岩性和种植年限对火龙果地土壤碳、氮、磷生态化学计量特征的影响

易芬1,2),邓艳1),洪涛1),谢运球1),吴松3),柯静1)

1) 中国地质科学院岩溶地质研究所,广西岩溶动力学重点实验室/自然资源部岩溶生态系统与石漠化治理重点实验室,广西桂林,541004;2) 中国地质大学(武汉),武汉,430074; 3) 桂林理工大学环境科学与工程学院,广西桂林,541006

内容提要: 以石漠化问题突出区域——广西平果县太平镇耶圩火龙果种植园不同岩性背景(白云岩、碎屑岩)和不同种植年限(1、3、5a)土壤为研究对象,采用相关性分析和冗余分析方法探讨了不同岩性背景和火龙果种植年限下土壤碳、氮、磷生态化学计量特征及其影响因素。结果表明:①白云岩区土壤全磷含量显著高于碎屑岩区,而土壤有机碳含量、生态化学计量比(C/N、C/P和N/P)显著低于碎屑岩区;且白云岩和碎屑岩背景下的生态化学计量比(5.96、11.78、1.96和8.71、19.78、2.28)均远低于全国水平。②随着火龙果种植年限的增加,土壤有机碳、全氮含量和C/N、C/P、N/P呈现出逐渐增加的趋势,而土壤有效氮、全磷和有效磷含量无显著变化规律。随着土层深度增加,土壤有机碳、全氮、有效氮含量和C/N、C/P、N/P均增加,而土壤全磷含量无明显变化规律。③土壤C/N和C/P与有机碳、有效氮均呈显著正相关(P<0.01),而与土壤水分、容重呈显著负相关,土壤N/P与全磷呈显著负相关。④冗余分析表明不同岩性背景和火龙果种植年限下土壤有效氮含量是土壤碳、氮、磷及其生态化学计量比的重要影响因子,且呈显著正相关关系(P<0.01)。白云岩背景下火龙果的生长受到氮元素的影响更大,长期火龙果种植有利于碳、氮元素固存,土壤有效氮含量是影响土壤碳、氮、磷及其生态化学计量比的关键因子。

关键词:岩性;火龙果种植年限;土壤碳氮磷;生态化学计量特征;冗余分析

广西省平果县火龙果种植产业是广西省最大、全国著名的火龙果生产基地(覃世喜,2020)。该区域是典型的大石山区,石漠化问题突出。据2011年广西第二次石漠化监测成果统计,平果县现有岩溶面积156686 hm2,占全县总面积63.03%。石漠化面积达到64575 hm2,占岩溶面积的41.2%(陈颜,2017)。岩溶区石漠化是一种土地退化现象,主要是由人类活动导致的水土流失或漏失、基岩大面积裸露和地表土不连续等问题,生态系统脆弱,严重制约社会经济发展(李瑞和盘礼东,2021)。火龙果耐瘠耐旱、适应性强(刘友接和刘荣章,2018),种植火龙果可以涵养水源、避免水土流失、改善石漠化现象,还能推动区域经济发展(陈颜,2017)。近些年平果县火龙果种植规模不断扩大,不合理的种植和管理技术导致果园土壤退化,不利于火龙果种植业的可持续性发展。

碳、氮、磷是植物生长的必要元素,是土壤养分循环和生态系统循环的关键因子(王绍强和于贵瑞,2008;张晗等,2019)。生态化学计量学以生物学、化学和物理学为基本原理,研究生物系统能量平衡和多重化学元素平衡,为碳、氮、磷等主要元素的地化循环和生态学过程提供了一种新方法(原雅楠等,2020;杨霞等,2021)。土壤碳、氮、磷的化学计量比反映了土壤中限制性元素的含量因此对土壤养分及其化学计量比的研究可以为土地平衡管理和植物生长提供理论依据。目前国内外学者对土壤碳、氮、磷含量及其生态化学计量特征进行了大量研究。张丽敏等(2021)分析了喀斯特地区4种果园(西番莲、猕猴桃、八月瓜、冷饭团)土壤养分含量及生态化学计量特征,研究结果发现不同果园的土壤养分分配不均,应合理施用有机肥。陆炎松等(2021)研究了扁桃区土壤碳、氮、磷生态化学计量特征及其对环境因子的响应,结果表明土壤C/P和N/P主要受到磷的限制,海拔和土壤pH显著影响土壤碳、氮、磷化学计量特征。冀盼盼等(2020)等探究了不同林龄落叶松人工林生态化学计量特征,结果发现落叶松中龄林生长受土壤氮含量限制,而近熟林生长受磷含量限制,幼龄林生长尚未表现出土壤养分亏缺。贺婧等(2020)分析不同种植年限、不同土层深度土壤有机碳、全氮、全磷、全钾含量及其生态化学计量特征,结果表明该地区土壤贫瘠,土壤碳、氮、磷含量均低于全国水平,贺兰山东麓葡萄生长主要受氮的限制。植被种植年限(崔志鹏等,2021)和岩性(杨珊等,2010)对土壤肥力均有较大影响,进而影响火龙果生长。

前人对土壤碳、氮、磷含量及其生态化学计量特征的研究较多,但对不同岩性背景和不同种植年限下碳、氮、磷含量及其生态化学计量特征研究相对较少。本研究以石漠化问题突出的广西平果县为研究对象,分析了白云岩、碎屑岩2种不同岩性背景下火龙果种植年限为1、3、5 a的土壤碳、氮、磷及其生态化学计量特征,为火龙果种植产业区养分受限元素判定、石漠化区生态产业的可持续发展提供科学依据和理论指导。

1 研究地区与研究方法

1.1 研究区概况

研究区位于广西平果县太平镇耶圩火龙果(Hylocereus undulatus Britt)种植园(23°23′34″~23°37′26″N,107°24′41″~107°37′59″E),面积为48 hm2,其中火龙果种植面积约14 hm2,属于亚热带季风气候,夏季高温多雨,冬季温和少雨(图1)。年平均气温为20.0℃,年平均降雨量为 1321.9 mm,年平均积温为8040.0℃。研究区位于太平向斜的东北翼、海城—坡造(龙怀)短轴背斜的西南翼。地层岩性以碳酸盐岩为主,主要出露有石炭系、二叠系、三叠系碳酸盐岩(灰岩、白云岩)。区内土壤为典型的红壤、黄壤,局部(洼地、谷地的低洼处)有黑色、灰色沼泽土、灰白色湖积土。在谷地底部的河流两旁,多形成冲击、洪积砂砾石和黏土、亚粘黏土、亚砂土等。其中,在峰丛洼地石山坡地,土壤层薄,多石漠化;在洼地底部、谷地中,土壤层较厚,尤其在碳酸盐岩与碎屑岩(夹层)交界处低洼处,土壤层厚度甚至可达到5 m以上,为区内农业种植奠定了基础。

图1 平果县太平镇耶圩火龙果种植园采样点分布图
Fig. 1 Distribution map of soil sampling points in Hylocereus undulatus Britt plantation,
Taiping Town, Pingguo County, Guangxi

1.2 试验设计

本研究根据2种不同岩性(白云岩和碎屑岩)及3种不同火龙果种植年限(1、3、5 a)共选取6个样地,基本情况如表1所示。2020年9月,在各个样地随机选取1 m×1 m的样方,用铁锹挖深80 cm土坑,按从下往上的顺序每20 cm采集1个土壤样品,每层采集混合土样约1 kg。采集的样品带回实验室自然风干,去除沙石和根系等杂质后过100目尼龙筛,用于土壤理化性质的测定。表2为岩性含量值,其中岩石总氮采用半微量开氏法测定,硼根据陶瓷熔块釉化学分析方法测定(GB/T 16537-2010),其他指标均采用X射线荧光光谱化学分析——熔铸玻璃片法测定(GB/T 21114-2019)。

表1 广西平果太平镇耶圩火龙果种植园采样地基本信息
Table 1 Basic information of the sample site in Yexu Hylocereus
undulatus Britt plantation, Taiping Town, Pingguo County, Guangxi

采样点编号经纬度种植年限(a)海拔(m)土层厚度(cm)土壤类型岩性B1107°28'5.35″E 23°33'3.58″N140080粉质黏土白云岩B3107°28'3.87″E 23°33'3.92″N339880粉质黏土白云岩B5107°28'2.01″E 23°33'1.91″N540280粉质黏土白云岩S1107°28'9.93″E 23°33'3.52″N140980粉质黏土碎屑岩S3107°28'7.87″E 23°33'4.24″N340280粉质黏土碎屑岩S5107°28'7.36″E 23°33'7.02″N540880粉质黏土碎屑岩

表2 广西平果太平镇耶圩火龙果种植园岩性含量值
Table 2 Lithologic content values of Yexu Hylocereus undulatus Britt plantation,
Taiping Town, Pingguo County

总磷总氮钙镁钾钠铁硅铝硼白云岩(%)0.006<0.0132.925.140.040.0260.150.270.09<0.05碎屑岩(%)0.06<0.010.090.523.410.16.6226.1111.13<0.05

1.3 土壤样品分析

土壤EC、土壤水分现场采用土壤水分温度电导率速测仪(英国Delta-T公司,型号HW07-WET)测定,其他指标均在实验室测定。其中,土壤pH、容重分别采用电位法和环刀法测定;土壤钙、镁含量采用氢氟酸—高氯酸消解法测定;土壤硼含量采用硝酸—过氧化氢—盐酸常压消解,电感耦合等离子体发射光谱法测定;土壤有效硼含量采用沸水浸提—甲亚胺比色法测定;土壤有机碳含量测定采用重铬酸钾氧化—外加热法测定;土壤全氮含量测定采用凯式定氮法测定;有效氮含量采用碱解扩散法测定;土壤全磷含量测定采用钼锑抗比色法测定;有效磷含量采用碳酸氢钠浸提法测定。

1.4 数据分析

运用Microsoft Office Excel 2016 进行数据处理和初步分析;利用 SPSS 17.0 软件进行Pearson相关分析、单因素方差分析及LSD(多重比较);采用Canoco 5.0软件对土壤C/N、C/P、N/P与土壤基本理化性质进行冗余分析(RDA);运用Origin 2018软件进行图表绘制,表中数据表现形式为平均值±标准差,图中数据表现形式为平均值±标准误差。

2 结果和分析

2.1 土壤理化性质特征

对不同岩性土壤样品中各指标进行描述性统计分析(表3),白云岩区土壤pH值、硼和钙含量(5.88、171.5×10-6、0.10‰)显著高于碎屑岩区(4.70、132.7×10-6、0.03‰),而白云岩区土壤有机碳、有效氮含量和C/P值(7.85‰、83.0×10-6、11.78)显著低于碎屑岩区(11.20‰、130.2×10-6、19.78)。另外,白云岩和碎屑岩背景下的土壤水分、pH、容重、钙、镁、硼、有机碳、有效氮、全磷、C/N、C/P和N/P有显著差异(P<0.05)。

表3 广西平果太平镇耶圩火龙果种植园不同岩性背景下土壤理化指标描述性分析
Table 3 Descriptive analysis of soil physical and chemical indexes under different lithological backgrounds in
Yexu Hylocereus undulatus Britt plantation, Taiping Town, Pingguo County

参数土层(cm)成土母质为白云岩成土母质为碎屑岩种植年限1a3a5a平均值±1σ变异系数(CV)种植年限1a3a5a平均值±1σ)变异系数(CV)PEC(ms/m)0~2057.3360.0078.3360.60±13.230.2265.3370.0062.6757.2±11.810.210.51520~4051.3362.3378.6744.6774.6751.0040~6047.6750.0077.0041.6764.3351.0060~8043.3347.3373.3340.0068.3352.33土壤水分(%)0~2032.4726.9744.7039.24±5.380.1426.1729.3329.5732.33±4.090.130.00220~4040.8738.2045.6326.0338.5730.9040~6043.0037.4744.6336.3336.7733.3060~8039.5338.4039.0035.2334.1331.57pH0~205.105.276.625.88±0.770.134.944.824.304.70±0.290.06<0.00120~405.195.347.364.735.054.3240~605.325.636.784.605.184.3360~805.296.126.594.724.824.63容重(g/cm3)0~201.931.851.941.91±0.040.021.741.771.771.82±0.040.02<0.00120~401.891.881.921.891.831.8240~601.881.881.961.831.821.8760~801.901.891.991.841.811.87钙(‰)0~200.050.030.170.10±0.050.510.16<0.01<0.010.03±0.061.910.01020~400.100.180.08<0.010.170.0340~600.050.100.10<0.01<0.010.0160~800.100.050.17<0.010.010.01镁(‰)0~202.802.913.873.29±0.460.142.542.552.912.76±0.20.070.00120~402.903.284.012.562.972.9740~603.023.213.812.442.882.9560~802.763.123.792.632.962.75硼(×10-6)0~20150179171171.5±21.70.13113157149132.7±19.30.15<0.00120~4015815319911012914240~6016116320611414314560~80153156209105124161有效硼(×10-6)0~200.761.471.100.84±0.260.311.721.400.810.92±0.410.450.61920~400.720.511.020.680.750.7040~600.850.580.930.651.630.6260~800.810.610.760.610.640.79有机碳(‰)0~2011.7213.5214.567.85±3.530.4516.4217.0013.4611.20±3.230.290.02420~405.168.297.029.6910.7312.0140~605.037.486.327.319.1112.4760~804.186.504.467.607.8310.85全氮(‰)0~201.491.621.711.27±0.260.201.281.681.361.27±0.150.12120~401.091.231.391.181.281.2140~600.921.281.341.141.281.2660~800.871.181.151.071.191.34有效氮(×10-6)0~20125.0148.0109.083.0±29.970.36164189132130.2±24.750.19<0.00120~4086.775.466.511411112640~6064.566.761.310611013960~8054.286.652.2110129132全磷(‰)0~200.680.790.780.66±0.090.140.610.790.660.57±0.100.170.02820~400.700.610.560.450.560.5840~600.630.640.530.490.600.4960~800.690.780.520.450.610.51有效磷(×10-6)0~205.6014.708.835.97±3.800.6434.2018.6023.908.16±11.051.350.52320~403.732.278.661.701.612.9440~603.862.069.113.743.071.7960~803.952.196.692.562.191.62

参数土层(cm)成土母质为白云岩成土母质为碎屑岩种植年限1a3a5a平均值±1σ变异系数(CV)种植年限1a3a5a平均值±1σ)变异系数(CV)PC/N0~207.868.348.515.96±1.550.2612.8210.129.898.71±1.880.220.00120~404.736.745.058.218.389.9240~605.475.854.726.417.119.9060~804.815.513.887.106.588.09C/P0~2017.3317.0418.7611.78±4.260.3627.0021.5720.4219.78±4.220.21<0.00120~407.4213.6712.4921.4819.0320.7440~608.0311.6612.0414.9515.2825.7160~806.058.358.5317.0012.9421.23N/P0~202.202.042.201.96±0.410.212.112.132.062.28±0.230.100.02920~401.572.032.472.622.272.0940~601.471.992.552.332.152.6060~801.261.522.202.391.972.62

白云岩区土壤各项指标中有效磷的变异系数最大,为0.64,属于中等变异。碎屑岩区土壤各项指标中有效磷和钙的变异系数达到了1.35和1.91,属于强变异。两个岩性土壤中变异系数最小的指标均是容重,为0.02,属于弱变异。

2.2 不同火龙果种植年限土壤理化性质特征

2.2.1 不同火龙果种植年限土壤理化性质的差异

对不同种植年限的土壤理化性质进行单因素方差分析及LSD(多重比较),再采用字母标记法标记不同种植年限间的显著差异性。结果表明(表4),随着种植年限增加,土壤EC、水分、钙、镁、硼、有机碳、全氮含量和C/N、C/P、N/P呈现上升趋势,其中土壤EC、镁、硼、全氮含量和N/P差异性显著(P< 0.05),土壤硼含量的增量最快,平均每年增加9.94%。

2.2.2 不同火龙果种植年限下土壤碳、氮、磷含量剖面变化特征

图2 广西平果县太平镇耶圩火龙果种植园白云岩区、碎屑岩区
不同种植年限下土壤碳、氮、磷含量变化
Fig. 2 Changes of soil C, N and P contents under different planting years in dolostone and
clastic rock areas, Yexu Hylocereus undulatus Britt plantation, Taiping Town, Pingguo County
误差线为标准误差;种植年限为1a、3a、5a的数据两两比较,比较的两组数据中若有一个相同标记

字母即为差异不显著,若标记字母全不相同即为差异显著(P< 0.05). B:白云岩样地; S:碎屑岩样地; 1a:种植年限为1a的样地; 3a:种植年限为3a的样地; 5a:种植年限为5a的样地; B1:种植年限为1a的白云岩样地; B3:种植年限为3a的白云岩样地; B5:种植年限为5a的白云岩样地; S1:种植年限为1a的碎屑岩样地; S3:种植年限为3a的碎屑岩样地; S5:种植年限为5a的碎屑岩样地.下同
The error line is the standard error. The data with planting years of 1a, 3a and 5a are compared in pairs. If there is one same labeled letter in the two groups of data, the difference is insignificant; if there are all different labeled letters, the difference is significant(P< 0.05). B: dolostone land; S: clastic rock land; 1a: land with 1 year planting period; 3a: land with 3 years planting period; 5a: land with 5 years planting period.; B1: dolostone land with 1 year planting period; B3: dolostone land with 3 years planting period; B5: dolostone land with 5 years planting period; S1: clastic rock land with 1 year planting period; S3: clastic rock land with 3 years planting period; S5: clastic rock land with 5 years planting period .The same below

两个岩性背景下的土壤有机碳和全氮含量均随种植年限增加而增加,而全磷含量无显著变化趋势,说明火龙果种植年限的增加有利于土壤碳氮固持,但对全磷含量变化的影响较小。在土壤剖面上,两个岩性背景下土壤有机碳和全氮含量均随土壤土层深度增加而降低,全磷含量无明显变化规律,说明土壤有机碳和全氮有明显的表层聚集现象。

2.2.3 不同火龙果种植年限下土壤有效氮、有效磷
含量剖面变化特征

白云岩和碎屑岩背景下土壤有效氮和有效磷含量均随种植年限增加无显著变化规律(图3)。在土壤剖面上,两个岩性背景下土壤有效氮含量均随土层加深逐渐减小;白云岩区土壤有效磷含量无明显变化规律,碎屑岩区土壤有效磷含量主要积聚在表层,占整个土壤剖面的78.33%。

图3 广西平果县太平镇耶圩火龙果种植园白云岩区、碎屑岩区
不同种植年限下土壤有效氮磷含量变化
Fig. 3 Changes of soil available nitrogen and phosphorus contents under different planting years in dolostone and clastic rock areas, Yexu Hylocereus undulatus Britt plantation, Taiping Town, Pingguo County

表4 广西平果太平镇耶圩火龙果种植园不同种植年限
下土壤理化指标含量

Table 4 Contents of soil physical and chemical indexes under different planting years in Yexu Hylocereus undulatus Britt plantation, Taiping Town, Pingguo County

1a3a5aEC(ms/m)48.92±8.69b62.12±9.51a65.54±12.73a土壤水分(%)34.95±6.39a34.98±4.49a37.41±6.87apH4.99±0.28a5.28±0.43a5.62±1.33a容重(g/cm3)1.86±0.06a1.84±0.04a1.89±0.07a钙(‰)0.06±0.06a0.07±0.07a0.07±0.07a镁(‰)2.71±0.20b2.99±0.23b3.38±0.53a硼(×10-6)133.00±24.41b150.50±18.00ab172.75±28.11a有效硼(×10-6)0.85±0.36a0.95±0.46a0.84±0.16a有机碳(‰)8.39±4.11a10.06±3.56a10.14±3.71a全氮(‰)1.13±0.20b1.34±0.19a1.35±0.17a有效氮(×10-6)103.05±34.87a114.46±40.55a102.25±36.23a全磷(‰)0.59±0.11a0.67±0.10a0.58±0.10a有效磷(×10-6)7.42±10.88a5.84±6.77a7.94±7.19aC/N7.18±2.63a7.33±1.53a7.50±2.55aC/P14.91±7.38a14.94±4.23a17.49±5.82aN/P1.99±0.49b2.01±0.22ab2.35±0.23a

注:数值为平均值±标准差. 同行数据两两比较,比较的两组数据若有一个相同标记字母即为差异不显著,若标记字母全不相同即为差异显著 (P< 0.05).下同。字母标记法:将不同种植年限的均值按大到小排序,然后在最大的平均数上标上字母a;并将该平均数与以下各平均数相比,凡相差不显著的,都标上字母a,直至某一个与之相差显著的平均数,标记字母b;再以该标有b的该平均数为标准,与上方各个比它大的平均数比较,凡不显著的也一律标以字母b;再以标有b的最大平均数为标准,与以下各未标记的平均数比,凡不显著的继续标以字母b,直至遇到某一个与其差异显著的平均数标记c。

Note: The values in the table are mean ± standard deviation. For pairwise comparison of data in the same row, if there is one same labeled letter in the two groups, the difference is insignificant; if there are all different labeled letters, the difference is significant (P<0.05). The same below.Letter marking: Rank the mean values of different planting years from largest to smallest, and then mark the letter a above the largest mean. The mean shall be compared with the following means, and those which do not differ significantly shall be marked with the letter a, until an mean with a significant difference shall be marked with the letter b. The mean marked b is then taken as the standard, and all insignificant means are marked with the letter b when compared with those above. The largest mean marked b is then compared with the following unmarked means, and all insignificant means continue to be marked with the letter b until a marked mean marked c is encountered.

