Macro-and Microstructural, Textural Fabrics and Deformation Mechanism of Calcite Mylonites from Xar Moron-Changchun Dextral Shear Zone, Northeast China
Author:
Affiliation:

Clc Number:

Fund Project:

This project was financially co-supported by the National Key R&D Program of China (Grant No.2017YFC0601401 and 2017YFC0601300-01) and the National Natural Science Foundation of China (Grant no. 41602211 and 41230206). We acknowledge detailed comments of anonymous reviewers who helped clarify ideas and presentations. We also acknowledge the polishing of the English by Qi Zheng from School of Foreign Language Education, Jilin University.

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric (σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10–7.87 s–1 and 10–11.49 s–1 with differential stresses of 32.63–63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing'an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.

    Reference
    Related
    Cited by
Get Citation

LIANG Chenyue, LIU Yongjiang, ZHENG Changqing, LI Weimin, Franz NEUBAUER, ZHANG Qian.2019. Macro-and Microstructural, Textural Fabrics and Deformation Mechanism of Calcite Mylonites from Xar Moron-Changchun Dextral Shear Zone, Northeast China[J]. Acta Geologica Sinica(),93(5):1477-1499

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 15,2019
  • Revised:August 14,2019
  • Adopted:
  • Online: October 29,2019
  • Published: