Geochemical Characteristics and Metallogenesis of the Qingkuangshan Ni-Cu-PGE Mineralized Mafic-Ultramafic Intrusion in Huili County, Sichuan Province, SW China
作者:
基金项目:

The authors thank the two anonymous reviewers for their help in improving the quality of the manuscript. We are also very grateful to the National Research Center, the senior engineer of Zheng Wenqin and Dr Liu Shirong (Institute of Geochemistry, Chinese Academy of Sciences) for their kind help with the lab work. This study was financially supported by the Chinese Academy of Sciences (grant no. KZCX2-YW-Q04-06), the National Key Basic Research Program of China (grant no. 2009CB421005), and the National Science Foundation of China (grant no. 40973039).


Geochemical Characteristics and Metallogenesis of the Qingkuangshan Ni-Cu-PGE Mineralized Mafic-Ultramafic Intrusion in Huili County, Sichuan Province, SW China
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.

    Abstract:

    The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.

    参考文献
    相似文献
    引证文献
引用本文

ZHU Feilin, TAO Yan, HU Ruizhong and MA Yansheng.2012. Geochemical Characteristics and Metallogenesis of the Qingkuangshan Ni-Cu-PGE Mineralized Mafic-Ultramafic Intrusion in Huili County, Sichuan Province, SW China[J]. ACTA GEOLOGICA SINICA(English edition),86(3):590~607

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-02-02
  • 最后修改日期:2011-04-14
文章二维码