-
1 研究背景
-
致密油是继页岩气之后全球非常规油气勘探开发的又一热点(Yang Hua et al.,2013; Wang Shejiao et al.,2014; Wang Xiangzeng et al.,2016)。中国致密油资源丰富,主要分布于鄂尔多斯、准噶尔、松辽、四川等多个盆地(Jia Chengzao et al.,2012; Yao Yitong et al.,2015),鄂尔多斯盆地作为中国首个亿吨级致密油赋存盆地近年来一直是研究的重点地区(Fu Jinhua et al.,2015)。前人主要对鄂尔多斯盆地延长组沉积学特征、烃源岩特征、成藏条件等进行了大量研究(Zhao Weiwei et al.,2014; Wu Weitao et al.,2016; Yang Weiwei et al.,2016; Li Wei et al.,2017; Tang Wangxin et al.,2017; Chen Shijia et al.,2019; Liu Yuming et al.,2019; Fu Siyi et al.,2020),而对致密油成藏机理分析相对较少(Bai Yubin,2014; Zhang Zhongyi et al.,2016),这限制了致密油成藏规律及富集成因的研究。本文通过对陕北斜坡中部地区长7段致密砂岩储层进行油气充注动力、成藏期、成岩演化及其时间匹配关系等方面进行分析,结合储层润湿性分析,对长7致密油成藏机理进行系统研究,为研究区油气成藏研究提供科学依据,为进一步油气勘探提供指导。
-
鄂尔多斯盆地可划分为伊盟隆起、渭北隆起、陕北斜坡、晋西绕褶带、天环坳陷和西缘冲断构造带等六个一级构造单元(Shang Fei,2012; Guo Kai,2017; Li Peng et al.,2020; Zhang Xiaohui et al.,2020),研究区位于陕北斜坡的中部地带,北起衡山一带,向南至正宁一带,东起延安—安塞一带,西至环县一带,总面积约8.7×104 km2(图1)。研究区三叠系延长组长7段是致密油藏发育的主要层段之一,该层位致密油还处于评价阶段,未进行大规模的开发。
-
图1 鄂尔多斯盆地构造单元划分图和伊陕斜坡中部地区井位分布图
-
Fig.1 Division of structural units in Ordos basin and well location in the central area of Yishan slope
-
盆地在上三叠统延长组时期为湖泊-三角洲相沉积环境,长7段是湖盆发育的全盛时期,半深湖-深湖相泥页岩为致密油成藏提供了充足的油气来源(Yao Jingli et al.,2015; Tang Wangxin et al.,2017)。长7段自上而下划分为长71、长72、长73三个亚段,长73段泥页岩最为发育,是盆地内延长组油气来源的主力源岩; 长71、长72段以灰色细砂岩、粉砂岩为主,是致密油储集的有利层位。
-
2 长7段致密储层特征
-
2.1 储层岩石学特征
-
研究区长71段和长72段的致密砂岩储层矿物类型差异不大,主要为长石质岩屑砂岩和岩屑质长石砂岩,含少量岩屑砂岩和长石砂岩(图2a),岩性以细砂岩和粉砂岩为主,储层含油性较好,镜下可见沥青充填孔隙,颗粒基本上呈缝合接触(图2b)。砂岩填隙物相对含量较高,约占2.64%~46.34%,平均含量17.19%,主要为方解石、白云石及少量菱铁矿,长71段和长72段砂岩储层黏土矿物含量均较高,主要为绿泥石和伊利石,分别占5.93%、6.36%,常在矿物颗粒边缘形成衬边(图2c)。
-
2.2 储层孔喉特征
-
鄂尔多斯盆地长7段储层孔隙类型主要为粒间孔、溶蚀孔(包括长石溶孔、岩屑溶孔以及粒间溶孔)、晶间孔和微裂隙(图3),其中长7段储层主要的储集空间为粒间孔(图3a),约占总面孔率的50.44%; 其次为溶蚀孔隙(图3b、c),约占总面孔率的44.65%,这是油气二次运移的重要通道; 此外还有少量的晶间孔和微裂隙,总占比不超过5%(表1),对油气的储存意义不大。通过岩芯及扫描电镜观察可得,泥岩微裂缝发育(图3e~h),这些裂缝多存在于有机质内部以及有机质与矿物之间,为有机质生烃过程中由于体积膨胀产生的高压压裂泥岩产生微裂缝,是烃类初次运移的主要通道。而储层内的高角度裂缝的发育为油气的二次垂向运移提供了通道(图3d)。
-
长7储层的面孔率普遍较小,约为2.29%,长71段与长72段面孔率相差不大,分别为2.34%和2.25%。长71段储层孔隙直径多介于10~50 μm之间,平均孔隙直径26.06 μm(66个样品),而长72段储层孔隙直径多介于10~40 μm之间,平均孔隙直径20.37 μm(76个样品),表明长71和长72储层的孔隙结构类似,但长71段储层孔隙直径相对较大,对油气的充注相对更有利。
-
图2 鄂尔多斯盆地长7段致密砂岩组分三角图(a)和长7段储层显微镜下照片(b,c)
-
Fig.2 Triangle diagram of the tight sandstone composition of the Chang 7 member (a) and the microscopic photos of the reservoir in the Chang 7 member (b, c) in Ordos basin
-
(a)—长71段和长72段砂岩成因分类三角图;(b)—里272井2482.8 m,长71段,岩屑长石细砂岩镜下照片,矿物颗粒多呈缝合接触;(c)—元116井2295.03 m,长72段,细砂岩镜下照片,矿物颗粒边缘黏土矿物衬边
-
(a) —Genetic classification triangle of sandstone in Chang 71 and Chang 72 members; (b) —well Li 272, 2482.8 m, Chang 71 member, micrograph of lithic feldspathic fine sandstone, mineral particles are mostly in suture contact; (c) —well Yuan 116, 2295.03 m, Chang 72 member, microscopic photos of fine sandstone, mineral grain edge clay mineral lining edge
-
图3 鄂尔多斯盆地长7段储层孔隙类型
-
Fig.3 Pore types of the Chang 7 reservoirs in Ordos basin
-
(a)—里226井2187.34 m,长72段,含油细砂岩镜下照片,粒间孔隙;(b)—里226井2187.34 m,长72段,含油细砂岩镜下照片,长石溶孔;(c)—午100井2008 m,长73段,饱含油细砂岩镜下照片,粒间溶孔;(d)—元116井2295.03 m,长72段,含油细砂岩镜下照片,微裂缝;(e)—午100井1913.6 m,长71段,岩芯照片,泥岩滑脱面;(f)—正70井1579.3 m,长71段,岩芯照片,泥岩滑脱面;(g)—镇142井2188.7 m,长72段,深灰色泥岩扫描电镜照片,微裂缝;(h)—白522井1956.05 m,长73段,黑色页岩扫描电镜照片,微裂缝
-
(a) —Well Li 226, 2187.34 m, Chang 72 member, oil-bearing fine sandstone microscopic photo, intergranular pores; (b) —well Li 226, 2187.34 m, Chang 72 member, oil-bearing fine sandstone microscopic photo, feldspar dissolved pores; (c) —well Wu 100, 2008 m, Chang 73 member, oil-filled fine sandstone microscopic photo, intergranular dissolved pores; (d) —well Yuan 116, 2295.03 m, Chang 72 member, microscopic photo of oil-bearing fine sandstone, micro-cracks; (e) — well Wu 100, 1913.6 m, Chang 71 member, core photo, mudstone detachment surface; (f) —well Zheng 70, 1579.3 m, Chang 71 member, core photo, mudstone detachment surface; (g) —well Zhen 142, 2188.7 m, Chang 72 member, scanning electron microscope photo of dark gray mudstone, micro-cracks; (h) —well Bai 522, 1956.05 m, Chang 72 member, scanning electron micrograph of black shale, micro-cracks
-
图4 鄂尔多斯盆地环27井长7段储层孔喉半径频率直方图(a)和汞饱和度与毛细管压力关系图,反映喉道半径累计分布特征(b)
-
Fig.4 The frequency histogram of the pore throat radius (a) and the relationship between mercury saturation and capillary pressure reflects the cumulative distribution characteristics of throat radius (b) of the Chang 7 reservoirs of Well Huan 27 in the Ordos basin
-
b中曲线为汞饱和度与毛细管压力的关系曲线,直线与曲线的交点表示半径小于0.075 μm的喉道占比可达68%
-
The curve in b is the relationship between mercury saturation and capillary pressure. The intersection of the straight line and the curve indicates that the proportion of throats with a radius of less than 0.075 μm can reach 68%
-
储层孔喉半径较小,多为纳米级孔喉,呈单峰型分布特征(图4)。其中,长71段储层喉道中值半径分布在0.015~0.633 μm之间,平均值为0.109 μm(134个样品); 长72段储层喉道半径分布在0.010~0.451 μm之间,平均值为0.096 μm(131个样品),长71段储层的孔喉半径相对较大,但均属于典型的微细喉道。细小的喉道势必增加油气注入的难度,从而增加油气充注的阻力。
-
2.3 储层物性特征
-
鄂尔多斯盆地长7段储层大部分属于致密储层,物性相对较差。经统计,长71段储层孔隙度分布范围为2.0%~18.7%,平均值为10.05%,渗透率分布范围为0.01×10-3~16.72×10-3μm2,平均值为0.615×10-3μm2(134个样品); 长72段储层孔隙度分布范围为3.1%~20.4%,平均值为10.47%,渗透率分布范围为0.006×10-3~8.014×10-3μm2,平均值为0.31×10-3μm2(131个样品)。长71段和长72段储层物性相差不大,均为低孔低渗储层特征,以致密储层和特低孔-特低渗储层为主(图5)。
-
3 石油运聚动力分析
-
干酪根生烃过程中孔隙流体体积膨胀产生的高压及烃源岩泥岩层欠压实剩余压力是油气运移的重要动力,而毛细管力是油气成藏过程中需要克服的主要阻力,因此,对生烃高压、剩余压力及毛细管力的分析对致密油的成藏研究十分必要。
-
图5 鄂尔多斯盆地长7段储层孔隙度-渗透率交汇图
-
Fig.5 The cross-plot of porosity and permeability of the Chang 7 reservoirs in Ordos basin
-
3.1 油气运移动力与阻力
-
鄂尔多斯盆地长7段烃源岩质量较好,有机质丰度较高,以I型、II1型为主,达到成熟大量生烃阶段,因此干酪根生烃过程中孔隙流体发生膨胀产生的超压是致密油成藏的重要动力来源。影响生油增压的参数有很多,主要包括烃源岩有机质丰度、类型、成熟度、岩石孔隙度和渗透率等,根据Guo Xiaowen et al.(2011)建立的Ⅰ型干酪根烃源岩生烃增压的定量计算模型,对长7段烃源岩生烃增压值进行计算可得,烃源岩可产生0.13~46.07 MPa的超压,平均值16.07 MPa,这为致密储层成藏提供了重要的动力。
-
长7段泥岩欠压实发育,这使得盆地长7段泥岩异常高压普遍存在,可以为油气运移提供动力。在正常压实情况下,泥岩声波时差值因泥岩密度的增大会有减小的趋势,而长7段泥岩声波时差值普遍高于基线值(图6),造成这种现象的原因不仅是由于存在泥岩的欠压实现象,还由于烃源岩中含有较高含量的有机质,干酪根具有高声波时差的物理特性(Qi Yalin et al.,2014)。为了消除有机质的影响,利用Li Chao et al.(2016)提出的有机质引起声波时差增量的校正公式对泥岩声波时差值进行校正,再利用平衡深度法对剩余压力进行预测。通过对研究区内70余口井长7段剩余压力预测结果可得,长71段剩余压力普遍较低,一般小于6 MPa,以2~3 MPa为主; 长72段剩余压力较长71段更大,多分布于3~5 MPa之间; 长73段剩余压力主要分布在5~8 MPa之间,最高可达10 MPa。长7致密油多以垂向短距离运移为主(Yao Jingli et al.,2019),在长73段剩余压力相对较高的西245、庄144、庄231井区,相对较高的源储压差使得油气在该区域长71及长72段大量富集,较高的剩余压力对油气分布具有一定控制作用(图7)。
-
图6 鄂尔多斯盆地庄150(a)、镇74(b)和里85井(c)声波时差与深度关系散点图
-
Fig.6 The scatter plot between interval transit time and depth of wells Zhuang 150 (a) , Zhen 74 (b) and Li85 (c) in Ordos basin
-
图7 鄂尔多斯盆地泥岩剩余压力与油藏分布剖面图(剖面位置见图1)
-
Fig.7 The section of residual pressure of mudstone and distribution of reservoirs in Ordos basin (the section location is shown in Fig.1)
-
图8 鄂尔多斯盆地致密储层孔喉半径直方图(a)与计算储集层毛细管力直方图(b)
-
Fig.8 The pore throat radius histogram in tight reservoirs (a) and the histogram of calculated capillary forces (b) in Ordos basin
-
研究区油气运移阻力主要为毛细管力,最大毛细管力代表了油气最小充注动力。通过对307个样品压汞数据的统计并计算毛细管阻力发现,鄂尔多斯盆地长7段储层喉道较细,一般小于0.3 μm(图8a),导致致密油充注阻力较大。经计算,长7段储层的毛管阻力介于0.77~7.4 MPa之间,平均值1.17 MPa(图8b)。
-
3.2 石油动力充注物理模拟
-
为了对致密储层的原油充注过程进行研究,在中国石油大学(北京)油气资源与探测国家重点实验室进行了石油充注物理模拟实验。选取具有代表性的3块样品(直径3.5 cm,长度5 cm的柱体)进行实验,样品参数见表2。实验前使岩芯饱和矿化度为34.65 g/L的CaCl2地层水模拟溶液,保持2.5 MPa恒压持续充注石油。实验结果表明,在2.5MPa压力条件下,对于物性较好的2号样品最终原油饱和度可达约40%,而对于物性较差的1号和3号样品原油始终未注入(图9)。2号样品充注含油饱和度远低于原始含油饱和度及1、3号样品的充注失败可能是由于实验条件受限并未恢复到地层的高温高压条件下进行,但2.5 MPa的充注压力已大于绝大多数样品的毛细管力,这也表明了高压充注仅是一部分致密油成藏的原因,对于物性较差的致密储层的成藏原因还有待分析。
-
图9 鄂尔多斯盆地致密砂岩样品充注压力及含油饱和度随时间的变化关系曲线
-
Fig.9 The time-variation curve of filling pressure and oil saturation of tight sandstone samples in Ordos basin
-
4 致密油成藏机理分析
-
石油动力充注物理模拟实验验证了高压充注确实是一部分致密储层的成藏原因,但对于孔隙度低于10%、渗透率小于0.1×10-3μm2的致密储层,高压并非其成藏的单一控制因素。为了明确这类储层的成藏原因和成藏机理,利用流体包裹体数据结合埋藏史热史,对致密油成藏时间进行确定; 再通过对储层致密化与石油充注耦合关系的分析,明确储层致密和原油充注的先后顺序; 并结合储层润湿性分析,进行致密油成藏机理综合分析。
-
4.1 储层演化与石油充注匹配关系
-
通过流体包裹体数据统计发现,研究区包裹体均一温度存在两个峰值(图10a),分别是65~80℃ 和90~130℃,说明油气存在两期充注,且第二个峰值区(30~90℃)包裹体数量高于第一个峰值区(65~80℃),表明古地温为90~130℃的时期为油气大量生成阶段,油气充注的主成藏期。
-
研究区埋藏史和热史的恢复结果表明,长7段早期包裹体均一温度峰值区间在65~80℃,对应于170~155 Ma的晚侏罗世中晚期,烃源岩埋深1200~1600 m,为石油的第一期充注; 晚期流体包裹体均一温度峰值区间为90~130℃,对应于130~100 Ma的早白垩世中晚期,烃源岩埋深1900~3000 m,烃源岩进入生烃高峰期,为石油的主要充注期(图11)。鄂尔多斯盆地最大古地温梯度约4.7~4.9℃/100m(Yu Qiang et al.,2012; Ren Zhanli et al.,2017),与包裹体均一温度、镜质组反射率(R o)、成熟深度相对应(图10b)。