2.2.4 不同火龙果种植年限下土壤生态化学
计量比剖面变化特征

两个岩性背景下的土壤C/N、C/P和N/P均随火龙果种植年限增加逐渐增加,且土壤C/N均值变化范围(7.18~7.50)较小,说明火龙果种植年限对土壤C/N的影响较小。在土壤剖面上,总体说两个岩性背景下的土壤C/N和C/P均随土层增加而减少,土壤N/P无明显变化规律。

2.3 土壤碳、氮、磷含量及其生态化学计量比的Pearson相关系数

由土壤养分指标相关性表明(表5),土壤C/N与有机碳、有效氮和有效磷呈极显著正相关(P<0.01,下同),与全氮呈显著正相关(P<0.05,下同),与土壤水分、pH、容重和硼呈极显著负相关。土壤C/P与有机碳、有效氮呈极显著正相关,与全氮、有效磷呈显著正相关;而与土壤容重、水分呈极显著负相关,与pH和硼呈显著负相关。土壤N/P与全氮呈显著正相关,与全磷呈极显著负相关。

表5 广西平果太平镇耶圩火龙果种植园土壤指标相关性分析
Table 5 Correlation analysis of soil indexes of Yexu Hylocereus undulatus Britt plantation,
Taiping Town, Pingguo County

指标EC水分pH容重钙镁硼有效硼有机碳全氮有效氮全磷有效磷C/NC/PN/PEC1水分0.271pH0.55#0.72#1容重0.120.63#0.70#1钙0.48*0.45*0.54#0.381镁0.64#0.71#0.87#0.68#0.54#1硼0.52#0.52#0.75#0.65#0.34 0.80#1有效硼-0.08-0.42*-0.19-0.10-0.22-0.180.091有机碳0.28-0.63#-0.37-0.56#-0.12-0.28-0.240.45*1全氮0.59#-0.210.18-0.070.010.22-0.280.53#0.75#1有效氮0.05-0.78#-0.61#-0.72#-0.43*-0.58#-0.46*0.380.88#0.55#1全磷0.190.030.18-0.080.150.070.280.360.280.44*0.181有效磷0.36-0.40-0.03-0.49*0.12-0.100.020.230.61#0.400.49*0.321C/N0.06-0.73#-0.58#-0.71#-0.17-0.47*-0.49#0.290.93#0.45*0.87#0.070.58#1C/P0.10-0.68#-0.51*-0.54#-0.23-0.37-0.43*0.250.87#0.49*0.82#-0.210.43*0.93#1N/P0.27-0.22-0.030.05-0.180.10-0.040.070.350.42*0.30-0.63#0.010.310.63#1

注:“*”表示显著相关(P<0.05),“#”表示极显著相关(P<0.01).“*” represented significant correlation(P<0.05),“#” represented extremely significant correlation(P<0.01).

图4 广西平果县太平镇耶圩火龙果种植园白云岩区、碎屑岩区
不同种植年限下土壤生态计量比变化
Fig. 4 Changes of soil ecometric ratio in dolostone and clastic rock areas, Yexu Hylocereus undulatus Britt plantation, Taiping Town, Pingguo County, under different planting years

2.4 土壤碳、氮、磷及其生态化学计量比的影响因素

以土壤碳、氮、磷含量及其生态化学计量比为响应变量,以土壤EC、水分、pH、容重、钙、镁、硼、有效硼、有效氮、有效磷为解释变量,对不同岩性背景和火龙果种植年限分别进行冗余分析(RDA),解释变量对响应变量的解释量越高,该解释变量对响应变量的影响越大。总体数据显示(图5a),引起土壤碳、氮、磷含量及其生态化学计量比的主要影响因素排序为:有效氮>钙>镁,有效氮含量极显著影响土壤碳、氮、磷及其生态化学计量比,解释量达到70.4%。

不同岩性背景下土壤理化性质指标对土壤碳、氮、磷含量及其生态化学计量比的主要影响因素大小排序存在差异,其中,白云岩区为有效氮>EC>硼(图5b),碎屑岩区为有效氮>钙>水分(图5c),两个岩性背景下的有效氮均与土壤碳、氮、磷含量及其生态化学计量比呈极显著正相关,解释量分别为62.7%和49.7%。

不同火龙果种植年限下,土壤碳、氮、磷含量及其生态化学计量比在前两个排序轴解释量均达到了90% 以上。在火龙果种植年限1a、3a和5a下,引起土壤碳、氮、磷含量及其生态化学计量比的主要影响因素排序分别为有效氮>水分>EC(图5d)、有效氮>钙>有效硼(图5e)和有效氮>镁>水分(图5f),不同种植年限下有效氮均与土壤碳、氮、磷含量及其生态化学计量比呈极显著正相关,解释量分别为88.5%、66.6%和90.0%。

图5 广西平果县太平镇耶圩火龙果种植园不同岩性背景、种植年限下土壤碳、氮、磷含量及其生态计量比的冗余分析
Fig. 5 Redundancy analysis of soil C, N, P contents and their ecometric ratios of Yexu Hylocereus undulatus Britt plantation,
Taiping Town, Pingguo County, under different lithologic backgrounds and planting years
(a) 总体数据; (b) 白云岩样地; (c) 碎屑岩样地;(d) 种植年限为1a的样地; (e) 种植年限为3a的样地; (f) 种植年限为5a的样地。 百分数值表示解释量; F表示置换检验统计量; “*”表示显著相关(P<0.05),“**”表示极显著相关(P<0.01)
(a) total date; (b) dolostone land; (c) clastic rock land; (d) land with 1 year planting period; (e) land with 3 years planting period; (f) land with 5 years planting period. Percent values represent the amount of interpretation; F stands for the permutation test statistic;“*” represented significant correlation(P<0.05),“**” represented extremely significant correlation(P<0.01)

3 讨论

3.1 不同岩性对土壤碳、氮、磷含量及其生态化学计量比的影响

不同岩石所含的矿物种类及矿物含量不同,其所提供的养分元素含量差异也会很大,故岩性对土壤养分有较大影响(杨珊等,2010)。一般来说,由于岩溶区土壤中较高的黏土和钙含量,岩溶区有机碳和全氮含量会显著高于非岩溶区(Wang Miaomiao et al.,2018;杨慧等,2017)。本研究中白云岩区土壤有机碳含量显著低于碎屑岩区,全氮含量无差异,而全磷含量显著高于碎屑岩区,这可能是因为白云岩区土壤层相对浅薄,易通过地表径流或地下漏失(张岚峰等,2021),使得土壤碳、氮元素的流失,而富钙偏碱性的白云岩区土壤中钙易与难溶性无机磷生成碱式磷酸钙沉淀,使得土壤磷不易淋失(张素霞,2008)。土壤C/N可以反映有机质的分解状况,是氮素矿化能力的标志(王超等,2021),较低的土壤C/N表明有机质具有较快的矿化作用,土壤有效氮含量较高(张春来等,2020)。土壤C/P也可以反映微生物分解有机质的状况,是磷素释放能力的指标(曾全超等,2016),土壤C/P较低表明土壤磷有效性较高。土壤N/P是可以作为限制氮磷养分判断的重要指标,一般认为当N/P<14时,植物生长受到氮元素的限制;当N/P在14~16时,植物受到氮磷元素共同限制;当N/P>16时,植物受到磷元素的限制(彭佩钦等,2005;刘愿等,2019)。本研究白云岩区土壤的C/N、C/P和N/P(5.96、11.78、1.96)小于碎屑岩区(8.71、19.78、2.28),且远小于全国水平(10~12、61、5.2) (Tian Hanqin et al.,2010;刘愿等,2019;郭其强等,2019),说明在相同气候条件下,白云岩(CaMg(CO3)2)区发育的石灰土氮素矿化和磷素释放能力低于碎屑岩区发育的土壤。土壤有机质的减少和黏土含量的增加是石灰土矿化和硝化速率下降的主要原因(Shan Zhijie et al.,2020)。而土壤磷主要来源于岩石风化,同时受到土壤母质的影响(Wang Wenjie et al.,2011)。白云岩中总磷(0.006%)的含量只有碎屑岩(0.06%)的十分之一,且石灰土土层薄且分布不连续,更容易受到水土流失的威胁。此外,白云岩和碎屑岩区火龙果的生长主要受到氮元素的限制,且白云岩区受到氮元素的影响更大,这可能是因为白云岩区 “跑水、跑肥、跑土”问题严重,施入土壤中的氮肥会经过淋溶、雨水冲刷而流失(张丽敏等,2021)。Shan Zhijie等(2020)也指出长期种植火龙果和砂糖桔等果树会降低岩溶区土壤无机氮供应能力和周转,强调了在岩溶地区长期果树栽培条件下,合理施用有机肥对加速土壤无机氮供应和周转的重要性。

RDA 结果表明,白云岩区与碎屑岩区影响土壤碳、氮、磷含量及其生态化学计量比的主要因素分别为有效氮、EC、硼与有效氮、钙、水分,其中土壤有效氮含量是极显著影响因子。土壤有效氮能被植物根系直接吸收利用,是大部分植物从土壤中获取氮素的主要形态(赵楚等,2021)。因此,在研究区进行火龙果种植管理时,白云岩区应注意施加有效氮和硼肥施用量,碎屑岩区应注意施加有效氮和钙肥施用量,特别是在白云岩区合理调节无机肥与有机肥配施,促进火龙果品质提高。

3.2 不同种植年限对土壤碳、氮、磷含量及其生态化学计量比的影响

长期植被种植主要是通过增加地表凋落物、根系生物和根系分泌物而显著提高土壤碳、氮、磷及其生态化学计量比(Huang Zhiqun et al.,2011;Deng Lei et al.,2016)。本研究中,随火龙果种植年限增加,土壤有机碳和全氮含量整体呈现增加趋势,而全磷含量无明显变化,这与郭新送等(2021)研究结果类似。不同种植年限火龙果土壤有机碳、全氮含量变化的差异,这可能是由于植被凋落物以及根系的归还使得土壤养分不断聚集,土壤养分随着种植年限不断增加(张富荣等,2021;沈亚婷等,2013)。在土壤剖面上,土壤有机碳和全氮含量呈现垂直递减趋势,这与张莎莎等(2020)研究结果类似。这是因为土壤有机碳和全氮主要来自凋落的植被,且表层土壤生物活性高,使得有机碳和全氮在表层聚集,再加上植被下层根部吸收利用,从而导致土壤有机碳和全磷含量在土层剖面上表现出垂直分异现象(张雨鉴等,2019)。由于土壤全磷主要来源于岩石的风化,受土壤母质影响大,空间变异性较小(Yang Yuanhe and Luo Yiqi,2011),致使土壤全磷含量随土壤深度变化差异较小。

土壤C/P和N/P随火龙果种植年限增加而增加,这可能是因为土壤有机碳和全氮增加,全磷相对稳定的缘故,说明表明随着种植年限增加研究区土壤固磷能力不断加强,受到氮元素限制逐渐减小。土壤C/N的变化趋势相对较小,这可能是因为它们组成物质结构时紧密相关(Tian Hanqin et al.,2010;张富荣等,2021)。 在土壤剖面上,本研究土壤C/N和C/P值随土层深度增加逐渐降低,这与白义鑫等(2020)研究结果一致,这可能是由于表层土壤有大量植被凋落物聚集,从而使得养分在表层土壤富集。土壤N/P值随层深度增加无明显规律变化,这可能是由于土壤氮含量变化范围较小,土壤磷的变化无明显规律。总之,随着种植年限增加,土壤固存碳氮能力、氮素矿化和磷素释放能力不断增强,更有利于火龙果的生长。

果实在不同生长发育时期所需的养分需求不同,因此根据火龙果在不同时期养分分布规律进行定向定量合理配施肥对其果实品质起着重要影响(邓仁菊等,2011)。据调研,研究区火龙果生长旺盛期主要施加水溶性复合肥(氮、磷、钾)及农家肥,在果实成熟期会追施钾肥、镁肥;水溶肥兑水稀释200倍,采用滴灌的方式施肥,全年每亩合计施肥用水量为 12 m3。施肥后,土壤全氮含量显著增加,但有机碳、全磷、有效氮和有效磷含量均无显著变化,这可能是施用肥料的配比不能有效促进土壤有机质转化为更易被微生物利用的形态,提高养分有效性(赵颖等,2021)。RDA结果表明:对于1年龄火龙果,应加强氮肥施加及注意水分管理,促进树体生长;对于2~3年龄火龙果,减少氮肥施加,适当施加镁和有效硼等微量元素肥料;对3年龄以上火龙果,除了施加氮肥外,还需适当补充钙肥。谭梦怡等(2021)研究也表明火龙果生长发育前期着重氮肥施加和水分管理,发育后期着重钙肥施加,同时适当补充镁、硼等微量元素。

4 结论

本研究中,研究区土壤普遍缺乏氮素,白云岩区土壤全磷含量显著高于碎屑岩区,但土壤有机碳和有效氮含量显著低于碎屑岩区。本研究岩性对土壤养分的影响较大,不同岩性下的土壤碳、氮、磷含量及其生态化学计量比有着显著差异。种植年限增加有利于土壤碳氮元素的固存,但仍需要长期的种植来提高土壤肥力。土壤C/P和N/P随种植年限增加而增加,而C/N的增加趋势相对较小。白云岩和碎屑岩区火龙果的生长主要都是受到氮元素的限制,白云岩区火龙果生长受到氮元素的影响更大,有效氮是影响土壤碳、氮、磷含量及其生态化学计量比的重要影响因子。在广西太平镇耶圩火龙果的种植过程中,应根据不同岩性和果实发育时期合理调节无机肥与有机肥配施,促进火龙果品质提高。

参 考 文 献 / References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

白义鑫, 盛茂银, 肖海龙, 胡琪娟. 2020. 典型石漠化治理措施对土壤有机碳、氮及组分的影响. 水土保持学报, 34(1): 170~177, 185.

陈颜. 2017. 广西平果县石漠化山区火龙果产业发展研究[D]. 导师: 何新华. 南宁: 广西大学硕士学位论文: 1~41.

崔志鹏, 王菁华, 陈玉婷, 阚德龙, 任学敏. 2021. 伏牛山南麓山茱萸人工林土壤碳氮磷及化学计量特征. 应用与环境生物学报, 27(4): 908~915.

邓仁菊, 范建新, 蔡永强. 2011. 国内外火龙果研究进展及产业发展现状. 贵州农业科学, 39(6): 188~192.

郭其强, 盘金文, 李慧娥, 高超, 孙学广, 杨菊. 2019. 贵州高原山地马尾松人工林土壤碳氮磷生态化学计量特性. 水土保持学报, 33(4): 293~298.

郭新送, 于晓东, 张晶, 张培苹, 赵花, 杜栋梁, 马鑫磊, 丁方军. 2021. 不同种植年限桃树根区土壤肥力变异特征. 中国农学通报, 37(17): 65~71.

贺婧, 魏琪琪, 钟艳霞, 罗玲玲. 2020. 贺兰山东麓不同种植年限葡萄地土壤生态化学计量特征. 干旱地区农业研究, 38(5): 23~30.

冀盼盼, 张健飞, 张玉珍, 黄选瑞, 张志东. 2020. 不同林龄华北落叶松人工林生态化学计量特征. 南京林业大学学报(自然科学版), 44(3): 126~132.

李瑞, 盘礼东. 2021. 岩石裸露与水土流失关系研究现状及石漠化因子研究存在的问题. 水土保持学报, 35(5): 10~15, 23.

刘友接, 刘荣章. 2018. 福建省火龙果产业发展现状及对策研究. 东南园艺, 6(5): 36~40.

刘愿, 陈云明, 梁思琦, 陈晨. 2019. 陕北黄土丘陵区刺槐人工林土壤生态化学计量特征. 水土保持研究, 26(4): 43~49.

陆炎松, 黄旭光, 杨思霞, 赵建文, 廖堂贵, 黄丽丹, 黄玲璞, 黄宇寒. 2021. 广西扁桃适生区土壤碳氮磷生态化学计量特征. 西部林业科学, 50(2): 35~39.

彭佩钦, 张文菊, 童成立, 仇少君, 张文超. 2005. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系. 应用生态学报, 16(10): 1872~1878.

覃世喜. 2020. 平果县火龙果生产基地建设及管理技术探讨. 南方农业, 14(3): 143~144.

沈亚婷, 路国慧, 孙青, 胡俊栋. 2013. 深层土壤有机质特性对短期植被更替的响应. 地质论评, 59(z1): 1112~1113.

谭梦怡, 李华东, 王鸿浩, 孟鑫, 范声浓, 王烁衡, 林电. 2021. 大红火龙果果实养分积累量动态变化及其相关性. 南方农业学报, 52(7): 1816~1825.

王超, 董玉清, 卢瑛, 李博, 唐贤, 邱竞驰, 胡家帅. 2021. 粤北低山林地改建梯田对土壤碳氮磷及其化学计量特征的影响. 应用生态学报, 32(7): 2440~2448.

王绍强, 于贵瑞. 2008. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28(8): 3937~3947.

杨慧, 陈家瑞, 梁建宏, 曹建华. 2017. 桂林丫吉岩溶区土壤有机碳和pH值与钙形态分布的关系初探. 地质论评, 63(4): 1117~1126.

杨珊, 何寻阳, 苏以荣, 张伟, 王克林. 2010. 岩性和土地利用方式对桂西北喀斯特土壤肥力的影响. 应用生态学报, 21(6): 1596~1602.

杨霞, 陈丽华, 郑学良. 2021. 不同林龄油松人工林土壤碳、氮和磷生态化学计量特征. 中国水土保持科学, 19(2): 108~116.

原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡. 2020. 不同品种榧树针叶—土壤C、N、P生态化学计量特征研究. 林业科学研究, 33(6): 49~56.

曾全超, 李鑫, 董扬红, 安韶山. 2016. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征. 自然资源学报, 31(11): 1881~1891.

张晗, 欧阳真程, 赵小敏. 2019. 不同利用方式对江西省农田土壤碳氮磷生态化学计量特征的影响. 环境科学学报, 39(3): 939~951.

张春来, 杨慧, 曹建华, 刘绍华. 2020. 岩溶区不同土地利用方式土壤碳、氮、磷生态化学计量的空间变异性研究. 南方农业学报, 51(7): 1650~1659.

张富荣, 柳洋, 史常明, 赵云飞, 肖锦锦, 汪霞. 2021. 不同恢复年限刺槐林土壤碳氮磷含量及其生态化学计量特征. 生态环境学报, 30(3): 485~491.

张岚峰, 张君, 艾训儒, 朱江. 2021. 不同岩性背景下表层土壤理化性质差异及其影响因素研究. 湖北民族大学学报(自然科学版), 39(1): 11~16.

张丽敏, 蔡国俊, 彭熙, 李安定. 2021. 喀斯特地区不同果园土壤养分含量及生态化学计量特征. 南方园艺, 32(4): 11~15.

张莎莎, 李爱琴, 王会荣, 王晶晶, 徐小牛. 2020. 不同海拔杉木人工林土壤碳氮磷生态化学计量特征. 生态环境学报, 29(1): 97~104.

张素霞. 2008. 黄土高原坡地不同土地利用方式下土壤剖面磷素分布及其有效性研究[D]. 导师: 吕家珑. 杨凌: 西北农林科技大学硕士学位论文: 1~74.

张雨鉴, 王克勤, 宋娅丽, 李加文. 2019. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征. 生态环境学报, 28(1): 73~82.

赵楚, 盛茂银, 白义鑫, 刘树西. 2021. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子. 应用生态学报, 32(4): 1383~1392.

赵颖, 周枫, 罗佳琳, 赵亚慧, 王宁, 于建光, 薛利红, 杨林章. 2021. 水稻秸秆还田配施肥料对小麦产量和氮素利用的影响. 土壤, 53(5): 937~944.

G I. 2004. The C: N: P stoichiometry of autotrophs - theory and observations. Ecology Letters, 7(3): 185~191.

Bai Yixin, Sheng Maoyin, Xiao Hailong, Hu Qijuan. 2020&. Effects of typical rocky desertification control measures on soil orangic carbon, nitrogen, and components. Journal of Soil and Water Conservation, 34(1): 170~177, 185.

Chen Yan. 2017&. Study on the devei opment of pitaya industry in rocky desertification mountain area of Pingguo Country, Guangxi. Supervisor: He Xinghua. Nanning: Master's Degree Thesis of Guangxi University: 1~41.

Cui Zhipeng, Wang Jinghua, Chen Yuting, Kan Delong, Ren Xuemin. 2021&. Soil carbon, nitrogen, and phosphorus characteristics and stoichiometry of Cornus officinalis plantation at the southern foot of the Funiu Mountain. Chinese Journal of Applied and Environmental Biology, 27(4): 908~915.

Deng Lei, Wang Kaibo, Tang Zhuangsheng, Shangguan Zhouping. 2016. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ13C). Agriculture, Ecosystems and Environment, 221: 235~244.

Deng Renju, Fan Jianxin, Cai Yongqiang. 2011&. Present research status and industrial development of pitaya at home and abroad. Guizhou Agricultural Sciences, 39(6): 188~192.

Guo Qiqiang, Pan Jinwen, Li Huie, Gao Chao, Sun Xueguang, Yang Ju. 2019&. Eco-stoichiometry characteristics of soil carbon, nitrogen and phosphorus of Pinus massoniana plantation in plateau mountainous areas, Guizhou Province. Journal of Soil and Water Conservation, 33(4): 293~298.

Guo Xinsong, Yu Xiaodong, Zhang Jing, Zhang Peiping, Zhao Hua, Du Dongliang, Ma Xinlei, Ding Fangjun. 2021&. Temporal variation of rootzone soil fertility in different planting years of peach orchards. Chinese Agricultural Science Bulletin, 37(17): 65~71.

He Jing, Wei Qiqi, Zhong Yanxia, Luo Lingling. 2020&. Eco-stoichiometry characteristics of grape fields with different planting years in the east foothills of Helan Mountain. Agricultural Research in the Arid Areas, 38(5): 23~30.

Huang Zhiqun, Davis M R, Condron L M, Clinton P W. 2011. Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 43(6): 1341~1349.

Ji Panpan, Zhang Jianfei, Zhang Yuzhen, Huang Xuanrui, Zhang Zhidong. 2020&. Ecological stoichiometry characteristics of Larix principis-rupprechtii plantations at different ages. Journal of Nanjing Forestry University(Natural Sciences Edition), 44(3): 126~132.

Li Rui, Pan Lidong. 2021&. Research status of the relationship between rock exposure and soil and water loss and discussion on the existing problems in the research of rocky desertification factors. Journal of Soil and Water Conservation, 35(5): 10~15+23.

Liu Youjie, Liu Rongzhang. 2018&. Development status and countermeasures of dragon fruit industry in Fujian Province. Southeast Horticulture, 6(5): 36~40.

Liu Yuan, Chen Yunming, Liang Siqi, Chen Chen. 2019&. Soil ecological stoichiometry characteristics of Robinia pseudoacacia plantation in the Loess Hilly Region of Northern Shanxi Province. Research of Soil and Water Conservation, 26(4): 43~49.

Lu Yansong, Huang Xuguang, Yang Sixia, Zhao Jianwen, Liao Tanggui, Huang Lidan, Huang Lingpu, Huang Yuhan. 2021&. Stoichiometry characterization of soil C, N and P in the suitable area of Mangifera persiciformis growth in Guangxi, China. Journal of West China Forestry Science, 50(2): 35~39.

Peng Peiqin, Zhang Wenju, Tong Chengli, Chou Shaojun, Zhao Wenchao. 2005&. Soil C, N and P contents and their relationships with soil physical properties in wetlands of Dongting Lake floodplain. Chinese Journal of Applied Ecology, 16(10): 1872~1878.

Qin Shixi. 2020#. Discussion on construction and management technology of pitaya production base in Pingguo County. South China Agriculture, 14(3): 143~144.

Shan Zhijie, Yin Zhe, Yang Hui, Zuo Changqing, Zhu Tongbin. 2020. Long-term cultivation of fruit plantations Decreases Mineralization and Nitrification Rates in Calcareous Soil in the Karst Region in Southwestern China. Forests, 11(12): 1282.

Shen Yating, Lu Guohui, Sun Qin, Hu Jundong. 2013#. Response of deep soil organic matter characteristics to short-term vegetation replacement. Geological Review, 59(z1): 1112~1113.

Tan Mengyi, Li Huadong, Wang Honghao, Meng Xin, Fan Shengnong, Wang Shuoheng, Lin Dian. 2021&. Dynamic changes and correlation of nutrient accumulation in the fruit of red pitaya. Journal of Southern Agriculture, 52(7): 1816~1825.

Tian Hanqin, Chen Guangsheng, Zhang Chi, Melillo J M, Hall C A S. 2010. Pattern and variation of C: N: P ratios in China's soils: A synthesis of observational data. Biogeochemistry, 98: 139~151.

Wang Chao, Dong Yuqing, Lu Ying, Li Bo, Tang Xian, Qiu Jingchi, Hu Jiashuai. 2021&. Influence of transforming forest land into terraced land on the characteristics of soil carbon, nitrogen, phosphorus and their stoichiometry in North Guangdong, China. Chinese Journal of Applied Ecology, 32(7): 2440~2448.

Wang Miaomiao, Chen Hongsong, Zhang Wei, Wang Kelin. 2018. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Science of the Total Environment, 619~620: 1299~1307.

Wang Shaoqiang, Yu Guirui. 2008&. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28(8): 3937~3947.

Wang Wenjie, Qiu Ling, Zu Yuangang, Su Dongxue An Jing, Wang Hongyan, Zhang Guanyu, Sun Wei, Chen Xiquan. 2011. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology, 17(8): 2657~2676.

Yang Hui, Chen Jiarui, Liang Jianhong, Cao Jianhua. 2017&. Preliminary study on the relationship between soil organic carbon and pH value and calcium species in Yaji Karst Region, Gulin. Geological Review, 63(4): 1117~1126.

Yang Shan, He Xunyang, Su Yirong, Zhang Wei, Wang Kelin. 2010&. Effects of parent rock and land use pattern on soil fertility in Karst region of Northwest Guangxi. Chinese Journal of Applied Ecology, 21(6): 1596~1602.

Yang Xia, Chen Lihua, Zhen Xueling. 2021&. Ecological stoichiometry characterization of soil carbon, nitrogen, and phosphorus of Pinus tabuliformis plantations at different stand ages. Science of Soil and Water Conservation, 19(2): 108~116.

Yang Yuanhe, Luo Yiqi. 2011. Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology & Biogeography, 20(2): 354~361.

Yuan Yanan, Li Zhengcai, Wang Bin, Zhang Yujie, Huang Shengyi. 2020&. Stoichiometric characteristics of C, N and P in leaves of Torreya grandis varieties and soils. Forest Research, 33(6): 49~56.

Zeng Quanchao, Li Xin, Dong Yanghong, An Shaoshan. 2016&. Ecological stoichiometry of soils in the Yanhe Watershed in the Loess Plateau: The influence of different vegetation zones. Journal of Natural Resources, 31(11): 1881~1891.

Zhang Han, OuyangZhencheng, Zhao Xiaomin. 2019&. Effects of different land use types on ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in farmland soils in Jiangxi Province, China. Acta Scientiae Circumstantiae, 39(3): 939~951.

Zhang Chunlai, Yang Hui, Cao Jianhua, Liu Shaohua. 2020&. Spatial variability of soil carbon, nitrogen and phosphorus ecological stoichiometry of different land uses in karst area. Journal of Southern Agriculture, 51(7): 1650~1659.

Zhang Furong, Liu Yang, Shi Changming, Zhao Yunfei, Xiao Jinjin, Wang Xia. 2021&. Soil carbon, nitrogen, phosphorus content and their ecological stoichiometric characteristics in different plantation ages. Ecology and Environmental Sciences, 30(3): 485~491.

Zhang Lanfeng, Zhang Jun, Ai Xunru, Zhu Jiang. 2021&. The difference of physical and chemical properties of surface soil and its influencing factors under karst and non-karst lithology. Journal of Hubei Minzu University(Natural Science Edition), 39(1): 11~16.

Zhang Limin, Cai Guojun, Peng Xi, Li Anding. 2021&. Content and ecological stoichiometric characteristics of soil nutrients under different land utilization types in karst area. Southern Horticulture, 32(4): 11~15.

Zhang Shasha, Li Aiqin, Wang Huirong, Wang Jingjing, Xu Xiaoniu. 2020&. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in Cunninghamia lanceolata plantation across an elevation gradient. Ecology and Environmental Sciences, 29(1): 97~104.

Zhang Suxia. 2008&. Distribution and availability of phosphors in soil profiles of slope land under different land use of loess piateau. Supervisor: Lü Jialong. Yangling: Master's Degree Thesis of Northwest Agriculture and Forestry University: 1~74.

Zhang Yujian, Wang Keqin, Song Yali, Li Jiawen. 2019&. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in Subalpine of Middle Yunnan Province. Ecology and Environmental Sciences, 28(1): 73~82.

Zhao Chu, Sheng Maoyin, Bai Yiixin, Liu Shuxi. 2021&. Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China. Chinese Journal of Applied Ecology, 32(4): 1383~1392.

Zhao Ying, Zhou Feng, Luo Jialin, Zhao Yahui, Wang Ning, Yu Jianguang, Xue Lihong, Yang Linzhang. 2021&. Effects of rice straw returning combined with fertilizer application on yield and nitrogen utilization of wheat. Soil, 53(5): 937~944.

Effects of lithology and planting years on ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in Hylocereus undulatus Britt land

YI Fen1, 2), DENG Yan1), HONG Tao1), XIE Yunqiu1), WU Song3), KE Jing1)

1) Guangxi Key Laboratory of Karst Dynamics/Key Laboratory of Karst Ecosystem and Rocky Desertification Control, Ministry of Natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, Guangxi, 541004;2) China University of Geosciences(Wuhan), Wuhan, 430074;3) College of Environmental Science and Engineering, Guilin University of Technology, Guilin, Guangxi, 541006

Objectives: Soil carbon, nitrogen and phosphorus ecologic measurement ratio reflects the content of limiting elements in soil, which can provide theoretical basis for land balance management and plant growth. The effects of lithology and planting years on the ecological stoichiometry of soil carbon, nitrogen and phosphorus is still not clear.

Methods: In this study, we collected soil from different lithological background (dolostone, clastic rock) and fixed number of year (1, 3, 5 a) in Yexu Hylocereus undulatus Britt Plantation, Taiping Town, Pingguo County, Guangxi. Correlation analysis and redundancy analysis were employed to discuss the ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in 0~80 cm soil under different lithologic backgrounds and planting years.

Results: The results show that:

(1) The total phosphorus content in dolostone area was significantly higher than that in clastic rock area, while the soil organic carbon content, C/N, C/P and N/P in dolostone area were significantly lower than that in clastic rock area. The ecological stoichiometric ratios (5.96, 11.78, 1.96 and 8.71, 19.78, 2.28) in dolostone and clastic rock backgrounds are far lower than the national level.

(2) The contents of soil organic carbon, total nitrogen and C/N, C/P, N/P increased with increasing of planting years, while the contents of soil available nitrogen, total phosphorus and available phosphorus had no significant change. Soil organic carbon, total nitrogen, available nitrogen and C/N, C/P, N/P increased as the soil get deep, while soil total phosphorus content had no obvious change pattern.

(3) Soil C/N and C/P were positively correlated with soil organic carbon and available nitrogen (P<0.01), but negatively correlated with soil moisture and bulk density, and soil N/P was negatively correlated with total phosphorus.

(4) Redundancy analysis showed that soil available nitrogen content was an important factor influencing soil C, N, P and its ecological stoichiometric ratio under different lithologic background and planting years, which showed a significant positive correlation (P<0.01).

Conclusions: The growth of Hylocereus undulatus Britt under the dolostone background was more affected by nitrogen elements than where under clastic rock background. Long-term planting of Hylocereus undulatus Britt was beneficial to the retention of carbon and nitrogen elements, and soil available nitrogen content was the key factor affecting soil carbon, nitrogen and phosphorus and its ecological stoichiometric ratio.

Keywords: lithology; Hylocereus undulatus Britt planting years; soil carbon, nitrogen and phosphorus; ecological stoichiometry; redundancy analysis

注:本文为广西重点研发计划项目(编号:桂科AB19110004)和广西重点基金项目(编号:2022GXNSFDA035067)的成果。

收稿日期:2021-12-27;改回日期:2022-05-25;网络首发:2022-06-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2022.06.055

作者简介:易芬,女,1998年生,硕士研究生,主要从事环境生态学研究; Email: 1038906170@qq.com。 通讯作者:邓艳,女,1978年生,博士,研究员,主要从事岩溶生态学研究; Email: dydesk@163.com。

Acknowledgements: This study was supported by the Guangxi Key Research and Development Program of China (No. Guike AB19110004) and the Guangxi Key Foundation (No. 2022GXNSFDA035067)

First author:

YI Fen, born in 1998, female, master candidate, mainly engaged in environmental ecology; Email: 1038906170@qq.com

Corresponding author:DENG Yan, born in 1978, female, research fellow, Ph.D., mainly engaged in karst ecology research; Email: dydesk@163.com

Manuscript received on: 2021-12-27;Accepted on: 2022-05-25; Network published on: 2022-06-20

Doi: 10. 16509/j. georeview. 2022. 06. 055

Edited by: ZHANG Yuxu