西准噶尔乌什加嘎衣提金矿霏细斑岩脉及矿石等锆石U-Pb年龄、Hf同位素以及地球化学特征

杨清茂,师志龙, 杨文龙, 王元元

核工业二一六大队,乌鲁木齐,830011

内容提要: 乌什加嘎衣提金矿床是西准噶尔谢米斯台—沙尔布尔提成矿带迄今为止规模最大的金矿床,金资源量2 t,品位8×10-6。霏细斑岩脉的地质特征、成岩年代、地球化学特征对该地区的找矿工作具有重要意义。金矿体产于中酸性岩体与地层接触剪切带中,与霏细斑岩脉密切共生,主要发育硫化物石英脉型和蚀变岩型两种矿石类型,工业类型属石英脉—蚀变岩型金矿床。笔者等测得不含矿的霏细斑岩脉成岩年龄为429.1±1.6 Ma以及两期含矿的霏细斑岩脉的成岩成矿年龄为426.5±1.7 Ma和426.0±1.6 Ma,认为矿床形成时代为中—晚志留世。矿区的安山岩、二长岩、霏细斑岩脉、蚀变岩型金矿石和硫化物石英脉型金矿石具有相似的稀土元素配分和微量元素演化趋势,从前往后具有递进性演化的关系。矿区所有岩石均表现出富集轻稀土元素,亏损重稀土元素,轻重稀土元素分异明显,明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb,不具有Eu、Ce异常等特征,显示出俯冲带岛弧岩浆的特点。霏细斑岩脉εHf(t)同位素(+8.86~+15.41)与区域岩体(+5.0~15.4)高度重叠,对应的二阶段年龄为429~844 Ma,略大于锆石年龄,表明成矿的岩浆热液来源于亏损地幔新增的年龄地壳,源区在地壳中存留时间较短。霏细斑岩脉和二长岩在岩石成因和构造判别图解上与区域I型花岗岩落入相同的区域,成因类型为高钾钙碱准铝值Ⅰ型花岗岩。综合地质、年代学、地球化学特征,认为矿床成因类型属岩浆热液型金矿床,是晚志留世古亚洲洋向南俯冲背景下与侵入岩同源岩浆活动演化分异的产物,并预测区域上具有寻找与I型花岗岩相关的多种类型的Au—Cu矿床。

关键词:新疆;西准噶尔;乌什加嘎衣提金矿;霏细斑岩脉;锆石U-Pb年龄;Hf同位素;地球化学;俯冲背景

西准噶尔地处中国新疆与哈萨克斯坦接壤部位,是新疆著名的金矿产地。西准噶尔大地构造位于哈萨克斯坦—准噶尔板块和西伯利亚板块交汇部位,是中亚造山带碰撞拼合历史和显生宙地壳生长的热点地区(Chen Jiafu et al., 2010;杨钢等,2015)。西准噶尔位于中巴尔喀什—准噶尔成矿省,是中亚成矿域核心区,具有特殊的有利成矿位置(秦克章,2000;Shen Ping et al., 2012;胡洋等,2019)。近年来的学者研究认为,西准噶尔成矿区带是哈萨克斯坦大型—超大型多金属矿床向中国境内的东延部分,中国境内自北向南分为3个成矿带:萨吾尔成矿带、谢米斯台—沙尔布尔提成矿带和巴尔鲁克—达拉布特成矿带,分别对接境外扎玛尔—萨吾尔成矿带、波谢库尔—成吉斯成矿带、北巴尔喀什成矿带(申萍等,2015)(图1a)。

图1 巴尔喀什—西准噶尔地区地质矿产简图及成矿带划分图(a)(据申萍等,2015修编)和谢米斯台山西段
地质矿产图(b)(据新疆维吾尔自治区地质调查院,2016修编)
Fig.1 Geological mineral map and metallogenic belt division map of Balkhash—Western Junggar area(a)(modified after Shen Ping et al., 2015), geological and mineral map of western Xiemisitai mountain(b)(modified after Xinjiang Institute of Geological Survey,2016)
图中年龄数据来源:1—本次数据;2—新疆维吾尔自治区地质调查院,2016;3—胡洋等,2019;4—杨钢等,2015;
5—赵磊等,2013;6—Chen Jiafu et al., 2010
Sources of age data in this figure are:1—this work;2—Xinjiang Institute of Geological Survey;3—Hu Yang et al., 2019&;
4—Yang Gang et al., 2015&;5—Zhao Lei et al., 2013&;6—Chen JiaFu et al., 2010

新厘定的波谢库尔—成吉斯—谢米斯台成矿带经由西准噶尔北缘的谢米斯台山一直延伸至沙尔布尔提山,国内外延伸约1000 km。从发现的矿床来看,哈萨克斯坦境内的矿床数量和规模远超我国境内,是什么制约了中国境内的找矿进展,能否实现国内谢米斯台—沙尔布尔提成矿带的找矿突破,是目前备受关注的地质找矿问题。

近年来,随着地质找矿工作的不断推进,在谢米斯台—沙尔布尔提成矿带发现了谢米斯台铜矿(申萍等,2010),洪古勒楞铜矿(孙金恒等,2018),布兰萨拉金铜矿床(金1.3 t,李玉琴等,2015)、白杨河大型铀铍矿床(王谋等,2012)等多金属矿床。笔者所在项目组又在谢米斯台山西段发现了乌什加嘎衣提金矿床(2 t)、兰西金矿点、小白杨河金矿点、Ⅱ号金矿点、Ⅳ号金矿点等20余处以金为主要矿种的矿床(点)(图1b)。这些矿床(点)的报道,引起了学者们的关注和讨论,推动了该地区多金属成矿规律的研究和发展。一些学者对这些矿床(点)的成矿地质特征(王谋等,2013;王元元等,2018)、矿床成因(申萍等,2010;胡洋等,2019;杨清茂等,2020)及找矿方向(李玉琴等,2015;杨文龙等,2021)进行了系统研究,在区域成矿规律和建立找矿模型方面提供了较多的资料,但总体上属于宏观方面的归纳总结,有关脉岩、侵入岩和成矿关系的研究尚无相关报道。笔者等以该地区规模最大的乌什加嘎衣提金矿床为例,在详实的野外地质观察基础上,对与金成矿密切相关的侵入岩、脉岩开展岩相学、年代学和地球化学研究,为谢米斯台—沙尔布尔提成矿带的下一步找矿工作提供依据和有益借鉴。

1 区域地质

研究区位于谢米斯台山西段,白杨河镇以北,乌兰浩特村以南(图1b)。区域出露地层大面积为下志留统谢米斯台组(S1x),出露面积约占50%,为一套火山岩、火山碎屑岩组合,大致以孟布拉克断裂为界,进一步划分为第一岩性段和第二岩性段。谢米斯台组主要出露在谢米斯台断裂以北,在谢米斯台断裂以南还分布有下侏罗统三工河组(J1s)、下石炭统黑山头组(C1h)、上泥盆统—下石炭统洪古勒楞组(D3C1h)、上泥盆统朱鲁木特组(D3z)、下泥盆统和布克赛尔组(D1h)等地层。

区域构造活动强烈,以断裂构造为主,构造格架可分为EW向、NE向、NW向3组。其中EW向的谢米斯台断裂规模最大、控制着地层、盆地的展布方向,性质为逆冲断裂。NE向、NW向断裂为一组共轭脆性剪切断裂,具压扭性断裂特征,形成时间稍晚。其中孟布拉克大断裂与成矿关系最紧密(杨清茂等,2020),其切割多期次岩体和地层,具有活动时限长、变形复杂的特点,已知的金矿床(点)多产于孟布拉克大断裂两侧近平行或锐角相交的左行张扭性分枝断层之中,该断裂基本控制了谢米斯台山西段的金矿(点)分布。

侵入岩在谢米斯台山西段出露面积约占35%,反映该区岩浆活动强烈。波尔托复式岩体,为区域出露最大的岩基,其余面积较大的有布兰萨拉岩体、杨庄岩体、乌图顺岩体、德近特岩体、哈勒盖特希岩体。它们有相似的岩性组合,主要由二长花岗岩、二长岩、花岗岩、花岗闪长岩、石英二长闪长岩组成。绝大多数金矿点产在岩体接触带与脆性剪切构造叠加地带,与岩体外接触带的岩株、岩墙共生。

2 矿区地质和样品

2.1 矿区地质

乌什加嘎衣提金矿床位于谢米斯台山西段中部,矿区构造以断裂为主,属于孟布拉克大断裂北西盘伴生构造系统(图1b)。区内贯穿一条NE向左旋扭性断裂,为孟布拉断裂“入”字型分支断裂,切割多期次岩体和地层,断距大于1 km(图2a)。该断裂本身不含矿,但影响了区域矿床(点)的分布。该断裂与相邻的其它孟布拉克分支断裂共同作用,在矿区派生出多期复杂的低序次断裂,是重要的成矿期构造,这些断裂呈羽状排列,规模不等,具北倾、近乎直立等特征。成矿期断裂多数具有张扭性断层性质,被大量岩脉和矿体充填,致使矿体、岩脉和构造三者具有相似的排列特征。平面上大致可分为EW向、NE向两组,从两者的交切情况来看,EW向略早于NE向断裂(图2b)。矿体就位于构造破碎带的上、下盘(图2c),在构造扭转、膨大、交汇处,矿体规模、品位随之增大。晚期主要发育了NNW向规模较大的断裂,错断了成矿期构造,对矿体和脉岩造成较大的破坏。

矿区出露地层为下志留统谢米斯台组第一岩性段,岩性主要为安山岩、玄武岩、夹少量凝灰岩。以安山岩分布最广,笔者等采集了5件安山岩样品,用于主量、微量、稀土元素分析。安山岩呈灰绿色(图3a、3a′),斑状结构,基质具间粒结构,块状构造。斑晶主要由辉石(2%)和蚀变暗色矿物(4%)组成,辉石具半自形柱状,粒度1.0~1.6 mm,具轻微程度隐晶帘石化,不均匀分布。蚀变矿物具半自形柱状,粒度0.3~0.8 mm,已完全程度绿泥石化、方解石化,残留轮廓。基质约占94%,可见板条状斜长石微晶杂乱排列,在其架状空隙间充填它形粒状辉石、磁铁矿、次生绿泥石等形成间粒结构。

图2 乌什加嘎衣提金矿床地质简图(a)、U-Pb年龄样采样示意图(b)和金矿体联合剖面示意图(c)
Fig.2 Geological sketch of Wushenjiagayiti gold deposit(a),sampling diagram of U-Pb age(b) and
combined section diagram of gold ore vein(c)

矿区夹持于乌图顺岩体和德近特岩体之间,属于两个岩体共同的边外带。区域岩体大量岩枝、岩株伸入到矿区之中,岩性主要包括二长岩、花岗斑岩、花岗闪长岩、闪长岩。以二长岩岩株分布最广,矿体主要产于其顶面或内外接触带。笔者等采集了4件二长岩样品用于主量元素分析,并对其中2件进行了微量、稀土元素分析。二长岩呈浅红色(图3b、3b′),细粒半自形粒状结构、块状构造、碎裂岩化结构。矿物由斜长石(47%)、钾长石(43%)、石英(4%)、蚀变暗色矿物(6%)等组成,粒度0.02~1.5 mm,具微细粒半自形粒状结构。副矿物有磁铁矿、磷灰石、锆石等。蚀变程度中等,有绿帘石化、泥化、绿泥石化等。岩石后期受力轻微破碎,裂隙发育杂乱分布,宽度<1.2 mm,其内充填绿帘石、石英和少量原岩碎基。

矿区脉岩从基性—酸性均见出露。根据各脉岩和矿体的穿插关系,可划分为成矿前脉岩:闪长岩脉、二长花岗岩脉、花岗岩脉、霏细斑岩脉;成矿期伴生脉岩:霏细斑岩脉、英安斑岩脉、花岗斑岩脉、石英脉;成矿后脉岩:辉绿岩脉、花岗岩脉、石英脉。矿区大多数脉岩属于成矿期伴生脉岩,展布严格受构造控制,主要呈串珠状形式与北东向构造近平行产出。其中霏细斑岩脉与金矿体空间上最为密切,脉岩密集发育地段,金矿体也集中发育,金矿体一般产于霏细斑岩脉接触带或两侧围岩地层中(图2b、2c),两者是同一构造—岩浆活动下的产物,金矿体与霏细斑岩脉具有深部同源和继承演化的成因联系。笔者等选择以霏细斑岩脉作为U-Pb测年对象,根据脉岩的穿插关系在不同期次的霏细斑岩脉上采集年龄样品3件,并进行了主量、微量、稀土元素分析。霏细斑岩呈黄白色,斑状结构,基质具霏细结构,块状构造(图3c、3c′)。岩石由斑晶(1%)和基质(99%)组成,斑晶主要为斜长石,半自形板状,0.45~0.35 mm,个别具轻微程度绿帘石化,基质由隐晶—霏细状长英质组成。岩石轻微绢云母化。岩石后期受力局部轻微破碎,裂隙若干条宽度<0.1 mm。

2.2 矿体特征

矿区发现有金矿体60余条,单条矿体长20~144 m,厚0.4~4.09 m,矿体以透镜状、扁豆状为主,少量呈带状、脉状(杨文龙等,2021)。矿体主要产于EW向和NE向两组成矿期构造中,产状与构造基本一致,多数为陡倾矿体。矿床工业类型为石英脉—蚀变岩型金矿床。矿石类型主要有硫化物石英脉型金矿石和蚀变岩型金矿石两类,它们具有相同的成矿流体和成矿物质来源(杨清茂等,2019),属于岩浆热液成因。矿床中两类金矿石形影相随,略有区别。近矿围岩蚀变主要有黄铁矿化、钾化、孔雀石化、辉铜矿化、黄铜矿化、绿帘石化。笔者等采集了石英脉型金矿石3件和微晶次生石英岩型金矿石2件,用于微量和稀土元素分析。

硫化物石英脉型金矿石:此类金矿石主要产于NE向控矿构造中,含金岩石主要为灰色石英脉(图3d)。一般以石英单脉为主,少量单脉附近发育石英网脉。含金石英脉厚度变化大,宽几十厘米到几米,延伸较稳定,单条可达几百米。矿石中包裹有围岩捕掳体(图3d′),直径一般0.5~5 cm。矿石中金属矿物主要为微晶黄铁矿、针铁矿、银金矿、自然金,脉石矿物主要为石英、钾长石。金矿物以自然金、黄铁矿包裹金两种方式存在,多呈它形晶不规则粒状结构,粒度0.002~0.03 mm,黄色,均质性,不均匀星散状分布在原岩破碎裂隙内形成充填矿石构造(图3d″)。此类矿石品位一般较高,平均几十克/t,局部可达上百克/吨。

蚀变岩型金矿石:此类金矿石主要产于EW向控矿构造中。含金岩石主要为白色次生微晶石英岩(图3e),与霏细斑岩脉密切共生,是由含矿的岩浆热液与霏细斑岩脉相互交代形成的蚀变岩。金品位与岩石的次生石英岩化强度具有正相关关系。矿石中金属矿物主要为黄铜矿、黄铁矿、孔雀石、铜蓝、银金矿、金银矿、自然金,脉石矿物主要为次生石英、钾长石、绿泥石(图3e′)。矿石具微晶和它形粒状结构,网脉状构造。金矿物主要为自然金和银金矿(Ag:24.16%;Au:75.84%),金黄色,粒状,主要充填于矿石内部裂隙之中(图3e″)。此类矿石品位相对较低,一般几克/t至十几克/t。

3 分析方法

将野外采集的新鲜样品封装后立即送往有相应资质的单位进行U-Pb定年、原位Hf同位素、主量、微量和稀土元素分析,大致过程简述如下:

由廊坊市宇能岩石矿物分选技术服务有限公司完成锆石挑选、制靶及照相。样品经过清洗,破碎,淘洗,镜下初选锆石。将挑选出的锆石置于环氧树脂内,剖光处理,制成靶样。利用场发射扫描电镜MIRA3进行CL成像。技术人员根据锆石的透反射和阴极发光图像,挑选锆石颗粒表面无裂隙、内部环带清晰、无包裹体的位置作为测试点,U-Pb定年和Lu—Hf同位素测试点相同。

然后送往中国地质调查局天津地质调查中心实验室进行锆石LA-ICP-MS U-Pb定年分析和原位Lu—Hf同位素分析。锆石LA-ICP-MS U-Pb定年分析采用193 nm ArF准分子激光剥蚀进样系统(RESOlution LR)和电感耦合等离子体质谱仪(Agilent 7900)进行。本次分析的激光剥蚀束斑大小为29 μm,频率为7 Hz,激光能量密度为3 J/cm2。质量控制采用锆石标样91500和玻璃标样SRM 610作外标,同时以Plesovice为监控标样来监控数据。测试过程中,每个样品采集15 s空白信号和50 s样品信号。测试数据采用软件ICPMSDataCal完成。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot完成。原位Lu—Hf同位素分析采用多接收器电感耦合等离子体质谱仪(NEPTUNE)MC-ICPMS和氟化氩准分子激光器(MEW WAVE 193 nm FX)进行。本次分析的激光剥蚀束斑大小为50 μm,频率为8 Hz,激光能量密度为4 J/cm2,载气为氦气。采用n(179Hf)/n(177Hf)=0.7325进行指数归一化质量歧视校正,具体的分析流程和数据处理方法详见耿建珍(2011)。

主量、微量、稀土元素测试在核工业新疆理化测试中心完成。主量元素测定采用波长色散型X荧光光谱仪(型号:AxiosmAX),烧失量测定采用天平(型号:BP210S),FeO采用湿化学方法单独测定。主量元素,氧化物求和总量控制在98.3%~101.7%范围,否则重新测量。微量元素分析首先采用酸融方法对样品进行预处理,然后利用ICP-MS(型号:NexION350X)测定,相对标准偏差小于5%。

4 分析结果

4.1 锆石U-Pb定年

3件霏细斑岩样品(NLV1、NLV2、NLV3)共挑选出81颗锆石81测点进行U-Pb同位素分析,分析结果见表1。3件样品中锆石具有相似特征:在CL图上为亮色(图4)。锆石自形—半自形,以四方双锥形为主,长径50~200 μm,长宽比为1∶1~1∶2.5。81测点测得Th/U=0.48~1.15,属于一般岩浆锆石的Th/U比值(Th/U>0.3)范围,具有岩浆锆石典型的振荡环带结构。

图4 乌什加嘎衣提金矿床霏细斑岩脉锆石CL图像以及U-Pb测年谐和图
Fig.4 Zircon CL images and U-Pb dating of felsite porphyry veins in Wushenjiagaiti gold deposit

NLV1样品24个锆石年龄落于U-Pb谐和曲线上或附近,加权平均年龄为429.1±1.6 Ma(MSWD=0.92);NLV2样品29个锆石年龄落于U-Pb谐和曲线上或附近,加权平均年龄为426.5±1.7 Ma(MSWD=1.11);NLV3样品28个锆石年龄落于U-Pb谐和曲线上或附近,加权平均年龄为426.0±1.6 Ma(MSWD=1.04)。

4.2 锆石Hf同位素

3件霏细斑岩样品(NLV1、NLV2、NLV3)锆石微区Hf同位素分析结果和相关参数计算见表2。81颗锆石测点的n(176Lu)/n(177Hf)值仅一例为0.002053,其余80点范围为0.000389~0.001761,低n(176Lu)/n(177Hf)值(<0.002)表明锆石在岩体形成之后漫长的演化历程中具有较低的放射成因Hf积累,因而可以用锆石n(176Hf)/n(177Hf)值探索岩体形成时的成因信息(Stille and Steiger,1991;吴福元等,2007b)。另外,所有测试点的fLu/Hf值为-0.99~-0.94,明显小于铁镁质地壳fLu/Hf值(-0.34,Amelin et al., 2000)和硅铝质地壳fLu/Hf值(-0.72,Vervoort et al., 1996),故二阶段模式年龄能反应其源区物质从亏损地幔被抽取的时间或其源区物质在地壳的平均存留年龄。