-
通过铸体薄片观察,长7段的成岩作用主要有石英颗粒的次生加大、自生绿泥石在原生孔隙壁上生长、连晶方解石对粒间物质和粒缘的交代、强酸性流体对颗粒(主要是长石)及碎屑填隙物的溶蚀(图12)。镜下自生绿泥石膜呈褐色,认为是原油浸染的结果,因此绿泥石膜的形成早于烃类的充注(图12a); 石英次生加大现象普遍,在石英的次生加大边与颗粒之间发现有绿泥石膜的存在,说明绿泥石膜开始形成时间早于石英的次生加大,且石英次生加大边中有烃类包裹体的存在,说明在生排烃期也存在石英的次生加大,因此石英次生加大可能贯穿整个地质历史时期(图12b、e); 溶蚀作用在长7段储层较为常见,通常为长石颗粒和粒间填隙物的溶蚀,并且溶蚀孔一般都被沥青充填(图12c、d); 除了对长石颗粒的溶蚀,镜下可见酸溶性物质,可能与有机质成熟过程中释放的有机酸有关,说明这种溶蚀作用的发生与烃的成熟和运移有一定的成因联系。因此,长7砂岩储层成岩作用序列为:机械压实→早期黏土膜形成→石英次生加大→长石及岩屑溶蚀→石油充注→石英次生加大→铁方解石充填。后期自生矿物充填及胶结作用破坏了储层物性,堵塞了部分油气运移通道。结合埋藏史,可以判断石英的次生加大以及绿泥石胶结开始于侏罗纪早期(约200 Ma),均早于油气的充注时期; 伴随生烃作用产生的有机酸,溶蚀作用开始于侏罗纪中晚期(约150 Ma); 溶蚀孔中富集大量油气,油气大量生成的时期要晚于溶蚀作用(约130 Ma)(图11)。
-
图10 鄂尔多斯盆地致密油藏流体包裹体均一温度直方图(a)和R o随深度变化关系图(b)
-
Fig.10 Homogenization temperature diagram of fluid inclusions in tight reservoirs (a) and relationship between R o and depth (b) in Ordos basin
-
研究区长7段储层的成岩演化总体是按照压实、胶结、溶蚀的顺序进行的,利用回剥法对储层孔隙度演化进行恢复,原始孔隙度由Beard et al.(1973)的经验公式进行计算; 压实减孔即为原始孔隙度减去压实后剩余原生孔; 胶结后剩余原生孔即为薄片中剩余的原生孔,因此胶结减孔即为压实后剩余原生孔减去胶结后砂岩剩余孔隙度; 溶解增孔就等于粒间溶孔加上粒内溶孔。对典型井L272孔隙度演化计算结果可得,储层压实损失孔隙度约25.00%,损失孔隙度所占原始孔隙度比率为67%,; 胶结作用使得致密储层孔隙度损失9.61%,胶结作用孔隙损失率(胶结减孔/原始孔隙度)约25.8%,可见压实作用和胶结作用是使得储层孔隙度减少主要原因。溶蚀增孔约5.50%,溶蚀改善率为14.7%,在一定程度上改善了致密储层的孔隙特征(表3)。
-
结合上述分析,对长7段致密储层的孔隙度进行恢复。恢复结果显示,在早成岩A期主要以压实作用为主,孔隙度随埋深快速降低,该时期主要发育原生孔隙,在早成岩A期末由于杂基充填、压实减孔以及少量胶结等作用使得孔隙度下降到24%左右; 早成岩B期主要发育胶结作用,石英胶结以及绿泥石胶结,使得孔隙度继续降低,在早成岩B期晚期,在生烃作用产生的有机酸的影响下,发生了一期溶蚀现象,溶蚀作用在一定程度上改善了储层的致密性,使得储层孔隙度在一定程度上有所增大,增加到13%左右; 中成岩阶段储层继续致密化,同时生烃作用产生大量有机酸,进入储层后造成长石、岩屑等的溶蚀,但溶蚀作用并没有持续很久,随着生烃结束,溶蚀增孔不再明显,该时期末,孔隙度已降低至8%左右(图11)。
-
4.2 储层润湿性分析
-
岩石的润湿性决定了原油进入储层的难易程度,从而影响着油藏流体在储层空间的分布状态,同时也影响了储层含油饱和度的大小(Li Ya,2012)。为了明确鄂尔多斯盆地长7段致密储层的润湿性特征,通过自吸驱替试验方法对鄂尔多斯盆地长7段储层润湿性进行研究,实验为还原地层条件,采用密度为0.838 g/cm3、黏度(50℃)为5.05 mPa·s的实验用油; 模拟地层水为矿化度为34.65 g/L的CaCl2型,pH=6.25; 实验温度采用近目的层温度80℃。
-
图11 鄂尔多斯盆地里272井长7段储层埋藏史、热史、成岩序列及孔隙度演化史综合柱状图
-
Fig.11 Burial, thermal, diagenetic history and average porosity evolution trend of the Chang 7 member of well Li 272 in Ordos basin
-
实验结果表明,鄂尔多斯盆地长7段以中性和亲油性储层为主(表4),油气运移阻力比纯亲水储层要小且易于充注。而且随着石油的充注,亲油储层中的束缚水更易被驱替,从而使得储层含油饱和度增加。
-
4.3 致密油成藏机理分析
-
通过以上对成藏要素演化过程的分析,鄂尔多斯盆地长7段共经历两期油气充注,第一期油气充注发生于170~155 Ma的晚侏罗世中晚期,此时长7段储层还未完全致密,相对较好的物性条件使得油气易于成藏。第二期油气充注发生于130~100 Ma的早白垩世中晚期,此时长7段埋深约为1900~2800 m,烃源岩达到成熟阶段,开始大量生烃,生烃作用可产生较高的超压,为致密油成藏提供了动力基础。虽然由于压实以及强烈的胶结作用使得孔隙度急剧下降,但在该时期发生了一期溶蚀作用,使得储层并未完全致密化,孔隙度仍大于10%,这就有利于致密油充注成藏。在埋藏过程中,随着埋深的增加,地层温度随之增加,原油黏度和界面张力随温度的增加均呈指数降低趋势,因此在高温高压的地层条件下,石油更易于进入储层成藏(图13)。Deng Hucheng et al.(2009)利用岩石声发射实验、裂缝充填物稳定碳氧同位素分析实验,结合构造演化背景认为鄂尔多斯盆地延长组裂缝形成于燕山运动二幕和三幕两个构造活动时期,该时期正好对应于油气的主要成藏期,为油气运移提供了通道。
-
图12 鄂尔多斯盆地长7段储层镜下照片
-
Fig.12 Microscopic photos of the Chang 7 member in Ordos basin
-
(a)—元116井2295.03 m,长72段,细砂岩镜下照片,绿泥石衬边;(b)—元116井2295.03 m,长72段,细砂岩镜下照片,黏土矿物充填,可见石英次生加大;(c)—里283井1959.5 m,长71段,细砂岩镜下照片,长石铸模孔;(d)—里226井2187.34 m,长72段,细砂岩镜下照片,长石溶孔中饱含油;(e)—里272井2482.8 m,长71段,细砂岩镜下照片,石英颗粒与加大边之间的油迹;(f)—元116井2295.03 m,长72段,细砂岩镜下照片,铁方解石充填;(g)—白498井2095.76 m,长71段,粉砂岩扫描电镜照片,粒间孔中分布伊利石;(h)—环28井2394.52 m,长72段,粉砂岩扫描电镜照片,白云石交代碎屑
-
(a) —Well Yuan 116, 2295.03 m, Chang 72 member, fine sandstone microscopic photo, chlorite lining; (b) —well Yuan 116, 2295.03 m, Chang 72 member, fine sandstone microscopic photo, clay mineral filling, visible quartz secondary growth; (c) —well Li 283, 1959.5 m, Chang 71 member, fine sandstone microscopic photo, feldspar mold hole; (d) —well Li 226, 2187.34 m, Chang 72 member, fine sandstone microscopic photo, feldspar dissolved pores are full of oil; (e) —well Li 272, 2482.8 m, Chang 71 member, microscopic photo of fine sandstone, oil traces between quartz particles and enlarged edges; (f) —well Yuan 116, 2295.03 m, Chang 72 member, microscopic photograph of fine sandstone, filled with iron calcite; (g) —well Bai 498, 2095.76 m, Chang 71 member, scanning electron micrograph of siltstone, illite distributed in the intergranular pores; (h) —well Huan 28, 2394.52 m, Chang 72 member, scanning electron micrograph of siltstone, dolomite replaces detritus
-
图13 鄂尔多斯盆地原油物性及界面张力随温度变化曲线
-
Fig.13 Crude oil physical properties and interfacial tension curve with temperature in Ordos basin
-
图14 鄂尔多斯盆地长7段成藏要素综合演化图
-
Fig.14 Comprehensive evolution diagram of reservoir-forming factors of Chang 7 member in Ordos basin
-
综合以上研究,可以分析出鄂尔多斯盆地长7段致密油成藏机理(图14):TOC含量较高、质量较好、分布广泛的烃源岩随着埋深的增加逐渐达到成熟阶段,生烃作用产生的超压成为致密油运移的动力; 由于储层边致密边成藏的特征,成藏期储层物性还未达到如今的致密程度,所以好的物性为致密油提供了良好的运移和储集条件,在高源储压差作用下,低黏度原油进入致密储层中成藏。
-
5 结论
-
(1)鄂尔多斯盆地长7段致密油初次运移的通道主要是泥岩微裂缝,二次运移的通道主要是高角度裂缝,但溶蚀孔也可为油气的运移提供一定的通道条件。生烃增压是石油充注的主要动力,泥岩欠压实形成的剩余压力也为致密油的成藏提供一定的动力,并对油气的分布有一定的控制作用。
-
(2)基于对储层成岩演化、物性演化、生烃演化与储层润湿性的动态匹配关系进行分析的思路,对长7段致密油成藏机理进行研究。长7段致密油为两期充注,对应于晚侏罗世中晚期及早白垩世中晚期,其中早白垩世中晚期为致密油成藏的主要时期,成藏过程整体为边致密边成藏。第一期致密油充注时期储层尚未完全压实,第二期致密油大规模充注之前发生一期溶蚀,改善了致密储层的物性,且长7段致密储层以中性和亲油性储层为主,从而减小了油气充注的阻力,有利于致密油的成藏。这一思路对类似致密油成藏机理研究具有重要的理论意义。
-
(3)鄂尔多斯盆地长7段优质的烃源岩为致密油藏提供了充足的油气来源,随着埋深的增加烃源岩逐渐达到成熟阶段,生烃增压为致密油运移提供了动力,成藏期储层物性还未达到现今的致密程度,所以相对好的物性为致密油提供了良好的运移和储集条件; 在高源储压差作用下,高温高压储层条件下的低黏度原油注入致密储层中成藏。
-
致谢:感谢审稿专家及编辑提出的宝贵意见和建议。
-
参考文献
-
Bai Yubin. 2014. Oil reservoir forming mechanisms and main controlling factors of tight oil of Chang-9 member in Ansai area, Ordos Basin. Journal of Central South University(Science and Technology), 45(9): 3127~3136 (in Chinese with English abstract).
-
Beard D C, Weyl P K. 1973. Influence of texture on porosity and permeability of unconsolidatedsand. AAPG Bulletin, 57(2): 349~369.
-
Chen Shijia, Lei Junjie, Liu Chun, Yao Jingli, Li Yong, Li Shixiang, Su Kaiming, Xiao Zhenglu. 2019. Factors controlling the reservoir accumulation of Triassic Chang 6 Member in Jiyuan-Wuqi area, Ordos Basin, NW China. Petroleum Exploration and Development, 46(2): 253~264.
-
Deng Hucheng, Zhou Wen, Jiang Wenli, Liu Yan, Liang Feng. 2009. Genetic mechanism and development periods of fracture in Yanchang and Yan'an Formation of Western Mahuangshan Block in Ordos Basin. Journal of Jilin University(Earth Science Edition), 39(5): 811~817 (in Chinese with English abstract).
-
Fu Jinhua, Yu Jian, Xu Liming, Niu Xiaobing, Feng Shengbin, Wang Xiujuan, You Yuan, Li Tao. 2015. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity. China Petroleum Exploration, 20(5): 9~19 (in Chinese with English abstract).
-
Fu Siyi, Liao Zhiwei, Chen Anqing, Chen Hongde. 2020. Reservoir characteristics and multi-stage hydrocarbon accumulation of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, NW China. Energy Exploration & Exploitation, 38(2): 348~371.
-
Guo Kai. 2017. Active source rocks of Chang 7 member and hydrocarbon generation and expulsion characteristics in Longdong area, Ordos Basin. Petroleum Geology and Experiment, 39(1): 15~23 (in Chinese with English abstract).
-
Guo Xiaowen, He Sheng, Zheng Lunju, Wu Zhenzhen. 2011. A quantitative model for the overpressure caused by oil generation and its influential factors. Acta Petrolei Sinica, 32(4): 637~644 (in Chinese with English abstract).
-
Jia Chengzao, Zou Caicai, Li Jianzhong, Li Denghua, Zheng Min. 2012. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica, 33(3): 343~350 (in Chinese with English abstract).
-
Li Chao, Zhang Liquan, Luo Xiaorong, Zhang Liqiang, Hu Caizhi, Yang Peng, Qiu GuiQiang, Ma Liyuan, Lei Yuhong. 2016. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study. Journal of China University of Petroleum(Edition of Natural Science), 40(3): 77~87 (in Chinese with English abstract).
-
Li Peng, Jia Chengzao, Jin Zhijun, Liu Quanyou, Bi He, Zheng Min, Wu Songtao, Huang Zhenkai. 2020. Pore size distribution of a tight sandstone reservoir and its effect on micro pore-throat structure: a case study of the Chang 7 Member of the Xin'anbian Block, Ordos basin, China. Acta Geologica Sinica (English Edition), 94(2): 219~232.
-
Li Wei, Wen Zhigang. 2017. Characteristics of fine-grained sediments from the 7th Member of the Yanchang Formation in the Southwestern Ordos Basin. Acta Geologica Sinica, 91(5): 1120~1129 (in Chinese with English abstract).
-
Li Ya. 2012. Comprehensive evaluation of Chang 6 reservoir in Yanchang Formation in the Metro border area of Ordos basin. Master thesis of Xi'an Shiyou University (in Chinese).
-
Liu Yuming, Ma Ke, Hou Jiagen, Yan Lin, Chen Fuli. 2019. Diagenetic controls on the quality of the Middle Permian Lucaogou Formation tight reservoir, Southeastern Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 178: 137~155.
-
Qi Yalin, Hui Xiao, Liang Yan, Zhou Juntai, Liu Xin, Sun Bo. 2014. Discussion on restoring excess pressure of Yanchang Formation in Ordos basin by balanced depth method. Petroleum Geology and Engineering, 28(5): 20~22+154 (in Chinese with English abstract).
-
Ren Zhanli, Yu Qiang, Cui Junping, Qi Kai, Chen Zhanjun, Cao Zhanpeng, Yang Peng. 2017. Thermal history and its controls on oil and gas of the Ordos basin. Earth Science Frontiers, 24(3): 137~148 (in Chinese with English abstract).
-
Shang Fei. 2012. Experimental study on sedimentary simulation of He 8 stage in Ordos basin. Master thesis of Yangtze University (in Chinese).
-
Tang Wangxin, Jiang Zaixing, Zhang Yuanfu. 2017. Sedimentary characteristics and sedimentary model of deep water deposits of late Triassic Chang 7 Member in southern Ordos basin. Science Technology and Engineering, 17(15): 33~41 (in Chinese with English abstract).
-
Wang Shejiao, Wei Yuanjiang, Guo Qiulin, Wang Shaoyong, Wu Xiaozhi. 2014. New advance in resources evaluation of tight oil. Acta Petrolei Sinica, 35(6): 1095~1105 (in Chinese with English abstract).
-
Wang Xiangzeng, Ren Laiyi, He Yonghong, Xi Tiande, Ge Yunjin, Mi Naizhe, Deng Nantao. 2016. Definition of tight oil in Ordos basin. Petroleum Geology and Recovery Efficiency, 23(1): 1~7 (in Chinese with English abstract).
-
Wu Weitao, Deng Jing, Zhao Jingzhou, Sun Bo, Guo Hanqing, Deng Xiuqin, Er Chuang, Bai Yubin. 2016. Accumulation conditions and models of tight oil reservoirs in Chang-7 of Huaqing area, the Ordos basin. Oil & Gas Geology, 37(6): 874~881 (in Chinese with English abstract).
-
Yu Qiang, Ren Zhanli, Ni Jun, Bai Fenfei, Tang Jianyun, Wang Min. 2012. The thermal evolution history of Mesozoic, Fuxian exploratory area of Ordos basin. Journal of Northwest University (Natural Science Edition), 42(5): 801~805 (in Chinese with English abstract).
-
Yang Hua, Li Shixiang, Liu Xianyang. 2013. Characteristics and resource prospects of tight oil and shale oil in Ordos basin. Acta Petrolei Sinica, 34(1): 1~11 (in Chinese with English abstract).
-
Yao Jingli, Zhao Yande, Deng Xiuqin, Guo Zhengquan, Luo Anxiang, Chu Meijuan. 2015. Controlling factors of tight oil accumulation in Yanchang Formation of Ordos basin. Journal of Jilin University(Earth Science Edition), 45(4): 983~992 (in Chinese with English abstract).
-
Yao Yitong, Li Shixiang, Zhao Yande, Chen Shijia, Lu Jungang. 2015. Characteristics and controlling factors of Chang 7 tight oil in Xin'anbian area, Orods basin. Acta Sedimentologica Sinica, 33(3): 625~632 (in Chinese with English abstract).
-
Yang Weiwei, Shi Yujiang, Li Jianfeng, Feng Yuan, Ma Jun, Wu Kai, Luo Lirong. 2016. Geochemical characteristics of Chang-7 source rocks from well X96 in Huachi area of Ordos basin and their significance on tight oil accumulation. Journal of Earch Sciences and Environment, 38(1): 115~125 (in Chinese with English abstract).
-
Yao Jingli, Zeng Pohui, Luo Anxiang, Yang Zhifeng, Deng Xiuqin. 2019. Control of tight reservoir source and reservoir structure on reservoir oil-bearing property: a case study of Chang 6-Chang 8 member in Heshui area, Ordos basin. Journal of Earth Sciences and Environment, 41 (3): 267~280 (in Chinese with English abstract).
-
Zhao Weiwei, Yang Yunxiang, song Heping, Li Delu. 2014. Geological characteristics and main controlling factors of hydrocarbon accumulation in Chang 7 tight oil of Yanchang Formation of Xiasiwan area, Ordos basin. Journal of Central South University(Science and Technology), 45(12): 4267~4276 (in Chinese with English abstract).
-
Zhang Zhongyi, Chen Shijia, Yang Hua, Fu Jinhua, Yao Jingli, Yu Jian, Yang Zhi, Zhang Wenzheng, Deng Xiuqin. 2016. Tight oil accumulation mechanisms of Triassic Yanchang Formation Chang 7 Member, Ordos basin, China. Petroleum Exploration and Development, 43(4): 590~599 (in Chinese with English abstract).
-
Zhang Xiaohui, Feng Shunyan, Liang Xiaowei, Feng Shengbin, Mao Zhenhua, Ren Jisheng, Chen Shaohua. 2020. Sedimentary microfacies identification and inferred evolution of the Chang 7 Member of Yanchang Formation in Longdong area, Ordos basin. Acta geologica Sinica, 94 (3): 957~967 (in Chinese with English abstract).
-
白玉彬. 2014. 鄂尔多斯盆地安塞地区长9致密油成藏机理与主控因素. 中南大学学报: 自然科学版, 45(9): 3127~3136.
-
邓虎成, 周文, 姜文利, 刘岩, 梁峰. 2009. 鄂尔多斯盆地麻黄山西区块延长、延安组裂缝成因及期次. 吉林大学学报(地球科学版), 39(5): 811~817.
-
付金华, 喻建, 徐黎明, 牛小兵, 冯胜斌, 王秀娟, 尤源, 李涛. 2015. 鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素. 中国石油勘探, 20(5): 9~19.
-
郭凯. 2017. 鄂尔多斯盆地陇东地区长7段有效烃源岩及生排烃研究. 石油实验地质, 39(1): 15~23.
-
郭小文, 何生, 郑伦举, 吴珍珍. 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637~644.
-
贾承造, 邹才能, 李建忠, 李登华, 郑民. 2012. 中国致密油评价标准、主要类型、基本特征及资源前景. 石油学报, 33(3): 343~350.
-
李娅. 2012. 鄂尔多斯盆地铁边城地区延长组长6储层综合评价. 西安石油大学硕士学位论文.
-
李超, 张立宽, 罗晓容, 张立强, 胡才志, 杨鹏, 邱桂强, 马立元, 雷裕红. 2016. 泥岩压实研究中有机质导致声波时差异常的定量校正方法. 中国石油大学学报(自然科学版), 40(3): 77~87.
-
李威, 文志刚. 2017. 鄂尔多斯盆地西南地区延长组长7段细粒沉积物特征研究. 地质学报, 91(5): 1120~1129.
-
齐亚林, 惠潇, 梁艳, 周军太, 刘鑫, 孙勃. 2014. 平衡深度法恢复鄂尔多斯盆地延长组过剩压力探讨. 石油地质与工程, 28(5): 20~22+154.
-
任战利, 于强, 崔军平, 祁凯, 陈占军, 曹展鹏, 杨鹏. 2017. 鄂尔多斯盆地热演化史及其对油气的控制作用. 地学前缘, 24(3): 137~148.
-
尚飞. 2012. 鄂尔多斯盆地盒8期沉积模拟实验研究. 长江大学硕士学位论文.
-
汤望新, 姜在兴, 张元福. 2017. 鄂尔多斯盆地南部长7段深水沉积特征及沉积模式. 科学技术与工程, 17(15): 33~41.
-
王社教, 蔚远江, 郭秋麟, 汪少勇, 吴晓智. 2014. 致密油资源评价新进展. 石油学报, 35(6): 1095~1105.
-
王香增, 任来义, 贺永红, 席天德, 葛云锦, 米乃哲, 邓南涛. 2016. 鄂尔多斯盆地致密油的定义. 油气地质与采收率, 23(1): 1~7.
-
吴伟涛, 邓静, 赵靖舟, 孙勃, 郭汉卿, 邓秀芹, 耳闯, 白玉彬. 2016. 鄂尔多斯盆地华庆地区长7油层组致密油成藏条件与成藏模式. 石油与天然气地质, 37(6): 874~881.
-
于强, 任战利, 倪军, 白奋飞, 唐建云, 王敏. 2012. 鄂尔多斯盆地富县地区中生界热演化史探讨. 西北大学学报(自然科学版), 42(5): 801~805.
-
杨华, 李士祥, 刘显阳. 2013. 鄂尔多斯盆地致密油、页岩油特征及资源潜力. 石油学报, 34(1): 1~11.
-
姚泾利, 赵彦德, 邓秀芹, 郭正权, 罗安湘, 楚美娟. 2015. 鄂尔多斯盆地延长组致密油成藏控制因素. 吉林大学学报(地球科学版), 45(4): 983~992.
-
姚宜同, 李士祥, 赵彦德, 陈世加, 路俊刚. 2015. 鄂尔多斯盆地新安边地区长7致密油特征及控制因素. 沉积学报, 33(3): 625~632.
-
杨伟伟, 石玉江, 李剑峰, 冯渊, 马军, 吴凯, 罗丽荣. 2016. 鄂尔多斯盆地华池地区X96井长7烃源岩地球化学特征及其对致密油成藏的意义. 地球科学与环境学报, 38(1): 115~125.
-
姚泾利, 曾溅辉, 罗安湘, 杨智峰, 邓秀芹. 2019. 致密储层源储结构对储层含油性的控制作用——以鄂尔多斯盆地合水地区长6~长8段为例. 地球科学与环境学报, 41(3): 267~280.
-
赵卫卫, 杨云祥, 宋和平, 李得路. 2014. 鄂尔多斯盆地下寺湾地区长7致密油地质特征及成藏主控因素. 中南大学学报(自然科学版), 45(12): 4267~4276.
-
张忠义, 陈世加, 杨华, 付金华, 姚泾利, 喻建, 杨智, 张文正, 邓秀芹. 2016. 鄂尔多斯盆地三叠系长7段致密油成藏机理. 石油勘探与开发, 43(4): 590~599.
-
张晓辉, 冯顺彦, 梁晓伟, 冯胜斌, 毛振华, 任继胜, 陈韶华. 2020. 鄂尔多斯盆地陇东地区延长组长7段沉积微相及沉积演化特征. 地质学报, 94(3): 957~967.
-
摘要
鄂尔多斯盆地是我国首个亿吨级致密油赋存盆地,三叠系延长组长7段油层组是该盆地致密油的典型代表,但对长7段致密油成藏机理的分析较为缺乏。通过对长7段致密储层特征及石油运聚动力的分析,储层成岩演化、物性演化及其与生烃演化匹配关系分析与储层润湿性分析,综合对长7段致密油成藏机理展开研究。研究表明,优质烃源岩的生烃增压及泥岩欠压实产生的剩余压力为致密油运移提供了动力;长7段致密油为两期充注,对应于晚侏罗世中晚期及早白垩世中晚期,第一期致密油充注时期储层尚未完全压实,第二期致密油大规模充注之前发生一期溶蚀,改善了致密储层的物性,两次油气充注成藏时期储层物性均未达到如今的致密程度,相对较好的储层条件为致密油提供了良好的运移和储集条件;致密储层以中性和亲油性储层为主,减小了油气充注的阻力;高源储压差与高温高压的地层条件使得低黏度的原油得以进入致密储层成藏。这对鄂尔多斯盆地下一步致密油勘探开发有重要意义。
Abstract
Ordos basin is the first 100 million ton tight oil bearing basin in China. The Chang 7 member of the Triassic Yanchang Formation is a typical representative of the tight oil in this basin. However, there is limited data on the tight oil accumulation mechanism in the Chang 7 member.The tight oil accumulation mechanism of the Chang 7 member is comprehensively studied in order to clarify the reservoir forming mechanism of tight oil in the Chang 7 member, through the analysis of tight reservoir characteristics and oil migration and accumulation dynamics, combined with reservoir diagenetic evolution, physical property evolution and its corresponding relationship with hydrocarbon generation evolutionand reservoir wettability analysis.The results show that high-quality source rock's hydrocarbon generation pressurization and the residual pressure of mudstone undercompaction provide power for tight oil migration. The tight oil in Chang 7 member shows two-stage filling, corresponding to the middle-late period of Late Jurassic and middle-late period of Early Cretaceous. During the first stage of tight oil filling, the reservoir has not been fully compacted, and the dissolution occurred before the large-scale filling of the second stage, which improved the physical properties of the tight reservoir. The physical properties of the reservoir in the two stages of oil and gas filling and accumulation were not as tight as they are today, and the relatively good reservoir conditions provided good migration and reservoir conditions for tight oil. The tight reservoir mainly consists of neutral and lipophilic reservoirs, which reduces the resistance to oil and gas filling. The high source reservoir pressure difference and high-temperature and high-pressure formation conditions allow low-viscosity crude oil to enter tight reservoirs and form reservoirs. This result is of great significance for the next tight oil exploration and development in the Ordos basin.