en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

唐永,男,1981年生。博士,讲师,主要从事构造应力场分析及模拟的研究。E-mail:water_0820@163.com。

参考文献
Cai Liguo, Liu Hefu. 1997. Structural styles and characteristics of fold-thrust belts in Sichuan foreland basin. Petroleum Geology & Experiment, 19(2): 115~120 (in Chinese with English abstract).
参考文献
Cui Kai, Wang Yixuan. 2019. Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China, Journal of Asian Earth Sciences, 176: 244~252.
参考文献
Ding Daogui, Guo Tonglou, Zhai Changbo, Lv Junxiang. 2005. Kink structure in the West Hubei and East Chongqing. Petroleum Geology & Experiment, 27(3): 205~210 (in Chinese with English abstract).
参考文献
Ding Daogui, Liu Guangxiang, Lv Junxiang, Pan Wenlei. 2007. Progressive deformation of Middle Paleozoic margin basins in the Yangtze plate, China. Geological Bulletin of China, 26(9): 1178~1188 (in Chinese with English abstract).
参考文献
Dong Shuwen, Zhang Yueqiao, Long Changxiang, Yang Zhenyu, Ji Qiang, Wang Tao, Hu Jianmin, Chen Xuanhua. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement. Acta Geologica Sinica, 81(11): 1449~1460 (in Chinese with English abstract).
参考文献
Faramarz N, Russell P, Alexander C. 2012. Sensitivity analysis of numerical scaled models of fold-and-thrust belts to granular material cohesion variation and comparison with analog experiments. Tectonophysics, 526-529: 196~206.
参考文献
Han Yulin, Xu Changhai, Zhou Zuyi, Tan Xiaodong. 2009. Paleomagnetism of Jurassic sandstones from Yangtze fold belt and its implications for the fold belt curvature. Chinese Journal of Geophysics, 52(12): 3072~3082 (in Chinese with English abstract).
参考文献
He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in south China: insights from analogue modelling. Journal of Structural Geology, 27(5): 924~931.
参考文献
He Zhiliang, Wang Xinwei, Li Shuangjian, Wo Yujin, Zhou Yan. 2011. Yanshan movement and its influence on petroleum preservation in middle-upper Yangtze region. Petroleum Geology & Experiment, 33(1): 1~11 (in Chinese with English abstract).
参考文献
Hu Zhaoqi, Zhu Guang, Liu Guosheng, Zhang Bilong. 2009. The folding time of the eastern Sichuan Jura-type fold belt: evidence from unconformity. Geological Review, 55(1): 731~741 (in Chinese with English abstract).
参考文献
Hu Zhaoqi, Zhu Guang, Zhang Bilong, Zhang Li. 2010. K-Ar geochronology of the Caledonian event in the Xuefeng uplift. Geological Review, 56(4): 490~500 (in Chinese with English abstract).
参考文献
Jin Chong, Li Sanzhong, Wang Yuejun, Zhang Guowei, Liu Liping, Wang Jian. 2010. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinential composite tectonic system. Oil & Gas Geology, 30(5): 598~607 (in Chinese with English abstract).
参考文献
Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implicatins. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).
参考文献
Li Shuangjian, Yuan Yusong, Sun Wei, Sun Dongsheng, Jin Zhijun. 2016. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan basin. Natural Gas Geoscience, 27(5): 924~931 (in Chinese with English abstract).
参考文献
Li Yanfeng, Qu Guosheng, Zhang Jin. 2007. Developments in research of arcuate structure. Advances in Earth Science, 22(7): 708~715 (in Chinese with English abstract).
参考文献
Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic south China. Geology, 35(2): 179~182.
参考文献
Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China: Earth Sciences, 44(12): 2593~2617 (in Chinese with English abstract).
参考文献
Marques F O, Cobbold P R. 2002. Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics, 348: 247~268.
参考文献
Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfan. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).
参考文献
Shen Chuanbo, Mei Lianfu, Xu Zhenping, Tang Jiguang, Tian Peng. 2007. Fission track thermochronology evidence for Mesozoic—Cenozoic uplifting of Daba mountain, central China. Acta Petrologica Sinica, 23(11): 2901~2910 (in Chinese with English abstract).
参考文献
Sintubin M. 1999. Arcuate fold and cleavage patterns in the southeastern part of the Anglo-Brabant fold belt(Belgium): tectonic implications, 309: 81~97.
参考文献
Song Qingwei, Yan Danping, Jiao Shoutao, Wu Kang, Dong Zhoubin. 2014. The response of compounding process of Dabashan and Xuefengshan thrust belt in J3—K1: the structural styles and formation mechanism of the Zigui fold belt, Western Hubei. Acta Geologica Sinica, 88(8): 1382~1400 (in Chinese with English abstract).
参考文献
Tang Shuangli, Yan Danping, Wang Changliang, Zhang Weicheng. 2011. Deformation process from thick-skinned to thin-skinned thrust in Xuefeng mountain South China: evidence from Sangzhi-Anhua tectonic section. Geoscience, 25(1): 22~30 (in Chinese with English abstract).
参考文献
Tibaldi A, Bonali F L, Russo E, Mariotto F A P. 2018. Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. Journal of Asian Earth Sciences, 156: 226~245.
参考文献
Wang Changliang, Yan Danping, Zhang Bing, Xu Yanbo, Tang Shuangli. 2011. Structural style and deformational characteristics of the thick-skinned thrust belt in the western Xuefeng mountain. Geoscience, 25(6): 1021~1031 (in Chinese with English abstract).
参考文献
Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportaion of eastern Sichuan arcuate fold belt in three dimensions: insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).
参考文献
Xu Changhai, Zhou Zuyi, Chang Yuan, Guillot F. 2010. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: constraints from fission-track and (U-Th)/He thermochronology. Science China: Earth Sciences, 40(12): 1684~1696 (in Chinese with English abstract).
参考文献
Yan Danping, Wang Xinwen, Liu Youyuan. 2000. Analysis of fold style and its formation mechanism in the area of boundary among Sichuan, Hubei and Hunan. Geoscience, 14(1): 37~43 (in Chinese with English abstract).
参考文献
Yan Danping, Qiu Liang, Chen Feng, Li Lin, Zhao Lei, Yang Wenxin, Zhang Yixi. 2018. Structural and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block. Earth Science Frontiers, 25(1): 1~13 (in Chinese with English abstract).
参考文献
Yu Wu, Shen Chuanbo, Yang Chaoqun. 2017. Constraints of fission track dating on the Mesozoic-Cenozoic tectonic-thermal evolution of the Zigui basin. Earth Science Frontiers, 24(3): 116~126 (in Chinese with English abstract).
参考文献
Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).
参考文献
Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. Earth Science, 43(6): 2007~2018 (in Chinese with English abstract).
参考文献
蔡立国, 刘和甫. 1997. 四川前陆褶皱-冲断带构造样式与特征. 石油实验地质, 19(2): 115~120.
参考文献
丁道桂, 郭彤楼, 翟常博, 吕俊祥. 2005. 鄂西-渝东区膝折构造. 石油实验地质, 27(3): 205~210.
参考文献
丁道桂, 刘光祥, 吕俊祥, 潘文蕾. 2007. 扬子板块海相中古生界盆地的递进变形改造. 地质通报, 26(9): 1178~1188.
参考文献
董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449~1460.
参考文献
韩玉林, 许长海, 周祖翼, 谈晓东. 2009. 扬子褶皱带侏罗纪砂岩古地磁及其褶皱带弧形弯曲的成因. 地球物理学报, 52(12): 3072~3082.
参考文献
何志亮, 汪新伟, 李双建, 沃玉进, 周雁. 2011. 中上扬子地区燕山运动及其对油气保存的影响. 石油实验地质, 33(1): 1~11.
参考文献
胡召齐, 朱光, 刘国生, 张必龙. 2009. 川东“侏罗山式”褶皱带形成时代: 不整合面的证据. 地质论评, 55(1): 731~741.
参考文献
胡召齐, 朱光, 张必龙, 张力. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490~500.
参考文献
金宠, 李三忠, 王岳军, 张国伟, 刘丽萍, 王建. 2010. 雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征. 石油与天然气地质, 30(5): 598~607.
参考文献
李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.
参考文献
李双建, 袁玉松, 孙炜, 孙东胜, 金之钧. 2016. 四川盆地志留系页岩气超压形成与破坏机理及主控因素. 天然气地球科学, 27(5): 924~931.
参考文献
李岩峰, 曲国胜, 张进. 2007. 弧形构造研究进展. 地球科学进展, 22(7): 708~715.
参考文献
毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593~2617.
参考文献
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学——中国地质大学学报, 35(2): 161~174.
参考文献
沈传波, 梅廉夫, 徐振平, 汤济广, 田鹏. 2007. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901~2910.
参考文献
宋庆伟, 颜丹平, 焦守涛, 吴钪, 董周宾. 2014. 大巴山与雪峰山逆冲构造带J3—K1复合过程的响应——鄂西秭归褶皱带构造样式与形成机制. 地质学报, 88(8): 1382~1400.
参考文献
汤双立, 颜丹平, 汪昌亮, 张维宸. 2011. 华南雪峰山薄皮-厚皮构造转换过程: 来自桑植-安化剖面的证据. 现代地质, 25(1): 22~30.
参考文献
汪昌亮, 颜丹平, 张冰, 许延波, 汤双立. 2011. 雪峰山西部中生代厚皮逆冲推覆构造样式与变形特征研究. 现代地质, 25(6): 1021~1031.
参考文献
王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.
参考文献
许长海, 周祖翼, 常远, Guillot Francois. 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684~1696.
参考文献
颜丹平, 汪新文, 刘友元. 2000. 川鄂湘边区褶皱构造样式及其成因机制分析. 现代地质, 14(1): 37~43.
参考文献
颜丹平, 邱亮, 陈峰, 李林, 赵磊, 杨文心, 张翼西. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1~13.
参考文献
余武, 沈传波, 杨超群. 2017. 秭归盆地中新生代构造-热演化的裂变径迹约束. 地学前缘, 24(3): 116~126.
参考文献
袁玉松, 孙东胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.
参考文献
邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中-新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.
目录contents

    摘要

    通过对湘鄂西构造带进行大量的构造形迹测量、解析,结合研究区内构造变形年龄数据的统计分析。明确燕山中期(J3—K1)早期弧形构造弧顶方向为330°,并向两侧发散状分布,以大别山、黔中、黄陵隆起为约束点,湘鄂西形成了由南东侧至北东侧构造迹线由NE→NEE→EW→NWW逐渐偏转的弧形构造,最大主应力方向偏转近114°。同时早期弧形构造扩展过程中,分别会在弧形构造两翼,形成近SN向(大耳山-茶园断层、乌江-大千断层)和NW向走滑断裂(仙女山断层);燕山晚期 (K1末期—K2)晚期弧形构造弧顶方向为296°,由于受到齐岳山断裂的影响,晚期弧形构造分成两幕,K1末期(燕山晚期弧形一幕形成)、K2(燕山晚期弧形二幕形成时期)。以大巴山、黔中、黄陵隆起为约束点,湘鄂西形成了由南东侧至北东侧构造迹线由SN向NE逐渐偏转的弧形构造,最大主应力方向偏转近86°。并逐渐向四川盆地扩展,至到华蓥山断裂。两期弧形构造影响强度范围有一定的差异,研究区北东侧以燕山中期弧形构造主控,西南侧以燕山晚期弧形构造主控,造就湘鄂西北东侧与西南侧油气藏赋存的差异。

    Abstract

    Based on a large number of tectonic trace measurements and analysis of the western Hunan and Hubei tectonic belt, this study is a statistical analysis of tectonic deformation age data in the study area. It is clear that the early arc structure of the mid-Yanshan (J3—K1) has a top direction of 330° and diverges on both sides, with Dabie Mountain, central Guizhou and Huangling uplifts as the restraining points, and the western Hunan and Hubei formed arc structure from the southeast to the northeast whose construction trace gradually deflected from NE→NEE→EW→NWW, and the direction of the maximum principal stress deflected nearly 114°. At the same time, during the early expansion of the arc structure, near SN directions (the Daershan-Chayuan and the Wujiang-Daqian faults) and NW strike-slip fault (the Xiannvshan fault) were formed on both wings of the arc structure; the arc top direction of the late-arc structure developed in the late Yanshan (K1—K2) is 296°. Due to the influence of the Qiyueshan fault, the late arc-shaped structure is divided into two stages, the late K1 phase (the first period of arc structure in the late Yanshan), and K2 (the second period of arc structure in the late Yanshan). Taking the Daba Mountain, Central Guizhou and Huangling uplifts as restraining points, the western Hunan and Hubei formed an arc structure from the southeast to the northeast with construction trace deflected from SN to NE, the direction of the maximum principal stress deflected nearly 86° and gradually extended to the Sichuan Basin until the Huaying Mountain fault. There is a certain difference in the impact intensity range of the two-stage arc structure. The northeast side of the study area is dominated by the mid-Yanshan arc structure, and the southwest side is dominated by the late Yanshan arc structure, resulting in differences of oil and gas reservoir between the northeast and southwest of the western Hunan and Hubei.

  • 受印度洋、太平洋及古特提斯、新特提斯动力体系的影响,以扬子地块和雪峰陆内复合构造系统为核心的中国南方经历了中、新生代主体拼合的陆缘以及后期的陆内构造演化,并不断增生扩大形成复合大陆(Mei Lianfu et al.,2010)。湘鄂西构造带位于雪峰陆内西侧,宽达近240 km,以广阔长距离分布的冲断层-断弯褶皱带、逆掩断层-断展褶皱带、滑脱断层-滑脱褶皱带为主要构造特征。时间上向外扩展变形; 空间上表现为断裂分割的指向西北的巨型弧形构造,形成不同分区不同分带具不同构造组合的独特构造面貌。大量地质工作者对湘鄂西-川东构造发展和相关模式以及海相油气勘探进行了深入研究:Yan Danping(20002018)Tang Shuangli(2011)Wang Changliang(2011)Faramarz et al.(2012)利用薄皮、厚皮构造模式解剖湘鄂西-川东构造; Ding Daogui(20052007)Jin Chong(2010)Mei Lianfu(2010)建立递进有序变形模式来说明湘鄂西-川东构造渐进递变发展; Li Zhengxiang(2007)认为是太平洋板块西向平板俯冲的远程效应的影响。虽然解释机理上存在一点差异,齐岳山断层分开的湘鄂西构造带和川东构造带形成时间上的认识存在一定差异(Cai Guoli et al.,1997; Ding Daogui et al.,2007; Hu Zhaoqi et al.,20092010; Yuan Yusong et al.,2010; Wang Ping et al.,2012; Zou Yaoyao et al.,2018),但均将湘鄂西-川东构造带作为一个整体来考虑,认为是由江南-雪峰自南东向北西的四川盆地逐渐扩展的构造变形区。

  • 大量研究对湘鄂西-川东构造在局部有较为清晰的认识,但仍有较多问题没有得到很好的解决:① 研究区北东侧鹤峰-五峰-长阳一带EW与NWW向构造被NE向构造所切割,中部主要发育NE向构造未见明显交切关系,西南侧主要表现为NE向构造被近SN向构造所切割; ② 同一构造带上,褶皱隆升时间不协调,例如同属于中央复背斜带南部的郁山背斜(彭水)隆升年龄数据为130 Ma(Li Shuangjian et al.,20082016),而北部的白果坝背斜(恩施)隆升年龄数据为154 Ma(He Wengang et al.,2018); ③ 研究区南侧发育近SN向走滑断裂的成因问题,如大耳山-茶园断层; 乌江-大阡断层等。这些问题仍然没有被系统的描述清楚,目前迫切需要理清湘鄂西构造差异成因问题,据此来探讨湘鄂西构造差异对海相油气藏改造的影响,进而对湘鄂西构造带海相油气勘探选区进行评价和讨论。本次研究将以多期弧形构造叠加改造为突破口,探讨湘鄂西复杂构造变形带的成因机制。

  • 1 弧形构造

  • 我国的弧形构造带形态多样、形成时期差异较大,如天山弧形构造带、祁连山弧形构造带、南大巴山弧形构造带(Shen Chuangbo et al.,2007; Xu Changhai et al.,2010)、川东弧形构造带(Wang Ping et al.,2012)、大洪山弧形构造带(He Zhiliang et al.,2011)等,如何对弧形构造进行解剖?众多学者对其进行系统尝试,并取得了一定成果。

  • 弧形基本特征是定量刻画弧形构造带形态极为关键要素,是精细解剖弧形构造的核心问题,也是进一步明确弧形构造形成成因机理的基础。前人大多数是从描述弧形构造方面进行研究,如弧形前缘线、中线、幅度值、弦长、顶点、端点、突出程度、对称性等(Sintubin,1999; Marques,2002; Li Yanfeng et al.,2007; Tibaldi,2018),较少涉及弧形构造所形成的应力场状态以及弧形构造形迹的分布、叠加关系等。本次研究以力学解析反演的方法来阐述湘鄂西弧形构造,从弧形构造的弧顶方向、弧形构造端点约束、弧形构造的“启动”断裂三个方面来进行解析(图1),分析弧形构造弧顶方向有利于阐述动力来源问题; 分析弧形构造两端约束点有利于解释弧内不同构造形迹的差异性问题; 弧形构造的“启动”断裂是明确弧形构造初始发育的核心。典型的弧形构造大巴山就可以用这三个要素来阐述其形成的运动学过程,南大巴山弧形构造弧形弧顶方向为NE—SW(旬阳-城口一线),两端的约束点分别为汉南、黄陵两个基底隆起,弧形构造的“启动”断裂为NW向的安康断裂(Xu Changhai et al.,2010; Song Qingwei et al.,2014; Cui,2019)。本文将依据弧形构造三要素:方向、约束、“启动”断裂,来细致解剖湘鄂西弧形构造。

  • 图1 弧形构造模式

  • Fig.1 Arc structure model

  • 2 湘鄂西弧形构造带

  • 2.1 湘鄂西构造格局

  • 湘鄂西构造带呈向北西突出的弧形展布,从东界慈利-花垣断裂到西界华蓥山断裂,整个弧形构造带的宽度约为220 km,以齐岳山为界,东部发育相对宽缓背斜和紧闭向斜相间发育的隔槽式褶皱带,宽缓核部一般出露下古生界,基底新元古界部分卷入,向斜则主要出露中、上三叠统,呈不对称至倒转状; 西部则为紧闭背斜和宽缓向斜组成的隔档式褶皱带,高陡背斜出露中、下三叠统,宽缓向斜出露中、上侏罗统(图2)。由南东向北西由桑植-石门复向斜、宜都-鹤峰复背斜、花果坪复向斜、中央复背斜和利川复向斜等构造带组成(Mei Lianfu et al.,2010)。由东南至西北核部出露地层由老变新,构造变形强度由大变小,隆升幅度由高变低,影响构造格局的滑脱层深度在逐渐变浅(图3),构造卷入程度逐渐减弱。同时基底卷入盖层程度逐渐变浅,由厚皮构造渐渐过渡到薄皮构造。

  • 依据构造形迹发育的复杂程度,可以将整个湘鄂西研究区分为4个构造叠加改造区(图4)。① NE向构造发育区,位于巴东-龙山一线以西、彭水-丰都一线以北范围内,发育均为NE向构造。如白果坝、郁山、李子溪背斜等; ② NE、SN构造叠加发育区,位于彭水-丰都一线以南范围内,以SN向构造切割改造NE向构造为主,SN向构造占主导。如NE向的老厂坪背斜被SN向的接龙场背斜所切割、NE向的中梁子背斜被SN向的羊角背斜所改造、NE向的方斗山背斜、齐岳山背斜被SN向的大耳山背斜所切割改造; ③ 右阶斜列构造发育区,位于龙山-五峰一线以南的区域,该范围内所发育的一系列NE、NEE呈右阶斜列状,并且NE向构造由西至东逐渐偏转为NEE向构造。如西侧万民岗背斜走向NE32°,中间人潮溪背斜走向NE46°,东侧庄场背斜走向NEE73°,偏转了近41°; ④ NE、NWW、EW、NEE向构造叠加发育区。该区域内最为复杂,主体以NE向构造切割NWW向构造,局部则呈现为NE向构造被近SN向构造所切割。如EW向香龙背斜,其背斜核部及两翼均被晚期NE向构造所叠加改造,由于两次构造作用强度相差不大,致使其变动后具有穹-盆构造特征。早期NWW向的长阳背斜,被晚期NE向枝拓坪背斜于西翼所改造,呈现明显的“L”形叠加褶皱(图5),说明研究区的应力场方向发生偏转。依据NE向关头山背斜-EW向香龙背斜-NWW向长阳背斜解析,两个不同方向的构造形迹走向偏转了近86°。

  • 图2 湘鄂西地质简图

  • Fig.2 Geological map of western Hunan and Hubei

  • 图3 川东-湘鄂西构造模式(剖面位置见图2)

  • Fig.3 Eastern Sichuan-western Hunan-Hubei structure model (Fig.2 shows the location of the profile)

  • 图4 湘鄂西构造特征

  • Fig.4 Tectonic characteristics of western Hunan and Hubei

  • 图5 湘鄂西NWW和EW向构造被NE向构造改造叠加

  • Fig.5 NWW and EW-oriented structures are overprinted by NE-oriented structures in western Hunan and Hubei

  • (a)—宜昌市长阳县渔峡口镇;(b)—宜昌市秭归县磨坪乡

  • (a) —Yuxiakou Town, Changyang County, Yichang City; (b) —Moping Town, Zigui County, Yichang City

  • 2.2 湘鄂西弧形构造特征

  • 2.2.1 早期弧

  • 弧形特征:依据弧形逐渐向西扩展的认识,在湘鄂西区识别出早期弧。早期弧由弧形的复背斜、复向斜相间发育。由慈利-保靖断裂→建始-彭水断裂所卷入的地层是越来越新,同时复背、向斜的格局还是很清楚。慈利-保靖断裂以东地表出露岩层以古生界为主,为一个早期弧形背斜,被后期构造所叠加改造,主要是寒武系夹少量志留系和奥陶系; 慈利-保靖以西出露地层以上古生界、中生界为主,为一个早期弧形向斜,为后期构造所破坏,主要发育二叠系和三叠系,夹少量寒武系和奥陶系; 鹤峰-龙山断裂以西出露以下古生界为主,出露少量中生界,为一个早期形成的弧形背斜,被后期构造活动所改造,特别是燕山晚期的伸展构造,对整个构造格局改造影响较大。整个早期弧向北西扩展至齐岳山和黄陵隆起,早期弧受齐岳山的约束,发育于齐岳山断裂的东侧。根据地层变形强度和出露地层新老,由南东至北西将其依次划分为根带(主要是雪峰构造带的核心区)、中带(雪峰构造带西缘至鹤峰-龙山断裂的东南侧)、锋带(鹤峰-龙山断裂以西、齐岳山断裂以南)。早期弧是加里东、印支运动所形成江南雪峰弧形构造的继承发展,是在前期弧形构造的基础上向北西的扩展,可以认为这些时期的构造应力方向变化不大。早期弧形构造的两端约束点主要有两个:大别山和黔中隆起,次要约束点是黄陵隆起(图6)。

  • 早期弧的弧顶扩展方向,应该是变形程度最高的区域,导致整个地层抬升程度也较高,因此剥蚀厚度较大,出露岩层较老,依据该规则,将出露最老地层连线,获得早期弧形构造扩展方向。研究区出露最老地层为张家界周缘元古宇以及东山峰背斜所出露的元古宇,将两套所出露的背斜做平行线,并在此基础上连接垂直,就可以获得早期弧弧顶扩展方向,为NW330°。特别是在早期弧形构造的锋带呈现NEE向的下树背斜与呈现NWW向的石羊山背斜为一个明显弧形构造所改造的结果。由于该弧是雪峰弧形构造的继承弧,借鉴大巴山弧形构造特点,认为早期弧形构造的启动断裂为修水-邵阳断裂,约束断裂:东南侧为遵义-平坝断裂。

  • 力学特征:根据构造形态,选择316个野外节理进行了实地测量与观测。节理的观测点广泛分布于湘鄂西及周缘,出露的岩层均有明显节理发育。其中寒武系的白云岩; 奥陶系、二叠系—下三叠统所发育的灰岩、灰质白云岩节理较多,且类型多样; 上三叠统—白垩系所发育的砂岩、砂质泥岩、泥质砂岩节理相对较少; 下志留统所出露的泥页岩较为破碎,风化程度较高,获得相对稳定的节理数据较少。整体来看碎屑岩中所发育单个裂缝的延伸长度、切层深度均比碳酸盐岩中发育的大,稳定程度高(图7)。

  • I节理组的发育方位:通过地层拉平处理、统计分析发现,整个研究区发育的节理,主要有以下五组(图8): ① NNE向节理(10°±7°)。根据统计的玫瑰花图来看,该组走向裂缝在研究区东北侧均有发育,但优势区域位于长阳背斜、桑植复向斜、鹤峰背斜、仁和坪向斜。碎屑岩中节理未被充填,碳酸盐岩层中节理大多被方解石脉充填。该组裂缝整体上较为平直,发育较为稳定,近与层面垂直。 ② NE向节理(30°±5°)。在节理统计图中,该方向的节理统计点都有发育,寒武系—二叠系均有发育,产状稳定,节理面相对粗糙。砂泥岩发育的层段,节理在砂岩中发育的较为明显,泥岩中趋于消失。 ③ 近EW向节理(100°±10°)。研究区的东部,石门、刘家场、仁和坪、秭归南部一线较为明显,该方向的节理是透入性节理,由石门沿南至秭归所出露的岩层均发育,只是在发育规模上有一定的差异性。④ NW向节理(135°±16°)。研究区的西南侧较为发育,如鹤峰-龙山背斜西南段、咸丰背斜,其他区域相对不发育。整体呈现剪切节理的特征。⑤ NNW向节理(340°±13°)。所观测的地层点均可见,该组节理发育时间相对较晚,在早期裂缝未被充填的区域,其发育方向被早期裂缝限制(白云岩中); 在早期裂缝被方解石充填的区域,该组节理切割早期形成的裂缝(碳酸盐岩层中)。

  • 经过野外的观测可以发现NNE、EW、NNW和NW向节理面平直,节理面还有较为明显的擦痕,结合节理之间的交切及相互之间的关系,可以判断NNE向与EW向是一组共轭剪节理; NNW向与NW向剪节理呈共轭关系。NE向节理延伸的范围较为有限,且节理面相对粗糙,为张节理。在北东构造和北西构造带交汇部位节理走向较为复杂,如桑植复向斜西段和长阳背斜的西北段节理统计发现各个方向的节理均发育,不同期次的构造叠加,对节理发育和改造有较大的影响。

  • II节理对古应力方向的指示:同期配套的节理与其所受的主应力的方位存在一定的几何关系:一对共轭剪节理的交线平行于中间主应力轴σ2的方位; 一般情况下,共轭剪节理的锐角等分线平行于最大主应力轴σ1的方向; 共轭节理的钝角等分线平行于最小主应力轴σ3的方向。依据该原理我们对共轭节理数据进行处理分析。计算结果显示,研究区最大主应力优势方向呈NW向发散状,反映来自江南-雪峰SE—NW向的持续挤压,由于黔中隆起和大别山的阻挡作用对湘鄂西应力迹线分布产生一定的影响,呈现较为明显旋转变化特点。由东至西(东山峰-丰都)最大主应力σ1方向由154°逐渐减小变为134°,直至减小到101°,说明由东至西最大主应力σ1由NW逐渐向近EW方向偏转。由南至北(东山峰-长阳)最大主应力σ1由154°逐渐增大变为174°,直至增大到183°,说明由南至北最大主应力σ1方向由NW逐渐向SN方向偏转,直到黄陵隆起南段偏转为近NE向。较为典型的就是长阳背斜最大主应力σ1方向为23°~26°(表1)。主要是江南-雪峰NW挤压扩展至黄陵隆起南端,由于黄陵隆起的阻挡致使作用力反冲,导致长阳背斜最大主应力方向为NE方向,但主要作用力仍是向NW扩展过程中最大主应力偏转,局部应力被扰动所致。

  • 图6 湘鄂西早期弧形构造特征

  • Fig.6 Early arc structure characteristics in western Hunan and Hubei

  • 图7 湘鄂西节理组及相互关系

  • Fig.7 Relations of joint sets in western Hunan and Hubei

  • (a)—NNE向节理(聂家河);(b)—NE张节理(贺家坪);(c)—NE向节理(秀峰镇);(d)—晚期节理切割早期节理(宜都);(e)—NNW与NW共轭节理(五里)

  • (a) —NNE joint (Niejiahe) ; (b) —NE tension joint (Hejiaping) ; (c) —NE joint (Xiufeng Town) ; (d) —late joint cutting early joint (Yidu) ; (e) —NNW and NW conjugated joint (Wu Li)

  • 表1 湘鄂西东南缘共轭节理构造应力分析统计表

  • Table1 Analysis of structural stress referred to conjugate shear joints in the southeastern margin of western Hunan and Hubei

  • III断面擦痕对古应力方向的指示:Arthad(1969)提出根据断层面法线和擦痕确定的平面确定主应力方位。研究区内断面多表现压性结构面特征,并在结构面、以及滑抹晶体上表现出多期擦痕,这些擦痕是断层多期活动的直接证据。通过对研究区内大量的主干和次一级断层擦痕的测量,可以较好地恢复不同时期构造应力的主要方向。由东至西、由南至北湘鄂西擦痕大圆图反映出最大主压应力方向呈现一定程度的偏转。由南至北,慈利桑木桥镇三叠系灰岩中擦痕数据解析显示最大主应力方向为149°,往北发育于宜都-石门之间仁和坪、水岩屋等构造擦痕数据解析最大主应力方向为188°,直到黄陵背斜西南侧的擦痕数据解析最大主应力方向为19°(主要是黄陵隆起阻挡致使反冲所致)。由东至西,桑植县三叠系灰岩中擦痕数据解析最大主应力方向为126°,往西发育于彭水桑柘坪背斜擦痕数据解析最大主应力方向为85°(表2、图9)。随江南-雪峰运动向NW扩展,东侧应力场方向由NNW逐渐偏转为NE,西侧应力场方向由NW逐渐偏转为EW。

  • 表2 湘鄂西东南缘断面擦痕及应力分析统计表

  • Table2 Stress field analysis of slickenlines on fault plane in the southeastern margin of western Hunan and Hubei

  • 根据节理和擦痕解析的最大主应力方向,绘制了早期弧形构造的最大主应力迹线。结果显示:最大主应力呈弧形发散状,常德-长阳与张家界-黔江最大主应力方向相差将近114°(图10)。越靠近黄陵隆起,最大主应力迹线偏转程度越高,同时该时期应力场迹线并未越过建始-彭水断裂。发散性的构造应力场,造就了研究区内NE、NEE、NWW、近EW向构造的格局。Han Yulin(2009)通过褶皱白垩纪重磁化组分分析认为,研究区弧形褶皱轴向的差异是构造形成时期就存在,并不是后期构造旋转所致。

  • 2.2.2 晚期弧

  • 弧形特征:依据地表构造及弧形向西扩展构造特征,在湘鄂西西缘和川东识别出晚期弧。与早期弧不同的是,笔者将晚期弧划分为两幕:一幕未越过齐岳山断裂; 二幕则未越过华蓥山(图11)。

  • 晚期弧一幕与早期弧类似,晚期弧依旧由弧形的复背斜、复向斜相间发育。由武陵山断裂(新华-鹤峰-吉首断裂)→齐岳山断裂所卷入的地层是越来越新,同时复背、向斜的格局清楚,但相较早期弧形构造则稍显逊色。武陵山断裂(新华-鹤峰-酉阳断裂)以西地表出露岩层以古生界和中生界为主,为一个晚期弧形向斜,该段弧形背斜是在改造早期弧形基础上所发育的,被该段弧所改造的早期弧南部位于早期弧的中带,而北部位于早期弧的锋带,由此导致早期弧南部明显被晚期弧改造,而北部改造程度相对低些,中生界出露主要在北部,而古生界出露主要在南部。晚期弧形向斜往西,则发育一个晚期弧形背斜,出露以古生界为主,多出露奥陶系—志留系,南部可见寒武系。该晚期弧形背斜强烈改造早期弧形构造,由于弧形构造位于湘鄂西中北部,导致晚期弧改造早期弧程度高,虽然仍表现为由北至南出露老地层越来越多,新地层越来越少。再往西则呈现晚期弧形向斜,主要出露中生界,同样呈现由北至南,出露地层由新逐渐变老,但其南部仍有一些中生界出露。整个晚期弧并未越过齐岳山。

  • 图8 湘鄂西早期弧形构造节理应力方向分析

  • Fig.8 Analysis of structural stress direction referred to conjugate shear joints of the early arc structure in western Hunan and Hubei

  • 图9 湘鄂西早期弧擦痕构造应力场方向分析

  • Fig.9 Analysis of the tectonic stress field refered to slickenlines of the early arc structure in western Hunan and Hubei

  • 与一幕相比,晚期弧二幕所展现的弧度更大,弯曲程度高,单个背斜影响的范围极为有限,底部的滑脱层也是逐渐变新、变浅。晚期弧二幕影响范围主要集中于川东区域,并未越过华蓥山。按照地层变形程度强弱,将整个晚期弧形构造划分为根带、中带和锋带。根带大部分区域发育雪峰构造带西缘的桑植-石门复向斜、鹤峰-龙山复背斜; 中带主要集中于根带以西至齐岳山东侧区域。比较典型的金佛山背斜就发育在该带,主要受弧形构造影响,同时受齐岳山断裂、南川-遵义-平坝断裂的限制,造就了金佛山平缓菱形构造格局。锋带主要为川东高陡背斜区,整个锋带受华蓥山断裂控制,向西终止于华蓥山断裂。

  • 图10 湘鄂西早期弧形构造最大主应力迹线

  • Fig.10 Maximum principal stress trace of the early arc structure in western Hunan and Hubei

  • 图11 湘鄂西地区及周缘晚期弧形构造特征

  • Fig.11 Late arc structure features in the western Hunan, Hubei and their periphery

  • 晚期弧形构造的两端约束点主要是:黔中隆起和大巴山,次要约束点为黄陵隆起。

  • 晚期弧的弧顶扩展方向,应该是变形程度最高的区域,导致整个地层抬升程度也较高,因此剥蚀厚度较大,出露岩层较老,依据该规则,将出露最老地层连线,获得晚期弧形构造扩展方向。研究区出露最老地层为张家界周缘元古宇、石柱万宝老厂坪背斜所出露的元古宇以及华蓥山所出露中上寒武统,将三套出露最老岩层的背斜做平行线,并在此基础上连接垂直,就可以获得早期弧弧顶扩展方向,为NW296°。由于晚期弧划分为两幕:一幕启动断裂是武陵山断裂(新华-鹤峰-酉阳断裂),受到黄陵隆起和黔中隆起的约束,并且受到深大断裂南川-遵义-平坝走滑断裂和齐岳山断裂的影响; 二幕启动断裂是齐岳山断裂,受到大巴山构造带和黔中隆起影响,并且受到深大断裂华蓥山断裂的制约。

  • 力学特征:I节理对古应力方向的指示:同理,笔者对新华-鹤峰-吉首以西区域的节理进行构造应力场解析,获得了晚期弧最大主应力方向。结果显示,晚期弧形构造最大主应力优势方向呈NWW向发散状,来自江南-雪峰SE—NW向的挤压应力方向均值有一定程度的调整,左旋了约34°。由于黔中隆起和大巴山的阻挡作用,以及中下三叠统膏盐解耦的作用,形成较为明显的弧形构造,尤其是川东格外醒目。由东至西(清坪-白涛)最大主应力σ1方向由134°逐渐减小变为101°,直至减小到70°,说明由东至西最大主应力σ1由NW逐渐向近EW方向偏转。由南至北(恩施-奉节)最大主应力σ1由135°逐渐增大变为143°,直至增大到155°,说明由南至北最大主应力σ1方向由NW相对较为稳定,向北西直接收敛到大巴山。较为典型的就是齐岳山背斜北段最大主应力σ1方向为142°~155°(表3,图12)。主要是江南-雪峰NW挤压扩展强度变弱,北部构造形态被大巴山所限制,而南部则主要是黔中隆起的阻挡以及早期就存在的近南北向断层(南川-遵义断层)在NW方向挤压作用下左行滑动影响所致。

  • 表3 湘鄂西西北缘共轭节理构造应力分析统计表

  • Table3 Analysis of structural stress referred to conjugate shear joints in the northwestern margin of western Hunan and Hubei

  • II断面擦痕对古应力方向的指示:对新华-鹤峰-吉首以西区域的断面擦痕进行计算。结果显示:研究区西南缘由东至西桑柘坪最大主应力方向为113°,往西至白马镇,最大主应力方向变为91°,偏转约22°,主要受到早期近SN向断裂的影响。由南至北(恩施-奉节)最大主应力σ1由135°逐渐增大变为148°,直至增大到156°,说明由南至北最大主应力σ1方向由NW相对较为稳定。整个擦痕面解析来看,由中部恩施至北部奉节扩展相对稳定,偏转了约20°; 由中部恩施至南部的白马,最大主应力偏转了约45°(表4,图13)。说明早期形成的近南北向断裂对晚期弧形构造形成有一定程度的影响。

  • 根据节理和擦痕解析绘制了晚期弧形构造的最大主应力迹线。结果显示:最大主应力呈弧形发散状,五峰-奉节与酉阳-武隆最大主应力方向相差将近86°(图14)。越靠近黄陵隆起,最大主应力迹线偏转程度越高,同时该时期应力场迹线发育新华-鹤峰-酉阳以西的区域。晚期发散性的最大主应力在新华-鹤峰-酉阳以西的区域对早期弧形构造进行改造,形成了东北侧NE、NEE、EW、NWW、SN构造叠加改造,南西侧NE、SN构造叠加改造局面。

  • 图12 湘鄂西晩期弧形构造节理应力方向分析

  • Fig.12 Analysis of tectonic stress field referred to conjugate shear joints of the later arc structure in western Hunan and Hubei

  • 表4 湘鄂西西北缘断面擦痕及应力分析统计表

  • Table4 Slickenlines and stress analysis statistics of the section on the northwestern margin of the western Hunan and Hubei

  • 图13 湘鄂西晚期弧形构造擦痕应力方向分析

  • Fig.13 Analysis of structural stress direction referred to slickenlines of the later arc structure in western Hunan and Hubei

  • 图14 湘鄂西晚期弧形构造最大主应力迹线

  • Fig.14 Maximum principal stress trace of the late arc structure in western Hunan and Hubei

  • 3 弧形构造带形成时代

  • 3.1 变形地层及接触关系

  • 桑植、石门均有J1微角度不整合于T2之上,以西其他区域表现为J1与T2整合接触。说明印支运动影响仅仅局限于张家界东南侧的区域,湘鄂西并未褶皱变形(图15)。

  • 近东西向的石门任家坊东岳观向斜卷入褶皱变形的最新地层为J2-3gz(中上侏罗统归州组),而K角度不整合之上,可以判断该向斜主要变形为J2-3gz沉积之后,K沉积之前。北东向的黔江冯家坝石门子向斜卷入褶皱变形的最新地层为J2x(中侏罗统下沙溪庙组),而K2z(上白垩统正阳组)角度不整合其上,可以认为该向斜主要变形为J2x之后,K2z沉积之前。北东向的咸丰两河口大集场向斜卷入褶皱变形的最新地层为J2zl(中侏罗统自流井组),而K角度不整合之上,可以认为该向斜主要变形为J2zl沉积之后,K沉积之前。北东向的来凤向斜卷入褶皱变形的最新地层为T2b(中三叠统巴东组),而K角度不整合之上,可以明确该向斜主要变形为T2b沉积之后,K沉积之前。秭归向斜卷入了褶皱变形最新地层为J3p(上侏罗统蓬莱镇组),而K1s(下白垩统石门组)角度不整合之上,因此秭归向斜南北向构造主要变形为J3p沉积之后,K1s沉积之前(图16)。说明湘鄂西构造带形成于J3—K1(燕山中期)。

  • 图15 湘鄂西中上三叠统与上覆地层接触关系

  • Fig.15 Contact relationship between the Middle-Late Triassic and the overlying strata in western Hunan and Hubei

  • 图16 湘鄂西白垩系与下伏地层接触关系

  • Fig.16 The contact relationship between the Cretaceous and the underlying strata in western Hunan and Hubei

  • 开江褶皱带卷入褶皱变形的最新地层为K1,明确褶皱变形发生在早白垩世末或之后。说明川东构造形成K1末期(燕山晚期)。

  • 综上所述,湘鄂西构造带到川东构造带发生构造变形:T3—J1(印支期)构造变形西北缘抵达张家界,并未波及到湘鄂西整个区域。从J3—K1(燕山中期)到K1末期(燕山晚期)才逐渐扩展影响到研究区域。这也决定了两期弧形构造形成的时间:早期弧形成于J3—K1(燕山中期),晚期弧形成于K1末期(燕山晚期)。

  • 3.2 年代学证据

  • 针对湘鄂西构造变形时序问题,Xu Changhai(2010)Mei Lianfu(2010)Wang Ping(2012)Yu Wu(2017)He Wengang(2018)进行了大量的年代学数据分析。数据显示:大致以恩施-咸丰-沿河一线和齐岳山断裂为界,恩施-咸丰-沿河一线东南侧隆升年龄以160~145 Ma为主,齐岳山断裂西北侧隆升年龄以108~60 Ma为主,恩施-咸丰-沿河与齐岳山之间隆升年龄以120~102 Ma为主。说明东南侧构造变形早于西北侧,结合早期弧形构造所卷入地层、不整合关系以及分布范围,明确早期弧形构造所形成的时期应为J3—K1(燕山中期); 晚期弧形构造所形成的时期应为K1末期—K2(燕山晚期)。其中晚期弧形以齐岳山断裂为界,可将晚期弧形构造分为两幕:K1末期(燕山晚期弧形一幕形成)、K2(燕山晚期弧形二幕形成时期)(图17)。

  • 4 讨论

  • 弧形叠加导致面上构造格局差异性:依据前面论述,湘鄂西存在早、晚两期弧形叠加,早、晚两期弧形构造扩展方向分别为330°和296°。两弧叠加过程在研究区内形成了不同叠加效果,尤其是当两期构造叠加角度大于20°时,呈现的效果有很大的不同。研究区北部(尤其五峰地区)当早期弧与晚期弧叠加角度大于20°时,就会将早期弧在北部所形成NWW、近EW、NEE向构造所改造,由于晚期弧在北部所形成的构造为NE向,所以在研究区北部呈现NE向构造切割近EW、NWW向构造的格局,香龙山背斜、长阳背斜、龙坪背斜一带表现极为明显,这主要是弧形构造锋带,构造变形弱,保存的相对完整。在研究区中部早期弧与晚期弧相交的角度小于20°,导致晚期弧对早期弧呈构造加强的效果,呈现为NE向构造加强的特征,也就是NE向构造是在多次构造加强叠加的作用下所呈现的结果。南部则早期弧所形成NE向构造被晚期弧所形成近SN向构造所切割改造。特别是南部处于早期弧的中带,变形强,晚期弧改造作用强,致使弧形构造特征并没有北部强,比较典型的就是近SN向接龙场背斜切割NE向老厂坪背斜,近SN向武隆向斜切割NE向沧沟向斜。西南部则由于古应力方向发生偏转,形成右阶斜列构造发育,这在桑植-石门复向斜内表现的比较清晰。

  • 图17 湘鄂西年代学数据(据Xu Changhai,2010; Mei Lianfu,2010; Wang Ping,2012; He Wengang,2018

  • Fig.17 Thermochronological data in western Hunan and Hubei (after Xu Changhai, 2010; Mei Lianfu, 2010; Wang Ping, 2012; He Wengang, 2018)

  • 弧形扩展造就南北向断裂和北西向断裂形成:弧形构造扩展过程中,在其翼部形成剪切裂缝,与弧形翼部呈20°左右的夹角,并随着弧形扩展的不断加强,剪切裂缝范围也不断扩大。这些剪切裂缝不断延伸,相互连接,并在后期构造改造下形成一条或多条断裂,这些特征国内外的学者已经通过物理模拟还原了这一现象(图18)。湘鄂西南部发育多条近南北向断裂,如胡家园断层、大耳山茶园断层、乌江大千断层等; 东北部发育近北西向断裂,如仙女山断裂。这些断裂均是在早期弧形扩展作用下所形成。

  • 弧形叠加处同一构造带隆升时间不协调:湘鄂西中央复背斜的恩施段与彭水段隆升时间差异较大,按照单一递进扩展的观点,属于同一构造带,受到的应力场作用方式应该相似。这样隆升时间、变形方式、改造程度等几个方面应该相差不大。但同属于中央复背斜的恩施段和彭水段隆升时间差异较大,恩施段隆升时间为154 Ma,而彭水段隆升时间仅为120 Ma相差30 Ma,在同一个构造应力场背景,同一变形带上是很难解释的。而弧形叠加则很好地解决该问题,恩施段可能是早期弧变形的产物,而彭水段这是晚期变形的产物,也可以说恩施段变形以早期弧扩展为主,彭水段变形则以晚期弧扩展为主。

  • 图18 弧形构造翼部剪切断裂扩展过程(据Fossen,2010物理模拟修改)

  • Fig.18 The shear fracture propagation process of the arc structure wing (modified according to the physical simulation of Fossen, 2010)

  • 图19 湘鄂西两期弧形构造的形成

  • Fig.19 Formation of two-stage arc structures in western Hunan and Hubei

  • 应力偏转成因机制:175 Ma时太平洋板块俯冲开始影响整个华南板块,俯冲作用分为两个阶段:168~120 Ma(J3—K1)斜向俯冲、 120 Ma以后正向俯冲,两者近旋转了约80°(Dong Shuwen et al.,2007; Mao Jianren et al.,2014)。在180~120 Ma时,由于太平洋板块斜向俯冲,中国东部则是“燕山期岩浆大爆发”。由于远程效应的影响,湘鄂西受到了330°方向的构造挤压,并在大别山、黔中隆起、黄陵隆起的阻挡下,形成了以桑植-巫山为中线,向两侧发散的早期弧形构造。整个湘鄂西变形程度高,平衡剖面显示缩短率可达22.3%,燕山中期构造活动形成良好圈闭,并聚集油气。120 Ma(K1末期以后)以后太平洋板块俯冲角度发生旋转,太平洋板块正向俯冲,湘鄂西受到了296°方向的构造挤压,并在大巴山、黔中隆起、黄陵隆起的阻挡下,形成了以利川-鹤峰为中线,向两侧发散的晚期弧形构造。变形程度相对较小,平衡剖面显示缩短率为17.9%(图19),改造调整油气聚集。90~60 Ma由于太平洋俯冲板块拆沉回撤,致使湘鄂西处于弱伸展构造背景,不利于油气成藏。35 Ma以来整个湘鄂西整体抬升剥蚀,破坏油气藏。

  • 5 结论

  • (1)构造应力场方向的解析,构造变形所卷入的地层及其接触关系,结合年代学数据的分析认为湘鄂西自燕山中期以来,两期不同方向的弧形扩展变形造就了现今构造格局:燕山中期(J3—K1)早期弧形构造弧顶方向为330°,并向两侧发散状分布,两侧主要约束点为大别山和黔中隆起,次要约束点为黄陵隆起,启动断裂为修水-邵阳断裂; 燕山晚期(K1末期—K2)晚期弧形构造弧顶方向为296°,由于受到齐岳山断裂的影响,晚期弧形构造分成两幕,K1末期(燕山晚期弧形一幕形成)、K2(燕山晚期弧形二幕形成时期)。两端主要约束点为大巴山和黔中隆起,次要约束点黄陵隆起,启动断裂为新华-鹤峰-酉阳断裂。早期弧形构造受太平洋板块斜向俯冲的影响,晚期弧形构造受太平洋正向俯冲的影响。

  • (2)两期弧形构造叠加在湘鄂西形成了不同构造叠加效应,并将其分为四个构造发育区:① NE向构造发育区,② NE、SN构造叠加发育区,③ 右阶斜列构造发育区,④ NE、NWW、EW、NEE向构造叠加发育区。燕山中期早期弧形构造扩展导致了弧形构造两侧小型断裂不断扩展,导致近SN向和NW向走滑形成。燕山中期弧形构造与燕山晚期弧形构造的湘鄂西的叠加较好地解释了湘鄂西中央复背斜恩施段隆升时间较彭水段隆升时间早30 Ma,恩施段是早期弧主控,彭水段是晚期弧主控。

  • 参考文献

    • Cai Liguo, Liu Hefu. 1997. Structural styles and characteristics of fold-thrust belts in Sichuan foreland basin. Petroleum Geology & Experiment, 19(2): 115~120 (in Chinese with English abstract).

    • Cui Kai, Wang Yixuan. 2019. Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China, Journal of Asian Earth Sciences, 176: 244~252.

    • Ding Daogui, Guo Tonglou, Zhai Changbo, Lv Junxiang. 2005. Kink structure in the West Hubei and East Chongqing. Petroleum Geology & Experiment, 27(3): 205~210 (in Chinese with English abstract).

    • Ding Daogui, Liu Guangxiang, Lv Junxiang, Pan Wenlei. 2007. Progressive deformation of Middle Paleozoic margin basins in the Yangtze plate, China. Geological Bulletin of China, 26(9): 1178~1188 (in Chinese with English abstract).

    • Dong Shuwen, Zhang Yueqiao, Long Changxiang, Yang Zhenyu, Ji Qiang, Wang Tao, Hu Jianmin, Chen Xuanhua. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement. Acta Geologica Sinica, 81(11): 1449~1460 (in Chinese with English abstract).

    • Faramarz N, Russell P, Alexander C. 2012. Sensitivity analysis of numerical scaled models of fold-and-thrust belts to granular material cohesion variation and comparison with analog experiments. Tectonophysics, 526-529: 196~206.

    • Han Yulin, Xu Changhai, Zhou Zuyi, Tan Xiaodong. 2009. Paleomagnetism of Jurassic sandstones from Yangtze fold belt and its implications for the fold belt curvature. Chinese Journal of Geophysics, 52(12): 3072~3082 (in Chinese with English abstract).

    • He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in south China: insights from analogue modelling. Journal of Structural Geology, 27(5): 924~931.

    • He Zhiliang, Wang Xinwei, Li Shuangjian, Wo Yujin, Zhou Yan. 2011. Yanshan movement and its influence on petroleum preservation in middle-upper Yangtze region. Petroleum Geology & Experiment, 33(1): 1~11 (in Chinese with English abstract).

    • Hu Zhaoqi, Zhu Guang, Liu Guosheng, Zhang Bilong. 2009. The folding time of the eastern Sichuan Jura-type fold belt: evidence from unconformity. Geological Review, 55(1): 731~741 (in Chinese with English abstract).

    • Hu Zhaoqi, Zhu Guang, Zhang Bilong, Zhang Li. 2010. K-Ar geochronology of the Caledonian event in the Xuefeng uplift. Geological Review, 56(4): 490~500 (in Chinese with English abstract).

    • Jin Chong, Li Sanzhong, Wang Yuejun, Zhang Guowei, Liu Liping, Wang Jian. 2010. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinential composite tectonic system. Oil & Gas Geology, 30(5): 598~607 (in Chinese with English abstract).

    • Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implicatins. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).

    • Li Shuangjian, Yuan Yusong, Sun Wei, Sun Dongsheng, Jin Zhijun. 2016. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan basin. Natural Gas Geoscience, 27(5): 924~931 (in Chinese with English abstract).

    • Li Yanfeng, Qu Guosheng, Zhang Jin. 2007. Developments in research of arcuate structure. Advances in Earth Science, 22(7): 708~715 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic south China. Geology, 35(2): 179~182.

    • Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China: Earth Sciences, 44(12): 2593~2617 (in Chinese with English abstract).

    • Marques F O, Cobbold P R. 2002. Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics, 348: 247~268.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfan. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Shen Chuanbo, Mei Lianfu, Xu Zhenping, Tang Jiguang, Tian Peng. 2007. Fission track thermochronology evidence for Mesozoic—Cenozoic uplifting of Daba mountain, central China. Acta Petrologica Sinica, 23(11): 2901~2910 (in Chinese with English abstract).

    • Sintubin M. 1999. Arcuate fold and cleavage patterns in the southeastern part of the Anglo-Brabant fold belt(Belgium): tectonic implications, 309: 81~97.

    • Song Qingwei, Yan Danping, Jiao Shoutao, Wu Kang, Dong Zhoubin. 2014. The response of compounding process of Dabashan and Xuefengshan thrust belt in J3—K1: the structural styles and formation mechanism of the Zigui fold belt, Western Hubei. Acta Geologica Sinica, 88(8): 1382~1400 (in Chinese with English abstract).

    • Tang Shuangli, Yan Danping, Wang Changliang, Zhang Weicheng. 2011. Deformation process from thick-skinned to thin-skinned thrust in Xuefeng mountain South China: evidence from Sangzhi-Anhua tectonic section. Geoscience, 25(1): 22~30 (in Chinese with English abstract).

    • Tibaldi A, Bonali F L, Russo E, Mariotto F A P. 2018. Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. Journal of Asian Earth Sciences, 156: 226~245.

    • Wang Changliang, Yan Danping, Zhang Bing, Xu Yanbo, Tang Shuangli. 2011. Structural style and deformational characteristics of the thick-skinned thrust belt in the western Xuefeng mountain. Geoscience, 25(6): 1021~1031 (in Chinese with English abstract).

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportaion of eastern Sichuan arcuate fold belt in three dimensions: insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).

    • Xu Changhai, Zhou Zuyi, Chang Yuan, Guillot F. 2010. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: constraints from fission-track and (U-Th)/He thermochronology. Science China: Earth Sciences, 40(12): 1684~1696 (in Chinese with English abstract).

    • Yan Danping, Wang Xinwen, Liu Youyuan. 2000. Analysis of fold style and its formation mechanism in the area of boundary among Sichuan, Hubei and Hunan. Geoscience, 14(1): 37~43 (in Chinese with English abstract).

    • Yan Danping, Qiu Liang, Chen Feng, Li Lin, Zhao Lei, Yang Wenxin, Zhang Yixi. 2018. Structural and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block. Earth Science Frontiers, 25(1): 1~13 (in Chinese with English abstract).

    • Yu Wu, Shen Chuanbo, Yang Chaoqun. 2017. Constraints of fission track dating on the Mesozoic-Cenozoic tectonic-thermal evolution of the Zigui basin. Earth Science Frontiers, 24(3): 116~126 (in Chinese with English abstract).

    • Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).

    • Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. Earth Science, 43(6): 2007~2018 (in Chinese with English abstract).

    • 蔡立国, 刘和甫. 1997. 四川前陆褶皱-冲断带构造样式与特征. 石油实验地质, 19(2): 115~120.

    • 丁道桂, 郭彤楼, 翟常博, 吕俊祥. 2005. 鄂西-渝东区膝折构造. 石油实验地质, 27(3): 205~210.

    • 丁道桂, 刘光祥, 吕俊祥, 潘文蕾. 2007. 扬子板块海相中古生界盆地的递进变形改造. 地质通报, 26(9): 1178~1188.

    • 董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449~1460.

    • 韩玉林, 许长海, 周祖翼, 谈晓东. 2009. 扬子褶皱带侏罗纪砂岩古地磁及其褶皱带弧形弯曲的成因. 地球物理学报, 52(12): 3072~3082.

    • 何志亮, 汪新伟, 李双建, 沃玉进, 周雁. 2011. 中上扬子地区燕山运动及其对油气保存的影响. 石油实验地质, 33(1): 1~11.

    • 胡召齐, 朱光, 刘国生, 张必龙. 2009. 川东“侏罗山式”褶皱带形成时代: 不整合面的证据. 地质论评, 55(1): 731~741.

    • 胡召齐, 朱光, 张必龙, 张力. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490~500.

    • 金宠, 李三忠, 王岳军, 张国伟, 刘丽萍, 王建. 2010. 雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征. 石油与天然气地质, 30(5): 598~607.

    • 李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.

    • 李双建, 袁玉松, 孙炜, 孙东胜, 金之钧. 2016. 四川盆地志留系页岩气超压形成与破坏机理及主控因素. 天然气地球科学, 27(5): 924~931.

    • 李岩峰, 曲国胜, 张进. 2007. 弧形构造研究进展. 地球科学进展, 22(7): 708~715.

    • 毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593~2617.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学——中国地质大学学报, 35(2): 161~174.

    • 沈传波, 梅廉夫, 徐振平, 汤济广, 田鹏. 2007. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901~2910.

    • 宋庆伟, 颜丹平, 焦守涛, 吴钪, 董周宾. 2014. 大巴山与雪峰山逆冲构造带J3—K1复合过程的响应——鄂西秭归褶皱带构造样式与形成机制. 地质学报, 88(8): 1382~1400.

    • 汤双立, 颜丹平, 汪昌亮, 张维宸. 2011. 华南雪峰山薄皮-厚皮构造转换过程: 来自桑植-安化剖面的证据. 现代地质, 25(1): 22~30.

    • 汪昌亮, 颜丹平, 张冰, 许延波, 汤双立. 2011. 雪峰山西部中生代厚皮逆冲推覆构造样式与变形特征研究. 现代地质, 25(6): 1021~1031.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 许长海, 周祖翼, 常远, Guillot Francois. 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684~1696.

    • 颜丹平, 汪新文, 刘友元. 2000. 川鄂湘边区褶皱构造样式及其成因机制分析. 现代地质, 14(1): 37~43.

    • 颜丹平, 邱亮, 陈峰, 李林, 赵磊, 杨文心, 张翼西. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1~13.

    • 余武, 沈传波, 杨超群. 2017. 秭归盆地中新生代构造-热演化的裂变径迹约束. 地学前缘, 24(3): 116~126.

    • 袁玉松, 孙东胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.

    • 邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中-新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.

  • 参考文献

    • Cai Liguo, Liu Hefu. 1997. Structural styles and characteristics of fold-thrust belts in Sichuan foreland basin. Petroleum Geology & Experiment, 19(2): 115~120 (in Chinese with English abstract).

    • Cui Kai, Wang Yixuan. 2019. Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China, Journal of Asian Earth Sciences, 176: 244~252.

    • Ding Daogui, Guo Tonglou, Zhai Changbo, Lv Junxiang. 2005. Kink structure in the West Hubei and East Chongqing. Petroleum Geology & Experiment, 27(3): 205~210 (in Chinese with English abstract).

    • Ding Daogui, Liu Guangxiang, Lv Junxiang, Pan Wenlei. 2007. Progressive deformation of Middle Paleozoic margin basins in the Yangtze plate, China. Geological Bulletin of China, 26(9): 1178~1188 (in Chinese with English abstract).

    • Dong Shuwen, Zhang Yueqiao, Long Changxiang, Yang Zhenyu, Ji Qiang, Wang Tao, Hu Jianmin, Chen Xuanhua. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement. Acta Geologica Sinica, 81(11): 1449~1460 (in Chinese with English abstract).

    • Faramarz N, Russell P, Alexander C. 2012. Sensitivity analysis of numerical scaled models of fold-and-thrust belts to granular material cohesion variation and comparison with analog experiments. Tectonophysics, 526-529: 196~206.

    • Han Yulin, Xu Changhai, Zhou Zuyi, Tan Xiaodong. 2009. Paleomagnetism of Jurassic sandstones from Yangtze fold belt and its implications for the fold belt curvature. Chinese Journal of Geophysics, 52(12): 3072~3082 (in Chinese with English abstract).

    • He Wengang, Zhou Jianxun, Yuan Kang. 2018. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in south China: insights from analogue modelling. Journal of Structural Geology, 27(5): 924~931.

    • He Zhiliang, Wang Xinwei, Li Shuangjian, Wo Yujin, Zhou Yan. 2011. Yanshan movement and its influence on petroleum preservation in middle-upper Yangtze region. Petroleum Geology & Experiment, 33(1): 1~11 (in Chinese with English abstract).

    • Hu Zhaoqi, Zhu Guang, Liu Guosheng, Zhang Bilong. 2009. The folding time of the eastern Sichuan Jura-type fold belt: evidence from unconformity. Geological Review, 55(1): 731~741 (in Chinese with English abstract).

    • Hu Zhaoqi, Zhu Guang, Zhang Bilong, Zhang Li. 2010. K-Ar geochronology of the Caledonian event in the Xuefeng uplift. Geological Review, 56(4): 490~500 (in Chinese with English abstract).

    • Jin Chong, Li Sanzhong, Wang Yuejun, Zhang Guowei, Liu Liping, Wang Jian. 2010. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinential composite tectonic system. Oil & Gas Geology, 30(5): 598~607 (in Chinese with English abstract).

    • Li Shuangjian, Xiao Kaihua, Wang Xinwei, Zhang Rongqiang, Wo Yujin, Zhou Yan, Cai Liguo. 2008. Thermochronology of detrital minerals in the Silurian strata from southern China and its geological implicatins. Acta Geologica Sinica, 82(8): 1068~1076 (in Chinese with English abstract).

    • Li Shuangjian, Yuan Yusong, Sun Wei, Sun Dongsheng, Jin Zhijun. 2016. The formation and destroyment mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan basin. Natural Gas Geoscience, 27(5): 924~931 (in Chinese with English abstract).

    • Li Yanfeng, Qu Guosheng, Zhang Jin. 2007. Developments in research of arcuate structure. Advances in Earth Science, 22(7): 708~715 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300 km wide intracontinental orogen and postorogenic magmatic province in Mesozoic south China. Geology, 35(2): 179~182.

    • Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tectono-magmatic activities in South China: retrospect and prospect. Science China: Earth Sciences, 44(12): 2593~2617 (in Chinese with English abstract).

    • Marques F O, Cobbold P R. 2002. Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics, 348: 247~268.

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfan. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-Eastern Sichuan provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science-Journal of China University of Geosciences, 35(2): 161~174 (in Chinese with English abstract).

    • Shen Chuanbo, Mei Lianfu, Xu Zhenping, Tang Jiguang, Tian Peng. 2007. Fission track thermochronology evidence for Mesozoic—Cenozoic uplifting of Daba mountain, central China. Acta Petrologica Sinica, 23(11): 2901~2910 (in Chinese with English abstract).

    • Sintubin M. 1999. Arcuate fold and cleavage patterns in the southeastern part of the Anglo-Brabant fold belt(Belgium): tectonic implications, 309: 81~97.

    • Song Qingwei, Yan Danping, Jiao Shoutao, Wu Kang, Dong Zhoubin. 2014. The response of compounding process of Dabashan and Xuefengshan thrust belt in J3—K1: the structural styles and formation mechanism of the Zigui fold belt, Western Hubei. Acta Geologica Sinica, 88(8): 1382~1400 (in Chinese with English abstract).

    • Tang Shuangli, Yan Danping, Wang Changliang, Zhang Weicheng. 2011. Deformation process from thick-skinned to thin-skinned thrust in Xuefeng mountain South China: evidence from Sangzhi-Anhua tectonic section. Geoscience, 25(1): 22~30 (in Chinese with English abstract).

    • Tibaldi A, Bonali F L, Russo E, Mariotto F A P. 2018. Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. Journal of Asian Earth Sciences, 156: 226~245.

    • Wang Changliang, Yan Danping, Zhang Bing, Xu Yanbo, Tang Shuangli. 2011. Structural style and deformational characteristics of the thick-skinned thrust belt in the western Xuefeng mountain. Geoscience, 25(6): 1021~1031 (in Chinese with English abstract).

    • Wang Ping, Liu Shaofeng, Gao Tangjun, Wang Kai. 2012. Cretaceous transportaion of eastern Sichuan arcuate fold belt in three dimensions: insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662~1673 (in Chinese with English abstract).

    • Xu Changhai, Zhou Zuyi, Chang Yuan, Guillot F. 2010. Genesis of Daba arcuate structural belt related to adjacent basement upheavals: constraints from fission-track and (U-Th)/He thermochronology. Science China: Earth Sciences, 40(12): 1684~1696 (in Chinese with English abstract).

    • Yan Danping, Wang Xinwen, Liu Youyuan. 2000. Analysis of fold style and its formation mechanism in the area of boundary among Sichuan, Hubei and Hunan. Geoscience, 14(1): 37~43 (in Chinese with English abstract).

    • Yan Danping, Qiu Liang, Chen Feng, Li Lin, Zhao Lei, Yang Wenxin, Zhang Yixi. 2018. Structural and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block. Earth Science Frontiers, 25(1): 1~13 (in Chinese with English abstract).

    • Yu Wu, Shen Chuanbo, Yang Chaoqun. 2017. Constraints of fission track dating on the Mesozoic-Cenozoic tectonic-thermal evolution of the Zigui basin. Earth Science Frontiers, 24(3): 116~126 (in Chinese with English abstract).

    • Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).

    • Zou Yaoyao, Zhang Shulin, Shen Chuanbo, Zhang Xianping, Li Zhiqiang, Yang Chaoqun. 2018. Western Hunan-Hubei fold belt exhumation characteristics and its tectonic implication in Mesozoic-Cenozoic: evidence from apatite fission track. Earth Science, 43(6): 2007~2018 (in Chinese with English abstract).

    • 蔡立国, 刘和甫. 1997. 四川前陆褶皱-冲断带构造样式与特征. 石油实验地质, 19(2): 115~120.

    • 丁道桂, 郭彤楼, 翟常博, 吕俊祥. 2005. 鄂西-渝东区膝折构造. 石油实验地质, 27(3): 205~210.

    • 丁道桂, 刘光祥, 吕俊祥, 潘文蕾. 2007. 扬子板块海相中古生界盆地的递进变形改造. 地质通报, 26(9): 1178~1188.

    • 董树文, 张岳桥, 龙长兴, 杨振宇, 季强, 王涛, 胡建民, 陈宣华. 2007. 中国侏罗纪构造变革与燕山运动新诠释. 地质学报, 81(11): 1449~1460.

    • 韩玉林, 许长海, 周祖翼, 谈晓东. 2009. 扬子褶皱带侏罗纪砂岩古地磁及其褶皱带弧形弯曲的成因. 地球物理学报, 52(12): 3072~3082.

    • 何志亮, 汪新伟, 李双建, 沃玉进, 周雁. 2011. 中上扬子地区燕山运动及其对油气保存的影响. 石油实验地质, 33(1): 1~11.

    • 胡召齐, 朱光, 刘国生, 张必龙. 2009. 川东“侏罗山式”褶皱带形成时代: 不整合面的证据. 地质论评, 55(1): 731~741.

    • 胡召齐, 朱光, 张必龙, 张力. 2010. 雪峰隆起北部加里东事件的K-Ar年代学研究. 地质论评, 56(4): 490~500.

    • 金宠, 李三忠, 王岳军, 张国伟, 刘丽萍, 王建. 2010. 雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征. 石油与天然气地质, 30(5): 598~607.

    • 李双建, 肖开华, 汪新伟, 张荣强, 沃玉进, 周雁, 蔡立国. 2008. 南方志留系碎屑矿物热年代学分析及其地质意义. 地质学报, 82(8): 1068~1076.

    • 李双建, 袁玉松, 孙炜, 孙东胜, 金之钧. 2016. 四川盆地志留系页岩气超压形成与破坏机理及主控因素. 天然气地球科学, 27(5): 924~931.

    • 李岩峰, 曲国胜, 张进. 2007. 弧形构造研究进展. 地球科学进展, 22(7): 708~715.

    • 毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景. 中国科学: 地球科学, 44(12): 2593~2617.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学——中国地质大学学报, 35(2): 161~174.

    • 沈传波, 梅廉夫, 徐振平, 汤济广, 田鹏. 2007. 大巴山中-新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901~2910.

    • 宋庆伟, 颜丹平, 焦守涛, 吴钪, 董周宾. 2014. 大巴山与雪峰山逆冲构造带J3—K1复合过程的响应——鄂西秭归褶皱带构造样式与形成机制. 地质学报, 88(8): 1382~1400.

    • 汤双立, 颜丹平, 汪昌亮, 张维宸. 2011. 华南雪峰山薄皮-厚皮构造转换过程: 来自桑植-安化剖面的证据. 现代地质, 25(1): 22~30.

    • 汪昌亮, 颜丹平, 张冰, 许延波, 汤双立. 2011. 雪峰山西部中生代厚皮逆冲推覆构造样式与变形特征研究. 现代地质, 25(6): 1021~1031.

    • 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662~1673.

    • 许长海, 周祖翼, 常远, Guillot Francois. 2010. 大巴山弧形构造带形成与两侧隆起的关系: FT和(U-Th)/He低温热年代约束. 中国科学: 地球科学, 40(12): 1684~1696.

    • 颜丹平, 汪新文, 刘友元. 2000. 川鄂湘边区褶皱构造样式及其成因机制分析. 现代地质, 14(1): 37~43.

    • 颜丹平, 邱亮, 陈峰, 李林, 赵磊, 杨文心, 张翼西. 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1~13.

    • 余武, 沈传波, 杨超群. 2017. 秭归盆地中新生代构造-热演化的裂变径迹约束. 地学前缘, 24(3): 116~126.

    • 袁玉松, 孙东胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.

    • 邹耀遥, 张树林, 沈传波, 张先平, 李志强, 杨超群. 2018. 湘鄂西褶皱带中-新生代剥蚀特征及其构造指示: 来自磷灰石裂变径迹的证据. 地球科学, 43(6): 2007~2018.