白钨矿晶体结构及微量元素替代机理
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文为湖南省自然科学青年基金项目(编号2021JJ40722)和国家重点研发计划项目(编号2018YFC0603902)联合资助的成果


Crystal structure characteristics and substitution mechanism of trace elements in scheelite
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    白钨矿是钨矿床中主要的载钨矿物,其独特的晶体结构使其富含微量元素,被广泛用于示踪钨成矿过程与流体源区。本文对南岭地区氧化型矽卡岩、还原型矽卡岩、黑钨矿- 石英脉型、白钨矿- 石英脉型、(矽卡岩- )云英岩型、(石英脉- )云英岩型钨矿床中白钨矿开展矿物组合和X- 射线单晶衍射分析,实验结果显示:① 白钨矿晶体结构存在一定差异,矽卡岩型钨矿中白钨矿Ca- O键长变化较大(0. 0043 nm),石英脉型钨矿中白钨矿次之(0. 0035 nm),云英岩型钨矿中白钨矿最小(0. 0034 nm);② Ca- O键长的差异对最优替代稀土元素影响较大,氧化型矽卡岩钨矿中白钨矿从成矿早期到晚期,最优替代稀土元素从Pr- Nd(进变质阶段)、Pr- Sm(退变质阶段)转变为Nd- Sm(石英- 方解石- 萤石阶段),而(石英脉- )云英岩型钨矿中白钨矿呈现以Sm3+为中心(Nd- Gd)的最优替代元素;③ 矽卡岩型和云英岩型钨矿中白钨矿,稀土元素主要通过Nb5+耦合替代和空位替代进入白钨矿晶格,石英脉型钨矿的白钨矿中,稀土元素主要通过空位替代和Na+耦合替代进入白钨矿晶格。此外,岩浆流体中稀土特征、共生矿物沉淀、氧化还原环境、外来流体加入、水岩交代作用等对白钨矿中微量元素替代与稀土元素配分型式也具有较大影响。综合分析认为,矽卡岩型钨矿中白钨矿稀土元素配分型式主要受石榴子石等共生矿物沉淀控制,(矽卡岩- )云英岩型钨矿中白钨矿主要继承了岩浆流体的稀土元素配分型式,(石英脉- )云英岩型钨矿中白钨矿稀土元素配分型式主要受晶体结构影响,石英脉型钨矿中白钨矿经历了多阶段流体演化,稀土元素配分型式显示凸起—平坦—凹陷的变化。

    Abstract:

    Scheelite is the main W- bearing mineral in tungsten deposits. Its unique crystal structure is enriched in trace elements, and it is widely used to implicate mineralization processes and fluid sources. In this research, the mineral assemblage and single- crystal X- ray diffraction analysis of scheelite from oxidized skarn, reduced skarn, wolframite- quartz vein, scheelite- quartz vein, greisen (- skarn) and greisen (- quartz vein) types W deposits related to granite intrusions in Nanling metallogenic belt are presented. The experimental results show that: ① there are some differences in the scheelite crystal structure. The difference in Ca- O bond length data of scheelite in skarn (0.0043 nm) is greater than that of scheelite in quartz vein (0.0035 nm) and greisen (0.0034 nm); ② the difference in Ca- O bond length has little influence on trace elements substitution, but has a great influence on the optimal substitution of REEs. The scheelite in oxidized skarn is developed in multiple stages, and there is a transition from Pr- Nd (prograde skarn stage) to Pr- Sm (retrograde skarn stage) to Nd- Sm (quartz- calcite- fluorite stage) as the optimal substitution of REEs from early to late. The scheelite in greisen (- quartz vein) type deposit presents the REE distribution pattern of the optimal (Nd- Gd) substitution element centered on Sm3+; ③ in scheelite from skarn type and greisen type deposits, REEs enter scheelite lattice mainly through Nb5+ coupling substitution and vacancy substitution mechanism. In scheelite from quartz vein type deposit, REEs enter scheelite lattice mainly through vacancy substitution and Na+ coupling substitution mechanism. In addition, the characteristics of REEs in the parent fluid, the precipitation of associated minerals, the redox environment, the addition of foreign fluids, and the fluid- rock interaction also have a great impact on the substitution of trace elements in scheelite. After all, the scheelite in skarn type deposit is mainly controlled by the precipitation of garnet and other associated minerals. The scheelite in greisen (- skarn) mainly inherits the REE distribution pattern of magmatic fluid. The crystal structure of scheelite in greisen (- quartz vein) has the greatest impact on REEs. However, the scheelite in quartz vein type deposit underwent the multi- phase hydrothermal fluid evolution, showing the changes of bulge- flat- depression MREE types REE distribution pattern.

    参考文献
    相似文献
    引证文献
引用本文

吴锟言,刘飚.2023.白钨矿晶体结构及微量元素替代机理[J].地质学报,97(10):3314-3325.
WU Kunyan, LIU Biao.2023. Crystal structure characteristics and substitution mechanism of trace elements in scheelite[J]. Acta Geologica Sinica,97(10):3314-3325.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-19
  • 最后修改日期:2023-04-14
  • 录用日期:2023-04-17
  • 在线发布日期: 2023-10-29
  • 出版日期: