The Thermal Structure of the Upper Mantle in Eastern China——Inferred from the Petrological Model

The Thermal Structure of the Upper Mantle in Eastern China——Inferred from the Petrological Model
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencollected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper man-tle represented by the pyroxene geotherm is about 3.3℃ / km, which is much less than that derived from theconductive thermal model (≈14℃ / km), implying the great significance of convective heat transfer. The calcu-lation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively.The perturbation in the thermal structure of the upper mantle is an important manifestation of thetectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based onthe pyroxene geotherm and its comparison with the current geothermal field derived from the measurements ofthe surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The currentgeothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result ofthe tectonothermal disturbance in the Neogene-Quaternary, in other words, the lithosphere has just begun toCool.

    Abstract:

    Cenozoic basalt in eastern China contains abundant ultramafic xenoliths which are specimens of pyrolitesreleased during basaltic magma eruption. A total of 405 P-T data of pyroxene in the ultramafic rocks have beencollected, which present a more precise pyroxene geotherm. The average geothermal gradient in the upper man-tle represented by the pyroxene geotherm is about 3.3℃ / km, which is much less than that derived from theconductive thermal model (≈14℃ / km), implying the great significance of convective heat transfer. The calcu-lation shows that the contributions of convective and conductive heat transfers are 79% and 21%, respectively.The perturbation in the thermal structure of the upper mantle is an important manifestation of thetectonothermal event of Cenozoic continental rifting and intense basaltic volcanism in eastern China. Based onthe pyroxene geotherm and its comparison with the current geothermal field derived from the measurements ofthe surface heat flows, it is suggested that the Moho may be a secondary thermal boundary. The currentgeothermal field and the thermal structure of the lithosphere in eastern China may mainly reflect the result ofthe tectonothermal disturbance in the Neogene-Quaternary, in other words, the lithosphere has just begun toCool.

    参考文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

.1991. The Thermal Structure of the Upper Mantle in Eastern China——Inferred from the Petrological Model[J]. ACTA GEOLOGICA SINICA(English edition),65(2):

复制
分享
文章指标
  • 点击次数:1424
  • 下载次数: 93
  • HTML阅读次数: 0
  • 引用次数: 0
历史
文章二维码