表2 乌什加嘎衣提金矿床霏细斑岩脉锆石原位Hf同位素组成
Table 2 In-situ Hf isotopic composition of zircons from felsophyre dykes in Wushenjiagayiti gold deposit

点号年龄(Ma)n(176Yb)n(177Hf)n(176Lu)n(177Hf)n(176Hf)n(177Hf)测值2σ测值2σ测值2σεHf(0)εHf(t)n(176Hf)n(177Hf) iTDM1(Ma)TDM2(Ma)fLu/Hf南北向不含矿霏细斑岩脉(样品号NLV-1)3428.50.0643610.0011330.0016010.0000230.2828540.0000212.9011.90.282841573.1654.9-0.954434.00.0698040.0007110.0016910.0000190.2828210.0000191.7310.80.282807622.3728.2-0.956432.10.0465050.0003190.0012170.0000230.2828290.0000222.0211.20.282819603.0702.5-0.968430.10.0530150.0006870.0013410.0000220.2828970.0000204.4213.50.282886507.9552.8-0.9611428.20.0369570.0003270.0009040.0000060.2828550.0000202.9212.10.282847561.8641.4-0.9712430.60.0339130.0005250.0009590.0000100.2828680.0000203.4012.60.282860543.5610.5-0.9713432.50.0529060.0001600.0013130.0000060.2828870.0000174.0813.20.282877521.1572.3-0.9614428.50.0439550.0002770.0010580.0000020.2828950.0000234.3713.50.282887506.1551.9-0.9715432.40.0352200.0001120.0009030.0000020.2828340.0000172.2011.50.282827590.8685.2-0.9716427.00.0386790.0005320.0009900.0000090.2828260.0000221.9211.00.282818603.4707.7-0.9717419.80.0630150.0005420.0015820.0000090.2829220.0000225.2914.10.282909475.5507.1-0.9518430.90.0426310.0009960.0012220.0000300.2827820.0000190.349.50.282772670.7810.2-0.9619429.60.0376440.0002680.0011070.0000100.2828610.0000203.1512.30.282852555.9630.0-0.9720431.30.0396920.0006570.0009940.0000180.2828520.0000222.8312.10.282844566.7646.9-0.9721422.30.0309520.0001640.0008040.0000070.2829030.0000224.6313.70.282897492.3534.2-0.9822433.10.0312450.0001200.0009070.0000070.2828220.0000201.7711.10.282815608.0712.1-0.9723429.80.0348960.0001820.0008930.0000020.2828480.0000172.6911.90.282841571.1655.3-0.9724421.50.0609940.0003920.0017610.0000060.2828960.0000264.3713.20.282882515.7568.4-0.9525424.50.0303480.0003350.0007250.0000080.2828010.0000191.0110.20.282795635.3762.3-0.9826431.50.0439070.0007490.0011220.0000230.2828180.0000261.6210.80.282809617.6726.6-0.9727429.30.0548110.0003090.0014010.0000060.2829160.0000215.0914.10.282905481.6511.6-0.9628429.90.0366740.0011470.0010180.0000350.2829120.0000224.9514.10.282904482.1513.0-0.9729432.60.0286180.0003400.0007370.0000070.2828190.0000231.6611.00.282813609.7716.3-0.9830431.30.0421460.0007470.0011710.0000140.2829180.0000185.1514.30.282908476.0502.0-0.96东西向含矿霏细斑岩脉(样品号NLV-2)1421.80.0223470.0001660.0004940.0000020.2828620.0000233.1912.30.282858545.2620.8-0.992426.10.0365810.0003260.0008290.0000010.2829490.0000196.2515.40.282942427.6428.6-0.983420.30.0350220.0003170.0008200.0000120.2828950.0000204.3413.40.282888503.8553.9-0.984432.10.0192370.0001540.0004740.0000010.2828290.0000172.0011.40.282825591.7689.7-0.995426.30.0299120.0003420.0007370.0000040.2828440.0000212.5411.70.282838574.7664.1-0.986427.30.0340020.0002200.0008610.0000080.2828720.0000223.5212.70.282865537.3603.1-0.977426.60.0353800.0001710.0008480.0000050.2827980.0000210.9210.10.282791640.8768.8-0.978425.00.0265300.0001190.0006430.0000010.2828090.0000191.3210.50.282804621.6740.8-0.989426.60.0647120.0002300.0016020.0000040.2828250.0000251.8710.80.282812615.1721.8-0.9510426.20.0244850.0000670.0006190.0000020.2828170.0000231.5910.80.282812610.3722.1-0.9811423.50.0156300.0000800.0003890.0000030.2828500.0000182.7712.00.282847560.2644.6-0.9912431.60.0280420.0005940.0007090.0000140.2828770.0000203.7013.00.282871527.9586.0-0.9813433.60.0255270.0000980.0006220.0000010.2828480.0000192.6812.10.282843567.4648.7-0.9814421.30.0227230.0000760.0005880.0000010.2828250.0000221.8911.00.282821598.1705.8-0.9815421.90.0366040.0001900.0009330.0000070.2828440.0000212.5511.60.282837576.9669.0-0.9716422.60.0233080.0001360.0005980.0000050.2828440.0000212.5311.70.282839572.7664.0-0.9818442.90.0166060.0001240.0004260.0000040.2828970.0000214.4214.10.282894495.5527.9-0.9919424.20.0252280.0003050.0006340.0000080.2827930.0000190.759.90.282788643.8777.0-0.9820420.40.0235730.0002600.0005800.0000080.2827860.0000180.519.60.282782652.4793.8-0.9821425.20.0186520.0000940.0004910.0000010.2828660.0000223.3112.50.282862540.3610.9-0.9922423.70.0257760.0004040.0006350.0000080.2828630.0000203.2312.40.282858545.7619.8-0.9823427.80.0209860.0004890.0005450.0000140.2828480.0000232.6812.00.282843566.0650.5-0.9824424.30.0213990.0000780.0005320.0000020.2828690.0000193.4112.60.282864536.8605.6-0.9825430.80.0308210.0000580.0007730.0000030.2828500.0000242.7512.00.282844566.6648.2-0.9826423.80.0337290.0001430.0008690.0000010.2828590.0000203.0712.20.282852555.5634.2-0.9727423.00.0182280.0001130.0004730.0000010.2827630.000020-0.338.90.282759683.8843.8-0.9928430.80.0424700.0000790.0011020.0000050.2828990.0000234.4813.70.282890502.1544.0-0.97

点号年龄(Ma)n(176Yb)n(177Hf)n(176Lu)n(177Hf)n(176Hf)n(177Hf)测值2σ测值2σ测值2σεHf(0)εHf(t)n(176Hf)n(177Hf) iTDM1(Ma)TDM2(Ma)fLu/Hf29432.50.0340780.0003030.0008710.0000030.2829010.0000204.5613.80.282894496.0533.9-0.9730434.90.0228830.0000940.0005910.0000040.2829130.0000214.9814.40.282908475.5500.2-0.98北东向含矿霏细斑岩脉(样品号NLV-3)1423.30.0252240.0001330.0006370.0000010.2828750.0000223.6512.80.282870529.2593.4-0.982421.00.0361600.0004220.0009080.0000070.2828390.0000232.3811.40.282832583.6680.3-0.973424.60.0377920.0013710.0009370.0000290.2828450.0000232.5811.70.282838576.0665.9-0.974430.80.0198520.0000440.0005120.0000010.2828200.0000201.6911.00.282816604.8711.3-0.985423.60.0201320.0000430.0005240.0000010.2828470.0000212.6711.90.282843566.2653.5-0.986427.10.0299770.0001870.0007600.0000070.2829100.0000204.8614.10.282903482.3515.6-0.987421.00.0173270.0001480.0004440.0000030.2828500.0000202.7611.90.282847561.3647.5-0.998423.40.0573290.0001290.0014070.0000050.2829050.0000244.7113.60.282894496.9539.0-0.969431.90.0539970.0001520.0013300.0000030.2828100.0000181.3510.50.282800631.6746.9-0.9610424.80.0213310.0000780.0005680.0000070.2827890.0000260.599.80.282784649.3786.2-0.9811421.90.0456130.0001370.0012010.0000010.2829140.0000265.0114.00.282904482.1517.1-0.9612427.60.0230080.0000810.0005790.0000010.2828740.0000223.6012.90.282869530.2592.7-0.9813423.60.0248060.0000950.0006350.0000010.2828380.0000222.3311.50.282833581.4677.2-0.9814432.60.0354290.0007140.0009670.0000220.2828530.0000222.8612.10.282845565.1643.6-0.9716410.20.0198820.0001580.0005140.0000010.2828480.0000242.7011.60.282844564.7659.3-0.9817427.30.0333220.0001270.0007240.0000030.2828510.0000212.7812.00.282845564.7647.6-0.9818429.10.0195960.0002970.0004870.0000040.2828870.0000214.0713.40.282883510.1559.9-0.9919427.90.0301990.0002750.0007330.0000030.2829010.0000194.5513.80.282895494.5534.6-0.9820423.90.0559690.0011300.0013130.0000210.2828450.0000202.5911.60.282835581.2672.2-0.9621434.30.0470490.0001240.0011360.0000020.2828090.0000221.3110.50.282800630.2744.9-0.9722427.30.0253200.0001500.0006220.0000020.2828390.0000222.3511.60.282834580.2673.0-0.9823423.00.0199040.0000870.0004980.0000040.2828790.0000203.7713.00.282875522.3583.1-0.9824425.50.0162140.0001500.0004090.0000020.2828250.0000191.8711.10.282822595.9701.0-0.9925428.60.0357030.0006230.0008310.0000080.2829010.0000214.5613.80.282894495.2535.1-0.9726429.10.0212870.0000440.0005340.0000020.2828220.0000181.7511.10.282817602.6708.6-0.9827431.20.0249970.0000740.0005660.0000050.2828740.0000193.6012.90.282869529.9590.0-0.9828425.50.0856660.0014560.0020530.0000400.2828680.0000253.4112.20.282852559.4632.6-0.9429429.80.0222730.0004530.0005590.0000120.2828460.0000202.6111.90.282841569.3654.3-0.98

注:表中各参数的计算公式同杨佳林等

其中:λ(176Lu)= 1.865×10-11 / a (Schere et al., 2001); 为样品测量值; 0.015; fCC = 1; fS = fLu/Hf; fDM = 1; t为锆石结晶年龄。

NLV-1样品[n(176Hf)/n(177Hf)]i=0.282772~0.282909,分布较均一,平均值为0.282851;εHf(t)=9.48~14.32,平均值为12.24;二阶段模式年龄TDM2=502~810 Ma,平均值为633 Ma。NLV-2样品[n(176Hf)/n(177Hf)]i=0.282759~0.282942,分布较均一,平均值为0.282846;εHf(t)=8.86~15.41,平均值为12.02;二阶段模式年龄TDM2=429~844 Ma,平均值为646 Ma。NLV-3样品[n(176Hf)/n(177Hf)]i=0.282784~0.282904,分布较均一,平均值为0.282849;εHf(t)=9.79~14.06,平均值为12.13;二阶段模式年龄TDM2=516~786 Ma,平均值为638 Ma。

4.3 全岩地球化学

乌什加嘎衣体金矿区主要岩矿石的主量、微量和稀土分析结果见表3。

表3 乌什加嘎衣提金矿床主要岩矿石的主量(%)和微量(×10-6)分析结果
Table 3 Major(%) and trace(×10-6) elements compositions of main rocks and ores in Wushenjiagayiti gold deposit

岩性二长岩安山岩霏细斑岩脉石英脉金矿石微晶次生石英岩金矿石样品号GSYV-13GSYV-14GSYV-15GSYV-16GSYV-5GSYV-6GSYV-7GSYV-8GSYV-1GSYV-2GSYV-3GSYV-4XWⅤ-1XWⅤ-2XWⅤ-3XWⅤ-4XWⅤ-5SiO257.4557.5857.3255.2960.0459.9661.4961.5172.9772.7872.6173.71TiO20.770.770.750.770.760.760.740.750.170.150.150.14Al2O316.2216.4016.4216.8016.0315.7615.1215.6513.4313.2613.7113.80Fe2O33.062.972.982.922.392.572.942.570.650.400.400.55FeO4.384.554.134.463.693.193.053.321.241.451.400.94MnO0.160.150.150.180.120.120.120.150.030.040.030.03MgO3.153.523.143.343.533.533.162.900.530.420.390.37CaO3.933.694.205.133.243.994.713.141.841.311.071.25Na2O3.683.883.723.423.622.952.573.132.402.302.452.62K2O3.392.883.583.592.643.152.933.444.004.995.084.26P2O50.290.300.270.290.310.310.290.300.050.040.040.04LOI2.602.502.382.803.092.992.342.411.951.551.351.66总量99.0899.1899.0598.9999.4699.2899.4699.2799.2798.6898.6799.37Na2O+K2O7.086.767.307.016.276.105.496.576.407.297.546.88Na2O/K2O1.081.351.040.951.370.940.880.910.600.460.480.61σ3.463.143.723.992.312.201.632.331.361.781.921.54A/CNK0.961.010.930.891.091.010.951.071.151.141.191.23A/NK1.671.721.641.771.821.902.041.761.621.441.431.54Mg#44.0446.5045.1245.6751.8453.3349.7447.8934.1429.1728.3331.34Zr119140177182176174128122151132NDNDNDNDNDRb1161161081091161081792121971992642195691Ba4004197649817008748091015788841881436264266Sr64040165963658166921827119618893701006791Th8.459.019.199.009.058.5814.1414.8914.0714.621.061.250.591.463.25K29523292232635326181260762593526976271682736127554542991414472822918700Nb9.49.012.513.013.311.712.712.914.012.71.21.21.11.32.5Ti5766582547365284523248469547878868475546632645951128Cr37.231.551.759.657.655.813.97.29.76.512.713.414.714.918.4Co19.2121.8718.4019.2418.7718.761.740.961.551.087.635.093.933.375.73La25.1023.4921.8122.0222.8023.766.4516.698.7122.982.813.401.643.314.16Ce53.6249.1748.1040.6243.5551.7617.9436.1333.5144.695.746.953.196.528.50Pr6.376.275.505.465.585.751.112.961.654.320.670.800.410.741.04Nd23.6424.4521.2120.3522.1521.993.589.465.4814.062.573.311.492.603.85Sm5.265.014.384.214.344.690.971.971.372.790.580.690.320.581.02Eu1.501.391.261.101.251.340.350.560.390.690.160.240.110.180.38Gd4.914.734.203.834.044.230.731.761.302.600.500.630.330.580.83Tb0.800.760.650.530.530.540.090.230.150.340.080.100.070.120.17Dy4.374.133.172.953.073.210.481.430.932.020.400.560.270.490.79Ho1.050.980.610.560.550.570.100.250.190.380.100.130.100.150.24Er2.642.501.951.941.763.080.340.880.661.700.260.310.200.320.53Tm0.460.420.310.230.240.240.050.140.100.190.030.040.070.090.13Yb3.172.831.751.611.611.680.371.020.711.410.290.430.240.400.63Lu0.470.480.300.250.240.260.060.160.110.220.050.050.070.100.13Y29.327.217.516.716.216.43.08.56.212.43.04.11.93.46.0ΣREE133.4126.6115.2105.7111.7123.132.673.655.298.414.317.68.516.222.4LREE115.5109.8102.393.899.7109.330.467.851.189.512.515.47.213.918.9HREE17.916.812.911.912.013.82.25.94.18.91.72.31.32.33.4LREE/HREE6.466.527.907.888.287.9113.6411.5712.3410.097.296.835.326.185.50(La/Yb)N5.675.958.939.8210.1910.1612.4311.778.8011.706.875.704.916.004.74δEu0.900.870.880.820.900.901.220.900.880.770.921.101.080.981.26δCe1.040.991.050.880.921.051.511.162.031.031.021.030.951.021.00

注:

二长岩SiO2=55.29%~57.58%,属中性;岩石全碱Na2O+K2O=6.76%~7.30%,TAS图解上4件样品中3件落入二长岩范围,1件落入二长闪长岩范围,与野外和镜下定名基本一致(图5a)。Na2O/K2O=0.95~1.08,Na2O与K2O含量大致相等;里特曼指数σ=3.14%~3.99%,为钙碱性—碱性,高钾K2O=2.88%~3.39%,在SiO2—K2O图解上,属于高钾钙碱—钾玄岩系列(图5c)。A/CNK=0.81~1.01,在A/CNK—A/NK图解上,样品落入准铝值和过铝值范围(图5b)。2件二长岩样品稀土总量(ΣREE)分别为133.36×10-6、126.63×10-6,轻稀土总量(LREE)分别为115.49×10-6、109.79×10-6,重稀土元素分别为17.87×10-6、16.84×10-6,轻重稀土比分别为6.46、6.52。(La/Yb)N分别为5.67、5.95,表明轻重稀土明显分异。球粒陨石标准化的稀土元素配分图为右倾型,重稀土元素为平坦型(图6a),属轻稀土富集型。在原始地幔标准化的微量元素蛛网图上,明显富集大离子亲石元素K、Rb、Ba、Th,相对亏损高场强元素Ti、Nb和重稀土元素Gd、Dy、Y、Er元素(图6b)。具弱负Eu异常,δEu分别为0.87、0.9,表明斜长石没有明显的结晶分异或残留源区趋势。Ce异常不明显,δCe分别为1.04、0.99。

图5 西准噶尔乌什加嘎衣提金矿床火山岩和区域岩体TAS图解(a) (底图据Middlemost,1994)、
A/CNK—AK图解(b) (底图据Maniar et al., 1989)和K2O—SiO2岩石系列图解
(c) (实线据Peccerillo and Taylor,1976;虚线据Middlemost,1985)
Fig.5 TAS(a),A/CNK—AK(b) and K2O—SiO2(c) diagram of volcanic rocks in Wushenjiagayiti gold deposit and regional rock mass,western Junggar(after Peccerillo and Taylor,1976;Middlemost,1985;Maniar et al., 1989;Middlemost,1994)
Ir—Irvine分界线,上方为碱性,下方为亚碱性(above the Irvine is alkaline and below is subalkaline)

安山岩SiO2=59.96%~61.51%;岩石全碱Na2O+K2O=5.49%~6.27%,TAS图解上4件样品落入安山岩范围,与野外和镜下定名一致(图5a)。Na2O/K2O=0.88~1.37,Na2O与K2O含量大致相等,里特曼指数σ=1.63%~2.33%,为钙碱性,相对高钾(2.64%~3.44%),在SiO2—K2O图解上,属于高钾钙碱系列(图5c)。ΣREE=105.7×10-6~123.1×10-6,LREE=93.8×10-6~109.3×10-6,HREE=11.9×10-6~13.8×10-6,LREE/HREE=7.88~8.28,(La/Yb)N=8.93~10.19,表明轻重稀土明显分异。球粒陨石标准化的稀土元素配分图为右倾型,重稀土元素为平坦型(图6a),属轻稀土富集型。在原始地幔标准化的微量元素蛛网图上(图6b),明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb和重稀土元素Gd、Dy、Y、Er。δEu=0.82~0.90,具弱负Eu异常。δCe=0.88~1.05,异常不明显。

霏细斑岩SiO2=72.61%~73.71%,高硅;岩石全碱Na2O+K2O=6.40%~7.54%,TAS图解上4件样品落入流纹岩范围(图5a),流纹岩与霏细斑岩具有相同的化学成分,结合野外(霏细斑岩与围岩有明显的侵入接触界线)和镜下特征定名为霏细斑岩脉。Na2O/K2O=0.46~0.61,高钾K2O(4.0%~5.08%),里特曼指数σ=1.36%~1.92%,为钙碱性,在SiO2—K2O图解上,属于高钾钙碱系列(图5c)。A/CNK=1.14~1.23,在A/CNK—A/NK图解上,样品落入过铝值范围(图5b)。ΣREE=32.6×10-6~98.4×10-6,LREE=30.4×10-6~89.5×10-6,HREE=2.2×10-6~8.9×10-6,LREE/HREE=7.88~8.28,(La/Yb)N=8.8~12.43,表明轻重稀土明显分异。球粒陨石标准化的稀土元素配分图为右倾型,重稀土元素为平坦型(图6a),属轻稀土富集型。在原始地幔标准化的微量元素蛛网图上(图6b),明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb和重稀土元素Gd、Dy、Y、Er。δEu=0.77~1.22,具弱负Eu异常。δCe=1.03~2.03,具弱正Ce明显。

石英脉型金矿石和微晶次生石英岩型金矿石稀土总量含量最低,位于多种岩石稀土配分模式图的最底部(图6a),微晶次生石英岩型金矿石稀土元素总量(ΣREE=16.2×10-6~22.4×10-6)略高于石英脉型金矿石(ΣREE=8.5×10-6~17.6×10-6),暗示微晶次生石英岩保留了一部分原岩成分。LREE=7.2×10-6~18.9×10-6,HREE=1.3×10-6~3.4×10-6,LREE/HREE=5.5~7.29,(La/Yb)N=4.74~6.87,表明轻重稀土明显分异。球粒陨石标准化的稀土元素配分图为右倾型,重稀土元素为平坦型(图6b),属轻稀土富集型。在原始地幔标准化的微量元素蛛网图上,明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb和重稀土元素Gd、Dy、Y、Er。δEu=0.92~1.26,Eu异常不明显。δCe=0.95~1.03,Ce异常不明显。

图6 乌什加嘎衣提金矿床主要岩石及区域岩体球粒陨石标准化稀土元素配分图(a)和微量元素原始地幔标准化
蛛网图(b)(标准化的数据值引自Sun and McDonough,1989)
Fig.6 Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace elements diagrams(b)for
main rock and ore of Wushenjiagayiti gold deposit and regional rock mass(after Sun and McDonough,1989)

图7 西准噶尔谢米斯台山西段岩体U-Pb年龄分布特征(a)和霏细斑岩εHf(t)—T图解(b)
Fig.7 U-Pb age distribution characteristics of intrusive rocks in western Xiemisitai mountain(a) and
εHf(t)—T diagram of felsophyre dykes(b),western Junggar

两种类型的金矿石和矿区的安山岩、二长岩、霏细斑岩脉具有相似的稀土元素配分和微量元素演化曲线,表明矿床的形成和矿区的火山岩是同源岩浆演化分异的结果。所有岩矿石样品均表现出富集轻稀土元素,亏损重稀土元素,轻重稀土元素分异明显,明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb,Eu、Ce元素异常不明显等特征,显示出岛弧岩浆的特点。在稀土元素配分模式图和微量元素蛛网图上,从上到下依次分布二长岩、霏细斑岩、次生微晶石英岩、石英脉,元素分异特征也越来越明显,呈现出递进性演化的关系。

表4 西准噶尔谢米斯台山西段岩体U-Pb年龄一览表
Table 4 List of U-Pb ages of rock masses in western Xiemisitai mountain,western Junggar

取样位置布兰萨拉岩体波尔托岩体乌图顺岩体杨庄岩体 德近特岩体哈勒盖特希岩体伊尼萨拉岩体乌什加嘎衣提金矿岩性年龄(Ma)锆石εHf(t)数据来源花岗闪长斑岩430.5±1.9+8.2~+13.7胡洋等,2019石英闪长岩428.9±2.6+10.3~+15.4胡洋等,2019暗色包体431.2±2.0-7.9~-0.9胡洋等,2019暗色包体431.5±2.6 胡洋等,2019二长花岗岩429.2±2.4+5.0~+13.0胡洋等,2019闪长岩449.6±2.1+9.7~+13.9胡洋等,2019碱长花岗岩427.6±2.3+12.4~+14.2杨钢等,2015二长花岗岩418±5 chen et al,2015二长岩424.6±1.3 董全宏等,2016二长花岗岩432±2.1 胡洋等,2019二长花岗岩441.0±1.2 董全宏等,2016碱长花岗岩441.9±2.1 董全宏等,2016二长花岗岩433±2.4 董全宏等,2016碱长花岗岩419.8±1.4 董全宏等,2016碱长花岗岩428.6±2.5+12.4~+14.2杨钢等,2015花岗闪长岩452±1.9+10.7~+14.1Wang Juli et al., 2017南北向霏细英安斑岩脉429.1±1.6+9.48~+14.32近东西向霏细英安斑岩脉426.5±1.7+8.86~+15.41本文近北东向霏细英安斑岩脉426.0±1.6+9.79~+14.06成因类型相关矿(点)床Ⅰ布兰萨拉金铜矿床、兰西金矿点Ⅰ和A混合成因乌西金矿点Ⅱ、Ⅳ金矿点A白杨河铀铍矿床乌什加嘎衣提金矿床AI

5 讨论

5.1 岩脉矿体形成时代

笔者等研究表明,霏细斑岩脉和金矿化不仅是空间上紧密相伴,而且具有相似的深部来源和成因联系,两者为同一次构造—岩浆活动下的同期产物。因此,金矿化的时间被框定于脉岩活动之中,含矿脉岩年龄可代表同生金矿体的形成年龄。本次从矿区早期南北向构造中采集的不含矿霏细斑岩脉样品获得的年龄是429.1±1.6 Ma(NLV1),结合研究区南北向霏细斑岩脉多数不含矿的事实,该年龄可能代表了成矿上限时间。从矿区近东西向和北东向两组构造中采集的含矿霏细斑岩脉样品获得的年龄分别是426.5±1.7 Ma(NLV2)、426.0±1.6 Ma(NLV3)。地表可见北东向断层明显错断近东西向断层痕迹(图2b),与U-Pb年龄结果一致。但两者相差仅为0.5 Ma,说明矿区两个主要方向的含矿霏细斑岩脉形成于同一成矿期中的两次成矿阶段。三件霏细斑岩脉年龄差别不大,代表乌什加嘎衣提金矿床岩脉矿体的成岩成矿年代为中—晚志留世。

近年来,谢米斯台山西段年代学研究不断深入,学者们在区域岩体上获得了较多U-Pb年龄数据(表4)。陈家富等(2015)报道波尔托岩体北缘二长花岗岩和石英正长岩年龄为418±5 Ma。杨钢等(2015)报道波尔托岩体碱长花岗岩年龄为427.6±2.4 Ma,哈勒盖特希岩体碱长花岗岩年龄为419.8±1.4 Ma。董全宏等(2016)在谢米斯台山西段进行区调时获得波尔托岩体、杨庄岩体、德近特岩体、乌图顺岩体等的年龄数据分布在419.8 Ma到441.9 Ma之间,并将侵入岩划分成早、中、晚志留世三个序列。胡洋等(2019)报道布兰萨拉岩体花岗闪长斑岩年龄为430.5±1.9 Ma,并指出花岗闪长斑岩与布兰萨拉金铜矿床关系密切;测得波尔托岩体石英闪长岩侵位年龄428.9±2.6 Ma、二长花岗岩年龄429.2±2.4 Ma;测得岩体中的暗色包体年龄为431 Ma。Wang Juli等(2017)测得研究区东部相邻的伊尼萨拉岩体年龄为452.0±1.9 Ma,是谢米斯台地区最老的年龄数据。张若飞等(2015)报道该地区广布的玄武安山岩年龄为428.6±4.6 Ma,并认为与铜矿化关系密切。综上,谢米斯台山西段的岩浆热液活动时间为419~452 Ma,开始于晚奥陶世,结束于早泥盆世,并于中—晚志留世达到顶峰(图7a)。笔者等测得霏细斑岩脉年龄与该地区广泛的岩基和岩珠侵位时代一致,是岩浆活动处于顶峰时期下的产物。

5.2 矿床成因和成岩成矿构造背景

从稀土元素配分图和蛛网图可以看出,霏细斑岩脉、金矿石与安山岩、二长岩具有相似的演化趋势(图6a,b)。表观上,金矿化与两者均具有亲缘关系,事实上,区域内已发现的金矿床(点)多数产于岩体接触带约1km范围内(图1c),远离岩体则矿化蚀变减弱。空间上金矿体主要定位于岩体的顶面和岩体内外接触带,而对围岩岩性没有专属性。杨清茂等(2020)对两类金矿石的氢、氧、硫同位素示踪均具有岩浆硫和岩浆热液特征,金矿石中常捕掳钾长石和花岗质角砾(图2e、2e′、2d、2d′),近矿围岩蚀变组合常发育钾长石化和红化,具有酸性岩浆的矿物和蚀变组合特征。霏细斑岩脉和二长岩在岩石类型和构造判别图解上表现一致(图8a,b,c),本文U-Pb年龄也表明含矿的霏细斑岩脉形成于该地区岩浆活动的顶峰时期。综上各种证据,笔者等认为金矿化和岩浆活动具有密切相关的时空和成因联系,岩浆活动是矿床形成的最主要因素,乌什加嘎衣提金矿床成因类型应归属于岩浆热液型金矿床。

含矿霏细斑岩脉3件样品εHf(t)均为正值,且分布范围较窄,在εHf(t)—T图解上落在亏损地幔和球粒陨石演化线之间(图7b),表明形成脉岩的岩浆来源于亏损地幔或由亏损地幔新增的年轻地壳(吴福元,2007b)。二阶段年龄429~844 Ma,略大于锆石形成年龄,表明源区在地壳中存留时间较短。含矿的霏细斑岩脉εHf(t)同位素组成(+8.86~+15.41)与区域中酸性岩体(+5~15.4)高度重叠,暗示含矿霏细斑岩脉的形成与区域岩体具有相似的岩浆来源。

霏细斑岩、二长岩地球化学特征显示出高钾(K2O=2.88%~5.08%)、碱性(σ=1.36%~3.99%)、低的钾钠比值(Na2O/K2O=0.46~1.35)特征;在岩石系列、岩石成因判别图解上分别落入准铝值—过铝值(图5b)、高钾钙碱—钾玄岩(图5c)、Ⅰ型花岗岩(图8a)和未分异—分异Ⅰ型花岗岩(图8b)区域,排除A型花岗岩的可能。不具有S型花岗岩低Sr、Eu和富集Nb、Zr元素的特点,镜下也不含白云石、堇青石等富铝矿物(邱检生等,2000)。因此,矿区霏细斑岩、二长岩为高钾钙碱准铝值的Ⅰ型花岗岩,且霏细斑岩分异程度较高。

图8 西准噶尔乌什加嘎衣提金矿二长岩、霏细斑岩脉及区域岩体成因类型图解(a)、(b)(据Whalen et al., 1987)和
构造环境判别图解(c)(据Pearce,1984)
Fig.8 Wushenjiagayiti gold deposit monzonite, felsophyre dykes and regional rock mass genetic type diagram(a),(b) (after Whalen et al., 1987) and tectonic environment discrimination diagram(c) (after Pearce,1984),western Junggar
A—A型花岗岩;S—分异的S型花岗岩;I—分异的I型花岗岩;FG—分异M+I+S花岗岩;OGT—未分异M+I+S花岗岩;syn-COLG—同造山
花岗岩;VGA—火山弧花岗岩;WPG—板内花岗岩;ORG—洋中脊花岗岩
A—A-type granite;S—differentiated S-type granite;I—differentiated I-type granite;FG—differentiated M+I+S-type granite;OGT—undifferentiated
M+I+S-type granite;syn-COLG—synorogenic granite;VGA—volcanic arc granite;WPG—intraplate granite;ORG—mid-ocean ridge granite

对于谢米斯台地区的侵入岩构造背景,学者之间存在争议。杨钢等(2015)认为波尔托岩体(Ⅰ型)和哈勒盖特希岩体(A型)形成于后碰撞背景;Zhang Xin等(2014)认为杨庄岩体(A型)形成于弧后拉张环境;胡洋等(2019)则认为波尔托岩体具有混合成因,布兰萨拉岩体为Ⅰ型花岗岩,它们均形成于俯冲背景下的陆缘弧环境。笔者根据多位学者在波尔托岩体上测得的年龄差别较大(相差大于20 Ma),且波尔托岩体面积较大,认为波尔托岩体是同源岩浆多批次侵位形成的复式岩体,其前后岩浆侵位背景可能存在差别。A型花岗岩代表的伸展背景已成为学者共识,而Ⅰ型花岗岩可以存在于多种构造背景中(吴福元等,2007a)。如何合理的解释谢米斯台地区A型和Ⅰ型花岗岩同时同地产出的事实。区域上出露的花岗岩以I型花岗岩为主,A型花岗岩仅占总面积1/10左右,且大多分布在谢米斯台山南坡。结合矿区霏细斑岩和二长岩微量元素演化趋势和布兰萨拉岩体、波尔托岩体代表的I型花岗岩相似,且在各类图解上基本落于相同的区域,与哈勒盖特希岩体、杨庄岩体代表的A型花岗岩则不同(图6a、b),表明与成矿相关的侵入岩是区域岩体的一部分,暗示成矿构造背景与区域上I型花岗岩的俯冲背景一致。本文霏细斑岩和二长岩微量元素显示出富集重稀土元素,轻重稀土分异明显,富集大离子亲石元素K、Rb、Ba、Th,相对亏损高场强元素Ti、Nb,Eu、Ce异常不明显,具有俯冲带岛弧相关的岩浆特征(Wilson,1989)。霏细斑岩、二长岩Y+Nb=15.7~38.7×10-6,Rb=116~212×10-6,在构造判别图解上(图8c)落入火山弧花岗岩区域,排除碰撞花岗岩的可能。二长岩较低的Th/Yb值(2.7~3.2)和较高的Ba/La值(15.9~17.8)反映成岩成矿物质主要来自于俯冲板片流体(孙勇等,2015)。已有研究表明A型花岗岩可以在俯冲背景下局部拉张环境中产生(Zhao Xifu et al., 2008;Jiang Yaohui et al., 2009;Karsli et al., 2012)。基于以上认识,笔者认为晚奥陶世—早泥盆世时期,谢米斯台地区以俯冲背景为主,在南坡附近也存在局部伸展环境。乌什加嘎衣提金矿床的形成与俯冲作用有关,是晚志留世古亚洲洋向南俯冲背景下(Chen Jiafu et al,2010;Shen Ping et al., 2012;王金荣等,2013;孙勇等;杨钢等,2015;胡洋等,2019;王金荣等,2019)与区域I型花岗岩同源岩浆演化分异的产物。

5.3 区域找矿意义

笔者等研究表明金矿化与霏细斑岩脉具有紧密共生,深部同源,继承演化的时空关系。霏细斑岩脉既参与了成矿作用又限制了金矿化的产出,岩脉与矿体共生是谢米斯台—沙尔布尔提地区金矿床的一种普遍现象。区域上可将霏细斑岩脉作为重要的找矿标志。这些控矿脉岩主要产于区域岩体的附近或内外接触带,是区域岩基进一步演化分异的产物,尤其是受EW向、NE向两组成矿期构造控制的霏细斑岩脉,多发生蚀变和金属矿化而形成金矿体。笔者等研究表明,含矿霏细斑岩脉、二长岩是区域I型花岗岩岩体的一部分,暗示区域上广布的志留纪I型花岗岩存在找矿前景。寻找中—晚志留世I型花岗岩可作为金矿找矿靶区的因素之一,尤其要重点关注岩体的内外接触带。目前发现的金矿体主要产于岩体的顶部,霏细斑脉岩所携带的成矿物质难以形成富大矿体,所以成矿物质应主要来源于脉岩源区的大岩基,暗示深部具有较大的找矿潜力。

申萍等(2015)根据成矿构造背景、成矿系统、典型矿床类型对比,完成了西准噶尔和国外成矿带的对接,新厘定波谢库尔—成吉斯—谢米斯台成矿带,中国境内进一步划分出谢米斯台和沙尔布尔提两个成矿亚带。此前一直认为该成矿带是一个寻找斑岩型铜矿和火山岩型铜矿的地区(申萍等,2010;胡洋等,2019,王居里等,2014),主要依据境外发现了波谢库尔斑岩型铜金矿(超大型,Yakubchuk et al,2012)、麦卡因VMS型铜矿床(Lobano et al., 2014)等矿床,国内在谢米斯台山东段发现了布拉特斑岩型铜矿化、莫阿特火山岩型铜矿化(王居里等,2014)、布兰萨拉金铜矿(李玉琴等,2015)等矿床(点)。乌什加嘎衣提金矿床类型不同于上述矿床(点),工业类型为石英脉—蚀变岩型金矿床,成因类型为岩浆热液型金矿床,为谢米斯台—沙尔布尔提成矿带找矿工作带来了新方向。已有研究表明板块俯冲作用有利于斑岩型铜矿和斑岩—浅成低温热液矿床的形成,也具有在剪切带中形成中低温石英脉型金矿床的能力(Corbett and Leacch,1998;Kerrich et al., 2000;Sillitoe et al.,2003),乌什加嘎衣提金矿床的发现应证了这一观点。近期本项目组在谢米斯台山中段新发现一处金矿点,距离本金矿床约80km,金矿化产于岩体外接触带,品位十几克/吨,矿点内发现了大量霏细斑岩脉,表明该类金矿化并非一地特育。

基于以上认识,笔者等认为谢米斯台—沙尔布尔提地区具有寻找与I型花岗岩相关的多种类型的Au—Cu矿床前景。

6 结论

(1)霏细斑岩脉是区域岩浆活动处于顶峰时期下的产物,与金矿化在空间上相伴,两者时间上相近,深部同源和相同成因。3件霏细斑岩脉的锆石U-Pb年龄分别为429.1±1.6 Ma、426.5±1.7 Ma、426.0±1.6 Ma,成岩成矿时代为中—晚志留世。

(2)霏细斑岩脉和二长岩为高钾钙碱准铝值的Ⅰ型花岗岩,是区域岩体的一部分,且前者分异程度较高。霏细斑岩脉εHf(t)=+8.86~+15.40,对应的二阶段年龄为429~844 Ma,略大于锆石年龄,表明成矿的岩浆热液来源于亏损地幔新增的年轻地壳。

(3)研究区主要岩、矿石样品表现出富集轻稀土元素,亏损重稀土元素,轻重稀土元素分异明显,明显富集大离子亲石元素Rb、Ba、Th,相对亏损高场强元素Ti、Nb,不具有Eu、Ce异常等特征。并与区域的I型花岗岩体具有相似的微量和稀土元素演化趋势,表明它们是同源岩浆活动演化分异的产物。综合分析认为乌什加嘎衣提金矿床成因类型属岩浆热液型金矿床,是古亚洲洋向南俯冲背景下的产物。

(4)谢米斯台—沙尔布尔提地区发育的霏细斑岩脉和中酸性I型花岗岩,是寻找与岩浆活动相关的石英脉—蚀变岩型金矿的重要标志。区域上具有寻找与I型花岗岩相关的多种类型的Au—Cu矿床前景。

致谢:感谢秦波、韩振、张雷、尹克宝、伏多旺工程师参与相关野外工作;感谢魏虎正高级工程师指导野外工作及在成文过程中的技术指导;感谢审稿专家和章雨旭研究员对本文提出的宝贵修改意见。

注 释 / Note

❶ 新疆维吾尔自治区地质调查院.2016.新疆和布克赛尔县乌兰浩特一带1∶5万五幅区域地质矿产调查报告.

参 考 文 献 / References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

陈家富, 韩宝福, 张磊. 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr—Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317~2335.

陈家富, 马旭, 李超, 屈文俊, 都厚远, 赵然, 韩宝福. 2017. 西准噶尔谢米斯台山西北段中志留世火山岩地球化学与Sr—Nd—Os同位素特征及其地质意义. 岩矿测试, 36(3): 318~325.

耿建珍, 李怀坤, 张健, 红英, 李惠民. 2011. 锆石Hf同位素组成的LA-MC-ICP-MS测定. 地质通报, 197(10): 1508~1513. .

韩宝福, 郭召杰, 何国琦. 2010. “钉合岩体”与新疆北部主要缝合带的形成时限. 岩石学报, 26(8): 2233~2246.

胡洋. 2019. 新疆谢米斯台地区晚奥陶世—早泥盆世岩浆演化及其对铜成矿的制约. 导师: 王居里. 西北大学博士学位论文: 1~199.

李光来, 陈光旭, 刘晓东, 李成祥, 王果, 刘小波, 刘朕语, 龙伟康. 2020. 雪米斯坦成矿带杨庄岩体中含铀矿物特征及其对铀成矿的指示. 地质学报, 94(11): 3404~3420.

李玉芹, 聂秀丽, 王学贞, 梁启军, 苏士星, 刘福运. 2015. 新疆准噶尔盆地西北缘布兰萨拉金铜矿地质特征及找矿方向探讨. 黄金科学技术, 185(6): 17~22.

秦克章. 2000. 新疆北部中亚型造山与成矿作用. 合作导师: 孙枢. 中国科学院研究生院博士后出站报告: 1~194.

申萍, 周涛发, 袁峰, 潘鸿迪, 王居里, Seitmuratova Eleonora. 2015. 环巴尔喀什—西准噶尔成矿省矿床类型、成矿系统和跨境成矿带对接. 岩石学报, 31(2): 285~303.

申萍, 沈远超, 刘铁兵, 潘鸿迪, 孟磊, 宋国学, 代华五. 2010. 准噶尔谢米斯台铜矿的发现及意义. 新疆地质, 28(4): 413~418.

孙金恒, 申萍, 潘鸿迪, 曹冲, 李昌昊, 冯浩轩, 郑佳浩. 2018. 新疆洪古勒楞铜矿床地质特征及构造背景. 矿床地质, 37(3): 587~610.

孙勇, 李永军, 杨高学, 易善鑫, 张胜龙, 孙羽, 王军年. 2015. 西准噶尔谢米斯台山西缘中志留世火山岩LA-ICP-MS锆石U-Pb测年及构造意义. 新疆地质, 125(1): 27~32.

王居里, 王建其, 胡洋, 涂一安, 王敏, 令伟伟. 2014. 新疆谢米斯台地区斑岩型铜矿化的发现及其意义. 地球学报, 147(3): 395~398.

王金荣, 贾志磊, 李泰德, 马锦龙, 赵磊, 何彦彬, 张伟, 刘昆鑫. 2013. 新疆西准噶尔发现早泥盆世埃达克岩: 大地构造及成矿意义. 岩石学报, 29(3): 840~852.

王谋, 李晓峰, 王果, 李彦龙, 师志龙, 鲁克改. 2012. 新疆雪米斯坦火山岩带白杨河铍铀矿床地质特征. 矿产勘查, 13(1): 34~40.

王谋, 王果, 李晓峰, 师志龙, 李彦龙, 鲁克改. 2013. 新疆雪米斯坦火山岩带南翼铀多金属成矿控制因素分析. 新疆地质, 117(1): 71~76.

王元元, 尹松, 杨清茂, 张叶军, 杨延平, 文加喜. 2018. 西准谢米斯台乌什加嘎衣提一带金矿地质特征研究. 新疆地质, 138(2): 227~232.

吴福元, 李献华, 杨进辉, 郑永飞. 2007a. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.

吴福元, 李献华, 郑永飞, 高山. 2007b. Lu—Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

杨钢, 肖龙, 王国灿, 高睿, 贺新星, 鄢圣武, 杨维, 晏文博, 周佩. 2015. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu—Hf同位素特征及大地构造意义. 地球科学(中国地质大学学报), 40(3): 548~562.

杨佳林, 顾玉超, 杨凤超, 李东涛, 鞠楠, 贾宏翔. 2018. 辽东半岛大金山花岗岩体SHRIMP U-Pb年龄、元素地球化学和Hf同位素特征及地质意义. 地质论评, 64(6): 1541~1556.

杨清茂, 杨文龙, 王毛毛, 秦波, 尹克宝, 张雷, 韩振, 尹松. 2020. 西准谢米斯台岩浆热液蚀变型金矿氢氧硫同位素特征及成矿意义. 新疆地质, 148(4): 476~481.

杨文龙, 杨清茂, 秦波, 尹克宝, 陈浩. 2021. 西准噶尔布兰萨拉地区金成矿条件及找矿方向探讨. 地质与勘探, 57(5): 947~958.

赵磊, 何国琦, 朱亚兵. 2013. 新疆西准噶尔北部谢米斯台山南坡蛇绿岩带的发现及其意义. 地质通报, 32(1): 195~205.

张若飞, 袁峰, 周涛发, 邓宇峰, 张达玉, 许超, 赵冰冰. 2015. 西准噶尔塔尔巴哈台—谢米斯台地区火山热液型铜矿床(点)地质及含矿火山岩年代学、地球化学特征. 岩石学报, 31(8): 2259~2276.

Amelin Y, Lee D C and Halliday A N. 2000. Early—Middle Archaean crustal evolution deduced from Lu—Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205~4225.

Chen Jiafu, Ma Xu, Li Chao, Qu Wenjun, Du Houyuan, Zhao Ran, Han Baofo. 2017&. Geochemical and Sr—Nd—Os isotopic characteristics of Middle Silurian volcanic rocks in northwest of the Xiemisitai Mountains, west Junggar and its tectonic implications. Rock and Mineral Analysis, 36(3): 318~325. .

Chen Jiafu, Han Baofo, Zhang Lei. 2010&. Geochemistry, Sr—Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317~2335.

Chen Jiafu, Han Baofo, Ji Jianqing, Zhang Lei, Zhao Xu, He Guoqing, Wang Tao. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern west Junggar, North Xinjiang, China. Lithos, 115(1~4): 137~152.

Corbett G J, Leach T M. 1998. Southwest Pacific Rim gold—copper systems: Structure. alteration and mineralizaton. Econ. Geol. Spec. Publ., 6: 1~236.

Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou HY, Li Huiming. 2011&. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 197(10): 1508~1513.

Han Baofo, Guo Zhaojie, He Guoqing. 2010&. Timing of major suture zones in north Xinjiang, China: Constraints from stitching plutons. Acta Petrologica Sinica, 26(8): 2233~2246.

Hu Yang. 2019#. Late Ordovician—Early Devonian magmatic evolution and its constraints on copper mineralization in the Xiemisitai area, Xinjiang. Tutor: Wang Juli. Ph. D. thesis of Northwest University: 1~199.

Jiang Yaohui, Jiang Shaorong, Dai Baozhang, Liao Shiyong, Zhao Kuidong, Ling Hongfei. 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province. Southeast China: Implications for a continental arc to rifting. Lithos, 107(3~4): 185~204.

Karsli O. Caran S, Dokuz A, Oban H, Chen B, Kandemir R. A-type granitoids from the eastern Pontides, NE Turkey: Records for generation of hybrid A-type rocks in a subduction-related environment . Tectonophysics, 530~531: 208~224.

Kerrich R, Goldfarb R, Groves D, Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space—time distributions, and origins. Reviews in Economic Geology, 13: 501~551.

Li Guanglai, Chen Guangxu, Liu Xiaodong, Li Chengxiang, Wang Guo, Liu Xiaobo, Liu Lianyu, Long Kangwei. 2020&. Characteristics of uranium-bearing minerals in Yangzhuang granite porphyry in the Xuemistan matallogenic belt and its significance for uranium metallogenesis. Acta Geologica Sinica, 94(11): 3404~3420.

Li Yuqing, Nie Xiuli, Wang Xuezhen, Liang Qijun, Shu Shixing, Liu Fuyuan. 2015#. Geological characteristics and prospecting direction in Bulansala gold copper deposit at the northwestern margin of the Junggar Basin in Xinjiang Region. Gold Science and Technology, 23(6): 17~22.

Lobanov K, Yakubchuk A S, Creaser R A. 2014. Besshi-type VMS deposits of the rudny Altai (Central Asia). Economic Geology, 109(5): 1403~1430.

Qing Kezhang. 2000#. Metellogeneses in Relation to Central-Asia Style Orogeny of Northern Xinjiang. Co-supervisor: Sun Shu. Postdoctoral report of Graduate School of Chinese Academy of Sciences: 1~194 Shen Ping, Zhou Taofa, Yuan Feng, Pan Hongdi, Wang Juli, Seitmuratova Eleonora. 2015&. Main deposit types, mineral systems, and metallogenic belt connections in the Circum-Balkhash—West Junggar metallogenic province. Acta Petrologica Sinica, 31(2): 285~303.

Shen Ping, Shen Yuanchao, Li Xianhua, Pan Hongdi, Zhu Heping, Lei Meng, Dai Huawu. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach. Lithos., 140~141: 103~118 .

Shen Ping, Shen Yuanchao, Liu Tiebing, Pan Hongdi, Meng Lei, Song Guoxue, Dai Huawu. 2010&. Discover of the Xiemisitai copper deposit in western Junggar, Xinjiang and its geological significance. Xinjiang Geology, 28(4): 413~418.

Sillitoe R H. 2003. Iron oxide copper gold deposits: An Andean view. Mineralium Deposit, 38: 787~812.

Stille P, Steiger RH. 1991. Hf isotope systematics in granitoids from the central and Southern Alps. Contributions to Mineralogy and Petrology, 107(3): 273~278.

Sun Jingheng, Shen Ping, Pan Hongdi, Cao Chong, Li Canghao, Feng Haoxuan, Zheng Jiahao. 2018&. Geological and structure background characteristics of Hongguleleng copper deposit, Xinjiang. Mineral Deposits, 37(3): 587~610.

Sun Yong, Li Yongjun, Yang Gaoxue, Yi Sanxing, Zhang Shenglong, Sun Yu, Wang Junlian. 2015&. Zircon LA-ICP-MS U-Pb dating and tectonic settings implication of the Middle Silurian volcanic rocks in the west of Xiemisitai Mountain. West Junggar. Xinjiang Geology, 125(1): 27~32.

Vervoort J D, Patchett P J, Gehrels G E, Nulman A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624~627.

Wang Juli, Wang Jianqi, Hu Yang, Tu Yian, Wang Ming, Ling Weiwei. 2014&. The first discovery of native copper in Xiemisitai area, Xinjiang. Acta Geoscientica Sinica, 147(3): 395~398.

Wang Juli, Hu Yang, Wang Jianqi, Wang Ming. 2017. The discovery of Late Ordovician Granodiorite in the Xiemisitai area, Xinjiang and its geological significance. Acta Geologica Sinica(English Edition), 91(6): 2327~2329.

Wang Jingrong, Jia Zhilei, Li Taide, Ma Jinglong, Zhao Lei, He Yanbing, Zhang Wei, Liu Kunxing. 2013&. Discovery of Early Devonian adakite in west Junggar, Xinjiang: Implications for geotectonics and Cu mineralization. Acta Petrologica Sinica, 29(3): 840~852.

Wang Mou, LI Xiaofeng, Wang Guo, Li Yanlong, Shi Zhilong, Lu Kegai. 2012&. Geological characteristics of Baiyanghe beryllium—uranium deposits in Xuemisitan volcanic belt, Xinjiang. Mineral Exploration, 13(1): 34~40.

Wang Mou, Wang Guo, LI Xiaofeng, Shi Zhilong, Li Yanlong, Lu Kegai. 2013&. Analysis on the controlling factors of uranium polymetallic metallogenic in the south of Xuemisitan volcanic belt, Xinjiang. Xinjiang Geology, 117(1): 71~76.

Wang Yuanyuan, Yin Song, Yang Qingmao, Zhang Yejun, Yang Yanping, Wen Jiaxi. 2018&. Study on geological characteristics of Au deposits of Wushenjiagayiti on Xiemisitai Mountain, west Junggar. Xinjiang Geology, 138(2): 227~232.

Wu Fuyuan, Li Xianhua, Yang Jinghui, Zheng Yongfei. 2007a&. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217~1238.

Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007b&. Lu—Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220.

Yang Gang, Xiao Long, Wang Guocan, Gao Rui, He Xingxing, Yan Shenwu, Yang Wei, Yan Wenbo, Zhou Pei, 2015&. Geochronology geochemistry and zircon Lu—Hf study of granites in western section of Xiemisitai area, western Junggar. Earth Science(Journal of China University of Geosciences), 40(3): 548~562.

Yang Jialin, Gu Yuchao, Yang Fengchao, Li Dongtao, Ju Nan, Jia Hongxiang. 2018&. SHRIMP U-Pb ages, elements geochemistry and Hf isotopic characteristics of the Dajinshan granite in Liaodong Peninsula and geological significance. Geological Review, 64(6): 1541~1556.

Yang Qingmao, Yang Wenlong, Wang Maomao, Qin Bo, Yin Kebao, Zhang Lei, Han Zheng, Yin Song. 2020&. Isotopic characteristics and significance of hydrogen oxygen sulfur in magmatic hydrothermal altered gold deposits on Xiemisitai Mountain, west Junggar. Xinjiang Geology, 148(4): 476~481.

Yang Wenlong, Yang Qingmao, Qin Bo, Yin Kebao, Chen Hao. 2021&. Geological characteristics and prospecting direction of the Bulansala area, western Junggar. Geology and Exploration, 57(5): 947~958.

Yakubchuk A, Degtyarev K, Maslennikov V, Wurst A, Lobanov K. 2012. Tectonomagmatic settings, architecture and metallogeny of the Central Asian Copper Province. US: Society of Economic Geologists, 29(3): 403~432.

Zhang Xin, Zhang Hui. 2014. Geochronological, geochemical and Sr—Nd—Hf isotopic studies of the Baiyanghe A-type granite porphyry in the western Junggar implications for its petrogenesis and tectonic setting. Gondwana Research, 25(4): 1554~1569.

Zhao Xifu, Zhou Meifu, Li Jianwei, Wu Fuyuan. 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment . Chemical Geology, 257(1~2): 1~15.

Zhao Lei, He Guoqi, Zhu Yabing. 2013&. Discovery and its tectonic significance of the ophiolite in the south of Xiemisitai Mountain, West Junggar, Xinjiang. Geological Bulletin of China, 32(1): 195~205.

Zhang Ruofei, Yuan Feng, Zhou Taofa, Deng Yufeng, Zhang Dayu, Xu Chao, Zhao Bingbing. 2015&. Geological characteristics, geochronology and geochemical characteristics of volcanic hydrothermal type copper deposits(points) in Taerbahatai—Xiemisitai region, wester Junggar . Acta Petrologica Sinica, 31(8): 2259~2276.

Zircon U-Pb age, Hf isotope and geochemiscal features of the felsophyre dyke and ores in Wushenjiagayiti gold deposit, western Junggar, Xinjiang

YANG Qingmao, SHI Zhilong, YANG Wenlong, WANG Yuanyuan

No. 216 Geological Survey, Urumqi, 830011

Abstract: The Wushenjiagayiti gold deposit is by far the largest gold deposit in the Xiemisitai—Shaerburti metallogenic belt, with a gold resource of 2 t at grade of 8×10-6. The geological features, rock-forming age and geochemical features of the felsophyre dyke are of great significance to the mineral search work in the area. The gold ore body is produced in the contact shear zone between the medium acidic rock body and the stratum, and is closely syngenetic with the felsophyre dyke, mainly developing two ore types of sulphide quartz vein type and alteration rock type, and the industrial type is quartz vein-alteration rock type gold deposit. In this paper, we measured 429.1±1.6 Ma for the non-mineralised felsophyre dyke and 426.5±1.7 Ma and 426.0±1.6 Ma for the two mineralised felsophyre dyke, suggesting that the deposits were formed during the Middle to Late Silurian. The andesite, monzonite, felsophyre dyke and both types of gold ores have similar trends of rare earth element distribution and trace element evolution, with a progressive evolutionary relationship from front to back. All rocks show enrichment of light rare earth elements and loss of heavy rare earth elements, with a clear differentiation between light and heavy rare earth elements, an obvious enrichment of large ionophile elements Rb, Ba and Th, a relative loss of high field strength elements Ti and Nb, and no Eu and Ce anomalies, showing the characteristics of subduction zone island arc magmas. The εHf(t) isotopes (+8.86~+15.41) of the felsophyre dyke are highly overlapping with the regional rocks (+5~15.4), corresponding to diagenetic ages of 429~844 Ma, slightly older than the zircon ages, indicating that the magmatic hydrothermal fluids that formed the mineralisation originated from the age crust added by the lossy mantle, and that the source area survived in the crust for a relatively short period of time. The felsophyre dyke, monzonite and region I granite fall into the same area on the petrogenetic and tectonic discrimination diagrams, and the genetic type is a high potassium—calcium-alkaline quasi-aluminium-valued I-type granite. The geological, chronological and geochemical characteristics of the deposit suggest that the genetic type is a magmatic—hydrothermal gold deposit, a product of the evolutionary divergence of homogenous magmatic activity with intrusive rocks in a southward subduction context of the late silurian Palaeo-Asian Ocean, and predict that there are multiple types of Au—Cu deposits associated with I-type granites in the region.

Keywords: Wushenjiagayiti gold deposit, western Junggar, Xinjiang;felsophyre dyke;zircon U-Pb age;Hf isotope;geochemistry;subduction background

Acknowlegements: This study is supported by China Nuclear Industry Geological Bureau of China(NO. 201908-1;NO. 202109-1);Thanks to QIN Bo, HAN Zhen, ZHANG Lei, YIN Kebao and FU Duowang engineers for participating in related field work; Thanks to senior engineer WEI Hu for his technical guidance and support during the field work and the preparation of the paper; Thanks the reviewers and Prof. ZHANG Yuxu for their valuable comments on this paper

注:本文为中国核工业地质局项目——新疆和布克赛尔县布兰萨拉地区铀—多金属矿预查(编号:201908-1)、新疆和布克赛尔县金斯特地区铀—多金属矿调查评价(编号:202109-1)的成果。

收稿日期:2021-12-13;改回日期:2022-05-07;网络首发:2022-05-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2022.05.065

作者简介:杨清茂,男,1992年生,工程师,主要从事地质矿产调查和研究工作;Email:biggest_yang@163.com。通讯作者:师志龙,男,1973年生,研究员级高级工程师,主要从事地质矿产选区和研究工作;Email:326654969@qq.com。

First author:

YANG Qingmao, male, born in 1992, engineer, mainly engaged in geology and mineral survey and research work; Email: biggest_yang@163.com

Corresponding author:SHI Zhilong, male, born in 1973, senior engineer, mainly engaged in geological and mineral selection and research work; Email: 326654969@qq.com

Manuscript received on: 2021-12-13;Accepted on: 2022-05-07; Network published on: 2022-05-20

Doi: 10. 16509/j. georeview. 2022. 05. 065

Edited by: ZHANG Yuxu