Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This work is granted by the Key Laboratory of Crust-Mantle Evolution and Mineralization, Nanjing University and the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry. This study was supported by the “Researches of tectonics, magmatism evolution, and metallogeny in the Gangdese belt, Tibet” Program of China Geological Survey (1212010818098).


Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    We have determined the ages of the ore-bearing Tinggong porphyries and the Eocene granites using the LA-ICPMS zircon U-Pb method. Zircons from one adamellite porphyry and two diorite porphyries yield ages of 15.54±0.28 Ma, 15.02±0.25 Ma and 14.74±0.22 Ma, respectively. The ages of two granites are 50.48±0.71 Ma and 50.16±0.48 Ma. Light Rare Earth Elements (LREE) are enriched in the ore-bearing adamellite porphyries, which are high-K calc-alkaline and metaluminous, while Heavy Rare Earth Elements (HREE) and Y are strongly depleted, indicating an adakitic affinity. The Large Ion Lithophile Elements (LILE) of the adamellite porphyries are highly enriched, whereas some High Field Strength Elements (HFSE) are depleted. The diorite porphyry in this study is chemically similar to the adamellite porphyries, except that the Mg# of the diorite porphyry is a little higher, demonstrating more mantle contamination. Four samples from different rocks are selected for in situ zircon Hf isotopic analyses. The samples show positive ?Hf(t) values and young Hf model ages, indicating their derivation from juvenile crust. However, the adamellite porphyry and diorite porphyry formed in the Miocene exhibit more heterogeneous Hf isotopic ratios, with lower ?Hf(t) values than the granites formed in the Eocene, suggesting the involvement of old Indian continent crust in their petrogenesis. The geochronology and geochemistry of the adamellite porphyries and the diorite porphyries indicate that they formed from the same source region in a post-collisional environment, but contaminated by crust and mantle materials in different ratios. The metallic minerals formed mainly during the older adamellite porphyry stage, but they were recycled and reactivated by the diorite porphyry intrusion.

    Abstract:

    We have determined the ages of the ore-bearing Tinggong porphyries and the Eocene granites using the LA-ICPMS zircon U-Pb method. Zircons from one adamellite porphyry and two diorite porphyries yield ages of 15.54±0.28 Ma, 15.02±0.25 Ma and 14.74±0.22 Ma, respectively. The ages of two granites are 50.48±0.71 Ma and 50.16±0.48 Ma. Light Rare Earth Elements (LREE) are enriched in the ore-bearing adamellite porphyries, which are high-K calc-alkaline and metaluminous, while Heavy Rare Earth Elements (HREE) and Y are strongly depleted, indicating an adakitic affinity. The Large Ion Lithophile Elements (LILE) of the adamellite porphyries are highly enriched, whereas some High Field Strength Elements (HFSE) are depleted. The diorite porphyry in this study is chemically similar to the adamellite porphyries, except that the Mg# of the diorite porphyry is a little higher, demonstrating more mantle contamination. Four samples from different rocks are selected for in situ zircon Hf isotopic analyses. The samples show positive ?Hf(t) values and young Hf model ages, indicating their derivation from juvenile crust. However, the adamellite porphyry and diorite porphyry formed in the Miocene exhibit more heterogeneous Hf isotopic ratios, with lower ?Hf(t) values than the granites formed in the Eocene, suggesting the involvement of old Indian continent crust in their petrogenesis. The geochronology and geochemistry of the adamellite porphyries and the diorite porphyries indicate that they formed from the same source region in a post-collisional environment, but contaminated by crust and mantle materials in different ratios. The metallic minerals formed mainly during the older adamellite porphyry stage, but they were recycled and reactivated by the diorite porphyry intrusion.

    参考文献
    相似文献
    引证文献
引用本文

CHEN Rui, LIU Yulin, GUO Lishuang, WANG Zhenghua, LIU Hongfei, XU Kaifeng and ZHANG Jinshu.2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet[J]. ACTA GEOLOGICA SINICA(English edition),88(3):780~800

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-27
  • 最后修改日期:2013-12-06
  • 录用日期:
  • 在线发布日期: 2014-06-12
  • 出版日期: