Abstract:Located in the Songpan-Ganzi orogenic belt, the Keeryin ore field is one of the important pegmatitetype lithium ore concentration areas in China. The Dangba deposit is a super-large pegmatite lithium deposit in the ore field. For a long time, it has been considered that the two-mica monzonitic granite in the Keeryin area is the main ore-forming parent rock of lithium mineralized pegmatite in this area. In order to further reveal the evolutionprocess of Dangba pegmatite and the enrichment mechanism of rare metals, mica, a penetrating mineral in granite and pegmatite, was selected as the research object in this paper. Based on previous studies, detailed rock and mineral identification, electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis were carried out. The results show that: ①The mica series in the Keeryin two-mica monzonitic granite and Dangba pegmatite show the evolution trend of muscovite → iron-lithium mica → lithium mica, and 4AlTot?3SiIV+□VI and 3LiVI?AlVI+2□VI are the dominant substitution mechanism of this process; ② The muscovite series in the Keeryin two-mica monzonitic granite and Dangba pegmatite show theevolution trend of muscovite → iron-lithium mica→ lithium mica.The high degree of crystallization differentiation process of Dangba pegmatite, the initial melt rich in Li and the late fluid relatively poor in F, and the relatively weak scale of fluid action are of great significance for lithium mineralization.