Abstract:The variations in source rocks and melting conditions of granites can provide essential clues for the crustal magmatic response in orogenic process. Based on geochronology, whole-rock and mineral chemistry, this paper reveals two different granites in the Northern Qinling migmatite complex, which reveal obvious differences in source region and melting condition. The older granodiorite (402 ± 0.8 Ma) displays typical Na-rich adakite affinity, i.e., high Na2O/K2O (2.04 to 2.64) and Sr/Y (96 to 117) ratios, they have relative evolved isotopic compositions (εNd(t) = ?0.52 to ?0.04; zircon εHf(t) = ?0.06 to +7.78). The younger leucogranite (371 ± 2 Ma) displays higher SiO2 (72.32 to 73.45 wt%), lower (TFeO + MgO + CaO + TiO2) contents (<2 wt%) and depleted Sr-Nd-Hf isotopic compositions (i.e., εNd(t) = +2.6 to +3.0; zircon εHf(t) = +5.94 to +14.12), as well as high 10000 × Ga/Al and TFeO/MgO ratios, indicating that they represent highly fractionated I-type granites that derived from melting of juvenile crust. The variations in source rocks and melting condition of the two granites indicating a tectonic switch from compression to extension in 400 to 370 Ma, this switch is later than that in the eastern section of the North Qinling, indicating a scissor collision process between the South Qinling and North China Craton (NCC) in Devonian era.