Neogene Paleoseismic Events and the Shanwang Biota’s Burial in the Linqu Area, Shandong Province, China
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This work was supported by the National Natural Science Foundation of China (NSFC-41272066) and the Program for Changjiang Scholars & Innovative Research Team of the University of China (IRT-13075). We wish to thank the Institute of Geological Sciences of Shandong Province for the analysis of the contents of trace elements in the seismites.


Neogene Paleoseismic Events and the Shanwang Biota’s Burial in the Linqu Area, Shandong Province, China
Author:
Affiliation:

Fund Project:

This work was supported by the National Natural Science Foundation of China (NSFC-41272066) and the Program for Changjiang Scholars & Innovative Research Team of the University of China (IRT-13075). We wish to thank the Institute of Geological Sciences of Shandong Province for the analysis of the contents of trace elements in the seismites.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Several paleoseismic events are recorded in the Neogene Linqu Group, exposed in the Linqu area, Shandong Province, China. The events were interpreted on the basis of fieldwork and laboratory analysis, which showed the presence of seismites with plastically deformed soft-sediment deformation structures in the Shanwang Formation, and of seismic volcanic rocks in the Yaoshan Formation which show brittle deformation. The earthquake-triggered soft-sediment deformations in the seismites include load structures, ball-and-pillow structures, flame structures, pillow-like beds, boudinage structures, slump folds, syn-depositional faults, veins of liquefied sand, and dikes of liquefied sandy lime-mud. The seismic activity is also reflected in what might be called ‘brittle seismites’; these originated when, under the influence of seismic vibrations, semi-consolidated conglomerate was shattered. Moreover, volcanic activity is related to intense earthquakes that affected basalts intercalated with sand layers; these successions are known as ‘seismic volcanic rocks’, which are characterized by veins of liquefied sand intruding the basalts. All above traces of paleoseismic activity were left from one single time span of 4 Ma with active seismicity that took place 14–10 Ma. This time span is known as ‘the Linqu Neogene Paleoseismic Active Period’, which is divided into four paleoseismic episodes, which were responses to tectonic extension and basin rifting in this area. It even includes the activity of the Yishu Fault Zone during the Miocene and the Neogene. The ratios of trace elements in the seismites, w(La)/w(Sc) and w(La)/w(Th) are higher than the average value of the upper crust, but w(Th)/w(Sc) is lower; this is geochemical evidence for the basin rifting that resulted in a high sedimentation rate. The intense and frequent paleo-earthquakes are held responsible for the rapid burial of the Shanwang Biota. Secondary earthquake-induced processes (e.g. slumping of a lake shore and the strongly increased lacustrine sedimentation rate) contributed to the rapid burial of the biota.

    Abstract:

    Several paleoseismic events are recorded in the Neogene Linqu Group, exposed in the Linqu area, Shandong Province, China. The events were interpreted on the basis of fieldwork and laboratory analysis, which showed the presence of seismites with plastically deformed soft-sediment deformation structures in the Shanwang Formation, and of seismic volcanic rocks in the Yaoshan Formation which show brittle deformation. The earthquake-triggered soft-sediment deformations in the seismites include load structures, ball-and-pillow structures, flame structures, pillow-like beds, boudinage structures, slump folds, syn-depositional faults, veins of liquefied sand, and dikes of liquefied sandy lime-mud. The seismic activity is also reflected in what might be called ‘brittle seismites’; these originated when, under the influence of seismic vibrations, semi-consolidated conglomerate was shattered. Moreover, volcanic activity is related to intense earthquakes that affected basalts intercalated with sand layers; these successions are known as ‘seismic volcanic rocks’, which are characterized by veins of liquefied sand intruding the basalts. All above traces of paleoseismic activity were left from one single time span of 4 Ma with active seismicity that took place 14–10 Ma. This time span is known as ‘the Linqu Neogene Paleoseismic Active Period’, which is divided into four paleoseismic episodes, which were responses to tectonic extension and basin rifting in this area. It even includes the activity of the Yishu Fault Zone during the Miocene and the Neogene. The ratios of trace elements in the seismites, w(La)/w(Sc) and w(La)/w(Th) are higher than the average value of the upper crust, but w(Th)/w(Sc) is lower; this is geochemical evidence for the basin rifting that resulted in a high sedimentation rate. The intense and frequent paleo-earthquakes are held responsible for the rapid burial of the Shanwang Biota. Secondary earthquake-induced processes (e.g. slumping of a lake shore and the strongly increased lacustrine sedimentation rate) contributed to the rapid burial of the biota.

    参考文献
    相似文献
    引证文献
引用本文

TIAN Hongshui, A. J. (Tom) VAN LOON, ZHANG Zengqi, ZHANG Shenhe, ZHANG Banghua, Lü Mingying, LI Fuchang, MA Xuemin.2015. Neogene Paleoseismic Events and the Shanwang Biota’s Burial in the Linqu Area, Shandong Province, China[J]. ACTA GEOLOGICA SINICA(English edition),89(4):1103~1119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-08-11
  • 最后修改日期:2014-12-10
  • 录用日期:
  • 在线发布日期: 2015-08-14
  • 出版日期: