海底峡谷汇流过程对盐底辟响应的定量分析:以墨西哥湾北部陆坡为例
作者:
作者单位:

中国石油大学北京海南研究院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Quantitative Response of Turbidity Current Confluence Processes to Salt Diapirs in Submarine Canyons: A Case Study from the Northern Gulf of Mexico Continental Slope
Author:
Affiliation:

Hainan Institute of China University of Petroleum Beijing,Sanya,Hainan

  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    海底峡谷作为浊流输送陆源沉积物至深水区的重要通道,其头部多个分支峡谷常在地貌和水动力作用下发生汇流,而汇流区域的水动力过程对深水沉积体系的时空演化具有重要影响。现有研究已探讨了海底峡谷汇流过程中诸多形态与沉积特征,但对盐底辟等构造地貌控制下峡谷汇流的动力学机制仍缺乏深入认识,尤其是对其形态学与水动力学的定量分析。本研究以墨西哥湾北部Dorsey-Sounder峡谷体系为研究对象,结合三维地震数据、峡谷形态识别及水动力定量分析方法,系统揭示了盐底辟构造控制下峡谷汇流过程中的形态演变、水动力响应特征及沉积演化规律。研究结果表明,Dorsey-Sounder峡谷体系中现今主干峡谷由东支峡谷和汇流后峡谷组成,其汇流点自冲坑处向东南方向迁移约1 km,形成显著的喇叭状加宽加深形态。盐底辟作为主要构造地貌控制了峡谷汇流演化过程:平面展布上通过构造改向约束峡谷路径并决定汇流区域;垂向剖面上增强限制性而促进峡谷下切侵蚀;时空演化上则通过盐底辟差异生长速率来控制汇流点的迁移。本研究首次系统阐明了盐底辟活动区海底峡谷汇流的三维水动力学过程与形态演化机制,为相关盆地的深水沉积体系预测与油气勘探提供了新的理论依据。

    Abstract:

    Objectives: Quantitative analysis of submarine canyon confluence processes in salt diapir-affected regions is critical for understanding deep-water sedimentary systems, yet the three-dimensional hydrodynamic mechanisms and morphodynamic interactions under structural controls remain poorly understood. This study investigates the Dorsey-Sounder Canyon System in the northern Gulf of Mexico to systematically reveal the salt diapir-driven three-dimensional morpho-hydrodynamic evolution, sediment partitioning patterns, and associated depositional mechanisms. Methods: Integrated analyses of high-resolution 3D seismic data, automated canyon morphology identification, and hydrodynamic quantitative modeling were combined to reconstruct the spatiotemporal evolution of the canyon confluence zone. Multidisciplinary approaches focused on: (1) quantifying morphological parameters, (2) analyzing flow pathway dynamics through hydraulic modeling, and (3) deciphering erosional-depositional patterns under salt tectonic constraints. Results: The modern trunk canyon comprises an eastern tributary and a post-confluence segment, with the confluence point migrating ~1 km southeastward from the initial scour zone, forming a trumpet-shaped morphology characterized by pronounced widening and deepening. Salt diapirs dominantly controlled the confluence process through three-dimensional mechanisms: (1) Planar structural steering confined canyon pathways and defined the confluence zone; (2) Enhanced vertical confinement promoted incision and erosional amplification; and (3) Differential diapir growth rates governed confluence migration. These processes drove asymmetric sediment partitioning and distinct architectural stacking in the deep-water system. Conclusions: This work establishes the first integrated 3D model of salt diapir-controlled canyon confluence processes, elucidating how salt tectonics regulates sediment routing and reservoir heterogeneity in deep-water settings. The findings provide a predictive framework for analogous salt-affected basins, emphasizing the coupling between structural evolution and sedimentary responses in source-to-sink systems. This advances theoretical foundations for hydrocarbon reservoir prediction in complex deep-water environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:35
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2025-03-11
  • 最后修改日期:2025-04-26
  • 录用日期:2025-05-04