathering, provenance and tectonic setting. Geoscience Frontiers, 3(5): 647~660.
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312.
参考文献
Van de Kamp P C, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411~449
参考文献
Wang Congshan, Chen Wenxi, Shan Fulong. 2016. Geochemical characteristic of the Xungba Formation sandstones in the Xungba basin, Tibet, and its constraints on provenance and tectonic seting. Acta Geologica Sinica, 90(6): 1195~1207 (in Chinese with English abstract).
参考文献
Wang Quanwei, Liang Bin, Zhu Bing, Chen Ming. 2001. Sedimentary geochemical features of Xiang Group turbidites in Rangtang area, Northwest Sichuan. Geology-Geochemistry, 29(4): 80~85(in Chinese with English abstract).
参考文献
Wang Shengwei, Liao zhenwen, Sun Xiaoming, Jiang Xiaofang, Zhou Bangguo, Guo Yang, Luo Maojin, Zhu Huaping, Ma Dong. 2013. Geochemistry of paleoproterozoic diabases in the Dongchuan Copper Deposit, Yunnan, SW China: response to breakup of the columbia supercontinent in the Southwestern margin of Yangtze block. Acta Geologica Sinica, 87(12): 1834~1852 (in Chinese with English abstract).
参考文献
Wang Wei, Li Fanglin, Bao Zhengyu. 2007. U-Pb constraints on provenance and evolution of Middle to Late Triassic sediment in Songpan-Garze basin. Geological Science and Technology Information, 26(5): 35~44(in Chinese with English abstract).
参考文献
Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E, Yang H S. 2006. Detritl zircon provenance of the Late Triassic Song-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34: 97~100.
参考文献
Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics. 451: 331~345.
参考文献
Xu Wentong. 2018. Palaeocurrent direction and detrital zircon provenance of Triassic Bayan Har Group in Songpan-Ganzibasin. Master's thesis of China University of Geosciences (Beijing), 1~60(in Chinese with English abstract).
参考文献
Xu Xiaotao, Shao Longyi. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography, 20(3): 515~522(in Chinese with English abstract).
参考文献
Xu Zenglian, Zhang Bo, Li Hongliang, Li Jianguo, Zeng Hui, Zhu Qiang, Cao Minqiang, Wei Jialin. 2019. Geochemistry of the Yaojia Formation sandstone in the Kailu depression, Songliao basin: implications for its provenance and tectonic setting. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 573~586(in Chinese with English abstract).
参考文献
Xu Zhiqin, Hou Liwei, Wang Zhongxiu. 1992. The Orogenic Processes of the Songpan-Garzê Orogen. Beijing: Geological Publishing House (in Chinese).
参考文献
Yang Min, Liu Liang, Wang Yawei, Liao Xiaoying, Kang Lei, Gai Yongsheng. 2016. Geochronology of detrital zircons from metaclastic of Erlangping complex in the North Qinling belt and its tectonic implication. Acta Petrologica Sinica, 32(5): 1452~1466(in Chinese with English abstract).
参考文献
Yang Tao, Zhang Yafeng, Yang Ling, Yi Pengfei, He Yuanfang, Wu Tong. 2018. Detrital zircon U-Pb age of Mesozoic Donghe Group in South Qinling mountain and its geological significance. Acta Petrologica Et Mineralogica, 37(2): 211~229(in Chinese with English abstract).
参考文献
Yang Zongyao, Lang Xinghai, Tang Juxing, Zhang Zhong, Zhang Jishu, Gao Yiming, Huang Yong, Xie Fuwei, Fu Yangang, Wang Yong. 2017. Geochemical characteristics of the Jurassic sandstones in the Xiongcun copper-gold deposit, Tibet: constraints on tectonic setting. Acta Geologica Sinica, 91(9): 1985~2003 (in Chinese with English abstract).
参考文献
Yang Zongyao, Hu Guyue, Xiao Hongtian, Wang Ying, Zhao Xiaoyan. 2019. Geochemical characteristics of the Early Cretaceous sandstones from the Tangbai deposit, Tibet: implications for the tectonic evolution of the southern margin of the Gangdese. Acta Petrologica Sinica, 35(7): 2189~2205(in Chinese with English abstract).
参考文献
Yu Yuanshan, Liao Shengping, Pan Zhongxi, Jin Canhai, Zhang Hai. 2018. Geochemical characters and formation setting of the Triassic fine grained clastic rocks in Daofu area, western Sichuan. Mineralogy and Petrology, 38(2): 94~103(in Chinese with English abstract).
参考文献
Zeng Yijun, Huang Sijing, Kan Zezhong, Xiong Changli, Xi Qixing, Zengqin. 2006. Geochemical signatures and tectonic setting of the clastic rocks from the Triassic Xikang Group in western Sichuan. Sedimentary Geology and Tethyan Geology, 26(1): 22~29(in Chinese with English abstract).
参考文献
Zhang Benren, Gao Shan, Zhang Hongfei, Han Yinwen. 2002. Geochemistry of Qinling Orogenic Belt. Beijing: Science Press, 47~109(in Chinese).
参考文献
Zhang Jianjun, Mou Chuanlong, Zhou Kenken, Feng Lixia, Wu Hao, Chen Xiaowei. 2017. Geochemical characteristic of sandstones from the Mangbang Formation in the Husa basin, Western Yuannan, and its constraints on provenances and tectonic setting. Acta Geologica Sinica, 91(5): 1083~1096(in Chinese with English abstract).
参考文献
Zhang Kaijun. 2001. Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? Journal of the Geological Society of India, 57: 223~230.
参考文献
Zhang Kaijun, Li Bing, Wei Qingguo, Cai Jianxin, Zhang Yuxiu. 2008. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan plateau): implications for the tectonic amalgamation of China. Sedimentary Geology, 208(1-2): 36~44.
参考文献
Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222~223: 339~367.
参考文献
Zhang Yuxiu, Zeng Lu, Li Zhiwu, Wang Chengshan, Zhang Kaijun, Yang Wenguang, Guo Tonglou. 2015. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons. International Geology Review, 57(2): 159~181.
参考文献
Zhou Bangguo, Wang Shengwei, Sun Xiaoming, Liao Zhenwen, Guo Yang, Jiang Xiaofang, Zhu Huaping, Luo Maojin, Liu Caize, Ma Dong, Shen Zhanwu, Zhang Hai. 2012. SHRIMP U-Pb age and its significance of zircons in welded tuff of Wangchang Formation in Dongchuan area, Yunnan Province, SW China. Geological Review, 58(2): 359~368(in Chinese with English abstract).
参考文献
Zhu Min, Chen Hanlin, Zhou Jing, Yang Shufeng. 2017. Provenance change from the Middle to Late Triassic of the southwestern Sichuan basin, Southwest China: constraints from the sedimentary record and its tectonic significance. Tectonophysics, 700-701: 92~107.
参考文献
Zhu Zhangxiang, Wang Linzhang, Zhao Younian, Pan Yuntang. 1993. A new stratigraphic sequence of the Xikang Group in Sichuan. Regional Geology of China, (1): 18~27(in Chinese with English abstract).
参考文献
Zou Guangfu. 1995. Advance of the research on the Garze-Litang plate junction. Acta Geologica Sichuan, 15(4): 257~263(in Chinese with English abstract).
参考文献
白宪洲, 何明友, 王玉婷, 杨学俊. 2010. 四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析. 现代地质, 24(1): 151~157.
参考文献
陈龙耀, 罗玉凌, 刘晓春, 曲玮, 胡娟. 2014. 南秦岭刘岭群砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其构造意义. 地质通报, 33(9): 1363~1378.
参考文献
陈伟男, 裴先治, 刘成军, 李瑞保, 李佐臣, 魏博, 胥晓春, 刘图杰, 王元元, 任厚州. 2014. 西秦岭舒家坝地区太阳寺岩组碎屑锆石年龄及其地质意义. 中国地质, 41(3): 741~755.
参考文献
陈义兵, 张国伟, 鲁如魁, 梁文天, 第五春荣, 郭秀峰. 2010. 北秦岭-祁连结合区大草滩群碎屑锆石U-Pb年代学研究. 地质学报, 84(7): 947~962.
参考文献
陈岳龙, 唐金荣, 刘飞, 张宏飞, 聂兰仕, 蒋丽婷. 2006. 松潘—甘孜碎屑沉积岩的地球化学与Sm-Nd同位素地球化学. 中国地质, 33(1): 109~118.
参考文献
陈岳龙, 李大鹏, 周建, 张宏飞, 刘飞, 聂兰仕, 蒋丽婷, 柳小明. 2008. 中国西秦岭碎屑锆石U-Pb年龄及其构造意义. 地学前缘, 15(4): 88~107.
参考文献
崔加伟, 郑有业, 田立明, 孙君一, 董俊. 2016. 松潘—甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示. 矿物岩石地球化学通报, 35(4): 719~742.
参考文献
崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45(8): 3054~3069.
参考文献
戴宗明. 2000. 新一轮地质调查中复理石区工作应注意的重要问题. 成都理工学院学报, 27(增刊 1): 223~227.
参考文献
邓飞, 贾东, 罗良, 李海滨, 李一泉, 武龙. 2008. 晚三叠世松潘甘孜和川西前陆盆地的物源对比: 构造演化和古地理变迁的线索. 地质论评, 54(4): 561~573.
参考文献
高春云, 郭安林, 李兴辉, 李侃, 刘伟刚. 2015. 北秦岭柳叶河盆地石炭系—二叠系含砾砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 34(9): 1689~1698.
参考文献
龚大兴, 郭佳, 罗俊峰, 岳相元, 周雄, 周家云. 2019. 川西马尔康—金川地区晚三叠世松潘甘孜残留洋盆复理石建造沉积特征与沉积模式. 沉积学报, 37(6): 1210~1223.
参考文献
浩德成, 高兆奎, 韩要权, 周宏, 丁振举. 2020. 西秦岭西成铅锌矿田赋矿安家岔组碎屑锆石U-Pb年龄及其地质意义. 现代地质, https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2020. 053.
参考文献
黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社
参考文献
兰中伍, 陈岳龙, 苏本勋, 刘飞, 张宏飞. 2006. 四川松潘-甘孜盆地砂岩的物质来源: 来自锆石U-Pb (SHRIM P)年龄证据. 沉积学报, 24(3): 321~332.
参考文献
李侃, 郭安林, 高春云, 李兴辉. 2015. 北秦岭柳叶河盆地上三叠统物源区及其与鄂尔多斯盆地的关系——来自碎屑锆石LA-ICP-MS U-Pb年龄的证据. 地质通报, 34(8): 1426~1437.
参考文献
李亦飞, 杨传茂, 樊靖, 赵明. 2017. 西秦岭伯阳镇中泥盆统碎屑岩的岩石学、碎屑锆石U-Pb年龄及其地质意义. 西北地质, 50(3): 92~104.
参考文献
凌文黎, 段瑞春, 柳小明, 程建萍, 毛新武, 彭练红, 刘早学, 杨红梅, 任邦方. 2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义. 科学通报, 55(12): 1153~1161.
参考文献
刘飞, 陈岳龙, 苏本勋, 兰中伍, 蒋丽婷. 2006. 松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究. 地球学报, 27(4): 289~296.
参考文献
刘志慧, 罗敏, 陈龙耀, 曲玮, 刘晓春. 2018. 南秦岭佛坪地区地层格架与物源分析: 变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约. 岩石学报, 34(5): 1484~1502.
参考文献
陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.
参考文献
孟庆任, 渠洪杰, 胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积. 中国科学(D辑: 地球科学), 37(S1): 209~223.
参考文献
秦宇龙, 李名则, 熊昌利, 詹涵钰, 徐云峰, 武文辉, 李峥. 2020. 川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据. 地质学报, 94(8): 2400~2409.
参考文献
饶荣标. 1987. 川西“西康群”研究的新进展. 地层学杂志, 11(1): 64~68.
参考文献
任光明, 庞维华, 王立全, 孙志明, 王保弟, 崔晓庄, 尹福光, 宁括步. 2020. 扬子陆块西南缘3. 8 Ga碎屑锆石及其地质意义. 地球科学, 45(8): 3040~3053.
参考文献
四川省地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社.
参考文献
苏本勋, 陈岳龙, 刘飞, 王巧云, 张宏飞, 兰中伍. 2006. 松潘—甘孜地块三叠系砂岩的地球化学特征及其意义. 岩石学报, 22(4): 961~970.
参考文献
谭锡畴, 李春昱. 1959. 四川西康地质志. 北京: 地质出版社1~228.
参考文献
王丛山, 陈文西, 单福龙. 2016. 西藏雄巴地区中新世雄巴组砂岩地球化学特征及对物源区、构造背景的指示. 地质学报, 90(6): 1195~1207
参考文献
王全伟, 梁斌, 朱兵, 陈明. 2001. 川西北壤塘地区西康群深海浊积砂岩沉积地球化学特征. 地质地球化学, 29(4): 80~85.
参考文献
王生伟, 廖震文, 孙晓明, 蒋小芳, 周邦国, 郭阳, 罗茂金, 朱华平, 马东. 2013. 云南东川铜矿区古元古代辉绿岩地球化学——Columbia超级大陆裂解在扬子陆块西南缘的响应. 地质学报, 87(12): 1834~1852.
参考文献
王伟, 李方林, 鲍征宇. 2007. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约. 地质科技情报, 26(5): 35~44.
参考文献
许文彤. 2018. 松潘甘孜盆地巴颜喀拉山群古水流分析及对物源启示. 中国地质大学(北京)硕士学位论文. 1~60.
参考文献
徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515~522.
参考文献
徐增连, 张博, 里宏亮, 李建国, 曾辉, 朱强, 曹强, 魏佳林. 2019. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析. 矿物岩石地球化学通报, 38(3): 573~586.
参考文献
许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社.
参考文献
杨敏, 刘良, 王亚伟, 廖小莹, 康磊, 盖永升. 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452~1466.
参考文献
杨涛, 张亚峰, 杨玲, 易鹏飞, 何元方, 仵桐. 2018. 南秦岭中生代东河群碎屑锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 37(2): 211~229.
参考文献
杨宗耀, 郎兴海, 唐菊兴, 张忠, 张金树, 高一鸣, 黄勇, 谢富伟, 付燕刚, 王勇. 2017. 西藏雄村铜金矿区侏罗系砂岩地球化学特征: 对构造背景的约束. 地质学报, 91(9): 1985~2003.
参考文献
杨宗耀, 胡古月, 肖洪天, 王鹰, 赵晓彦. 2019. 西藏汤白矿区下白垩统比马组砂岩地球化学特征: 对冈底斯南缘构造演化的启示. 岩石学报, 35(7): 2189~2205.
参考文献
于远山, 廖声萍, 潘忠习, 金灿海, 张海. 2018. 川西道孚地区三叠系细碎屑岩的地球化学特征及成生背景. 矿物岩石, 38(2): 94~103.
参考文献
曾宜君, 黄思静, 阚泽忠, 熊昌利, 郝雪峰, 谢启兴, 曾勤. 2006. 四川西部三叠系西康群地球化学特征与大地构造背景. 沉积与特提斯地质, 26(1): 22~29.
参考文献
张本仁, 高山, 张宏飞, 韩吟文. 2002. 秦岭造山带地球化学. 北京: 科学出版社, 47~109.
参考文献
张建军, 牟传龙, 周恳恳, 冯丽霞, 伍皓, 陈小炜. 2017. 滇西户撒盆地芒棒组砂岩地球化学特征及物源区和构造背景分析. 地质学报, 91(5): 1083~1096.
参考文献
周邦国, 王生伟, 孙晓明, 廖震文, 郭阳, 蒋小芳, 朱华平, 罗茂金, 刘才泽, 马东, 沈战武, 张海. 2012. 云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义. 地质评论, 58(2): 359~368.
参考文献
朱占祥, 王林彰, 赵友年, 潘云唐. 1993. 四川西康群的新层序. 中国区域地质, (1): 18~27.
参考文献
邹光富. 1995. 甘孜-理塘板块缝合带研究的新进展. 四川地质学报, 15(4): 257~263.
目录contents

    摘要

    松潘-甘孜造山带中部大面积分布西康群浊积岩,为一套厚度巨大(2000~3000 m)的泥质碎屑复理石建造,以深海-次深海海底扇沉积为特征。本文通过对甲基卡稀有金属矿集区分布的西康群砂岩进行主量元素、微量元素及粒度分析,从而揭示该区砂岩构造背景和物源属性。研究结果表明,砂岩样品SiO2、CaO、MgO、Al2O3、Fe2O3、K2O、Na2O、MnO等含量在侏倭组、新都桥组和两河口组中各有差异,但总体上含量与大陆上地壳成分相当。稀土元素REE配分模式曲线一致,LREE/HREE=6.26~18.07,平均10.38,(La/Yb)N=6.64~33.66,平均13.27,δEu=0.37~0.91,平均0.67,轻稀土元素相对重稀土元素明显富集,稀土元素分馏明显。成分变异指数ICV=1.40~5.23,平均2.43,为构造活动背景下的首次沉积物,受源区岩石控制明显,反映了碎屑岩岩源所处的环境为寒冷干燥的气候;Th/U=2.80~9.40,平均5.32,化学蚀变指数CIA=50.32~86.93,平均62.80,表明其经历了微弱的风化作用,后期(两河口组沉积期)可能由于区域构造趋于稳定而风化作用加强。物源判别及构造判别图解综合显示其物源主要来自长英质物源区,物源区以活动大陆边缘构造环境为主,具有构造活动强烈的构造背景。

    Abstract

    In the middle part of the Songpan-Ganzi orogenic belt, there is a set of turbidity rocks of the Xikang Group, which is a set of sedimentary shale with huge thickness about 2000~3000 meters, and is characterized by deep-subdeep sea fan deposits. Based on the analytical content of major elements, trace elements and grain size analysis from the Xikang Group's sandstones, the tectonic settings and provenance were studied. The results show that major elements SiO2, CaO, MgO, Al2O3, Fe2O3, K2O, Na2O and MnO from the Zhuwo, the Xinduqiao and the Lianghekou Formations of the Xikang Group are different from each other, but the overall content is comparable to that of the continental crust. The sandstones have a consistent REE pattern, enrichment of LREE relative to HREE, with LREE/HREE of 6.26~18.07 (averaging 10.38), (La/Yb)N of 6.64~33.66 (averaging 13.27) and δEu of 0.37~0.91 (averaging 0.67). Index of the chemical variation (ICV) of 1.40~5.23, with an average of 2.43, indicating that the sandstone is the first sediment against the background of tectonic activity which is obviously controlled by source rocks, and reflect a chemical weathering environment of cold and dry climate. Furthermore, the Th/U values of 2.80~9.40 (with an average of 5.32) and chemical index alteration (CIA) of 50.32~86.93 (with an average of 62.80) reflect that it has undergone a weak weathering that might have strengthened in the later period (the sedimentary period of the Lianghekou Formation) due to the stability of regional structure. The discriminatory plots of provenance and the tectonic discrimination diagrams reflect that the provenance is mainly from the quartz-feldspathic provenance area, which is dominated by the active continental margin tectonic environment and has a strong background of tectonic activity.

  • 松潘-甘孜造山带位于中国西南部,东南部为扬子地块,北部是昆仑和秦岭造山带以及华北陆块,西部是义敦岛弧和羌塘陆块(Xu Zhiqin et al.,1992; Deng Fei et al.,2008)(图1a),该造山带广泛发育一套厚度巨大的泥质碎屑复理石建造,以深海-次深海海底扇沉积为特征。对该套复理石建造,谭锡畴和李春昱在川西康定-雅江-理塘-甘孜一带考察时首次提出“西康系”的概念,岩性以砂、板岩为主,后经不断完善,最终认定为“西康群”(Tan Xichou et al.,1959)。鉴于该套复理石沉积建造岩性单一,厚度巨大且分层标志不明,加之该区经历了古特提斯及新特提斯两个连续的造山事件,构造极为复杂,致使其在层序划分方面分歧众多(四川地质矿产局第三区域地质测量队,1974; 四川地质矿产局区域地质调查队四分队,1984; Rao Rongbiao,1987; Bureau of Geology and Mineral Resources of Sichuan Province.1991; Zhu Zhanxiang et al.,1993)。

  • 自20世纪90年代以来,该套巨厚复理石沉积物一直是地质学家研究热点和难点,且多集中于利用地球化学及碎屑沉积物中的锆石来判定盆地沉积物源,但这些认识仍有分歧,主要有单一物源论,如大别超高压变质岩(Nie et al.,1994)、昆仑地块(She Zhenbing et al.,2006)、羌塘地块(Zhang Kaijun et al.,2008)或大别-秦岭(Enkelmann et al.,2007; Zhang Kaijun et al.,2008),而越来越多的学者更倾向于多地块混合物源(Bruguier et al.,1997; Zhang Kaijun et al.,2001; Chen Yuelong et al.,2006; Lan Zhongwu et al.,2006; Liu Fei et al.,2006; Su Benxun et al.,2006; Weislogel et al.,2006; Chen Yuelong et al.,2007; Wang Wei et al.,2007; Deng Fei et al.,2008; Ding et al.,2013; Zhang Yuxiu et al.,2015; Cui Jiawei et al.,2016; Zhu Min et al.,2017; Xu Wentong,2018; Gong Daxing et al.,20192021; Qin Yulong et al.,2020)。松潘-甘孜复理石浊积岩主要出露于四川、青海两省,并涉及西藏、甘肃、陕西三省区,面积达50多万千米,碎屑物体积有2.2×106 m3。毫无疑问,这些研究显示出该沉积盆地的多向物源性,也印证了“物源若仅仅来自北方,上述蚀源区的规模远远不够”的观点(Huang Jiqing et al.,1987)。

  • 研究表明,利用沉积岩地球化学特征可以判定物源、构造背景及古气候环境等(Bhatia,1985; Bhatia et al.,1986; Roser et al.,1986; McLennan et al.,1993; Gu et al.,2002; Wang Congshan et al.,2016; Zhang Jianjun et al.,2017; Yang Zongyao et al.,2019)。亦有学者利用砂岩地球化学来判别古气候、物源及板块构造等特征(Wang Quanwei et al.,2001; Zeng Yijun et al.,2006; Su Benxun et al.,2006; Liu Fei et al.,2006; Bai Xianzhou et al.,2010; Tang Yan et al.,2012; Cui Jiawei et al.,2016; Zhu Min et al.,2017; Yu Yuanshan et al.,2018)以及用典型剖面的沉积构造、砂板比、古流向、砂岩粒度及矿物组成来探讨沉积环境及沉积模式(Gong Daxing et al.,2019),这些成果进一步丰富和完善了西康群浊积岩的研究进展。松潘-甘孜造山带中部甲基卡地区大面积分布的西康群,对其却鲜有研究。因此,笔者基于1∶5万区域地质调查(周雄等,2019)、1∶5万矿产地质调查(周玉等,2019),在详细的野外工作的基础上,通过对该区西康群砂岩岩石地球化学的研究,分析其砂岩沉积物的源区特征,探讨其形成的构造背景,为提升西康群的认识提供地质依据。

  • 1 地质背景

  • 研究区位于松潘-甘孜造山带中部(Xu Zhiqin et al.,1992),地理位置上位于康定、雅江、道孚三县及交界部位,地层属于华南地层大区巴颜喀拉地层区玛多—马尔康地层分区中的雅江小区。主要出露中生界三叠系,为一套复理石建造,由老到新依次为侏倭组(T3zw)、新都桥组(T3xd)、两河口组(T3lh)及第四系沉积物等; 本区岩浆岩发育,从晚印支期到燕山期均有不同程度的岩浆活动。三叠纪侵入岩主要分布于研究区甲基卡-容须卡一带,主要岩石类型有石英闪长岩、二长花岗岩、花岗闪长岩及二云母花岗岩。在甲基卡围绕二云母花岗岩内外接触带约56 km2范围内有上千条的伟晶岩脉,其中稀有金属工业矿脉有114条; 断层和褶皱发育,褶皱主要是由平面上呈卵圆形或不规则的等轴状圈闭的背斜型构造组成,称为穹隆构造,主要由甲基卡穹隆、容须卡穹隆、瓦多穹隆和木绒穹隆构成,是印支期、燕山期和喜山期造山运动以及岩浆底辟作用中形成的(图1b)

  • 2 样品采集与测试方法

  • 本次研究在实测地质剖面、基岩露头上共采集样品45件,每件样品重量2 kg左右。样品加工均在无污染环境下完成。样品的主量及微量元素测试均由中国地质科学院矿产综合利用研究所分析测试中心完成。常量元素测试采用X射线荧光光谱方法,分析精度优于2%; 稀土元素和微量元素测试采用电感耦合等离子体质谱法(ICP-MS),误差小于5%。

  • 粒度分析样品116件,借助德国莱兹显微镜,利用显微图像分析仪,采用线统计法进行了测定,每个样品计点测350个点。

  • 3 西康群浊积岩地层特征及粒度分析

  • 3.1 西康群沉积地层特征

  • 通过详细野外地质工作,查明了研究区浊积岩地层特征,如下:

  • 侏倭组(T3zw):在研究区发育差,分布范围较小,为浊积碎屑岩建造。砂岩与板岩韵律式互层,是本组独有的特征。本组厚度575.1~1073.3 m。岩性为灰色厚中层—薄层状变质长石石英砂岩、长石岩屑砂岩与粉砂质板岩、板岩韵律式互层,局部可见厚层砂岩夹板岩与板岩段。砂、板岩比变化较大,一般3∶1~10∶1,最大可达15∶1~20∶1,最小一般在1∶1~2∶1。变质砂岩中发育有槽模、沟模、平行层理和不完整鲍马序列等浊积岩相原生沉积构造。砂岩以中厚层—薄层状为主,连续厚度小。岩石类型主要为变质长石石英砂岩、长石岩屑砂岩。碎屑物以石英、长石、岩屑为主,磨圆度较差,分选性中等,杂基含量较少。本组岩石组合及沉积特征总体显示为海底扇扇中亚相。岩性变化不大,以砂岩为主的地层构成砂质单元,其他地段由于相变组成泥质单元和砂泥质单元,为分流水道、水道间微相。

  • 新都桥组(T3xd):三叠系上统新都桥组在研究区较为发育,分布范围广泛,为砂板岩复理石建造。发育较多厚度较大的板岩段,是本组独有的特征。厚度一般大于745.3~1617.3 m。岩性为粉砂质板岩、粉砂质绢云板岩以及深灰色、灰色薄层长石石英砂岩。砂、板岩比一般1∶1~10∶1。粉砂质板岩中发育水平层理,变质砂岩中发育有波痕和不完整鲍马序列等浊积岩相原生沉积构造,偶见槽模构造,化石较少。属浊积外扇组合特征。沉积环境为深海盆地。砂岩以中层—薄层状为主,连续厚度小。岩石类型主要为变质长石石英砂岩,次为变质粉砂岩。碎屑物以石英、长石为主,磨圆度较差,分选性中等,杂基含量较少。新都桥组沉积环境水动力较弱,属浊流沉积,距离物源相对较远,其沉积环境推测为深海环境。本组岩石组合及沉积特征总体显示为海底扇扇中平滑扇沉积,及外扇-盆地平原沉积特点。

  • 图1 川西甲基卡地区大地构造位置图(a)(据Deng Fei et al.,2008修改)及区域地质简图(b)(据刘旗等,2003; 周雄等,2019; 周玉等,2019修改)

  • Fig.1 Tectonic location (a) (modified after Deng Fei et al., 2008) and regional geological map (b) (modified after Liu Qi et al., 2003; Zhou Xiong et al., 2019; Zhou Yu et al., 2019) of Jiajika area

  • 两河口组(T3lh):上三叠统两河口组仅在南部发育,整合于新都桥组之上。可划两个段:一段以砂岩为主夹板岩; 二段以板岩为主与砂岩层成段不等厚互层。一段岩性以灰、深灰色中—厚层、块状(夹薄层)变质不等粒岩屑石英砂岩、角岩化不等粒石英砂岩、角岩化中—细粒石英砂岩为主夹深灰色轻微角岩化粉砂质绢云板岩、堇青石板岩,局部地段为砂、板岩不等厚互层,板∶砂= 3∶2~5∶1,在中下部砂岩中有板岩砾石。主要由鲍马序列的a、ad、acd、cd、cde、de构成,其中以a、ad、acd组合占优,以浊流沉积的内、中扇为主体。见a、ad、acd→cd、cde→de演化的退积型组合,但从大的一级旋回看,仍为加积型的。沉积环境为次深海。二段岩性为深灰、黑色绢云板岩、含白云质条带绢云板岩、含粉砂质条带绢云板岩夹灰色薄—中层变质含白云质石英粉砂岩、石英粉砂岩、石英砂岩与灰、深灰色中—厚层-块状(夹薄层、巨块状)变质含白云质细粒石英砂岩、含粉砂质细粒石英砂岩、岩屑石英砂岩夹绢云板岩、含粉砂质绢云板岩不等厚成段间互。局部夹生物灰岩透镜体,沉积特征上砂岩底层面普遍具印模、重荷模,上层面波痕清楚,可见单斜层理、微细层理、水平层理。板岩中见蚯蚓状遗迹等。板∶砂=3∶1~5∶1,主要由鲍马序列的a、ad、acd、be、cde、de组合构成。其中的砂岩段为a、ad、acd→be→cde组成的退积型组合,板岩段为加积型组合,以后者为主。更大一级旋回则为加积型的,总体反映该时期海平面升降频繁。板岩中产遗迹化石组合判断其沉积环境为大陆斜面坡和浊流所能达到的深海盆地。在该段中可见单层厚达12.5 m的砂岩,说明在T3lh2时期,物源供给十分丰富,应离物源区较近。综上,判断沉积环境为次深海-深海,厚约1276.4 m。

  • 3.2 浊积岩砂岩粒度特征

  • 为了研究测区浊积岩的结构特征及沉积环境,本次研究选择了不同地区、不同地层单元的砂岩样品进行了薄片粒度分析测试,样品共计116件(侏倭组6件,新都桥组97件,两河口组13件)。粒度分析统计结果见附表1(http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202204098& flag=1)。

  • 侏倭组砂岩粒度(Mz)在2.70~3.58之间(平均值3.14),为细粒砂岩。标准偏差(SD)为0.37~0.59(平均值0.46),分选好; 偏度(SK)为-0.27~0.28(平均值0.11)为略正偏,略微不对称单峰正偏曲线为主,尖度值(K)2.84~4.54(平均值3.38),峰态相对新都桥组略微宽。从粒度分布参数图得知(图2a),频率曲线均呈略宽的单峰形态,沉积物粒度分选较好; 概率累计曲线中,悬浮次总体最为发育,发育少量滚动和跳跃次总体,形态上呈低斜率两段式,上截点清晰。C-M图解点投于RS段,少量QR段及Ⅵ段,以递变悬浮搬运方式为主以及少量均匀悬浮(图2d),与浊流模式基本一致,代表悬浮物由下向上逐渐变细沉积旋回。

