Experimental Study on Formation Conditions of Ammoniojarosite and Its Environmental Significance
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X751.03

基金项目:

The authors thank Prof. Chen Tianhu and Wang Ning for their constructive reviews of this manuscript. This study was financially supported by the National Key Program for Basic Research of China (No. 2001 CCA02400).


Experimental Study on Formation Conditions of Ammoniojarosite and Its Environmental Significance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Formation conditions of ammoniojarosite in system Fe2(SO4)3-(NH4)2SO4-H2O are investigated in this paper. The results show that ammoniojarosite can be formed rapidly under normal temperature and pressure by controlling suitable pH value and Fe2(SO4)3 and (NH4)2SO4 concentrations. The pH value, temperature and concentration of Fe2(SO4)3 medium are key factors influencing the formation of ammoniojarosite. Under normal temperature, precipitation of ammoniojarosite can be seen within 24 hours at pH values between 2.6-3.1, and a great quantity of ammoniojarosite is formed within 48 hours. At about 90℃, the pH value range forming ammoniojarosite extends to 1.2-3.1, and within this range the rise of pH value is advantageous to the formation of ammoniojarosite and high Fe2(SO4)3 concentration is also advantageous. Relative pure ammoniojarosite is synthesized under high Fe2(SO4)3 concentration (≥0.05 M) and ammoniojarosite containing melanterite and colloid amorphous hydroxide vitriol iron is formed at low Fe2(SO4)3 concentration. The deposition process of ammoniojarosite can be used to harness wastewater from mines and other industries and remove S, Fe and other toxic and harmful elements, such as As, Cr, Hg, Pb in water. Rapid formation of ammoniojarosite and other jarosite analogs under normal temperature and pressure has a good potential prospect for harnessing acid wastewater by means of precipitation of jarosite and its analogs.

    Abstract:

    Formation conditions of ammoniojarosite in system Fe2(SO4)3-(NH4)2SO4-H2O are investigated in this paper. The results show that ammoniojarosite can be formed rapidly under normal temperature and pressure by controlling suitable pH value and Fe2(SO4)3 and (NH4)2SO4 concentrations. The pH value, temperature and concentration of Fe2(SO4)3 medium are key factors influencing the formation of ammoniojarosite. Under normal temperature, precipitation of ammoniojarosite can be seen within 24 hours at pH values between 2.6-3.1, and a great quantity of ammoniojarosite is formed within 48 hours. At about 90℃, the pH value range forming ammoniojarosite extends to 1.2-3.1, and within this range the rise of pH value is advantageous to the formation of ammoniojarosite and high Fe2(SO4)3 concentration is also advantageous. Relative pure ammoniojarosite is synthesized under high Fe2(SO4)3 concentration (≥0.05 M) and ammoniojarosite containing melanterite and colloid amorphous hydroxide vitriol iron is formed at low Fe2(SO4)3 concentration. The deposition process of ammoniojarosite can be used to harness wastewater from mines and other industries and remove S, Fe and other toxic and harmful elements, such as As, Cr, Hg, Pb in water. Rapid formation of ammoniojarosite and other jarosite analogs under normal temperature and pressure has a good potential prospect for harnessing acid wastewater by means of precipitation of jarosite and its analogs.

    参考文献
    相似文献
    引证文献
引用本文

WANG Changqiu MA Shengfeng LU Anhuai ZHOU Jiangong.2006. Experimental Study on Formation Conditions of Ammoniojarosite and Its Environmental Significance[J]. ACTA GEOLOGICA SINICA(English edition),80(2):296~301

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-11-01
  • 最后修改日期:2005-12-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期: