投影卷积神经网络固、液相钾盐矿层预测
作者:
基金项目:

本文为国家重点研发计划项目(编号 2023YFC2906505)资助的成果


Prediction of solid and liquid phase potash reservoirs with projected convolutional neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    四川盆地钾盐资源储量大,因此对钾盐资源分布的勘探评价尤为重要。钾盐在地层中有卤水和新型杂卤石两种赋存形式,其中新型杂卤石是固相形式,而卤水以液相形式存在,易开采,是优质钾盐矿层。由于钾盐含量与地震响应之间没有直接关系,无法建立明确的特征方程,所以目前对钾盐矿层的地震勘探认识仍局限于地震反射特征的分析,缺乏钾盐表征的有效技术手段。为此,本文以川东北地区地质认识为先验信息,构建具有投影变换层的卷积神经网络,挖掘地震数据与钾盐矿层之间的关系,获得钾盐矿层表征特征参数,对钾盐矿层进行预测。在钾盐矿层表征的基础上,通过分析钾盐含量曲线和电阻率曲线,发现卤水矿层具有钾盐含量高、电阻率低的特点,而新型杂卤石矿层不仅钾盐含量高,电阻率也高。因此,进一步基于投影变换卷积神经网络,获得目标层段电阻率数据体。这样,由投影变换卷积神经网络预测的钾盐含量和电阻率两个数据体,划分出目标地区卤水和新型杂卤石矿层的发育位置。

    Abstract:

    The Sichuan basin holds large potash reserves, making the exploration and evaluation of these resources crucial. Potash exists in two subsurface forms: potassium brine and new polyhalite. Potassium brine is a liquid, high- quality reservoir that is easy to mine. while new polyhalite is a solid form. Due to the lack of a direct relationship between potash reservoirs and seismic data, establishing definitive characteristic equations cannot be built. Therefore, current potash reservoir interpretation relies primarily on analyzing seismic reflection characteristics, lacking specialized prediction technologies. To address this limitation, we propose a convolutional neural network (CNN) incorporating a projection layer, using geological knowledge as prior information. This projected CNN is utilized to obtain characteristic parameters for potash reservoirs. By analyzing potash content and resistivity logs derived from the CNN, we observe distinct characteristics: potassium brine layers exhibit high potash content and low resistivity, while new polyhalite layers display high potash content and high resistivity. Therefore, by comparing predicted potash content and resistivity data from the projected CNN, we can effectively delineate the spatial locations of potassium brine and new polyhalite reservoirs.

    参考文献
    相似文献
    引证文献
引用本文

慎国强,朱磊,王希萍,张繁昌,葛星,王雅倜.2024.投影卷积神经网络固、液相钾盐矿层预测[J].地质学报,98(10):2946-2955.
SHEN Guoqiang, ZHU Lei, WANG Xiping, ZHANG Fanchang, GE Xing, WANG Yati.2024. Prediction of solid and liquid phase potash reservoirs with projected convolutional neural network[J]. Acta Geologica Sinica,98(10):2946-2955.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-23
  • 最后修改日期:2024-07-24
  • 录用日期:2024-07-25
  • 在线发布日期: 2024-10-21