Stable Carbon Isotope Variations in Cave Percolation Waters and their Implications in Four Caves of Guizhou, China
作者:
基金项目:

The research was funded by National Key Basic Research Development Program (Grant No. 2013CB956700); Orientation Project of Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. kzcx2-yw-306); National Natural Science Foundation of China (Grant Nos. 41003054 and 90202003).


Stable Carbon Isotope Variations in Cave Percolation Waters and their Implications in Four Caves of Guizhou, China
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    Monitoring and sampling of main plants, soil CO2, soil water, bedrock, spring water, drip water and its corresponding speleothem were performed at four cave systems of Guizhou, Southwest China, from April 2003 to May 2004, in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon (DIC) in cave percolation waters (δ13CDIC) and their implications for paleoclimate. Stable carbon isotopic compositions and ions (Ca, Mg, Sr, SO4, Cl etc.) were measured for all samples. The results indicate that there are significant differences among the δ13CDIC values from inter-cave, even inter-drip of intra-cave in the four caves. The δ13CDIC values from the Liangfeng Cave (LFC) is lightest among the four caves, where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value (–29.9‰). And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave (QXC) and Jiangjun Cave (JJC), up to 6.9‰ and 7.8‰, respectively. Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave, but also hydro-geochemical processes. Therefore, accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.

    Abstract:

    Monitoring and sampling of main plants, soil CO2, soil water, bedrock, spring water, drip water and its corresponding speleothem were performed at four cave systems of Guizhou, Southwest China, from April 2003 to May 2004, in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon (DIC) in cave percolation waters (δ13CDIC) and their implications for paleoclimate. Stable carbon isotopic compositions and ions (Ca, Mg, Sr, SO4, Cl etc.) were measured for all samples. The results indicate that there are significant differences among the δ13CDIC values from inter-cave, even inter-drip of intra-cave in the four caves. The δ13CDIC values from the Liangfeng Cave (LFC) is lightest among the four caves, where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value (–29.9‰). And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave (QXC) and Jiangjun Cave (JJC), up to 6.9‰ and 7.8‰, respectively. Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave, but also hydro-geochemical processes. Therefore, accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.

    参考文献
    相似文献
    引证文献
引用本文

LUO Weijun, WANG Shijie, XIE Xingneng, ZHOU Yunchao and LI Tingyu.2013. Stable Carbon Isotope Variations in Cave Percolation Waters and their Implications in Four Caves of Guizhou, China[J]. ACTA GEOLOGICA SINICA(English edition),87(5):1396~1411

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-01-08
  • 最后修改日期:2013-05-10
  • 在线发布日期: 2013-10-11
文章二维码