Abstract:The Daliang uranium deposit is located in the Motianling pluton, northern Guangxi Province. It represents the oldest uranium deposit that related to granitoid in South China. Recent studies indicate that the Daliang uranium deposit exhibits distinct characteristics from typical hydrothermal uranium deposits related to the Mesozoic granites in South China, suggesting the possibility of a different deposit genetic type. The elemental chemistry and isotopic compositions of pitchblende are favorable tools for determining the mineralization age and exploring the deposit genesis type. Therefore, based on previous research, this study conducts the chemical composition and isotopic dating of pitchblende to determine the mineralization age and genesis type of the Daliang uranium deposit. The research results demonstrate that the pitchblende in the Daliang deposit exhibits features such as insignificant fractionation between LREE and HREE with weak negative Eu anomaly, which are similar to typical pitchblende in synmetamorphic uranium deposits. Using EMPA U-Th-Pb chemical dating and LA-ICP-MS U-Pb isotopic dating, the mineralization ages of the Daliang uranium deposit are determined to be 378 Ma and 376±4 Ma (MSWD=0.62), respectively, coupled with regional ductile deformation events, indicating that the deposit formed during the Late Devonian and suggesting a connection to regional ductile deformation. Combining previous studies on the high salinity of the mineralizing fluids in the Daliang uranium deposit (average 19% NaCl equivalent) and the stable isotopic constraints on the fluid source, it can be inferred that the Daliang deposit is likely not a traditional hydrothermal vein-type uranium deposit associated with granite but should be classified as a synmetamorphic uranium deposit. During the process of forward shearing detachment at Motianling during the Devonian period, when the uplifted brittle-ductile shear zone formed in the middle to lower strata reaches shallow depths, the granitic mylonite enters the brittle-ductile deformation zone. The mineralizing fluids extract uranium from the granite and precipitate in the brittle-ductile deformation zone, forming the Daliang metasomatic uranium deposit. This study establishes, for the first time, the presence of synmetamorphic uranium deposits in granites of South China. This implies the potential involvement of different genetic models and processes in the hydrothermal uranium deposits of South China. This finding holds significant importance for future uranium exploration and research in South China and deserves attention.