Magmatic Processes of Ashi Volcano, Western Kunlun Mountains, China
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

This work was supported by the Special Fund for China Earthquake Research (Grant No. 201008004) and Special Fund of State Public Institute for Basic Research (Grant No. IGCEA1307 and IGCEA1101).


Magmatic Processes of Ashi Volcano, Western Kunlun Mountains, China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    The Ashikule volcanic cluster (AVC) in western Kunlun Mountains is located in a graben region at the convergence of the Altun and Kangxiwa fault zones, and consists of more than 10 main volcanoes and dozens of volcanelloes. The Ashi volcano lies in the central part of the volcanic cluster. The lithology, chemical composition and texture of Ashi volcanic rocks were studied in detail, and their implication in magmatic processes was discussed. The phenocrysts in Ashi volcanic rocks consist mainly of plagioclase and pyroxene, and the statistical results of phenocryst contents show that the rocks can be subdivided into two groups. In group A, the content of pyroxene phenocrysts is generally higher than that of plagioclase phenocrysts, but an inverse relation occurs in group B. In TAS diagram, the compositions of both groups fall into the trachyandensite field, but they are obviously concentrated into two clusters. The two clusters exist also in the oxide diagrams. The pyroxene phenocrysts comprise augite, bronzite and hypersthene, and their Mg# histogram shows two peaks. Plagioclase phenocrysts with reaction rim are observed in rocks of both groups. The An values of the core are generally 30–40, and those of the rim are 44–48, which are closer to those of euhedral plagioclases. The bronzites are in equilibrium with the melt, and two sets of magma depths, i.e., 18–25 km and 13–18 km, can be estimated by using thermobarometer proposed by Putirka. The hypersthenes are not in equilibrium with the melt, and can be assigned to xenocrysts. The crystal size distribution (CSD) curves of plagioclase appear as kinked lines indicative of magma mixing. The above analyses show that two magma pockets might exist beneath the Ashi volcano. It is likely that they are connected with each other. The one has more evolved and contains more acidic magma, and the other is a trachyandensite magma pocket characterized by layering. The magma from the upper part of the trachyandensite magma pocket might mix with more acidic magma, resulting in a magma that is more acidic than the magma from the lower part.

    Abstract:

    The Ashikule volcanic cluster (AVC) in western Kunlun Mountains is located in a graben region at the convergence of the Altun and Kangxiwa fault zones, and consists of more than 10 main volcanoes and dozens of volcanelloes. The Ashi volcano lies in the central part of the volcanic cluster. The lithology, chemical composition and texture of Ashi volcanic rocks were studied in detail, and their implication in magmatic processes was discussed. The phenocrysts in Ashi volcanic rocks consist mainly of plagioclase and pyroxene, and the statistical results of phenocryst contents show that the rocks can be subdivided into two groups. In group A, the content of pyroxene phenocrysts is generally higher than that of plagioclase phenocrysts, but an inverse relation occurs in group B. In TAS diagram, the compositions of both groups fall into the trachyandensite field, but they are obviously concentrated into two clusters. The two clusters exist also in the oxide diagrams. The pyroxene phenocrysts comprise augite, bronzite and hypersthene, and their Mg# histogram shows two peaks. Plagioclase phenocrysts with reaction rim are observed in rocks of both groups. The An values of the core are generally 30–40, and those of the rim are 44–48, which are closer to those of euhedral plagioclases. The bronzites are in equilibrium with the melt, and two sets of magma depths, i.e., 18–25 km and 13–18 km, can be estimated by using thermobarometer proposed by Putirka. The hypersthenes are not in equilibrium with the melt, and can be assigned to xenocrysts. The crystal size distribution (CSD) curves of plagioclase appear as kinked lines indicative of magma mixing. The above analyses show that two magma pockets might exist beneath the Ashi volcano. It is likely that they are connected with each other. The one has more evolved and contains more acidic magma, and the other is a trachyandensite magma pocket characterized by layering. The magma from the upper part of the trachyandensite magma pocket might mix with more acidic magma, resulting in a magma that is more acidic than the magma from the lower part.

    参考文献
    相似文献
    引证文献
引用本文

YU Hongmei, XU Jiandong, ZHAO Bo, SHEN Huanhuan and LIN Chuanyong.2014. Magmatic Processes of Ashi Volcano, Western Kunlun Mountains, China[J]. ACTA GEOLOGICA SINICA(English edition),88(2):530~543

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-09
  • 最后修改日期:2014-02-09
  • 录用日期:
  • 在线发布日期: 2014-04-21
  • 出版日期: