Post-collisional Adakitic Porphyries in Tibet: Geochemical and Sr-Nd-Pb Isotopic Constraints on Partial Melting of Oceanic Lithosphere and Crust-Mantle Interaction
作者:
中图分类号:

P588.1


Post-collisional Adakitic Porphyries in Tibet: Geochemical and Sr-Nd-Pb Isotopic Constraints on Partial Melting of Oceanic Lithosphere and Crust-Mantle Interaction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    The distribution of Neogene felsic porphyries intruding in earlier granitic batholiths was mainly controlled by north-south-tending rifting zones and normal faults. The main rock types of the felsic porphyries include granodiorite-porphyry, monzonitic granite-porphyry and quartz monzonitic porphyry. The porphyries are characterized by high SiO2 ((?)64.26%) and Al2O3 (>15% at 70% SiO2), low Y and HREE (Yb) contents, strong enrichment of LILE and LERR, especially K and ST. Geochemical features of the porphyries show distinct adakitic magma affinity. Nd, Sr and Pb isotopic compositions of the porphyries form a linear alignment from MORB to EM2, suggesting a mixing of the MORB reservoir with the metasomatized mantle reservoir. Considering also the geochemical characteristics of the porphyries and the sequence of observable structural-thermal-magmatic events at Gangdise, it is thought that the Neogene porphyries were formed by partial melting of dead subducted oceanic crust in a post-collision setting. K-enr

    Abstract:

    The distribution of Neogene felsic porphyries intruding in earlier granitic batholiths was mainly controlled by north-south-tending rifting zones and normal faults. The main rock types of the felsic porphyries include granodiorite-porphyry, monzonitic granite-porphyry and quartz monzonitic porphyry. The porphyries are characterized by high SiO2 ((?)64.26%) and Al2O3 (>15% at 70% SiO2), low Y and HREE (Yb) contents, strong enrichment of LILE and LERR, especially K and ST. Geochemical features of the porphyries show distinct adakitic magma affinity. Nd, Sr and Pb isotopic compositions of the porphyries form a linear alignment from MORB to EM2, suggesting a mixing of the MORB reservoir with the metasomatized mantle reservoir. Considering also the geochemical characteristics of the porphyries and the sequence of observable structural-thermal-magmatic events at Gangdise, it is thought that the Neogene porphyries were formed by partial melting of dead subducted oceanic crust in a post-collision setting. K-enrichment in the porphyries is attributed to the interaction of slab-derived melts, i.e., adakites, with the metasomatized mantle during the ascent. There might be a delamination of residual eclogites or amphibole eclogites before the eruption of potassic lava on the Tibetan plateau since 13 Ma.

    参考文献
    相似文献
    引证文献
引用本文

GAO Yongfeng, HOU Zengqian, WEI Ruihua and ZHAO RongshengShijiazhuang College of Economy, Huainan Road, Shijiazhuang, Hebei, E-mail: gao@sina. comInstitute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing Hebei Bureau of Land and Resources, Shijiazhuang, Hebei .2003. Post-collisional Adakitic Porphyries in Tibet: Geochemical and Sr-Nd-Pb Isotopic Constraints on Partial Melting of Oceanic Lithosphere and Crust-Mantle Interaction[J]. ACTA GEOLOGICA SINICA(English edition),77(2):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
文章二维码