  • 新都桥组砂岩粒度(Mz)在0.45~4.27之间(平均值3.12),为细粒砂岩。标准偏差(SD)为0.30~0.68(平平均值0.43),分选好; 偏度(SK)-1.4~2.87(平均值-0.06)为略负偏,略微不对称单峰负偏曲线为主,尖度值(K)2.51~7.48(平均值3.53),一个值达到14.83,峰态略宽。频率曲线均呈略宽的单峰形态,沉积物粒度分选较好; 概率累计曲线中,悬浮次总体最为发育,发育少量滚动和跳跃次总体,形态上呈低斜率两段式,上截点清晰(图2b)。C-M图解(图2e)点多数位于RS段与QR段,少量位于Ⅳ段,说明砂粒以均匀悬浮与递变悬浮双重能量运移,均属于浊流沉积,且体现了浊流沉积中递变悬浮向均匀悬浮过渡的关系,悬浮物质由下向上粒度逐渐变细,密度逐渐变低的浊流沉积特征。上述特征说明新都桥组砂岩为浊流沉积,为海底扇扇中平滑扇、扇端沉积,及外扇-盆地平原沉积之特点。

  • 图2 甲基卡地区西康群砂岩粒度参数统计图及C-M图

  • Fig.2 Statistical chart of particle size parameters and C-M diagrams from Xikang Group, Jiajika area

  • (a、d)—侏倭组;(b、e)—新都桥组;(c、f)—两河口组; 1—牵引流沉积; 2—浊流沉积; 3—静水悬浮沉积; QR—递变悬浮沉积; RS—均匀悬浮; PQ—悬浮搬运; OP—滚动搬运; NO—滚动颗粒

  • (a, d) —Zhuwo Formation; (b, e) —Xinduqiao Formation; (c, f) —Lianghekou Formation; 1—Tractive current deposition; 2—turbidite deposition; 3—still water suspended deposition; QR—progressive suspension deposition; RS—uniform suspension; PQ—suspension handling; OP—rolling transportation; NO—rolling particles

  • 两河口组砂岩粒度(Mz)在2.78~3.61之间(平均值3.04),为细粒砂岩。标准偏差(SD)为0.36~0.62(平均值0.48),分选较好; 偏度(Sk)-0.82~0.61(平均值-0.25)为略负偏,略微不对称单峰负偏曲线为主,尖度值(K)2.91~8.01(平均值3.76)。频率曲线均呈峰态尖锐,沉积物粒度分选较好。概率累计曲线中,悬浮次总体最为发育,其次发育跳跃次总体,少量为滚动,形态上呈低斜率两段式,上截点清晰。概率累积粒度分布图(图2c)呈现二段式结构,上截点清晰。C-M图解(图2f)点多数位于QR段,少量RS段,说明砂粒以递变悬浮双重能量运移为主,少量为均匀悬浮,均属于浊流沉积,且体现了浊流沉积中递变悬浮向均匀悬浮过渡的关系,悬浮物质由下向上粒度逐渐变细,密度逐渐变低的浊流沉积特征。上述特征说明两河口组砂岩为浊流沉积,其大套板岩为海底扇外扇-盆地平原沉积,其间块状砂体属于分支水道。

  • 4 全岩元素地球化学特征

  • 本次工作在甲基卡地区西康群共采集砂岩样品45件(其中侏倭组6件,新都桥组28件,两河口组11件),主量元素、微量元素和稀土元素分析测试结果见附表2(http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202204098& flag=1)。

  • 4.1 主量元素

  • 侏倭组岩石与大陆上地壳成分相比,富SiO2(68.78%~71.85%,平均值70.73%)、CaO(6.71%~10.45%,平均值8.12%)、MgO(2.58%~2.86%,平均值2.78%); 贫Al2O3(9.48%~10.31%,平均值9.92%)、Fe2O3(0.41%~0.91%,平均值0.71%)、K2O(0.27%~2.23%,平均值1.55%)、Na2O(1.46%~1.80%,平均值1.63%)、MnO(0.06%~0.07%,平均值0.06%),其他元素的含量与大陆上地壳成分相当; 新都桥组岩石与大陆上地壳成分相比富SiO2(46.01%~91.95%,平均值73.26%); 贫Al2O3(4%~20.18%,平均值11.25%)、Fe2O3(0.45%~2.77%,平均值1.22%)、CaO(0.1%~8.59%,平均值1.72%)、K2O(0.31%~3.88%,平均值1.91%)、Na2O(0.5%~2.69%,平均值1.52%),TiO2(0.18%~1.09%,平均值0.55%)略微偏低,其他元素的含量与大陆上地壳的含量相当; 两河口组岩石与大陆上地壳成分相比,富SiO2(57.49%~81.39%,平均值70.85%)、P2O5(0.11%~0.68%,平均值0.18%); 贫Al2O3(7.03%~19.24%,平均值11.91%)、Fe2O3(0.66%~4.6%,平均值1.67%)、CaO(0.29%~10.21%,平均值2.54%)、MgO(0.84%~3.05%,平均值1.71%)、K2O(0.33%~2.86%,平均值1.69%)、Na2O(0.545%~2.86%,平均值1.67%)、TiO2(0.1%~0.54%,平均值0.32%),MnO(0.04%~0.1%,平均值0.07%)含量与大陆上地壳的含量相当。

  • 通过主量元素相关性分析,侏倭组(n =6)样品SiO2与CaO、MnO呈显著的负相关关系(相关系数分别为-0.974,-0.876),与K2O呈显著的正相关关系(相关系数为0.817)见附表3(http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202204098& flag=1)。新都桥组(n =28)样品与系列元素均呈负相关关系,尤其是与Al2O3、Fe2O3、FeO、CaO、MgO、K2O、TiO2、MnO、P2O5负相关关系显著(相关系数分别为-0.877,-0.482,-0.931,-0.726,-0.904,-0.868,-0.922,-0.856,-0.809),表明新都桥组中石英及硅酸盐矿物的含量中较大程度上影响了全岩的化学性质。两河口组(n =11)样品SiO2与MgO、MnO呈显著负相关性(相关系数分别为-0.949,-0.814),表明两河口组砂岩中铁镁质组分可能在一定程度上影响了全岩的化学性质。总体上来说,西康群(45件)样品SiO2与FeO、MgO、K2O、MnO呈显著负相关性(相关系数分别为-0.839,-0.873,-0.722,-0.811),SiO2与其他元素均具有一定的负相关关系,表明西康群砂岩中石英及硅酸盐矿物的含量中较大程度上影响了全岩的化学性质。在沉积过程中,受沉积物供给的不同,砂岩中物质组成亦有所差别,如新都桥组明显与外来物影响关系密切,多种物质来源导致变化大,而沉积到后期,两河口组则明显受铁镁质组分影响,导致全岩化学性质与前期(侏倭组和新都桥组)沉积物有所差异。

  • 4.2 微量元素

  • 微量元素测试结果见附表2(http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202204098& flag=1),根据测试结果并采用Boynton(1984)球粒陨石值标准化后绘制的稀土元素配分型式图及微量元素蛛网图(标准化数据引自Sun et al.,1989)如图3所示。

  • 侏倭组样品ΣREE变化范围为157.98×10-6~180.17×10-6(平均166.18×10-6),LREE/HREE=6.26~6.87,平均6.53,(La/Yb)N=6.64~8.15,平均7.10,说明轻稀土元素相对重稀土元素明显富集,稀土元素分馏明显。样品δEu=0.62~0.67,平均0.64,为明显的Eu负异常,δCe=0.97~1.02,基本无Ce异常(图3a)。

  • 新都桥组样品ΣREE变化范围为55.36×10-6~304.99×10-6(平均147.89×10-6)显示变化范围较大,LREE/HREE=6.45~16.38,平均10.36,(La/Yb)N=7.07~33.66,平均14.39,说明轻稀土元素相对重稀土元素明显富集,稀土元素分馏明显。样品δEu=0.63~0.84,平均0.75,为明显的Eu负异常,δCe=0.70~1.48,平均0.94,基本无Ce异常(图3c)。

  • 图3 西康群砂岩稀土元素配分型式图(a、c、e)及微量元素蛛网图(b、d、f)

  • Fig.3 Chondrite-normalized rare earth element patterns (a, c, e) and trace element spidergrams (b, d, f) from Xikang Group

  • 两河口组样品ΣREE变化范围为93.92×10-6~210.94×10-6(平均146.39×10-6),LREE/HREE =9.28~18.07,平均12.54,(La/Yb)N=7.25~23.72,平均13.76,说明轻稀土元素相对重稀土元素明显富集,稀土元素分馏明显。样品δEu=0.37~0.67,平均0.59,为明显的Eu负异常,δCe=0.91~1.47,平均1.28,基本无Ce异常(图3e)。

  • 在蛛网图中(图3a、c、e),无论是侏倭组、新都桥组还是两河口组,样品REE配分模式曲线一致,均表现为明显的右倾斜REE配分模式,LREE右倾、HREE相对平坦,暗示西康群物源主体上可能具有相似性。

  • 微量元素测试数据表中见附表2(http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202204098& flag=1),侏倭组大离子亲石元素Rb的变化范围为9.66×10-6~77.9×10-6(平均53.9×10-6),Sr的变化范围为177×10-6~193×10-6(平均186×10-6),Ba的变化范围为97×10-6~356×10-6(平均245×10-6); 高场强元素Th的变化范围为10.0×10-6~10.9×10-6(平均10.43×10-6),Nb的变化范围为15.0×10-6~17.0×10-6(平均15.9×10-6),Zr的变化范围为191×10-6~225×10-6(平均210×10-6)。与上地壳微量元素相比,侏倭组相对富Cr、Co、Ni、Zr等元素; 贫Sc、Cu、Rb、Sr、Nb、Ba、Hf、Ta、Th、U等元素; V、Y、Hf等元素含量则与上地壳相当。相对于下地壳,侏倭组富Rb、Zr、Nb、Ba、Hf、Ta、Th、U等元素、贫V、Sc、Cr、Co、Ni、Cu、Sr等元素。由此可见,研究区侏倭组的微量元素含量与上地壳的含量相近。

  • 新都桥组大离子亲石元素Rb的变化范围为14.5×10-6~166×10-6(平均89.8×10-6),Sr的变化范围为30.3×10-6~318×10-6(平均103×10-6),Ba的变化范围为53×10-6~519×10-6(平均246×10-6); 高场强元素Th的变化范围为3.52×10-6~16.8×10-6(平均9.35×10-6),Nb的变化范围为3.34×10-6~25.3×10-6(平均11.3×10-6),Zr的变化范围为114×10-6~413×10-6(平均226×10-6)。新都桥组富相对于上地壳V、Cr、Co、Ni、Zr、等元素; 贫Cu、Rb、Sr、Nb、Ba、Hf、Ta、Th、U等元素; Sc元素含量则与上地壳相当。相对于下地壳,新都桥组富Rb、Zr、Nb、Ba、Hf、Th、U等元素、贫V、Sc、Cr、Co、Ni、Cu、Sr等元素; Ta则与下地壳元素含量相当。

  • 两河口组大离子亲石元素Rb的变化范围为46.5×10-6~143×10-6(平均89.2×10-6),Sr的变化范围为56.5×10-6~243×10-6(平均100×10-6),Ba的变化范围为42.0×10-6~413×10-6(平均257×10-6); 高场强元素Th的变化范围为6.20×10-6~17.4×10-6(平均9.82×10-6),Nb的变化范围为4.48×10-6~27.8×10-6(平均11.7×10-6),Zr的变化范围为137×10-6~485×10-6(平均242×10-6)。而两河口组则富V、Cr、Co、Zr、等元素; 贫Sc、Ni、Cu、Rb、Sr、Nb、Ba、Ta、Th、U等元素; Hf元素含量则与上地壳相当。相对于下地壳两河口组富Rb、Zr、Nb、Ba、Hf、Ta、Th、U等元素,贫V、Sc、Cr、Co、Ni、Cu、Sr等元素。由表可见,研究区两河口组的微量元素含量与上地壳的含量相近。

  • 在微量元素蛛网图中(图3b、d、f),微量元素整体呈右倾型,曲线具有较大的一致性,均显示富集大离子亲石元素,而贫高场强元素。

  • 5 讨论

  • 5.1 沉积物成熟度

  • 研究表明,碎屑沉积岩中的SiO2主要来自于石英碎屑,Al2O3则主要来自于黏土矿物及长石,SiO2/Al2O3比值可反映碎屑沉积物中石英相对于黏土矿物和长石的含量关系。SiO2含量及SiO2/Al2O3比值可用来反映沉积物的成熟度(Potter,1978),当石英含量增加时,长石和基性矿物则相应减少,SiO2/Al2O3比值增大,显示沉积物成熟度升高(Roser et al.,1986)。侏倭组样品SiO2含量为68.97%~71.85%,平均70.73%,含量中等,SiO2/Al2O3=6.80~7.46,平均7.14,比值较大说明样品成熟度较高,经历了较远距离的搬运。新都桥组样品SiO2含量为46.91%~91.95%,平均73.26%,含量变化较大,SiO2/Al2O3=2.84~22.89,平均9.58,比值有大有小,说明该地层沉积物变化较大,有成熟度高亦有成熟度低,既有快速沉积物,又有长距离搬运的产物。两河口组样品SiO2含量为57.49%~81.39%,平均70.85%,含量中等,SiO2/Al2O3=2.06~6.01,平均4.60,比值较小说明两河口组砂岩成熟度较低,应为快速沉积的产物。

  • 成分变异指数(ICV)可以用来判断碎屑沉积物是否发生过再旋回作用(Cox et al.,1995),即是首次沉积还是经历了再循环沉积作用的产物。当ICV<1时,表明样品中含有较高的高岭石、蒙脱石及绢云母等黏土类矿物,代表其可能经历了再旋回沉积作用,或首次沉积物经历了强烈的风化作用(Barshad,1966); 当ICV>1时,说明样品中含有较高的非黏土类硅酸盐矿物,为构造活动背景下的首次沉积(Van de Kamp et al.,1985)。Xu Xiaotao et al.(2018)利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素时发现,沉积物在经历再循环过程中由于黏土矿物的增加会使ICV值降低,并建议选取ICV>1的样品值,可以排除因再旋回作用对风化变异指数的影响,从而更精确地判断物源区的风化程度和古气候环境。本文西康群砂岩(侏倭组、新都桥组和两河口组)45件样品ICV值均大于1(最大值5.23,最小值1.40,平均2.43),说明西康群砂岩为构造活动背景下的首次沉积物。因此,本次研究样品受源区岩石控制明显,未经历强烈的化学风化作用,可作为物源来源及风化条件讨论的依据和对象。

  • 5.2 岩源化学风化

  • 化学蚀变指数(CIA:chemical index alteration)可以用来确定物源区的化学风化程度(Nesbitt et al.,1982),该指数是目前广泛地用于确定物源区风化特征的化学指标。CIA值反映风化程度的强弱,当CIA=50~60,反映弱风化程度,代表了寒冷干燥的气候; CIA=60~80,反映中等风化程度,代表气候温暖湿润; CIA=80~100,反映强烈风化程度,代表气候炎热潮湿(Fedo et al.,1995),其计算公式为:CIA=100×[Al2O3/(Al2O3+ CaO*+Na2O+K2O)],式中的化学成分的含量均为摩尔数(CaO*是指存在于硅酸盐矿物中的CaO,即扣除化学沉积后的CaO的摩尔数)。校正的CaO*=CaO-10/3×P2O5Johnsson et al.,1993),如果校正后的CaO摩尔数小于Na2O的摩尔数,则采用校正后的CaO摩尔数作为CaO*的摩尔数; 反之,则采用Na2O的摩尔数作为CaO*的摩尔数。如本文对侏倭组6件(SS05-SS10)、新都桥组10件(SS01、SS02、SS16、PM001-20等)和两河口组3件(PM316-108、109、132)共19件样品进行了化学沉积物等扣除和校正,增加了化学蚀变指数的可靠性。通过计算,获得侏倭组砂岩CIA值变化范围为56.06~61.95(平均58.56),新都桥组砂岩CIA值变化范围为50.32~69.29(平均63.25),两河口组砂岩CIA值变化范围为54.91~86.93(平均63.97)(需要说明的是仅样品PM315-34达到86.93,一般在54.91~66.24之间),表明西康群(侏倭组、新都桥组和两河口组)砂岩源岩总体上为弱的风化作用,所处环境为寒冷干燥的气候,(仅两河口组1件砂岩岩源显示具有强烈的风化作用,暗示其物源区处于稳定构造背景)。

  • 5.3 物源分析

  • 砂岩中稀土元素及部分微量元素如Th、Sc及Co等具有较好的稳定性,在成岩后期具有较好的抗流失性,其地球化学特征主要受物源区岩石性质的控制,能代表其物源区岩石的地球化学特征。较多学者利用其示踪沉积岩的物源(Allegre et al.,1974; Bhatia,1983; Bhatia et al.,1986; Roser et al.,1988; Girty et al.,1994; Gu,1994; Gu et al.,2002)。

  • Roser et al.(1988)物源方程判别图上(图4a),样品绝大多数落入石英岩沉积物源区,侏倭组有1件样品、两河口组有2件样品落入铁镁质物源区,而新都桥组有1件样品落入中性岩火成物源区,表明该区西康群侏倭组、新都桥组和两河口组物源相对单一; 在Gu(1994)的Hf-La/Th图解上(图4b),侏倭组主要落入长英质/基性物源混合区,新都桥组相对复杂,既有长英质/基性物源混合区,又有长英质源区,并显示向被动边缘源区演化的趋势,在这个过程中伴随有老沉积物组分含量的增加,而两河口组则主要落入长英质源区,并伴随老沉积物组分含量的增加。在Allegre et al.(1974)的∑REE-La/Yb图解上(图4c),侏倭组主要落入玄武岩区和钙质泥岩区的混合区,新都桥组主要落入钙质泥岩区,部分落入玄武岩区、花岗岩区和钙质泥岩区的交汇区域,而两河口组则主要落入钙质泥岩区,表明侏倭组和两河口组物源比较单一,而新都桥组则相对复杂,正如前文相关性分析认为的新都桥组明显与外来物影响关系密切,多种物质来源导致变化大,结合图4a、图4b认为新都桥组虽然主要来自石英岩沉积物源区,但仍有少量的基性物源或老沉积物的混入; 铕异常系数(δEu)可鉴别物源,中性斜长岩具Eu正异常(1.01<δEu<2.33),玄武岩无Eu异常(0.90<δEu<1.0),而花岗岩多为Eu负异常(δEu<0.90)(Zhang Jianjun et al.,2017),本文样品中侏倭组δEu变化范围为0.62~0.67(平均0.64),新都桥组δEu变化范围为0.63~0.84(平均0.75),两河口组δEu变化范围为0.37~0.67(平均0.59),这与∑REE-La/Yb图解(图4c)显示的物源区一致。在Gu et al.(2002)的Th-Th/U图解(图4d)上,投点主要位于上地壳上方,表明3个组的物源为上地壳物质,侏倭组Th/U比值较稳定,新都桥组变化大(变化范围2.80~6.74,平均5.11),两口组则变化较大(3.96~9.40,平均5.47,但仅有一个点为9.40)。风化过程中Th/U比值会随着风化程度增大而增加(Taylor et al.,1985),从西康群砂岩的Th/U比值显示出西康群岩源均经历了微弱的风化作用,但新都桥组岩源随着构造环境的变化,风化作用趋势加强,而两河口组岩源的某个时期,出现了风化趋势的突变,与前文可能由于物源区气候由寒冷干燥转变为炎热潮湿气候有关,也与化学蚀变指数指示结果相吻合。

  • 图4 西康群砂岩物源属性判别图解

  • Fig.4 Discrimination diagrams of provenance from Xikang Group

  • (a)—物源方程判别图(据Roser et al.,1988);(b)—Hf-La/ Th 图解(据Gu,1994);(c)—∑REE-La/Yb图解(据Allegre et al.,1974);(d)—Th-Th/U图解(据Gu et al.,2002

  • (a) —Discrimination diagram of provenance (after Roser et al., 1988) ; (b) —Hf-La/Th diagram (after Gu, 1994) ; (c) —∑REE-La/Yb diagram (after Allegre et al., 1974) ; (d) —Th-Th/U diagram (after Gu et al., 2002)

  • 5.4 构造背景分析

  • 不同构造背景碎屑沉积物具有特定的沉积过程,因此碎屑岩地球化学特征不仅可以反映物源区岩石成分,还能反映源岩构造背景(Bhatia,1983; Bhatia et al.,1986; Roser et al.,1988; Wang Congshan et al.,2016; Yang Zongyao et al.,2017; Zhang Jianjun et al.,2017; Xu Zenglian et al.,2019)。Bhatia(1983)将砂岩构造背景划分为大洋岛弧、大陆岛弧、活动大陆边缘和被动大陆边缘4个类型,每个构造背景下主量、微量和稀土元素组成有所差异,他认为常量元素Fe2O*3+MgO、TiO2及Al2O3/SiO2、K2O/Na2O和Al2O3/(CaO+Na2O)是大地构造背景判别中最重要的判别参数。研究区侏倭组Fe2O*3+MgO变化范围为4.60%~5.49%(平均5.03%)、TiO2变化范围为0.49%~0.57%(平均0.53%)、Al2O3/SiO2变化范围为0.13~0.15(平均0.14)、K2O/Na2O变化范围为0.65~6.77(平均1.91)、Al2O3/(CaO+Na2O)变化范围为0.10~0.26(平均0.17)。与已知构造背景的古代砂岩、泥岩和现代砂、泥质沉积物的常量元素特征相比(Bhatia,1983),Fe2O*3+MgO、TiO2与大陆岛弧含量相似,K2O/Na2O变化大,与大陆岛弧含量相似,Al2O3/SiO2、Al2O3/(CaO+Na2O)则显示与活动大陆边缘相似的构造背景。新都桥组Fe2O*3+MgO变化范围为1.82%~8.62%(平均5.65%)、TiO2变化范围为0.18%~1.09%(平均0.55%)、Al2O3/SiO2变化范围为0.04~0.35(平均0.17)、K2O/Na2O变化范围为0.36~3.61(平均1.65)、Al2O3/(CaO+Na2O)变化范围为0.09~7.59(平均2.52)。与已知背景沉积物相比,特征值均显示大陆岛弧的特征(TiO2显示以大陆岛弧为主,混少量大洋岛弧特征,但平均为大陆岛弧)。两河口组Fe2O*3+MgO变化范围为4.12%~9.80%(平均5.63%)、TiO2变化范围为0.10%~0.54%(平均0.32%)、Al2O3/SiO2变化范围为0.11~0.33(平均0.17)、K2O/Na2O变化范围为0.67~1.56(平均1.00)、Al2O3/(CaO+Na2O)变化范围为0.61~13.45(平均4.35)。与已知背景沉积物相比,Fe2O*3+MgO显示以大陆岛弧为主,少量大洋岛弧构造背景,TiO2以大陆岛弧为主,可能有活动大陆边缘物质,Al2O3/ SiO2平均为大陆岛弧,可能有大洋岛弧),K2O/Na2O则变化大,大陆岛弧和大洋岛弧背景均有显示,和Al2O3/(CaO+Na2O)变化大,总体以大陆岛弧为主。总体上来说,主量元素显示西康群构造背景为活动大陆边缘。

  • 在La/Sc-Ti/Zr图解上(图5a),侏倭组全部落入活动大陆边缘区域,新都桥组主要落入活动大陆边缘及被动大陆边缘,而两河口组则主要落入活动大陆边缘,少量落入被动大陆边缘; 在SiO2/Al2O3-K2O/(Na2O+CaO)图解(图5b)上,投点主要位于活动大陆边缘。总体上显示该区西康群砂岩构造背景以活动大陆边缘为主。

  • 在La-Th-Sc三角图(图6a)上,侏倭组投点主要位于大陆岛弧,新都桥组和两河口组大部分点位于大陆岛弧,少量位于活动大陆边缘和被动大陆边缘区域内; 在Th-Co-Zr/10三角图(图6b)上,侏倭组样品全部位于大陆岛弧区域内,而新都桥组和两河口组主要分布在大陆岛弧,在大洋岛弧区域内有少量分布; 在Th-Sc-Zr/10三角图(图6c)上,侏倭组和新都桥组主要分布在大陆岛弧内,而两河口组则在大陆岛弧和被动大陆边缘区域内均有分布。总体上反映西康群物源区以大陆岛弧构造环境为主,具有构造活动强烈的构造背景。

  • 5.5 物源的可能性

  • 西康群是在扬子克拉通的基础上发展起来的被动大陆边缘,在早-中三叠世为滨海-浅海沉积环境,为一套砂泥质、钙质岩建造; 晚三叠世开始处于被动大陆边缘构造环境,沉积巨厚的深海-半深海浊流相沉积(Zou Guangfu,1995; Chen Yuelong et al.,2006; Meng Qingren et al.,2007)。部分学者认为松潘-甘孜造山带碎屑沉积物来自华北板块或有华北板块的贡献(Bruguier et al.,1997; Weislogel et al.,2006; Wang Wei et al.,2007; Weislogel,2008; Ding et al.,2013; Zhang Yuxiu et al.,2015; Qin Yulong et al.,2020),这些学者认定华北板块物源贡献主要是基于碎屑锆石年龄的相似性。Qin Yulong et al.(2020)获得甲基卡地区侏倭组砂岩碎屑锆石U-Pb年龄四个峰值(281~231 Ma、502~424 Ma、983~707 Ma和1850~1539 Ma),并根据年龄对比认为其物源分别对应东昆仑、北秦岭、扬子板块和华北板块。古元古代末期至中元古代早期,全球范围内发生了 Columbia超级大陆裂解事件(Rogers et al.,2002; Lu Songnian et al.,2002),各地多处发现有该期非造山型岩浆活动,如在古元古代末期扬子地台发生了裂谷拉张事件(Rogers et al.,2002; Zhou Bangguo et al.,2012; Wang Shengwei et al.,2013),同时也有太古宙(2401~2320 Ma)、始太古代(3888 Ma)老地壳物质的重熔(Cui Xiaozhuang et al.,2020; Ren Guangming et al.,2020); 而华北地台南缘、北缘及中部亦发育大规模非造山型岩浆岩(时代集中在1775~1650 Ma)(Lu Songnian et al.,20022006; Zhang Shuanhong et al.,2012),其基底形成于2841~2512 Ma(Chen Yuelong et al.,2008),说明扬子板块、华北地块裂解与全球 Columbia超级大陆的裂解是同步的,具有相似的时代和性质。因此,单从年龄来判断物源是有其局限性的。

  • 图5 西康群构造环境判别图

  • Fig.5 Diagram for tectonic setting discrimination of Xikang Group

  • (a)—La/Sc-Ti/Zr图解(据Bhatia et al.,1986);(b)—SiO2/Al2O3-K2O/(Na2O+CaO)图解(据 Roser et al.,1986

  • (a) — La/Sc-Ti/Zr diagram (after Bhatia et al., 1986) ; (b) —SiO2/Al2O3-K2O/ (Na2O+CaO diagram (after Roser et al., 1986)

  • 图6 西康群砂岩微量元素构造环境判别图解(据 Bhatia et al.,1986

  • Fig.6 Discrimination diagrams of tectonic settings for sandstones of Xikang Group (after Bhatia et al., 1986)

  • A—大洋岛弧; B—大陆岛弧; C—活动大陆边缘; D—被动大陆边缘

  • A—Oceanic island arc; B—continental island arc; C—active continental margin; D—passive continental margin

  • 研究表明,北秦岭地区物源区主要有北秦岭(Chen Yibing et al.,2010; Gao Chunyun et al.,2015; Li Kang et al.,2015)、南秦岭(Yang Min et al.,2016),少量有华北(Chen Yibing et al.,2010; Yang Min et al.,2016)及祁连(Chen Yibing et al.,2010)、扬子板块(Yang Min et al.,2016)的贡献; 南秦岭主要物源区为北秦岭(Chen Longyao et al.,2014; Liu Zhihui et al.,2018; Yang Tao et al.,2018)、扬子板块(Ling Wenli et al.,2010; Liu Zhihui et al.,2018; Yang Tao et al.,2018)、西秦岭和北祁连(Li Yifei et al.,2017); 西秦岭主要源区则主要为华北和扬子(Chen Yuelong et al.,2008)、扬子和北秦岭(Hao Decheng et al.,2020)、北祁连和西秦岭(Chen Weinan et al.,2014)。事实上,在中三叠世末期秦岭已隆升为山(Zhang Benren et al.,2002),这时华北板块已经不可能跨过秦岭为松潘-甘孜带输送大量的碎屑沉积物(Liu Fei et al.,2006),且Sm-Nd同位素地球化学类显示碎屑沉积物似于扬子克拉通、南秦岭、北秦岭,完全不同于华北克拉通,并没有华北克拉通的物质踪迹(Chen Yuelong et al.,20062007)。虽北秦岭地区物源有华北板块的贡献,但其南秦岭和西秦岭地区已无华北板块的物质贡献,进一步如前文所说华北板块沉积物不可能跨过秦岭为松潘-甘孜提供物质供给,说明松潘-甘孜造山带不可能有华北板块的物质贡献(即使如前人认为的有华北板块的物质贡献,也可能是早期华北板块为秦岭地区提供的物质,经物质再循环从秦岭地区输送到松潘-甘孜地区而已)。因此,可以认为研究区无华北板块的物质贡献,其物源可能是来自邻近板块。

  • 与研究区最接近的是新龙、炉霍、甘孜、色达,对浊积砂古流向、成熟度、流体黏度等的研究结果显示新龙等地物源是由东、东南向西、西北方向供给(Dai Zongming,2000),那么依此可以断定物源向新龙、炉霍等地供给时,必经过研究区(甲基卡一带),并会为其提供沉积物质供给。Nd同位素研究结果表明,三叠纪时南、西方向为深水环境,碎屑沉积岩从物质来源上看是镁铁质、长英质与石英+碳酸盐胶结物3种组分的混合产物,所对应的构造层主要是新元古代(康定杂岩、苏雄火山岩),其次是太古宙与古元古代的扬子克拉通基底物质(如崆岭杂岩、后河杂岩),同时沉积物经过较长距离搬运后镁铁质在其中所占的比例明显降低,北部、东部近源区搬运距离短,含有较多的镁铁质组分,明显表现出非成熟性(Chen Yuelong et al.,2006),从本次区域地质调查的结果来看,研究区西康群(侏倭组、新都桥组和两河口组)中均发育有槽模、沟模、平行层理和不完整鲍马序列等浊积岩相原生沉积构造,为典型的海底扇沉积,粒度分析显示为悬浮物由下向上逐渐变细沉积旋回; 从物源来看,虽均来自上地壳物质,侏倭组主要为长英质/基性物源混合物,新都桥组相对复杂,既有长英质/基性物源混合区,又有长英质源区,并伴随有老沉积物组分含量的增加,而两河口组则主要为长英质物源区,并有老沉积物组分,相关性分析得出新都桥组就明显地与外来物影响关系密切,多种物质来源导致变化大,而两河口组铁镁质组分可能在一定程度上影响了其组成,结合Qin Yulong et al.(2020)认识,侏倭组可能为主要来自昆仑、秦岭和扬子等陆块,因为其样品成熟度较高,经历了较远距离的搬运,也只有从北部较远的地方(昆仑、秦岭),才能经历较远的搬运; 新都桥组则可能来自秦岭、昆仑、扬子等陆块的混合叠加,这是因为前文已叙及其物源的多样性,且其成熟度有高亦有低(尤其是新都桥组砂岩最为典型),既有快速沉积物,又有长距离搬运的产物,若无多物源,不可能形成这么复杂的地球化学组成(图4b显示新都桥组有较多古老沉积物含量增加,可能暗示其是来自扬子地块太古代、古太古代古老地壳物质)。同时,不排除羌塘地块的碎屑物质。松潘-甘孜造山带北部的岗龙地区地球化学及锆石U-Pb年代学研究结果其物源主要来自羌塘地块和昆仑地块,并推测北秦岭海西期岛弧有可能为物源区之一(Cui Jiawei et al.,2016),羌塘地块位于研究区东南方向,当该地块为松潘-甘孜北部岗龙地区供给物源时,不能排除其或多或少也会为研究区贡献一定量的碎屑物源; 而对于两河口组(晚三叠世),砂岩成熟度较低,为快速沉积的产物,那么不可能经历长距离搬运,只能是近物源区,图4a也清晰显示随着向被动大陆边缘演化,物源区老沉积物组分含量增加,根据这些判断,两河口组物源最大的可能是秦岭和扬子地块,结合Dai Zongming(2000)古流向研究结果,其物源应以扬子地块为主; 而其中的铁镁质组分(新都桥组同理),可能是扬子地块的新元古代康定杂岩(Chen Yuelong et al.,2006)及二叠系峨眉山玄武岩的贡献,从而导致在物源判别图解中显示有玄武岩区、花岗岩区特征(图4c)及构造判别图解中有大洋岛弧特征(图6)。

  • 6 结论

  • (1)西康群碎屑岩成熟度经历了低(侏倭组)、低+高(新都桥组)、低(两河口组)的过程,显示其物源距离远近有所差异,但其均为大陆岛弧构造活动背景下的首次沉积物,受源区岩性控制明显。

  • (2)西康群砂岩的主量、微量及稀土元素特征与大陆岛弧特征相近,结合La/Sc-Ti/Zr、SiO2/AL2O3K2O/(Na2O+CaO)图解及La-Th-Sc、Th-Co-Zr/10及Th-Sc-Zr/10三角图解综合判断,显示西康群物源区以活动大陆边缘构造环境为主,具有构造活动强烈的构造背景。

  • (3)主量元素及微量元素显示物源具有相似性,组成与大陆上地壳成分相当; 物源判别方程图解、Hf-La/Th图解、∑REE-La/Yb图解及Th-Th/U图解显示其物源主要来自长英质物源区,但在沉积中期(此中期仅限于侏倭组、新都桥组和两河口组的沉积而言)的新都桥组物源相对复杂,既有长英质/基性物源混合区,又有长英质源区,组成明显与外来物影响关系密切,主量元素的相关性分析也印证了这一点。

  • (4)综合分析认为研究区西康群物源主要与昆仑和扬子陆块关系密切,但在不同沉积期表现又有所差异:侏倭组可能为主要来自昆仑、秦岭和扬子陆块,新都桥组则可能来自秦岭、昆仑、扬子、羌塘等陆块的混合叠加,以扬子地块为主,而两河口组物源最大的可能来自秦岭和扬子地块。

  • 致谢:2位匿名审稿人提出了建设性修改意见,极大地提高了本文质量; 参加野外工作的还有叶亚康、秦宇龙、熊昌利等人; 耿海涛、周涛、杨合兴等清绘了部分图件,在此一并表示感谢。

  • 注释

  • ❶ 四川地质矿产局第三区域地质测量队.1974.1∶100万昌都幅区域地质调查报告(地质部分及矿产部分).

  • ❷ 四川地质矿产局区域地质调查队四分队.1984.1∶20万康定、新龙、禾尼幅区域地质调查报告.名山:四川地质矿产局区域地质调查队四分队.

  • ❸ 刘旗,王帮全,郭建秋,朱占祥,梁斌,喻建新,王选策,王顺钦,李振江.2003. 康定县幅(H47C002004)1∶250000区域地质调查报告.成都:四川省地质调查院

  • ❹ 周雄,秦宇龙,熊昌利,徐云峰,李名则,武文辉,李峥,叶亚康,詹涵钰,周玉,孙光银,申伟,王正江,杨籼,张君伟,刘伟.2019. 四川康定瓦多-龙古地区(H47E010021、H47E010022、H47E011021、H47E011022)4幅1∶5万区域地质调查成果报告. 成都:中国地质科学院矿产综合利用研究所.

  • ❺ 周玉,贾志泉,郝娇,梁兵,周雄,骆志红,刘晗,何秦娥,罗林红,邓红,岳相元,廖俊雄,李锐,谭洪旗,王飘,刘祥,龚大兴,李豪.2019. 四川康定亚中-牛西卡地区(H47E009020、H47E010020、H47E011020、H47E012020)4幅1∶5万矿产地质调查成果报告. 成都:中国地质科学院矿产综合利用研究所.

  • 附表1 西康群浊积岩粒度分析结果表

  • Appendix Table1 Particle size analysis result table of turbidite from Xikang Group

  • 续附表1

  • 续附表1

  • 表2 西康群砂岩主量(%)、微量、稀土元素(×10-6)分析结果表

  • Appendix Table2 Major (%) and trace elements (×10-6) results of sandstone from Xikang Group

  • 续附表2

  • 续附表2

  • 续附表2

  • 附表3 西康群砂岩主量元素相关系数

  • Appendix Table3 Correlation coefficient of the Xikang Group's major elements

  • 参考文献

    • Allegre C J, Michard G. 1974. Introduction to Geochemistry (Geophysics and Astophysics Monographx). Dordrecht: Reidel Publishing Company.

    • Bai Xianzhou, He Mingyou, Wang Yuting, Yang Xuejun. 2010. On thegeochemical characteristics, provenance and paleoweathering degree of Triassic Xikang Group in Ruoergai area in Sichuan Province. Geoscience, 24(1): 151~157(in Chinese with English abstract).

    • Barshad I. 1966. The effect of a variation in precipitation on the nature of clay minerals formation in soils from acid and basic igneous rocks. In: Proceeding International Clay Conference. Jerusalem. Israel: Israel Program for Scientific Translations, 167~173.

    • Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House, 1~662 (in Chinese with English abstract).

    • Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611~627.

    • Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45(1-2): 97~113.

    • Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181~193.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: meteoritestudies. In: Henderson P. E. Rare Earth Element Geochemistry. Amsterdam: Elsevier.

    • Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganzi flysch (central China): provenance and tectonic correlations. Earth and Planetary Science Letters, 152: 217~231.

    • Chen Longyao, Luo Yuling, Liu Xiaochun, Qu Wei, Hu Juan. 2014. LA-ICP-MS U-Pb geochronology of detrital zircons from the Liuling Group in the South Qinling tectonic belt and its tectonic significance. Geological Bulletin of China, 33(9): 1363~1378(in Chinese with English abstract).

    • Chen Weinan, Pei Xianzhi, Liu Chengjun, Li Ruibao, Li Zuochen, Wei Bo, Xu Xiaochun, Liu Tujie, Wang Yuanyuan, Ren Houzhou. 2014. U-Pb ages of detrital zircons from Taiyangsi Rock Group in Shujiaba area of West Qinling Mountains and their geological significance. Geology in China, 41(3): 741~755(in Chinese with English abstract).

    • Chen Yibing, Zhang Guowei, Lu Rukui, Liang Wentian, Diwu Chunrong, Guo Xiufeng. 2010. Detrital zircon U-Pb geochronology of Dacaotan Group in the conjunction area of North Qinling and Qilian. Acta Geologica Sinica, 84(7): 947~962(in Chinese with English abstract).

    • Chen Yuelong, Tang Jinrong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2006. Elemental and Sm-Nd isotopic geochemistry of clastic sedimentary rocks in the Garzê-Songpan block and Longmen Mountains. Geology in China, 33(1): 109~118 (in Chinese with English abstract).

    • Chen Yuelong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2007. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains. Frontiers of Earth Science in China, 1(1): 60~68.

    • Chen Yuelong, Li Dapeng, Zhou Jian, Zhang Hongfei, Liu Fei, Nie Lanshi, Jiang Liting, Liu Xiaoming. 2008. U-Pb ages of zircons in western Qinling Mountain, China, and their tectonic implications. Earth Science Frontiers, 15(4): 88~107(in Chinese with English abstract).

    • Cox R, Lowe D R, Culers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919~2940.

    • Cui Jiawei, Zheng Youye, Tian Liming, Sun Junyi, Dong Jun. 2016. Geochemical characteristics and Zircon U-Pb ages of the Bayankalashan Group in the Ganglong area of the northern Songpan-Ganzi orogenic belt: implication for its provenance and tectonic environment. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 719~742(in Chinese with English abstract).

    • Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Pang Weihua. 2020. Multiple tectonothermal events recorded in the early precambrian cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45(8): 3054~3069(in Chinese with English abstract).

    • Dai Zongming. 2000. Problems need to be noted in the new round of geological survey in the flysch province. Journal of Chengdu University of Technology, 27(Suppl): 223~227(in Chinese with English abstract).

    • Deng Fei, Jia Dong, Luo Liang, Li Haibin, Li Yiquan, Wu Long. 2008. The contrast between provenances of Songpan-Garze and western Sichuan foreland basin in the Late Triassic: clues to the tectonics and palaeogeography. Geological Review, 54(4): 561~573(in Chinese with English abstract).

    • Ding L, Yang D, Cai F, Pullen A, Kapp P, Gehrels G, Zhang L, Zhang Q, Lai Q, Yue Y, Shi R. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32 (1): 34~48.

    • Enkelmann E, Weislogel A, Ratschbacher L, Eide E, Renno A, Wooden J. 2007. How was the Triassic Songpan-Ganzi basin filled? a provenance study. Tectonics. 26(4): TC4007.

    • Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921~924.

    • Gao Chunyun, Guo Anlin, Li Xinghui, Li Kan, Liu Weigang. 2015. LA-ICP-MS U-Pb dating of detrital zircon from Liuyehe basin in North Qin-ling Mountains. Geological Bulletin of China, 34(9): 1689~1698(in Chinese with English abstract).

    • Girty G. 1994. Provenance determined by REE, Th, and Sc analyses of metasedimentary rocks, boyden cave boof pendant, central Sierra Nevada, California. Journal of Sedimentary Research, 64B(1): 68~73.

    • Gong Daxing, Guo Jia, Luo Junfeng, Yue Xiangyuan, Zhou Xiong, Zhou Jiayun. 2019. Sedimentary characteristics and model of the Triassic Songpan-Ganzi flysch basin, in Maerkang-Jinchuan area, western Sichuan. Acta Sedimentologica Sinica, 37(6): 1210~1223(in Chinese with English abstract).

    • Gong Daxing, Wu Chihua, Zou Hao, Zhou Xiong, Zhou Yu, Tan Hongqi, Yue Xiangyuan. 2021. Provenance analysis of Late Triassic turbidites in the eastern Songpan-Ganzi flysch complex: sedimentary record of tectonic evolution of the eastern Paleo-Tethys ocean. Marine and Petroleum Geology, https: //doi. org/10. 1016/j. marpetgeo. 2021. 104927.

    • Gu X X. 1994. Geochemical characteristics of the tethys 2 turbidites in northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58 (21): 4615~4631.

    • Gu X X, Liu J M, Zheng M H, Tang J X, Qi L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research, 72 (3): 393~407.

    • Hao Decheng, Gao Zhaokui, Han Yaoquan, Zhou Hong, Ding Zhenju. 2020. Zircon U-Pb age and its geological significance of the Anjiacha formation in Xicheng lead zinc ore field, western Qinling. Geoscience. doi: 10. 19657/j. geoscience. 1000-8527. 2020. 053(in Chinese with English abstract).

    • Huang Jiqing, Chen Bingwei. 1987. Evolution of Tethys Sea in China and Its Adjacent Areas. Beijing: Geological Publishing House (in Chinese).

    • Johnsson M J, Basu A C. 1993. Processes controlling the composition of clastic sediments. Boulder, CO: Geological Society of America Special Paper, 284: 1~19.

    • Lan Zhongwu, Chen Yuelong, Su Benxun, Liu Fei, Zhang Hongfei. 2006. The origin of sandstones from the Songpan-Ganze basin, Sichuan, China: evidence from SHRIMP U-Pb dating of clastic zircons. Acta Sedimentologica Sinica, 24(3): 321~332(in Chinese with English abstract).

    • Li Kang, Guo Anlin, Gao Chunyun, Li Xinghui. 2015. A tentative discussion on the source area of the Late Triassic Liuyehe basin in North Qin-ling Mountains and its relationship with the Ordos basin: evidence from LA-ICP-MS U-Pb dating of detrital zircons. Geological Bulletin of China, 34(8): 1426~1437(in Chinese with English abstract).

    • Li Yifei, Yang Chuanmao, Fan Jing, Zhao Ming. 2017. Geological signficance of detrital zircon U-Pb age of middle devonian proximal sedimentary rocks in Boyang Town, western Qinling orogenic belt. Northwestern Geology, 50(3): 92~104(in Chinese with English abstract).

    • Ling Wenli, Duan Ruichun, Liu Xiaoming, Cheng Jianping, Mao Xinwu, Peng Lianhongm, Liu Zaoxue, Yang Hongmei, Ren Bangfang. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Sci Bull, 55(12): 1153~1161(in Chinese with English abstract).

    • Liu Fei, Chen Yuelong, Su Benxun, Lan Zhongwu, Jiang Liting. 2006. Geochemistry and zircon ages of Triassic detrital sedimentary rocks from the Ganze-Songpan block. Acta Geoscientica Sinica, 27(4): 289~296(in Chinese with English abstract).

    • Liu Zhihui, Luo Min, Chen Longyao, Qu Wei, Liu Xiaochun. 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks. Acta Petrologica Sinica, 34(5): 1484~1502(in Chinese with English abstract).

    • Lu Songnian, Yang Chunliang, Li Huaikun, Li Humin. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123~131.

    • Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the parametamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310(in Chinese with English abstract).

    • McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. GSA Special Papers, 284: 21~40.

    • Meng Qingreng, Qu Hongjie, Hu Jianming. 2007. Triassic deep-marine sedimentation in the western Qinling and Songpan terrane. Science in China: Series D: Earth Sciences, 37(S1): 209~223(in Chinese with English abstract).

    • Nesbitt H W, Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885): 715~717

    • Nie S, Yin A, Rowley D B, Jin Y. 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysh sequence, central China. Geology, 22: 999~1002.

    • Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4): 423~449.

    • Qin Yulong, Li Mingze, Xiong Changli, Zhan Hanyu, Xu Yunfeng, Wu Wenhui, Lu Zheng. 2020. Depositional provinces and tectonic background of the Zhuwo Formation in the Jiajika region, western Sichuan Province: evidence from detrital zircon U-Pb ages. Acta Geologica Sinica, 94(8): 2400~2409(in Chinese with English abstract).

    • Rao Rongbiao. 1987. New progress in the study of "Xikang Group" in Western Sichuan. Journal of Stratigraphy. 11(1): 64~68(in Chinese).

    • Ren Guangming, Pang Weihua, Wang Liquan, Sun Zhiming, Wang Baodi, Cui Xiaozhuang, Yin Fuguang, Ning Kuobu. 2020. Detrital zircons of 3. 8 Ga in Southwestern Yangtze block and its geological implications. Earth Science, 45(8): 3040~3053(in Chinese with English abstract).

    • Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology, 94(5): 635~650.

    • Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119~139.

    • Rogers J, Santosh M. 2002. Configuration of Columbia, Mesoproterozoic supercontinent. Gondwana Research, 5: 5~22.

    • She Zhenbing, Ma Changqian, Mason R, Li Jianwei, Wang Guocan, Lei Yuhong. 2006. Provenance of the Triassic Songpan-Ganzi flysch, West China. Chemical Geology, 231: 159~175.

    • Su Benxun, Chen Yuelong, Liu Fei, Wang Qiaoyun, Zhang Hongfei, Lan Zhongwu. 2006. Geochemical characteristics and significance of Triassic sandstones of Songpan-Ganze block. Acta Petrologica Sinica, 22(4): 961~970(in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Tan Xichou, Li Chunyu. 1959. Geological Records of Xikang, Sichuan. Beijing: Geological Publishing House, 1~228 (in Chinese).

    • Tang Yan, Sang Longkang, Yuan Yanming, Zhang Yunpeng, Yang Yunlong. 2012. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi basin, western China: implications for source weathering, provenance and tectonic setting. Geoscience Frontiers, 3(5): 647~660.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312.

    • Van de Kamp P C, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411~449

    • Wang Congshan, Chen Wenxi, Shan Fulong. 2016. Geochemical characteristic of the Xungba Formation sandstones in the Xungba basin, Tibet, and its constraints on provenance and tectonic seting. Acta Geologica Sinica, 90(6): 1195~1207 (in Chinese with English abstract).

    • Wang Quanwei, Liang Bin, Zhu Bing, Chen Ming. 2001. Sedimentary geochemical features of Xiang Group turbidites in Rangtang area, Northwest Sichuan. Geology-Geochemistry, 29(4): 80~85(in Chinese with English abstract).

    • Wang Shengwei, Liao zhenwen, Sun Xiaoming, Jiang Xiaofang, Zhou Bangguo, Guo Yang, Luo Maojin, Zhu Huaping, Ma Dong. 2013. Geochemistry of paleoproterozoic diabases in the Dongchuan Copper Deposit, Yunnan, SW China: response to breakup of the columbia supercontinent in the Southwestern margin of Yangtze block. Acta Geologica Sinica, 87(12): 1834~1852 (in Chinese with English abstract).

    • Wang Wei, Li Fanglin, Bao Zhengyu. 2007. U-Pb constraints on provenance and evolution of Middle to Late Triassic sediment in Songpan-Garze basin. Geological Science and Technology Information, 26(5): 35~44(in Chinese with English abstract).

    • Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E, Yang H S. 2006. Detritl zircon provenance of the Late Triassic Song-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34: 97~100.

    • Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics. 451: 331~345.

    • Xu Wentong. 2018. Palaeocurrent direction and detrital zircon provenance of Triassic Bayan Har Group in Songpan-Ganzibasin. Master's thesis of China University of Geosciences (Beijing), 1~60(in Chinese with English abstract).

    • Xu Xiaotao, Shao Longyi. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography, 20(3): 515~522(in Chinese with English abstract).

    • Xu Zenglian, Zhang Bo, Li Hongliang, Li Jianguo, Zeng Hui, Zhu Qiang, Cao Minqiang, Wei Jialin. 2019. Geochemistry of the Yaojia Formation sandstone in the Kailu depression, Songliao basin: implications for its provenance and tectonic setting. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 573~586(in Chinese with English abstract).

    • Xu Zhiqin, Hou Liwei, Wang Zhongxiu. 1992. The Orogenic Processes of the Songpan-Garzê Orogen. Beijing: Geological Publishing House (in Chinese).

    • Yang Min, Liu Liang, Wang Yawei, Liao Xiaoying, Kang Lei, Gai Yongsheng. 2016. Geochronology of detrital zircons from metaclastic of Erlangping complex in the North Qinling belt and its tectonic implication. Acta Petrologica Sinica, 32(5): 1452~1466(in Chinese with English abstract).

    • Yang Tao, Zhang Yafeng, Yang Ling, Yi Pengfei, He Yuanfang, Wu Tong. 2018. Detrital zircon U-Pb age of Mesozoic Donghe Group in South Qinling mountain and its geological significance. Acta Petrologica Et Mineralogica, 37(2): 211~229(in Chinese with English abstract).

    • Yang Zongyao, Lang Xinghai, Tang Juxing, Zhang Zhong, Zhang Jishu, Gao Yiming, Huang Yong, Xie Fuwei, Fu Yangang, Wang Yong. 2017. Geochemical characteristics of the Jurassic sandstones in the Xiongcun copper-gold deposit, Tibet: constraints on tectonic setting. Acta Geologica Sinica, 91(9): 1985~2003 (in Chinese with English abstract).

    • Yang Zongyao, Hu Guyue, Xiao Hongtian, Wang Ying, Zhao Xiaoyan. 2019. Geochemical characteristics of the Early Cretaceous sandstones from the Tangbai deposit, Tibet: implications for the tectonic evolution of the southern margin of the Gangdese. Acta Petrologica Sinica, 35(7): 2189~2205(in Chinese with English abstract).

    • Yu Yuanshan, Liao Shengping, Pan Zhongxi, Jin Canhai, Zhang Hai. 2018. Geochemical characters and formation setting of the Triassic fine grained clastic rocks in Daofu area, western Sichuan. Mineralogy and Petrology, 38(2): 94~103(in Chinese with English abstract).

    • Zeng Yijun, Huang Sijing, Kan Zezhong, Xiong Changli, Xi Qixing, Zengqin. 2006. Geochemical signatures and tectonic setting of the clastic rocks from the Triassic Xikang Group in western Sichuan. Sedimentary Geology and Tethyan Geology, 26(1): 22~29(in Chinese with English abstract).

    • Zhang Benren, Gao Shan, Zhang Hongfei, Han Yinwen. 2002. Geochemistry of Qinling Orogenic Belt. Beijing: Science Press, 47~109(in Chinese).

    • Zhang Jianjun, Mou Chuanlong, Zhou Kenken, Feng Lixia, Wu Hao, Chen Xiaowei. 2017. Geochemical characteristic of sandstones from the Mangbang Formation in the Husa basin, Western Yuannan, and its constraints on provenances and tectonic setting. Acta Geologica Sinica, 91(5): 1083~1096(in Chinese with English abstract).

    • Zhang Kaijun. 2001. Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? Journal of the Geological Society of India, 57: 223~230.

    • Zhang Kaijun, Li Bing, Wei Qingguo, Cai Jianxin, Zhang Yuxiu. 2008. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan plateau): implications for the tectonic amalgamation of China. Sedimentary Geology, 208(1-2): 36~44.

    • Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222~223: 339~367.

    • Zhang Yuxiu, Zeng Lu, Li Zhiwu, Wang Chengshan, Zhang Kaijun, Yang Wenguang, Guo Tonglou. 2015. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons. International Geology Review, 57(2): 159~181.

    • Zhou Bangguo, Wang Shengwei, Sun Xiaoming, Liao Zhenwen, Guo Yang, Jiang Xiaofang, Zhu Huaping, Luo Maojin, Liu Caize, Ma Dong, Shen Zhanwu, Zhang Hai. 2012. SHRIMP U-Pb age and its significance of zircons in welded tuff of Wangchang Formation in Dongchuan area, Yunnan Province, SW China. Geological Review, 58(2): 359~368(in Chinese with English abstract).

    • Zhu Min, Chen Hanlin, Zhou Jing, Yang Shufeng. 2017. Provenance change from the Middle to Late Triassic of the southwestern Sichuan basin, Southwest China: constraints from the sedimentary record and its tectonic significance. Tectonophysics, 700-701: 92~107.

    • Zhu Zhangxiang, Wang Linzhang, Zhao Younian, Pan Yuntang. 1993. A new stratigraphic sequence of the Xikang Group in Sichuan. Regional Geology of China, (1): 18~27(in Chinese with English abstract).

    • Zou Guangfu. 1995. Advance of the research on the Garze-Litang plate junction. Acta Geologica Sichuan, 15(4): 257~263(in Chinese with English abstract).

    • 白宪洲, 何明友, 王玉婷, 杨学俊. 2010. 四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析. 现代地质, 24(1): 151~157.

    • 陈龙耀, 罗玉凌, 刘晓春, 曲玮, 胡娟. 2014. 南秦岭刘岭群砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其构造意义. 地质通报, 33(9): 1363~1378.

    • 陈伟男, 裴先治, 刘成军, 李瑞保, 李佐臣, 魏博, 胥晓春, 刘图杰, 王元元, 任厚州. 2014. 西秦岭舒家坝地区太阳寺岩组碎屑锆石年龄及其地质意义. 中国地质, 41(3): 741~755.

    • 陈义兵, 张国伟, 鲁如魁, 梁文天, 第五春荣, 郭秀峰. 2010. 北秦岭-祁连结合区大草滩群碎屑锆石U-Pb年代学研究. 地质学报, 84(7): 947~962.

    • 陈岳龙, 唐金荣, 刘飞, 张宏飞, 聂兰仕, 蒋丽婷. 2006. 松潘—甘孜碎屑沉积岩的地球化学与Sm-Nd同位素地球化学. 中国地质, 33(1): 109~118.

    • 陈岳龙, 李大鹏, 周建, 张宏飞, 刘飞, 聂兰仕, 蒋丽婷, 柳小明. 2008. 中国西秦岭碎屑锆石U-Pb年龄及其构造意义. 地学前缘, 15(4): 88~107.

    • 崔加伟, 郑有业, 田立明, 孙君一, 董俊. 2016. 松潘—甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示. 矿物岩石地球化学通报, 35(4): 719~742.

    • 崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45(8): 3054~3069.

    • 戴宗明. 2000. 新一轮地质调查中复理石区工作应注意的重要问题. 成都理工学院学报, 27(增刊 1): 223~227.

    • 邓飞, 贾东, 罗良, 李海滨, 李一泉, 武龙. 2008. 晚三叠世松潘甘孜和川西前陆盆地的物源对比: 构造演化和古地理变迁的线索. 地质论评, 54(4): 561~573.

    • 高春云, 郭安林, 李兴辉, 李侃, 刘伟刚. 2015. 北秦岭柳叶河盆地石炭系—二叠系含砾砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 34(9): 1689~1698.

    • 龚大兴, 郭佳, 罗俊峰, 岳相元, 周雄, 周家云. 2019. 川西马尔康—金川地区晚三叠世松潘甘孜残留洋盆复理石建造沉积特征与沉积模式. 沉积学报, 37(6): 1210~1223.

    • 浩德成, 高兆奎, 韩要权, 周宏, 丁振举. 2020. 西秦岭西成铅锌矿田赋矿安家岔组碎屑锆石U-Pb年龄及其地质意义. 现代地质, https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2020. 053.

    • 黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社

    • 兰中伍, 陈岳龙, 苏本勋, 刘飞, 张宏飞. 2006. 四川松潘-甘孜盆地砂岩的物质来源: 来自锆石U-Pb (SHRIM P)年龄证据. 沉积学报, 24(3): 321~332.

    • 李侃, 郭安林, 高春云, 李兴辉. 2015. 北秦岭柳叶河盆地上三叠统物源区及其与鄂尔多斯盆地的关系——来自碎屑锆石LA-ICP-MS U-Pb年龄的证据. 地质通报, 34(8): 1426~1437.

    • 李亦飞, 杨传茂, 樊靖, 赵明. 2017. 西秦岭伯阳镇中泥盆统碎屑岩的岩石学、碎屑锆石U-Pb年龄及其地质意义. 西北地质, 50(3): 92~104.

    • 凌文黎, 段瑞春, 柳小明, 程建萍, 毛新武, 彭练红, 刘早学, 杨红梅, 任邦方. 2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义. 科学通报, 55(12): 1153~1161.

    • 刘飞, 陈岳龙, 苏本勋, 兰中伍, 蒋丽婷. 2006. 松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究. 地球学报, 27(4): 289~296.

    • 刘志慧, 罗敏, 陈龙耀, 曲玮, 刘晓春. 2018. 南秦岭佛坪地区地层格架与物源分析: 变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约. 岩石学报, 34(5): 1484~1502.

    • 陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.

    • 孟庆任, 渠洪杰, 胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积. 中国科学(D辑: 地球科学), 37(S1): 209~223.

    • 秦宇龙, 李名则, 熊昌利, 詹涵钰, 徐云峰, 武文辉, 李峥. 2020. 川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据. 地质学报, 94(8): 2400~2409.

    • 饶荣标. 1987. 川西“西康群”研究的新进展. 地层学杂志, 11(1): 64~68.

    • 任光明, 庞维华, 王立全, 孙志明, 王保弟, 崔晓庄, 尹福光, 宁括步. 2020. 扬子陆块西南缘3. 8 Ga碎屑锆石及其地质意义. 地球科学, 45(8): 3040~3053.

    • 四川省地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社.

    • 苏本勋, 陈岳龙, 刘飞, 王巧云, 张宏飞, 兰中伍. 2006. 松潘—甘孜地块三叠系砂岩的地球化学特征及其意义. 岩石学报, 22(4): 961~970.

    • 谭锡畴, 李春昱. 1959. 四川西康地质志. 北京: 地质出版社1~228.

    • 王丛山, 陈文西, 单福龙. 2016. 西藏雄巴地区中新世雄巴组砂岩地球化学特征及对物源区、构造背景的指示. 地质学报, 90(6): 1195~1207

    • 王全伟, 梁斌, 朱兵, 陈明. 2001. 川西北壤塘地区西康群深海浊积砂岩沉积地球化学特征. 地质地球化学, 29(4): 80~85.

    • 王生伟, 廖震文, 孙晓明, 蒋小芳, 周邦国, 郭阳, 罗茂金, 朱华平, 马东. 2013. 云南东川铜矿区古元古代辉绿岩地球化学——Columbia超级大陆裂解在扬子陆块西南缘的响应. 地质学报, 87(12): 1834~1852.

    • 王伟, 李方林, 鲍征宇. 2007. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约. 地质科技情报, 26(5): 35~44.

    • 许文彤. 2018. 松潘甘孜盆地巴颜喀拉山群古水流分析及对物源启示. 中国地质大学(北京)硕士学位论文. 1~60.

    • 徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515~522.

    • 徐增连, 张博, 里宏亮, 李建国, 曾辉, 朱强, 曹强, 魏佳林. 2019. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析. 矿物岩石地球化学通报, 38(3): 573~586.

    • 许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社.

    • 杨敏, 刘良, 王亚伟, 廖小莹, 康磊, 盖永升. 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452~1466.

    • 杨涛, 张亚峰, 杨玲, 易鹏飞, 何元方, 仵桐. 2018. 南秦岭中生代东河群碎屑锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 37(2): 211~229.

    • 杨宗耀, 郎兴海, 唐菊兴, 张忠, 张金树, 高一鸣, 黄勇, 谢富伟, 付燕刚, 王勇. 2017. 西藏雄村铜金矿区侏罗系砂岩地球化学特征: 对构造背景的约束. 地质学报, 91(9): 1985~2003.

    • 杨宗耀, 胡古月, 肖洪天, 王鹰, 赵晓彦. 2019. 西藏汤白矿区下白垩统比马组砂岩地球化学特征: 对冈底斯南缘构造演化的启示. 岩石学报, 35(7): 2189~2205.

    • 于远山, 廖声萍, 潘忠习, 金灿海, 张海. 2018. 川西道孚地区三叠系细碎屑岩的地球化学特征及成生背景. 矿物岩石, 38(2): 94~103.

    • 曾宜君, 黄思静, 阚泽忠, 熊昌利, 郝雪峰, 谢启兴, 曾勤. 2006. 四川西部三叠系西康群地球化学特征与大地构造背景. 沉积与特提斯地质, 26(1): 22~29.

    • 张本仁, 高山, 张宏飞, 韩吟文. 2002. 秦岭造山带地球化学. 北京: 科学出版社, 47~109.

    • 张建军, 牟传龙, 周恳恳, 冯丽霞, 伍皓, 陈小炜. 2017. 滇西户撒盆地芒棒组砂岩地球化学特征及物源区和构造背景分析. 地质学报, 91(5): 1083~1096.

    • 周邦国, 王生伟, 孙晓明, 廖震文, 郭阳, 蒋小芳, 朱华平, 罗茂金, 刘才泽, 马东, 沈战武, 张海. 2012. 云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义. 地质评论, 58(2): 359~368.

    • 朱占祥, 王林彰, 赵友年, 潘云唐. 1993. 四川西康群的新层序. 中国区域地质, (1): 18~27.

    • 邹光富. 1995. 甘孜-理塘板块缝合带研究的新进展. 四川地质学报, 15(4): 257~263.

  • 参考文献

    • Allegre C J, Michard G. 1974. Introduction to Geochemistry (Geophysics and Astophysics Monographx). Dordrecht: Reidel Publishing Company.

    • Bai Xianzhou, He Mingyou, Wang Yuting, Yang Xuejun. 2010. On thegeochemical characteristics, provenance and paleoweathering degree of Triassic Xikang Group in Ruoergai area in Sichuan Province. Geoscience, 24(1): 151~157(in Chinese with English abstract).

    • Barshad I. 1966. The effect of a variation in precipitation on the nature of clay minerals formation in soils from acid and basic igneous rocks. In: Proceeding International Clay Conference. Jerusalem. Israel: Israel Program for Scientific Translations, 167~173.

    • Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House, 1~662 (in Chinese with English abstract).

    • Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611~627.

    • Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45(1-2): 97~113.

    • Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2): 181~193.

    • Boynton W V. 1984. Geochemistry of the rare earth elements: meteoritestudies. In: Henderson P. E. Rare Earth Element Geochemistry. Amsterdam: Elsevier.

    • Bruguier O, Lancelot J R, Malavieille J. 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganzi flysch (central China): provenance and tectonic correlations. Earth and Planetary Science Letters, 152: 217~231.

    • Chen Longyao, Luo Yuling, Liu Xiaochun, Qu Wei, Hu Juan. 2014. LA-ICP-MS U-Pb geochronology of detrital zircons from the Liuling Group in the South Qinling tectonic belt and its tectonic significance. Geological Bulletin of China, 33(9): 1363~1378(in Chinese with English abstract).

    • Chen Weinan, Pei Xianzhi, Liu Chengjun, Li Ruibao, Li Zuochen, Wei Bo, Xu Xiaochun, Liu Tujie, Wang Yuanyuan, Ren Houzhou. 2014. U-Pb ages of detrital zircons from Taiyangsi Rock Group in Shujiaba area of West Qinling Mountains and their geological significance. Geology in China, 41(3): 741~755(in Chinese with English abstract).

    • Chen Yibing, Zhang Guowei, Lu Rukui, Liang Wentian, Diwu Chunrong, Guo Xiufeng. 2010. Detrital zircon U-Pb geochronology of Dacaotan Group in the conjunction area of North Qinling and Qilian. Acta Geologica Sinica, 84(7): 947~962(in Chinese with English abstract).

    • Chen Yuelong, Tang Jinrong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2006. Elemental and Sm-Nd isotopic geochemistry of clastic sedimentary rocks in the Garzê-Songpan block and Longmen Mountains. Geology in China, 33(1): 109~118 (in Chinese with English abstract).

    • Chen Yuelong, Liu Fei, Zhang Hongfei, Nie Lanshi, Jiang Liting. 2007. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains. Frontiers of Earth Science in China, 1(1): 60~68.

    • Chen Yuelong, Li Dapeng, Zhou Jian, Zhang Hongfei, Liu Fei, Nie Lanshi, Jiang Liting, Liu Xiaoming. 2008. U-Pb ages of zircons in western Qinling Mountain, China, and their tectonic implications. Earth Science Frontiers, 15(4): 88~107(in Chinese with English abstract).

    • Cox R, Lowe D R, Culers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919~2940.

    • Cui Jiawei, Zheng Youye, Tian Liming, Sun Junyi, Dong Jun. 2016. Geochemical characteristics and Zircon U-Pb ages of the Bayankalashan Group in the Ganglong area of the northern Songpan-Ganzi orogenic belt: implication for its provenance and tectonic environment. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 719~742(in Chinese with English abstract).

    • Cui Xiaozhuang, Ren Guangming, Sun Zhiming, Wang Peng, Liu Shilei, Deng Qi, Ren Fei, Pang Weihua. 2020. Multiple tectonothermal events recorded in the early precambrian cuoke complex in the southwestern Yangtze block, South China. Earth Science, 45(8): 3054~3069(in Chinese with English abstract).

    • Dai Zongming. 2000. Problems need to be noted in the new round of geological survey in the flysch province. Journal of Chengdu University of Technology, 27(Suppl): 223~227(in Chinese with English abstract).

    • Deng Fei, Jia Dong, Luo Liang, Li Haibin, Li Yiquan, Wu Long. 2008. The contrast between provenances of Songpan-Garze and western Sichuan foreland basin in the Late Triassic: clues to the tectonics and palaeogeography. Geological Review, 54(4): 561~573(in Chinese with English abstract).

    • Ding L, Yang D, Cai F, Pullen A, Kapp P, Gehrels G, Zhang L, Zhang Q, Lai Q, Yue Y, Shi R. 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics, 32 (1): 34~48.

    • Enkelmann E, Weislogel A, Ratschbacher L, Eide E, Renno A, Wooden J. 2007. How was the Triassic Songpan-Ganzi basin filled? a provenance study. Tectonics. 26(4): TC4007.

    • Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10): 921~924.

    • Gao Chunyun, Guo Anlin, Li Xinghui, Li Kan, Liu Weigang. 2015. LA-ICP-MS U-Pb dating of detrital zircon from Liuyehe basin in North Qin-ling Mountains. Geological Bulletin of China, 34(9): 1689~1698(in Chinese with English abstract).

    • Girty G. 1994. Provenance determined by REE, Th, and Sc analyses of metasedimentary rocks, boyden cave boof pendant, central Sierra Nevada, California. Journal of Sedimentary Research, 64B(1): 68~73.

    • Gong Daxing, Guo Jia, Luo Junfeng, Yue Xiangyuan, Zhou Xiong, Zhou Jiayun. 2019. Sedimentary characteristics and model of the Triassic Songpan-Ganzi flysch basin, in Maerkang-Jinchuan area, western Sichuan. Acta Sedimentologica Sinica, 37(6): 1210~1223(in Chinese with English abstract).

    • Gong Daxing, Wu Chihua, Zou Hao, Zhou Xiong, Zhou Yu, Tan Hongqi, Yue Xiangyuan. 2021. Provenance analysis of Late Triassic turbidites in the eastern Songpan-Ganzi flysch complex: sedimentary record of tectonic evolution of the eastern Paleo-Tethys ocean. Marine and Petroleum Geology, https: //doi. org/10. 1016/j. marpetgeo. 2021. 104927.

    • Gu X X. 1994. Geochemical characteristics of the tethys 2 turbidites in northwestern Sichuan, China: implications for provenance and interpretation of the tectonic setting. Geochimica et Cosmochimica Acta, 58 (21): 4615~4631.

    • Gu X X, Liu J M, Zheng M H, Tang J X, Qi L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research, 72 (3): 393~407.

    • Hao Decheng, Gao Zhaokui, Han Yaoquan, Zhou Hong, Ding Zhenju. 2020. Zircon U-Pb age and its geological significance of the Anjiacha formation in Xicheng lead zinc ore field, western Qinling. Geoscience. doi: 10. 19657/j. geoscience. 1000-8527. 2020. 053(in Chinese with English abstract).

    • Huang Jiqing, Chen Bingwei. 1987. Evolution of Tethys Sea in China and Its Adjacent Areas. Beijing: Geological Publishing House (in Chinese).

    • Johnsson M J, Basu A C. 1993. Processes controlling the composition of clastic sediments. Boulder, CO: Geological Society of America Special Paper, 284: 1~19.

    • Lan Zhongwu, Chen Yuelong, Su Benxun, Liu Fei, Zhang Hongfei. 2006. The origin of sandstones from the Songpan-Ganze basin, Sichuan, China: evidence from SHRIMP U-Pb dating of clastic zircons. Acta Sedimentologica Sinica, 24(3): 321~332(in Chinese with English abstract).

    • Li Kang, Guo Anlin, Gao Chunyun, Li Xinghui. 2015. A tentative discussion on the source area of the Late Triassic Liuyehe basin in North Qin-ling Mountains and its relationship with the Ordos basin: evidence from LA-ICP-MS U-Pb dating of detrital zircons. Geological Bulletin of China, 34(8): 1426~1437(in Chinese with English abstract).

    • Li Yifei, Yang Chuanmao, Fan Jing, Zhao Ming. 2017. Geological signficance of detrital zircon U-Pb age of middle devonian proximal sedimentary rocks in Boyang Town, western Qinling orogenic belt. Northwestern Geology, 50(3): 92~104(in Chinese with English abstract).

    • Ling Wenli, Duan Ruichun, Liu Xiaoming, Cheng Jianping, Mao Xinwu, Peng Lianhongm, Liu Zaoxue, Yang Hongmei, Ren Bangfang. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Sci Bull, 55(12): 1153~1161(in Chinese with English abstract).

    • Liu Fei, Chen Yuelong, Su Benxun, Lan Zhongwu, Jiang Liting. 2006. Geochemistry and zircon ages of Triassic detrital sedimentary rocks from the Ganze-Songpan block. Acta Geoscientica Sinica, 27(4): 289~296(in Chinese with English abstract).

    • Liu Zhihui, Luo Min, Chen Longyao, Qu Wei, Liu Xiaochun. 2018. Stratigraphic framework and provenance analysis in the Foping area, the South Qinling tectonic belt: constraints from LA-ICP-MS U-Pb dating of detrital zircons from the metasedimentary rocks. Acta Petrologica Sinica, 34(5): 1484~1502(in Chinese with English abstract).

    • Lu Songnian, Yang Chunliang, Li Huaikun, Li Humin. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123~131.

    • Lu Songnian, Chen Zhihong, Xiang Zhenqun, Li Huaikun, Li Huimin, Song Biao. 2006. U-Pb ages of detrital zircons from the parametamorphic rocks of the Qinling Group and their geological significance. Earth Science Frontiers, 13(6): 303~310(in Chinese with English abstract).

    • McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. GSA Special Papers, 284: 21~40.

    • Meng Qingreng, Qu Hongjie, Hu Jianming. 2007. Triassic deep-marine sedimentation in the western Qinling and Songpan terrane. Science in China: Series D: Earth Sciences, 37(S1): 209~223(in Chinese with English abstract).

    • Nesbitt H W, Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 (5885): 715~717

    • Nie S, Yin A, Rowley D B, Jin Y. 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysh sequence, central China. Geology, 22: 999~1002.

    • Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86(4): 423~449.

    • Qin Yulong, Li Mingze, Xiong Changli, Zhan Hanyu, Xu Yunfeng, Wu Wenhui, Lu Zheng. 2020. Depositional provinces and tectonic background of the Zhuwo Formation in the Jiajika region, western Sichuan Province: evidence from detrital zircon U-Pb ages. Acta Geologica Sinica, 94(8): 2400~2409(in Chinese with English abstract).

    • Rao Rongbiao. 1987. New progress in the study of "Xikang Group" in Western Sichuan. Journal of Stratigraphy. 11(1): 64~68(in Chinese).

    • Ren Guangming, Pang Weihua, Wang Liquan, Sun Zhiming, Wang Baodi, Cui Xiaozhuang, Yin Fuguang, Ning Kuobu. 2020. Detrital zircons of 3. 8 Ga in Southwestern Yangtze block and its geological implications. Earth Science, 45(8): 3040~3053(in Chinese with English abstract).

    • Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using content and ratio. The Journal of Geology, 94(5): 635~650.

    • Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67: 119~139.

    • Rogers J, Santosh M. 2002. Configuration of Columbia, Mesoproterozoic supercontinent. Gondwana Research, 5: 5~22.

    • She Zhenbing, Ma Changqian, Mason R, Li Jianwei, Wang Guocan, Lei Yuhong. 2006. Provenance of the Triassic Songpan-Ganzi flysch, West China. Chemical Geology, 231: 159~175.

    • Su Benxun, Chen Yuelong, Liu Fei, Wang Qiaoyun, Zhang Hongfei, Lan Zhongwu. 2006. Geochemical characteristics and significance of Triassic sandstones of Songpan-Ganze block. Acta Petrologica Sinica, 22(4): 961~970(in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Tan Xichou, Li Chunyu. 1959. Geological Records of Xikang, Sichuan. Beijing: Geological Publishing House, 1~228 (in Chinese).

    • Tang Yan, Sang Longkang, Yuan Yanming, Zhang Yunpeng, Yang Yunlong. 2012. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi basin, western China: implications for source weathering, provenance and tectonic setting. Geoscience Frontiers, 3(5): 647~660.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312.

    • Van de Kamp P C, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4): 411~449

    • Wang Congshan, Chen Wenxi, Shan Fulong. 2016. Geochemical characteristic of the Xungba Formation sandstones in the Xungba basin, Tibet, and its constraints on provenance and tectonic seting. Acta Geologica Sinica, 90(6): 1195~1207 (in Chinese with English abstract).

    • Wang Quanwei, Liang Bin, Zhu Bing, Chen Ming. 2001. Sedimentary geochemical features of Xiang Group turbidites in Rangtang area, Northwest Sichuan. Geology-Geochemistry, 29(4): 80~85(in Chinese with English abstract).

    • Wang Shengwei, Liao zhenwen, Sun Xiaoming, Jiang Xiaofang, Zhou Bangguo, Guo Yang, Luo Maojin, Zhu Huaping, Ma Dong. 2013. Geochemistry of paleoproterozoic diabases in the Dongchuan Copper Deposit, Yunnan, SW China: response to breakup of the columbia supercontinent in the Southwestern margin of Yangtze block. Acta Geologica Sinica, 87(12): 1834~1852 (in Chinese with English abstract).

    • Wang Wei, Li Fanglin, Bao Zhengyu. 2007. U-Pb constraints on provenance and evolution of Middle to Late Triassic sediment in Songpan-Garze basin. Geological Science and Technology Information, 26(5): 35~44(in Chinese with English abstract).

    • Weislogel A L, Graham S A, Chang E Z, Wooden J L, Gehrels G E, Yang H S. 2006. Detritl zircon provenance of the Late Triassic Song-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34: 97~100.

    • Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics. 451: 331~345.

    • Xu Wentong. 2018. Palaeocurrent direction and detrital zircon provenance of Triassic Bayan Har Group in Songpan-Ganzibasin. Master's thesis of China University of Geosciences (Beijing), 1~60(in Chinese with English abstract).

    • Xu Xiaotao, Shao Longyi. 2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography, 20(3): 515~522(in Chinese with English abstract).

    • Xu Zenglian, Zhang Bo, Li Hongliang, Li Jianguo, Zeng Hui, Zhu Qiang, Cao Minqiang, Wei Jialin. 2019. Geochemistry of the Yaojia Formation sandstone in the Kailu depression, Songliao basin: implications for its provenance and tectonic setting. Bulletin of Mineralogy, Petrology and Geochemistry, 38(3): 573~586(in Chinese with English abstract).

    • Xu Zhiqin, Hou Liwei, Wang Zhongxiu. 1992. The Orogenic Processes of the Songpan-Garzê Orogen. Beijing: Geological Publishing House (in Chinese).

    • Yang Min, Liu Liang, Wang Yawei, Liao Xiaoying, Kang Lei, Gai Yongsheng. 2016. Geochronology of detrital zircons from metaclastic of Erlangping complex in the North Qinling belt and its tectonic implication. Acta Petrologica Sinica, 32(5): 1452~1466(in Chinese with English abstract).

    • Yang Tao, Zhang Yafeng, Yang Ling, Yi Pengfei, He Yuanfang, Wu Tong. 2018. Detrital zircon U-Pb age of Mesozoic Donghe Group in South Qinling mountain and its geological significance. Acta Petrologica Et Mineralogica, 37(2): 211~229(in Chinese with English abstract).

    • Yang Zongyao, Lang Xinghai, Tang Juxing, Zhang Zhong, Zhang Jishu, Gao Yiming, Huang Yong, Xie Fuwei, Fu Yangang, Wang Yong. 2017. Geochemical characteristics of the Jurassic sandstones in the Xiongcun copper-gold deposit, Tibet: constraints on tectonic setting. Acta Geologica Sinica, 91(9): 1985~2003 (in Chinese with English abstract).

    • Yang Zongyao, Hu Guyue, Xiao Hongtian, Wang Ying, Zhao Xiaoyan. 2019. Geochemical characteristics of the Early Cretaceous sandstones from the Tangbai deposit, Tibet: implications for the tectonic evolution of the southern margin of the Gangdese. Acta Petrologica Sinica, 35(7): 2189~2205(in Chinese with English abstract).

    • Yu Yuanshan, Liao Shengping, Pan Zhongxi, Jin Canhai, Zhang Hai. 2018. Geochemical characters and formation setting of the Triassic fine grained clastic rocks in Daofu area, western Sichuan. Mineralogy and Petrology, 38(2): 94~103(in Chinese with English abstract).

    • Zeng Yijun, Huang Sijing, Kan Zezhong, Xiong Changli, Xi Qixing, Zengqin. 2006. Geochemical signatures and tectonic setting of the clastic rocks from the Triassic Xikang Group in western Sichuan. Sedimentary Geology and Tethyan Geology, 26(1): 22~29(in Chinese with English abstract).

    • Zhang Benren, Gao Shan, Zhang Hongfei, Han Yinwen. 2002. Geochemistry of Qinling Orogenic Belt. Beijing: Science Press, 47~109(in Chinese).

    • Zhang Jianjun, Mou Chuanlong, Zhou Kenken, Feng Lixia, Wu Hao, Chen Xiaowei. 2017. Geochemical characteristic of sandstones from the Mangbang Formation in the Husa basin, Western Yuannan, and its constraints on provenances and tectonic setting. Acta Geologica Sinica, 91(5): 1083~1096(in Chinese with English abstract).

    • Zhang Kaijun. 2001. Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? Journal of the Geological Society of India, 57: 223~230.

    • Zhang Kaijun, Li Bing, Wei Qingguo, Cai Jianxin, Zhang Yuxiu. 2008. Proximal provenance of the western Songpan-Ganzi turbidite complex (Late Triassic, eastern Tibetan plateau): implications for the tectonic amalgamation of China. Sedimentary Geology, 208(1-2): 36~44.

    • Zhang Shuanhong, Zhao Yue, Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222~223: 339~367.

    • Zhang Yuxiu, Zeng Lu, Li Zhiwu, Wang Chengshan, Zhang Kaijun, Yang Wenguang, Guo Tonglou. 2015. Late Permian-Triassic siliciclastic provenance, palaeogeography, and crustal growth of the Songpan terrane, eastern Tibetan Plateau: evidence from U-Pb ages, trace elements, and Hf isotopes of detrital zircons. International Geology Review, 57(2): 159~181.

    • Zhou Bangguo, Wang Shengwei, Sun Xiaoming, Liao Zhenwen, Guo Yang, Jiang Xiaofang, Zhu Huaping, Luo Maojin, Liu Caize, Ma Dong, Shen Zhanwu, Zhang Hai. 2012. SHRIMP U-Pb age and its significance of zircons in welded tuff of Wangchang Formation in Dongchuan area, Yunnan Province, SW China. Geological Review, 58(2): 359~368(in Chinese with English abstract).

    • Zhu Min, Chen Hanlin, Zhou Jing, Yang Shufeng. 2017. Provenance change from the Middle to Late Triassic of the southwestern Sichuan basin, Southwest China: constraints from the sedimentary record and its tectonic significance. Tectonophysics, 700-701: 92~107.

    • Zhu Zhangxiang, Wang Linzhang, Zhao Younian, Pan Yuntang. 1993. A new stratigraphic sequence of the Xikang Group in Sichuan. Regional Geology of China, (1): 18~27(in Chinese with English abstract).

    • Zou Guangfu. 1995. Advance of the research on the Garze-Litang plate junction. Acta Geologica Sichuan, 15(4): 257~263(in Chinese with English abstract).

    • 白宪洲, 何明友, 王玉婷, 杨学俊. 2010. 四川若尔盖地区西康群地球化学特征及其物源区和古风化程度分析. 现代地质, 24(1): 151~157.

    • 陈龙耀, 罗玉凌, 刘晓春, 曲玮, 胡娟. 2014. 南秦岭刘岭群砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其构造意义. 地质通报, 33(9): 1363~1378.

    • 陈伟男, 裴先治, 刘成军, 李瑞保, 李佐臣, 魏博, 胥晓春, 刘图杰, 王元元, 任厚州. 2014. 西秦岭舒家坝地区太阳寺岩组碎屑锆石年龄及其地质意义. 中国地质, 41(3): 741~755.

    • 陈义兵, 张国伟, 鲁如魁, 梁文天, 第五春荣, 郭秀峰. 2010. 北秦岭-祁连结合区大草滩群碎屑锆石U-Pb年代学研究. 地质学报, 84(7): 947~962.

    • 陈岳龙, 唐金荣, 刘飞, 张宏飞, 聂兰仕, 蒋丽婷. 2006. 松潘—甘孜碎屑沉积岩的地球化学与Sm-Nd同位素地球化学. 中国地质, 33(1): 109~118.

    • 陈岳龙, 李大鹏, 周建, 张宏飞, 刘飞, 聂兰仕, 蒋丽婷, 柳小明. 2008. 中国西秦岭碎屑锆石U-Pb年龄及其构造意义. 地学前缘, 15(4): 88~107.

    • 崔加伟, 郑有业, 田立明, 孙君一, 董俊. 2016. 松潘—甘孜造山带北部岗龙地区巴颜喀拉山群地球化学特征和锆石U-Pb年代学特征: 对物源及构造环境的启示. 矿物岩石地球化学通报, 35(4): 719~742.

    • 崔晓庄, 任光明, 孙志明, 王鹏, 刘石磊, 邓奇, 任飞, 庞维华. 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件. 地球科学, 45(8): 3054~3069.

    • 戴宗明. 2000. 新一轮地质调查中复理石区工作应注意的重要问题. 成都理工学院学报, 27(增刊 1): 223~227.

    • 邓飞, 贾东, 罗良, 李海滨, 李一泉, 武龙. 2008. 晚三叠世松潘甘孜和川西前陆盆地的物源对比: 构造演化和古地理变迁的线索. 地质论评, 54(4): 561~573.

    • 高春云, 郭安林, 李兴辉, 李侃, 刘伟刚. 2015. 北秦岭柳叶河盆地石炭系—二叠系含砾砂岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 34(9): 1689~1698.

    • 龚大兴, 郭佳, 罗俊峰, 岳相元, 周雄, 周家云. 2019. 川西马尔康—金川地区晚三叠世松潘甘孜残留洋盆复理石建造沉积特征与沉积模式. 沉积学报, 37(6): 1210~1223.

    • 浩德成, 高兆奎, 韩要权, 周宏, 丁振举. 2020. 西秦岭西成铅锌矿田赋矿安家岔组碎屑锆石U-Pb年龄及其地质意义. 现代地质, https: //doi. org/10. 19657/j. geoscience. 1000-8527. 2020. 053.

    • 黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化. 北京: 地质出版社

    • 兰中伍, 陈岳龙, 苏本勋, 刘飞, 张宏飞. 2006. 四川松潘-甘孜盆地砂岩的物质来源: 来自锆石U-Pb (SHRIM P)年龄证据. 沉积学报, 24(3): 321~332.

    • 李侃, 郭安林, 高春云, 李兴辉. 2015. 北秦岭柳叶河盆地上三叠统物源区及其与鄂尔多斯盆地的关系——来自碎屑锆石LA-ICP-MS U-Pb年龄的证据. 地质通报, 34(8): 1426~1437.

    • 李亦飞, 杨传茂, 樊靖, 赵明. 2017. 西秦岭伯阳镇中泥盆统碎屑岩的岩石学、碎屑锆石U-Pb年龄及其地质意义. 西北地质, 50(3): 92~104.

    • 凌文黎, 段瑞春, 柳小明, 程建萍, 毛新武, 彭练红, 刘早学, 杨红梅, 任邦方. 2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义. 科学通报, 55(12): 1153~1161.

    • 刘飞, 陈岳龙, 苏本勋, 兰中伍, 蒋丽婷. 2006. 松潘-甘孜地区三叠系碎屑沉积岩地球化学特征及其锆石年龄研究. 地球学报, 27(4): 289~296.

    • 刘志慧, 罗敏, 陈龙耀, 曲玮, 刘晓春. 2018. 南秦岭佛坪地区地层格架与物源分析: 变质沉积岩中碎屑锆石LA-ICP-MS U-Pb定年提供的制约. 岩石学报, 34(5): 1484~1502.

    • 陆松年, 陈志宏, 相振群, 李怀坤, 李惠民, 宋彪. 2006. 秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨. 地学前缘, 13(6): 303~310.

    • 孟庆任, 渠洪杰, 胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积. 中国科学(D辑: 地球科学), 37(S1): 209~223.

    • 秦宇龙, 李名则, 熊昌利, 詹涵钰, 徐云峰, 武文辉, 李峥. 2020. 川西甲基卡地区侏倭组沉积物源分析——来自碎屑锆石U-Pb年龄证据. 地质学报, 94(8): 2400~2409.

    • 饶荣标. 1987. 川西“西康群”研究的新进展. 地层学杂志, 11(1): 64~68.

    • 任光明, 庞维华, 王立全, 孙志明, 王保弟, 崔晓庄, 尹福光, 宁括步. 2020. 扬子陆块西南缘3. 8 Ga碎屑锆石及其地质意义. 地球科学, 45(8): 3040~3053.

    • 四川省地质矿产局. 1991. 四川省区域地质志. 北京: 地质出版社.

    • 苏本勋, 陈岳龙, 刘飞, 王巧云, 张宏飞, 兰中伍. 2006. 松潘—甘孜地块三叠系砂岩的地球化学特征及其意义. 岩石学报, 22(4): 961~970.

    • 谭锡畴, 李春昱. 1959. 四川西康地质志. 北京: 地质出版社1~228.

    • 王丛山, 陈文西, 单福龙. 2016. 西藏雄巴地区中新世雄巴组砂岩地球化学特征及对物源区、构造背景的指示. 地质学报, 90(6): 1195~1207

    • 王全伟, 梁斌, 朱兵, 陈明. 2001. 川西北壤塘地区西康群深海浊积砂岩沉积地球化学特征. 地质地球化学, 29(4): 80~85.

    • 王生伟, 廖震文, 孙晓明, 蒋小芳, 周邦国, 郭阳, 罗茂金, 朱华平, 马东. 2013. 云南东川铜矿区古元古代辉绿岩地球化学——Columbia超级大陆裂解在扬子陆块西南缘的响应. 地质学报, 87(12): 1834~1852.

    • 王伟, 李方林, 鲍征宇. 2007. 松潘-甘孜盆地中、晚三叠世沉积物来源及演化的锆石U-Pb年代学制约. 地质科技情报, 26(5): 35~44.

    • 许文彤. 2018. 松潘甘孜盆地巴颜喀拉山群古水流分析及对物源启示. 中国地质大学(北京)硕士学位论文. 1~60.

    • 徐小涛, 邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515~522.

    • 徐增连, 张博, 里宏亮, 李建国, 曾辉, 朱强, 曹强, 魏佳林. 2019. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析. 矿物岩石地球化学通报, 38(3): 573~586.

    • 许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社.

    • 杨敏, 刘良, 王亚伟, 廖小莹, 康磊, 盖永升. 2016. 北秦岭二郎坪杂岩变沉积岩碎屑锆石年代学及其构造地质意义. 岩石学报, 32(5): 1452~1466.

    • 杨涛, 张亚峰, 杨玲, 易鹏飞, 何元方, 仵桐. 2018. 南秦岭中生代东河群碎屑锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 37(2): 211~229.

    • 杨宗耀, 郎兴海, 唐菊兴, 张忠, 张金树, 高一鸣, 黄勇, 谢富伟, 付燕刚, 王勇. 2017. 西藏雄村铜金矿区侏罗系砂岩地球化学特征: 对构造背景的约束. 地质学报, 91(9): 1985~2003.

    • 杨宗耀, 胡古月, 肖洪天, 王鹰, 赵晓彦. 2019. 西藏汤白矿区下白垩统比马组砂岩地球化学特征: 对冈底斯南缘构造演化的启示. 岩石学报, 35(7): 2189~2205.

    • 于远山, 廖声萍, 潘忠习, 金灿海, 张海. 2018. 川西道孚地区三叠系细碎屑岩的地球化学特征及成生背景. 矿物岩石, 38(2): 94~103.

    • 曾宜君, 黄思静, 阚泽忠, 熊昌利, 郝雪峰, 谢启兴, 曾勤. 2006. 四川西部三叠系西康群地球化学特征与大地构造背景. 沉积与特提斯地质, 26(1): 22~29.

    • 张本仁, 高山, 张宏飞, 韩吟文. 2002. 秦岭造山带地球化学. 北京: 科学出版社, 47~109.

    • 张建军, 牟传龙, 周恳恳, 冯丽霞, 伍皓, 陈小炜. 2017. 滇西户撒盆地芒棒组砂岩地球化学特征及物源区和构造背景分析. 地质学报, 91(5): 1083~1096.

    • 周邦国, 王生伟, 孙晓明, 廖震文, 郭阳, 蒋小芳, 朱华平, 罗茂金, 刘才泽, 马东, 沈战武, 张海. 2012. 云南东川望厂组熔结凝灰岩锆石SHRIMP U-Pb年龄及其意义. 地质评论, 58(2): 359~368.

    • 朱占祥, 王林彰, 赵友年, 潘云唐. 1993. 四川西康群的新层序. 中国区域地质, (1): 18~27.

    • 邹光富. 1995. 甘孜-理塘板块缝合带研究的新进展. 四川地质学报, 15(4): 257~263.