VELSD1.0:面向深度学习的长白山火山喷发地貌遥感数据集
DOI:
作者:
作者单位:

1.上海大学;2.吉林省长白山天池火山监测站;3.上海工程技术大学;4.中国地震局地质研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市自然科学(22ZR1423200),吉林长白山火山国家野外科学观测研究站课题(NORSCBS23-02),国家重点研发计划项目(2021YFC3101604)资助.


VELSD1.0: a volcanic eruption landform dataset based on remote sensing image for Changbaishan area with deep learning
Author:
Affiliation:

1.SHANGHAI UNIVERSITY;2.Changbai Mountain Tianchi Volcano Observatory;3.Shanghai University of Engineering Science;4.Institute of Geology, China Earthquake Administration

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为保存最完整的多成因复合活火山之一,长白山火山喷发地貌场景中的地表覆盖类型广泛发育且遥感解译标签清晰。目前,遥感数据集是利用深度学习进行大区域火山喷发地貌场景遥感分类的数据基础。本文以哨兵2(Sentinel-2)遥感图像为数据源,结合地质资料和野外调查建立了一个面向深度学习分类的长白山火山喷发地貌遥感数据集(VELSD 1.0)。该数据集中地表覆盖类型包含高植被覆盖、中植被覆盖、低植被覆盖、裸露土壤、玄武岩、粗面岩、混合岩、水体、阴影、人工景观,组成元素包括遥感图像、标签数据、解译标签及说明文件;覆盖范围约2500 km2,共计40000个样本;单张样本图像尺寸为25像元×25像元,空间分辨率为10 m。利用经典的卷积神经网络(GoogLeNet、ResNet)和Transformer(Vision Transformer、Swin Transformer)模型对构建VELSD 1.0数据集进行了验证和分析。结果表明,本数据集对深度学习模型具有良好地适用性和可迁移性,总体分类准确度、Kappa系数和多类平均精度分别达到82.93%、75.64%和84.22%。可为其他火山喷发地貌深度学习分类提供借鉴,提升火山地貌遥感调查的信息化和智能化。

    Abstract:

    As one of the most well preserved polygenetic composite active volcanoes, the surface cover types in the Changbaishan Mountain volcanic eruption landform scene are widely developed and the interpretation labels in remote sensing image are clear. The remote sensing dataset is currently an important data foundation for large range volcanic eruption landform classification based on deep learning methods from remote sensing image. In this paper, a volcanic eruption landform scene dataset (VELSD 1.0) from Sentinel-2 remote sensing image for deep learning classification in Changbaishan Mountain, China is presented in combination with geological data and field investigations. In the dataset, it includes ten kinds of surfacec over types (i.e., high vegetation coverage, middle vegetation coverage, low vegetation coverage, exposed soil, basaltic rocks, trachytic rocks, mixed rocks of trachyte and pumice, water, shadow, and artificial landscape) as well as three constituent elements (i.e., remote sensing image, labeled data, interpreted label and explanatory file). Covering an area of 2500 km2, the dataset has approximately 40000 sample images of volcanic eruption landform which the image size of each sample is 25 pixels×25 pixels and the spatial resolution is 10 m. The classical convolutional neural networks (e.g., GoogLeNet, ResNet) and Transformer-based (e.g., Vision Transformer, Swin Transformer) deep learning models are used to validate and analyze the proposed VELSD 1.0 dataset. The experiments show that the proposed dataset has good applicability and transferability for deep learning models, and the overall classification accuracy (OA), Kappa coefficient (KC), and mean average precision (mAP) reached 82.93%, 75.64%, and 84.22%, respectively. It can effectively support the deep learning classification of other volcanic eruption landform scene from remote sensing image, and improve the informatization and intellectualization of remote sensing surveys for volcanic landform.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-18
  • 最后修改日期:2024-04-07
  • 录用日期:2024-04-08
  • 在线发布日期:
  • 出版日期: