Pyrite Surface after ThiobaciUusferrooxidans Leaching at 30℃
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TD951.1

基金项目:

This research was financially supported by the National Natural Science Foundation of China (grant 40573001) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050284043 and No. 20050284044).


Pyrite Surface after ThiobaciUusferrooxidans Leaching at 30℃
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.

    Abstract:

    In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.

    参考文献
    相似文献
    引证文献
引用本文

LU Jianjun LU Xiancai WANG Rucheng LI Juan ZHU Changjian GAO Jianfeng.2006. Pyrite Surface after ThiobaciUusferrooxidans Leaching at 30℃[J]. ACTA GEOLOGICA SINICA(English edition),80(3):451~455

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-02-05
  • 最后修改日期:2006-03-22
  • 录用日期:
  • 在线发布日期:
  • 出版日期: