Petrological Implication of the Albite Rims in the Felsic Gneisses of the Fuping Complex
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

The research was financially supported by the China Geological Survey (nos. 1212011120129, 1212010811033, and 1212011120152) and the National Natural Science Foundation of China (no. 41072053).


Petrological Implication of the Albite Rims in the Felsic Gneisses of the Fuping Complex
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    The albite rim is present in most felsic gneisses of the Fuping Complex. The presence of the rim indicates the coexistence of plagioclase and K-feldspar in the rock. The rim is formed immediately after the myrmekite, and both textures were derived from the alteration of K-feldspar. The difference is that that there is no quartz present in the rim, and the rim is nearly albite and the anorthite content of the rim plagioclase is substantially lower than that of the myrmekite plagioclase. Formed at 400–500°C the albite rim was derived from the K-feldspar composition adjustment in the late or post-magmatism stage. As the temperature decreased, the equilibrium between K-feldspar and plagioclase could be maintained, and reactions between the minerals occurred. The leucocratic veins in the complex show distinguished magma or migmatitic characteristics. The rim might form in the late magma or deuteric stage. The formation of the rim implies obvious granitic magma- or melt-injection activity. Typical metamorphic rocks cannot produce the rims. Anatexis after medium–high grade metamorphism might be subordinate. If present, the anatexis is water-present, but the rim texture cannot be taken as the symbol of anatexis.

    Abstract:

    The albite rim is present in most felsic gneisses of the Fuping Complex. The presence of the rim indicates the coexistence of plagioclase and K-feldspar in the rock. The rim is formed immediately after the myrmekite, and both textures were derived from the alteration of K-feldspar. The difference is that that there is no quartz present in the rim, and the rim is nearly albite and the anorthite content of the rim plagioclase is substantially lower than that of the myrmekite plagioclase. Formed at 400–500°C the albite rim was derived from the K-feldspar composition adjustment in the late or post-magmatism stage. As the temperature decreased, the equilibrium between K-feldspar and plagioclase could be maintained, and reactions between the minerals occurred. The leucocratic veins in the complex show distinguished magma or migmatitic characteristics. The rim might form in the late magma or deuteric stage. The formation of the rim implies obvious granitic magma- or melt-injection activity. Typical metamorphic rocks cannot produce the rims. Anatexis after medium–high grade metamorphism might be subordinate. If present, the anatexis is water-present, but the rim texture cannot be taken as the symbol of anatexis.

    参考文献
    相似文献
    引证文献
引用本文

REN Liudong*, YANG Chonghui and DU Lilin.2012. Petrological Implication of the Albite Rims in the Felsic Gneisses of the Fuping Complex[J]. ACTA GEOLOGICA SINICA(English edition),86(2):430~439

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-08-14
  • 最后修改日期:2011-05-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期: