辽宁阜新北部地区早侏罗世花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及铷矿化

彭游博,刘文彬,姚玉健,赵军,谢忠,骆念岗

辽宁省地质矿产调查院有限责任公司,沈阳, 110031

内容提要: 辽宁阜新北部地区的稀有金属铷资源较为丰富,与铷成矿相关的岩体岩性主要为中细粒二长花岗岩,LA-ICP-MS锆石206Pb/238U年龄加权平均值为175.6±2.8 Ma,时代为早侏罗世。岩体富碱、过铝质、分异程度高,富集HREE、Th、U、Hf,亏损Sr、P、Ti。较低的K/Rb值(70.92~82.93)、负铕异常(δEu=0.20~0.40)、稀土总量(ΣREE=56.35~122.23)和轻重稀土比值(LREE/ HREE =3.10~4.73),Nb/Ta值(7.90~10.18)低于上地壳Nb/Ta值(13.4),Rb —(Y+Nb)图解与Rb/10—Hf—3Ta图解反映出岩体形成于板内拉张的构造环境。结合区域上对稀有金属铷的研究,认为该地区早侏罗世中细粒二长花岗岩为重要的稀有金属铷矿的找矿标志之一。

关键词:早侏罗世;二长花岗岩;锆石U-Pb年龄;稀有金属;铷矿; 辽宁阜新

辽宁阜新北部地区位于华北克拉通北缘,中生代岩浆活动频繁,主要分布早侏罗世的细粒二长花岗岩、中晚侏罗世中细粒、粗粒二长花岗岩。对于该时期的花岗岩形成构造背景和成矿作用备受国内外地质学者的关注。虽然花岗质岩浆与稀有金属、稀土金属成矿之间的关系是近些年矿床学研究的前沿课题之一,但是对该区域的研究相对较少,资料匮乏(王登红等,2013)。随着稀有金属铷在高新技术及航空国防领域中应用的越来越多,其独特的光电效应和清洁能源方面被人们所熟知(孙艳等,2013)。本次工作通过详实的野外地质调查,对早侏罗世岩体进行了解体,重点研究了与铷矿化相关的中细粒二长花岗岩的岩石学特征、地球化学特征、形成时代,利用电子探针等手段,分析稀有金属铷元素的含量及赋存状态,并结合区域构造背景,探讨中生代岩体与稀有金属成矿的关系。

1 研究区地质背景

研究区位于华北克拉通北缘隆起,旧庙凸起带内。区内存在新太古代结晶基底(辽西古陆块),由斜长角闪岩、磁铁石英岩、石榴角闪片麻岩岩石组合构成,历经麻粒岩相—角闪岩相变质作用和绿片岩相变质作用,多期次韧性变形作用,原岩为火山—沉积含铁建造。其上有少量古元古界变质沉积岩系(魏家沟岩组),中生代白垩系义县组火山岩、沙海组沉积岩(图1)。

图1 华北克拉通构造简图及研究区位置(a)、辽宁阜新北部地区地质简图(b)
Fig. 1 Simplified tectonic map in the northern margin of the North China Craton and study area location(a),
geological sketch map of Northern Fuxin area of Liaoning(b)

侵入岩主要以中生代岩体为主,早期形成的岩浆侵位形成较小规模的细粒二长花岗岩,晚期形成规模较大的细粒—中细粒—粗粒二长花岗岩。

2 岩石学特征

研究区内岩石主要岩性为细粒二长花岗岩和中细粒二长花岗岩。与铷成矿相关的岩性主要为中细粒二长花岗岩,岩石呈半自形粒状结构,块状构造。矿物成分主要由条纹长石(40%)、斜长石(30%)、石英(30%),黑云母及不透明矿物(少量)组成。条纹长石,半自形晶,板状,黏土化,粒径1~4 mm;斜长石,半自形晶,板状,具聚片双晶,绢云母化,粒径0.5~4 mm;石英,无色、浅灰色,他形,粒状,粒径1~6 mm;黑云母,黑色、鳞片状,片径1 mm±。不透明矿物主要为磁铁矿及赤铁矿(图2)。

图2 阜新北部地区中细粒二长花岗岩野外照片及镜下结构特征: (a) 中细粒二长花岗岩岩貌;(b)黝帘石化中细粒二长
花岗岩;(c)—(f)中细粒二长花岗岩薄片显微照片;(g)、(h)中细粒二长花岗岩光片显微照片
Fig. 2 Field photos and microscopical structural features of fine-grained monzogranit in Nouthern Fuxin area: (a) petrography of medium—fine-grained monzogranite;(b) tetrahedral epidotization medium—fine-grained monzogranite;(c)—(f) medium—fine-grained monzogranite thin section micrograph;(g), (h)medium—fine-grained monzogranite optical micrograph
Pl—斜长石;Pth—条纹长石;Qz—石英;Bt—黑云母;Mt—磁铁矿;Hm—赤铁矿
Pl—plagioclase;Pth—perthite;Qz—quartz;Bt—biotite;Mt—magnetite;Hm—hematite

岩石普遍具碎裂化,斜长石普遍具绢云母化及黝帘石化,条纹长石具黏土化,黑云母部分蚀变为白云母,析出铁质。副矿物有锆石、磷灰石、黄铁矿、金红石、独居石、石榴子石、赤褐铁矿、磁铁矿等,这些副矿物的存在,也反映出岩石的高铀、富含稀土元素的一些性质(赵振华,2010)。

3 锆石U-Pb与Lu—Hf测定

本次工作用于LA-ICP-MS锆石U-Pb测定的原样品为:中细粒二长花岗岩样品采自122°42′47″E、42°25′51″N,编号TC1301-RZ1。

3.1 测试方法

锆石挑选在河北省区域地质矿产调查所地质实验室完成,将待测年样品经过手工破碎、室内淘洗、筛分、缩分、磁选,在双目镜下挑选,得到含包裹体少、无明显裂隙且晶型完好的锆石;然后将锆石置于环氧树脂内研磨,再抛光清洗制成激光样品靶。阴极发光图像的拍摄及LA-ICP-MS锆石U—Th—Pb同位素分析由北京燕都中实测试技术有限公司完成,锆石的阴极发光( CL) 图像主要是查明锆石内部结构(图3) ,以便准确选点。

图3 阜新北部地区中细粒二长花岗岩锆石CL图像
Fig. 3 CL images of the zircon from medium—fine-grained
monzogranite in Nouthern Fuxin area

本次测试锆石微量元素含量和U-Pb同位素定年利用LA-Q-ICP-MS同时分析完成。激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个Y型接头混合。每个时间分辨分析数据包括大约20~30 s的空白信号和50 s的样品信号。

U—Th—Pb同位素测定中采用锆石标准GJ-1为外标进行同位素分馏校正,每分析5~10个样品点,分析2次GJ-1。锆石微量元素含量利用SRM610作为多外标、Si作内标的方法进行定量计算。剥蚀光斑直径根据实际情况选择25 μm。

对于与分析时间有关的U—Th—Pb同位素比值漂移,利用GJ-1的变化采用线性内插的方式进行了校正。标准锆石GJ-1的U—Th—Pb 同位素比值推荐值据Wiedenbeck等(1995)。锆石U-Pb谐和图绘制和权重平均计算均采用Isoplot/Ex_ver3 (Ludwig, 2003)完成。

锆石原位Lu—Hf同位素测定由北京燕都中实测试技术有限公司美国热电Neptune-plus MC-ICP-MS与NWR193激光烧蚀进样系统完成测试。测试步骤与校准方法参照(Wu Fuyuan et al., 2006)。锆石剥蚀使用频率为8 Hz,能量为16 J/cm2的激光剥蚀31 s,剥蚀出直径约35 μm的剥蚀坑。测试时,由于锆石中的n(176Lu)/n(177Hf)值极其低(小于0.002),176Lu对176Hf的同位素干扰可以忽略不计。每个测试点的173Yb/172Yb平均值用于计算Yb的分馏系数,然后再扣除176Yb对176Hf的同质异位素干扰。n(176Lu)/n(177Hf)的同位素比值为1.35274 (Chu Nanchin et al., 2002)。

3.2 分析结果

TC1301-RZ1样品的LA-ICP-MS锆石U-Pb测年同位素分析数据见表2。样品PM10-RZ1中所分析的锆石颗粒度为10~100 μm,长宽比多为1.1~1.8,半自形—自形长柱状、短柱状,表面干净,振荡环带结构特征明显。在阴极发光图像(图3)中可以看出,锆石均具较清晰的岩浆环带,锆石普遍存在高U现象(明添学等,2002;张佳明等,2021),由于该岩石经历了高分异作用,放射成因的Pb进入了SiO2,而U进入了ZrO2,导致了一些测点出现不谐和的情况。10个锆石数据点U、Th质量分数分别为344×10-6 ~ 2962×10-6、348×10-6 ~ 2043×10-6,Th/U值为0.55~1.28,显示岩浆锆石特点(表1)。10个测试数据点分布相对集中(图4)。206Pb/238U年龄为171.4~181.1 Ma,加权平均值为(175.6±2.8) Ma,MSWD为2.0。结果表明,中细粒二长花岗岩形成于早侏罗世。

图4 阜新北部地区中细粒二长花岗岩锆石U-Pb谐和图
Fig. 4 U-Pb concordia diagram of the zircons from medium
—fine-grained monzogranite in northeern Fuxin

中细粒二长花岗岩样品锆石的n(176Yb)/ n(177Hf)范围为0.032 158~0.283 131,n(176Yb)/ n(177Hf)值全部大于0.002,表明锆石在形成后,有较多的放射性成因Hf的积累,因而不能用初始n(176Yb)/ n(177Hf)值代表锆石形成时的n(176Yb)/ n(177Hf)值。样品fLu/Hf值在-0.96~-0.61之间,明显小于镁铁质地壳的fLu/Hf值(-0.34),在硅铝质地壳fLu/Hf值(-0.72)附近,因此二阶段模式年龄更能反映其源区物质从亏损地幔被抽取的时间(或其源区物质在地壳的平均存留年龄)(吴福元等,2007)。样品共10颗锆石εHf(t)值显示较大的变化范围,为3.5~8.8,表明应由新生地壳形成,两阶段模式年龄tDM1集中在510~700 Ma。tDM2值集中在659~992 Ma之间。与区域上魏家沟岩组的沉积年龄(1036±60)Ma较为相符。

4 地球化学特征

本次工作共采集5件地球化学分析样品。岩石样品化学分析测试由国土资源部沈阳矿产资源监督检测中心完成,常量元素采用原子吸收分光光度计等分析,稀土、微量元素分析采用等离子体质谱仪完成,分析结果见表3。

4.1 常量元素

研究区中细粒二长花岗岩主量元素化学成分及质量分数列入表1之中。在TAS图解(图5a)中,3个样品落于碱性花岗岩区,2个样品落于亚碱性岩区;在铝饱和指数A/NK—A/CNK图解(图5b)中,样品均落于过铝质区域(邓晋福等,2015)。

中细粒黑云母二长花岗岩的常量元素SiO2含量较高70.93%~73.65%,Al2O3含量14.47%~15.92%,K2O+Na2O含量为8.81%~10.22%,K2O/Na2O为0.93~1.14,均值1.03,说明其为富碱花岗岩。A/CNK为1.05~1.15,弱过铝质—强过铝质岩石,分异指数(DI)91.07~92.72,为高分异,岩体烧失值为0.86~1.08,说明该花岗岩岩体受到后期蚀变的影响(郭春丽等,2017)。

4.2 微量元素和稀土元素特征

微量元素标准化蛛网图解(图6a)可以看出,中细粒二长花岗岩富集HREE、Th、U、Hf、亏损Sr、P、Ti,Sm/Nd值为0.19~0.21,接近于地壳标准值。稀土元素地球化学特征,岩体呈“海鸥型”分布,(La/ Yb)N=1.39~2.74,轻重稀土分异不明显,但具有较高的负Eu异常(δEu=0.2~0.4),岩体Rb/Sr值13.57~17.91,比值非常高,Nb/Ta值为7.9~10.18,Zr/Hf值为17.02~23.43,比值相对较低,说明其具备高分异花岗岩的一些特征。Nb/Ta为7.9~10.18,略低于球粒陨石(迟清华等,2007);K/Rb为70.92~82.93,明显低于正常的基性岩浆分异、地壳重熔型花岗岩。K/Rb亦为稀有金属元素矿化指示剂,在其比值显著降低时,往往形成稀有金属元素的矿化或矿床(赵建华,2007)。

表2 中细粒二长花岗岩锆石Lu—Hf同位素分析结果
Table 2 Zircon Lu—Hf isotope analytical data of the medium fine-grained monzogranite

点号年龄(Ma)n(176Yb)n(177Hf)n(176Lu)n(177Hf)n(176Hf)n(177Hf)测值2σ测值2σ测值2σεHf(0)εHf(t)n(176Hf)n(177Hf) iTDM1(Ma)TDM2(Ma)fLu/Hf1171.4 0.057 463 0.001 539 0.002 056 0.000 047 0.282 841 0.000 020 2.46.0600837-0.942171.5 0.032 158 0.000 792 0.001 199 0.000 025 0.282 769 0.000 014 -0.13.5688992-0.963172.3 0.415 378 0.009 416 0.013 074 0.000 219 0.282 944 0.000 036 6.18.4644683-0.614172.3 0.100 677 0.002 866 0.003 349 0.000 071 0.282 789 0.000 024 0.64.0700962-0.905173.8 0.083 306 0.002 053 0.002 729 0.000 049 0.282 791 0.000 014 0.74.2685953-0.926174.7 0.062 365 0.000 604 0.002 336 0.000 016 0.282 784 0.000 015 0.44.0688966-0.937177.0 0.283 131 0.007 885 0.008 718 0.000 211 0.282 914 0.000 018 5.07.9602716-0.748179.6 0.130 293 0.005 009 0.004 411 0.000 126 0.282 925 0.000 019 5.48.8510659-0.879178.3 0.135 911 0.003 587 0.004 358 0.000 084 0.282 848 0.000 015 2.76.1628833-0.8710181.1 0.103 743 0.006 413 0.003 455 0.000 167 0.282 826 0.000 017 1.95.5646875-0.90

注: 表中参数的计算公式和所用常数 同杨佳林等,

其中:为样品测量值;为锆石结晶年龄。

5 电子探针分析

5.1 测试方法

电子探针样品在南京宏创地质勘查技术服务有限公司完成,将待测样品经过制片,圈点后采用日本电子JXA-8530F Plus型号的电子探针完成。黑云母、长石电子探针测试过程中采用的加速电压为15 kV,电流为10 nA,束斑直径为10 μm。Si、Ti、Al、Cr、Fe、Mn、Ni、Mg、Ca、Na、K、Rb、F和Cl峰位的测试时间为10s,上下背景的测试时间为峰位的一半。采用ZAF法对数据进行基体校正(赵海军等,2018)。

5.2 分析结果

黑云母12个点中,Rb2O最低含量0.15%,最高含量0.4%,平均品位0.33%。钾长石23个点中,仅有一个样品Rb2O含量为0,其他22个点最低含量0.05%,最高含量0.16%,平均含量0.1%。斜长石25个点中,只有4个点测试出Rb2O品位,其他21个点均未见Rb2O,出现Rb2O的样品最低含量0.01%,最高含量0.04%。由此推断斜长石可能与岩浆中气水化合物在高温的作用下发生了蚀变,导致测试中出现了少量铷元素。石英12个点中,也只有两个点测试出Rb2O含量,分别为0.02%,0.03%(表4~表7)。

表3 阜新北部二长花岗岩常量元素、微量元素、稀土元素分析结果
Table 3 The analysis results of major, trace and rare earth elements of monzogranite in Nouthern Fuxin area

样品编号TC1301-TY1TC1301-TY2TC1401-TY1TC1401-TY2TC1801-2-TY1SiO272.0873.6570.9372.9471.39Al2O314.9714.4715.9214.9315.47Fe2O30.740.520.960.740.73MnO0.110.050.120.120.07MgO0.110.150.200.150.11CaO0.570.510.690.710.50Na2O4.624.114.764.484.98K2O4.954.704.434.345.25TiO20.070.060.100.090.07P2O50.000.000.000.010.00H2O+0.830.800.900.770.97LOI1.031.081.050.861.08K2O+Na2O9.568.819.198.8110.22K2O/Na2O1.071.140.930.971.05A/NK1.161.221.261.241.12A/CNK1.071.131.151.121.05σ433.142.533.022.603.69分异指数(DI)92.5192.1491.0792.7292.10Rb513.96491.32485.46507.64525.08K4103338972367523600043547Th27.8619.2536.9032.2834.70U3.654.913.944.979.34Nb90.8461.3178.5385.7873.95Sr29.3734.4135.7828.3538.48P8.5712.8612.8627.8619.29Zr79.6354.7788.0575.9176.02Hf4.122.344.884.464.09Ti426.20356.55601.10493.40417.00样品编号TC1301-TY1TC1301-TY2TC1401-TY1TC1401-TY2TC1801-2-TY1K/Rb79.8479.3275.7170.9282.93Zr/Hf19.3123.4318.0317.0218.60Sm/Nd0.210.190.190.200.19Rb/Sr17.5014.2813.5717.9113.65Y/Ho39.2143.3838.8535.9836.85Nb/Ta9.999.0310.188.257.90La12.6510.0827.1920.6222.93Ce27.9121.4847.1236.7540.73Pr2.512.155.053.694.09Nd8.367.2917.8812.2013.56Sm1.721.413.392.452.61Eu0.150.180.260.150.23Gd1.691.342.982.282.41Tb0.400.300.600.530.50Dy3.132.343.963.843.60Ho0.760.600.951.020.91Er2.882.433.633.763.37Tm0.710.640.830.890.76Yb5.985.217.126.796.39Lu1.030.891.271.211.07Y29.7526.0436.7236.7033.69ΣREE69.8856.35122.2396.18103.17LREE53.3042.60100.8875.8584.15HREE16.5813.7521.3520.3219.01LREE/HREE3.213.104.733.734.43LaN/YbN1.521.392.742.182.57δEu0.270.400.240.200.28δCe1.141.080.920.950.95

注:主量元素质量分数单位为 %;微量和稀土元素质量分数单位为 ×10-6

表4 辽宁阜新北部地区早侏罗世中细粒二长花岗岩中黑云母电子探针分析结果
Table 4 The electron probe analysis results of biotite in the Early Jurassic medium—fine-grained monzogranit
in northern Fuxin, Liaoning

点号SiO2Al2O3TiO2FeOMgOCaONiOCr2O3MnONa2OK2OClFRb2O总量TZ1-cir2-Bt-140.3720.291.2913.374.970.010.060.032.560.239.490.003.340.3994.99TZ1-cir2-Bt-240.5820.191.2612.685.210.050.000.002.280.259.680.003.430.3294.48TZ4-cir5-Bt-138.5314.321.9216.817.910.360.040.163.030.078.430.073.260.3893.89TZ4-cir5-Bt-237.4814.252.1218.486.990.510.080.003.280.117.990.083.050.1593.26TZ5-cir1-Bt38.6112.692.1218.488.720.080.010.022.850.078.740.173.270.3894.79TZ6-cir3-Bt38.6714.142.1117.518.110.070.000.003.220.169.320.113.780.4095.97TZ6-cir4-Bt37.5513.562.1918.448.200.070.000.613.000.209.510.073.660.3195.81TZ7-cir4-Bt39.3813.671.8914.3410.670.160.060.052.860.088.630.073.770.2194.24TZ10-cir2-Bt39.4314.031.7714.919.730.070.060.072.320.109.150.063.580.4594.20TZ10-cir1-Bt39.0615.041.9614.579.260.180.000.042.430.128.740.073.310.3893.74TZ12-cir1-Bt39.3714.451.8414.0210.820.190.000.022.060.089.010.053.340.2894.10TZ12-cir5-Bt40.2514.071.6113.5710.870.020.000.021.880.119.590.063.660.3794.51均值39.1115.061.8415.608.450.150.020.092.650.139.020.073.450.3394.50

图5 阜新北部二长花岗岩TAS图解(a) (据Irvine and Baragar,1971)和铝饱和指数图解(b) (据 Maniar and Piccoli,1989)
Fig. 5 TAS(a) (after Irvine and Baragar,1971) and aluminum saturation index diagram(b) (after Maniar and Piccoli,1989)of monzogranite in Nouthern Fuxin area

表5 中细粒二长花岗岩中钾长石电子探针分析结果
Table 5 The electron probe analysis results of K-feldspar in medium fine-grained monzogranit

点号SiO2Al2O3TiO2FeOMnOMgOCaONa2OK2ORb2O总量TZ1-cir5-Kf-165.0218.140.010.040.010.000.000.4416.170.1399.96TZ1-cir5-Kf-265.0018.160.020.010.000.000.000.9515.360.1399.63TZ2-cir8-Kf-165.3817.800.000.020.030.000.001.0015.320.1199.66TZ2-cir8-Kf-265.0017.850.060.050.000.000.031.0015.120.0899.19TZ2-cir8-Kf-365.0517.990.010.080.020.010.021.0115.190.1699.52TZ3-cir1-Kf-165.4718.220.000.070.010.000.001.3314.820.15100.07TZ3-cir1-Kf-264.5818.000.030.110.000.000.001.4914.300.0498.56TZ4-cir2-Kf-165.2418.460.000.040.000.000.010.9215.240.10100.01TZ4-cir2-Kf-265.2518.040.050.080.010.010.030.8314.810.0599.15TZ5-cir2-Kf64.9317.960.020.060.000.000.040.7815.610.1099.49TZ5-cir4-Kf64.6417.760.070.040.000.000.010.8615.490.0998.97TZ6-cir1-Kf64.6718.000.000.120.000.000.051.1814.880.1399.01TZ6-cir2-Kf64.8218.110.000.040.010.000.021.0015.170.0999.25TZ7-cir1-Kf65.0717.830.000.040.000.000.000.5315.990.0799.52TZ7-cir2-Kf64.9717.930.010.040.020.000.040.9015.420.1099.43TZ8-cir3-Kf65.1318.150.040.080.000.000.000.9915.250.1299.76TZ8-cir4-Kf64.8517.770.010.080.000.000.020.9815.190.0998.99TZ10-cir3-Kf64.9018.070.010.070.010.000.001.1114.970.0599.17TZ10-cir4-Kf65.4317.880.000.040.000.030.060.8715.400.0999.81TZ11-cir1-Kf65.0618.050.000.030.030.000.060.8815.420.1599.69TZ11-cir3-Kf64.8918.110.000.030.000.000.000.2416.370.1199.75TZ12-cir2-kf64.9018.060.000.060.000.000.000.5415.920.0999.57T27-cir3-kf64.98 17.96 0.04 0.07 0.00 0.01 0.02 0.91 15.62 0.04 99.65 均值65.01 18.01 0.02 0.06 0.01 0.00 0.02 0.90 15.35 0.10 99.47

图6 阜新北部二长花岗岩微量元素原始地幔标准化图(a)(据黎彤,1994)和
稀土元素球粒陨石标准化图解(b)(据Sun and McDonough,1989)
Fig. 6 Primitive mantle-normalized trace element spider diagrams (a)( after Li Tong,1994&)and chondrite-normalized REE patterns(b) (after Sun and McDonough,1989)of monzogranite in Nouthern Fuxin area

综上所述, Rb2O主要赋存在黑云母和钾长石中,斜长石与石英中基本没有,其中黑云母中的Rb2O有较好的富集,平均品位为钾长石的3.3倍。

6 讨论

6.1 成因类型

通过之前的岩石学,岩石地球化学及同位素分析可以得知,岩浆高硅富碱,岩石为过铝质,大部分样品铝饱和指数大于1.1,指示来源可能为上地壳源区,高Rb/Sr值相当于长石砂岩的Rb、Sr比值,也表明岩浆形成过程中有上部地壳具有较高Rb/Sr的长石石英源区物质的加入(杨智荔,2021; 苗群峰,2018)。岩浆中特定矿物的微量元素,也可能指示岩浆结晶分异的过程。较低的K/Rb(70.92~82.93)值和负铕异常(δEu=0.20~0.40),表明了存在显著的长石分离结晶,而较低的稀土总量(ΣREE=56.35~122.23)和轻重稀土比值(LREE/ HREE =3.10~4.73)指示富含稀土元素的独居石等矿物的分离(王汝成,2019) 。这与人工重砂中的重矿物分析存在一部分的独居石矿物结果一致。岩石低于花岗岩岩浆—热液分界(Zr/Hf =26)的全岩(Zr/Hf =17.02~23.43)值,指示锆石的分离结晶,也暗示岩浆演化后期存在有流体的影响,较低的Nb/Ta(Nb/Ta =7.90~10.18)值低于上地壳(Nb/Ta =13.4),体现出存在黑云母的分离结晶作用与岩浆—流体相互作用的双重作用影响(王臻,2019)。根据FeOT/ MgO—(Zr+Nb+Ce+Y)图解可以看出样品落于分异花岗岩中的高分异“I”型花岗岩区(孟德磊,2019),(K2O+Na2O)/CaO—(Zr+Nb+Ce+Y)图解也可以看出岩石落于高分异区(周红智,2020)。因此结合岩石学特征初步推断,早侏罗世中细粒二长花岗岩应属高分异“I”型花岗岩。

图7 阜新北部地区中细粒二长花岗岩电子探针镜下结构特征
Fig. 7 The electron probe photos and microscopical structural features of the medium—fine-grained monzogranite
in northern Fuxin area

表6 中细粒二长花岗中岩石英电子探针分析结果
Table 6 The electron probe analysis results of Quartz in medium fine-grained monzogranit

点号SiO2Al2O3TiO2FeOMnONa2OCaOK2OMgORb2O总量T21-cir7-Qz99.970.030.010.020.010.050.000.010.000.00100.09T22-cir8-Qz100.150.040.010.010.010.000.010.010.020.00100.24T23-cir3-Qz100.510.030.000.000.000.010.000.030.000.00100.58T24-cir8-Qz100.450.030.020.000.020.030.000.000.000.00100.56T25-cir7-Qz99.830.010.020.000.020.010.000.000.020.0099.91T26-cir7-Qz99.560.000.030.000.000.000.000.010.000.0099.61T27-cir8-Qz100.060.010.000.000.000.000.010.000.000.00100.08T28-cir5-Qz99.770.010.010.010.010.010.010.010.010.0099.85T29-cir1-Qz100.180.000.000.000.000.030.000.000.000.02100.22T210-cir7-Qz100.250.000.020.000.000.000.010.000.000.03100.29T211-cir7-Qz99.680.020.010.020.030.030.040.000.010.0099.82T212-cir7-Qz100.180.000.000.000.000.000.010.000.000.00100.19

表7 阜新北部早侏罗世中细粒二长花岗岩中斜长石电子探针分析结果
Table 7 The electron probe analysis results of albite in the Early Jurassic medium—
fine-grained monzogranite in northern Fuxin, Liaoning

点号SiO2Al2O3TiO2FeOMnOMgOCaONa2OK2ORb2O总量T21-cir1-Pl-167.4119.700.050.0100.6611.370.160.0199.37T21-cir1-Pl-268.0119.830.040.060.030.020.6411.490.130100.25T22-cir1-Pl-168.1219.170.020.0500.010.0911.640.13099.23T22-cir1-Pl-267.8719.3200.0700.020.5211.440.14099.38T22-cir1-Pl-367.5819.4900.07000.8110.950.24099.14T23-cir5-Pl-167.6119.2700.020.0400.5511.410.14099.04T23-cir5-Pl-267.7219.400.1000.5811.570.150.0299.54T24-cir1-Pl-166.1520.490.030.120.010.011.9210.540.43099.7T24-cir1-Pl-265.8820.6200.11001.8610.350.440.0199.27T24-cir1-Pl-365.7520.5500.080.0201.8510.690.41099.35T25-cir5-Pl65.7320.440.010.160.0101.8510.450.36099.01T25-cir6-Pl65.9120.330.040.09001.8210.540.38099.11T26-cir5-Pl67.219.7800.08000.9810.950.24099.23T26-cir6-Pl67.0620.060.020.050.0101.0411.050.28099.57TZ12-cir4-pl65.4920.830.030.090.0102.110.270.35099.17T27-cir5-Pl66.1820.600.040.0101.8110.770.15099.56T27-cir7-Pl65.9220.460.040.11001.9510.420.37099.27T28-cir1-Pl67.2219.7800.06001.1311.180.24099.61T28-cir2-Pl65.6520.4400.090.0201.9510.580.34099.07T210-cir5-Pl68.0719.330.020.040.010.010.3211.760.07099.63T210-cir6-Pl67.4219.70.010.0300.010.8211.380.16099.53T211-cir2-Pl68.5319.010.060.01000.0411.920.07099.64T211-cir5-Pl68.3619.01000.0200.1811.710.1099.38T212-cir3-Pl66.0220.650.010.0500.012.0310.260.32099.35T212-cir6-Pl66.4220.4700.160.0101.9410.630.390100.02

6.2 构造环境

中细粒二长花岗岩岩体虽受赤峰—开原构造影响,但变形较弱。岩石虽局部较为破碎但矿物定向组构不发育,具有清晰的花岗结构、块状构造 (董美玲,2013)。说明岩浆形成环境相对稳定。

相关元素地球化学成因图解表明,在 Rb —(Y+Nb)图解(图9a)上,样品均落于同碰撞花岗岩与板内花岗岩区中。Ta— Yb图解(图9b)中样品落于板内花岗岩区。在Rb/10—Hf—3Ta图解(图10)中,样品全部落于板内花岗岩区,结合其构造位置隶属于华北克拉通北缘,可以推断该二长花岗岩形成于板内拉张环境。

图8 阜新北部二长花岗岩FeOT/MgO—(Zr+Nb+Ce+Y)图解(a)(据Whalen et al.,1987)及(K2O+Na2O)/CaO—(Zr+Nb+Ce+Y)图解(b)(据Whalen et al.,1987)
Fig. 8 The FeOT/MgO —(Zr+Nb+Ce+Y)diagram(a) (after Whalen et al.,1987)and (K2O+Na2O)/CaO—(Zr+Nb+Ce+Y)diagram(b) (after Whalen et al.,1987)of monzogranite in Nouthern Fuxin area
FG—分异的花岗岩; OGT—未分异的花岗岩; HFS—高分异S型花岗岩; HFI—高分异I型花岗岩
FG—:fractionated granites; OGT—non fractionated granite; HFS—highly fractionated S-type granites; HFI—highly fractionated I-type granites

6.3 岩体与铷矿化的关系

研究区的低品位铷矿化与早侏罗世二长花岗岩关系密切,铷矿化存在于黑云母及钾长石中。

在岩浆分异过程中,花岗质熔体往往产生氟、钾、铷、钽、铌等元素的集聚,这从不同期岩石或矿物中上述元素平均含量的变化研究方面,已有很多矿区实例可以说明(文春华,2017;陈雪锋,2018)。

图9 阜新北部二长花岗岩Rb —(Y+Nb)图解(a)据Pearce et al.,1984)及Ta—Yb图解(b)据Pearce et al.,1984)
Fig. 9 The Rb —(Y+Nb)diagram(a) (after Pearce et al.,1984)and Ta—Yb) diagram(b) (after Pearce et al.,1984)
of monzogranite in Nouthern Fuxin area
VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩;Syn-COLG—同碰撞花岗岩
VAG—volcanic arc granite;WPG—within plate granite;ORG—oceanic ridge granite;Syn-COLG—syn-collisional granite

图10 阜新北部二长花岗岩Rb/10—Hf—3Ta图解
(据Harris et al.,1986)
Fig. 10 The Rb/10—Hf—3Ta diagram of monzogranite in
Nouthern Fuxin area(after Harris et al.,1986)

全岩的这些地球化学特征,显示花岗岩岩浆是部分熔融析出的原始酸性岩浆经历结晶分异形成高硅花岗岩。也就是说成矿岩石来源地壳的长石砂岩源区是一个重要的补充源,熔融过程中随着SiO2含量的升高,K2O和不相容元素Rb、Th、U会增加很多倍,因此可以推断燕山期华北板块构造运动作用与大量富H2O流体参与下,上部地壳的长石砂岩区发生部分熔融,形成部分熔融的岩浆,在不断的熔融和分异过程下形成大规模的二长花岗岩岩浆房,并沿构造裂隙分别侵位中细粒—中粗粒二长花岗岩。而这些与成矿有关花岗岩(中细粒二长花岗岩)即为高分异花岗岩演化最彻底的端元,也就是稀有金属元素花岗岩,从早到晚成矿金属元素和碱质、挥发分高度富集,高硅富碱,铷在中—晚期阶段形成的侵入体中富集,并伴随热液蚀变出现碱性长石化、云英岩化、硅化等现象(孙艳,2019)。因此结合区域上对稀有金属及稀土元素的研究,认为在阜新北部地区早侏罗世二长花岗岩为稀有金属找矿的重要标志之一。

7 结论

(1) 辽宁阜新北部地区中生代中细粒二长花岗岩LA-ICP-MS锆石206Pb/238U年龄加权平均值175.6±2.8 Ma,时代为早侏罗世。

(2)辽宁阜新北部地区早侏罗世二长花岗岩为高分异花岗岩,形成于板内拉张环境。

(3)辽宁阜新北部地区早侏罗世二长花岗岩为稀有金属元素花岗岩,铷元素主要赋存在黑云母和钾长石中,是稀有金属元素找矿的重要标志之一。

致谢:野外工作和文章编写中得到辽宁省自然资源厅、辽宁地矿集团、辽宁省地质调查院有限责任公司相关领导和同事的指导和帮助,测试工作得到国土资源部沈阳矿产资源监督检测中心、北京燕都中实技术公司与南京宏创技术服务公司在岩石地球化学、锆石测年、探针测试中的帮助,感谢审稿专家提出的意见和建议。

参 考 文 献 / References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

陈雪锋, 范裕, 庾江华, 钱仕龙, 陆中秋, 杨张一, 洪建民, 周涛发. 2018. 江南隆起带(安徽段)首次发现铷矿床及其意义. 矿床地质, 37(6): 1349~1354.

迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册. 北京:地质出版社.

郭春丽, 曾令森, 高利娥, 苏红中, 马星华, 尹冰. 2017. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究. 地质学报, 91(8): 1796~1817.

邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015a. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717~734.

邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015b. 岩浆弧火成岩构造组合与洋陆转换. 地质论评, 61(3): 473~484.

董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 于峻川, 王鹏, 罗微. 2013. 滇西保山地块中—新生代岩浆作用及其构造意义. 岩石学报, 29(11): 3901~3913.

黎彤. 1994. 中国陆壳及其沉积层和上陆壳的化学元素丰度. 地球化学, 23(2): 140~145.

孟德磊, 贾小辉, 谢国刚, 吴俊, 卜建军, 曾海良. 2019. 粤南长蛇山分异Ⅰ型花岗岩的年代学、地球化学特征及其构造意义. 地质科技情报, 38(4): 193~204.

明添学, 杨清标, 李蓉, 唐忠, 薛戈, 罗建宏, 余海军, 李永平. 2020. 滇西加里东期平河复式花岗岩体锆石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识. 吉林大学学报(地球科学版), 50(6): 1685~1702.

苗群峰, 谢吾, 齐云飞, 刘剑波. 2018. 冀东麻地稀有金属碱长花岗岩厘定及意义. 中国锰业, 36(4): 1~4.

孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明. 2019. 我国铷矿成矿规律、新进展和找矿方向. 地质学报, 93(6): 1231~1244.

孙艳, 王瑞江, 亓锋, 李建康, 梅燕雄. 2013. 世界铷资源现状及我国铷开发利用建议. 中国矿业, 22(9): 12~17.

文春华, 张进富, 肖冬贵, 蒙正勇, 林碧海, 于玉帅. 2017. 湖南省双峰县大坪铷矿地球化学特征及成矿作用. 地质科技情报, 36(6): 94~103.

王登红, 王瑞江, 李建康, 赵芝, 于扬, 代晶晶, 陈郑辉, 李德先, 屈文俊, 邓茂春, 付小方, 孙艳, 郑国栋. 2013. 中国三稀矿产资源战略调查研究进展综述. 中国地质, 40(2): 361~370.

王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿. 岩石学报, 35(1): 69~75.

王臻, 陈振宇, 李建康, 李鹏, 熊欣, 杨晗, 周芳春. 2019. 云母矿物对仁里稀有金属伟晶岩矿床岩浆—热液演化过程的指示. 矿床地质, 38(5): 1039~1052.

杨智荔, 张晓晖, 袁玲玲. 2021. 辽—蒙交界地区晚侏罗世高硅花岗岩: 岩石成因与地质意义. 岩石学报, 37(4): 1061~1081.

吴福元, 李献华, 郑永飞, 高山. 2007. Lu—Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

周红智, 魏俊浩, 石文杰, 张松涛, 陈加杰, 张新铭, 沈志远, 王艺龙, 曾闰灵. 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异I型花岗岩的证据. 地质科技通报, 39 (4): 150~164.

赵海军, 张青草. 2018. 电子探针分析技术在六丈山铷矿研究中的应用. 湖南有色金属, 34(5): 13~16.

张佳明, 徐备, 颜林杰, 王炎阳. 2021. 中国东北地区泛非造山岩浆活动的记录: 来自扎兰屯地区铜山组碎屑锆石年代学和Hf 同位素的证据. 大地构造与成矿学, 45(2): 356~369.

赵建华. 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92~103.

赵振华. 2010. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用. 地学前缘, 17(1): 267~286.

Chi Qinghua, Yan Mingcai. 2007&. Applied Geochemical Element Abundance Data Book. Beijing: Geological Publishing House.

Chen Xuefeng, Fan Yu, Geng Jianghua, Qian Shilong, Lu Zhongqiu, Yang Zhangyi, Hong Jianmin, Zhou Taofa. 2018&. First discovery of Rubidium deposit in Jiangnan uplift belt (Anhui Section) and its significance. Mineral Deposits, 37(6): 1349~1354.

Chu Nanchin, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, Germain C R, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17: 1567~1574.

Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Di Yongjun, Su Shangguo, Zhao Guochun, Duan Peixin, Dai Meng. 2015&. On the correct application in the common igneous petrological diagrams: Discussion and suggestion. Geological Review, 61(4): 717~734.

Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015&. Magmatic arc and ocean—continent transition: Discussion. Geological Review, 61(3): 473~484.

Dong Meiling, Dong Guochen, Mo Xuanxue, Zhu Dicheng, Nie Fei, Yu Junchuan, Wang Peng, Luo Wei. 2013&. The Mesozoic—Cenozoic magmatism in Baoshan Block, western Yunnan and its tectonic significance. Acta Petrologica Sinica, 29(11): 3901~3913.

Guo Chunli, Zeng Lingsen, Gao Li’e, Su Hongzhong, Ma Xinghua, Yin Bing. 2017&. Highly fractionated grantitic minerals and whole rock geochemistry prospecting markers in Hetian, Fujian Provinc. Acta Geologica Sinica, 91(8): 1796~1817.

Harris N B, Pearce J A, Yindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society of London Special Publication, 19(5): 67~81.

Irvine T H, Baragar W. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523~548.

Li Tong. 1994&. Element abundances of China's continental crust and its sedimentary layer and upper continental Crust. Geochimica, 23(2): 140~145.

Ludwig K R. 2003&. User’s manual for isoplot 3. 0: A geochronological toolkit for microsoft excel, Berkeley. Geochronology Center Special Publication, 4(5): 1~71.

Maniar P, Piccoli P. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

Meng Delei, Jia Xiaohui, Xie Guogang, Wu Jun, Bu Jianjun, Zeng Hailiang. 2019&. Petrogenesis and its geological implications of the changsheshan fractionated I-type granites in the coastal area, Southern Guangdong. Geological Science and Technology Information, 38(4): 193~204.

Miao Qunfeng, Xie Wu, Qi Yunfei, Liu Jianbo. 2018&. Determination and significance of rare metal alkali-feldspar granite in Madi, Eastern Hebei Province. China's Manganese Industry, 36(4): 1~4.

Ming Tianxue, Yang Qingbiao, Li Rong, Tang Zhong, Xue Ge, Luo Jianhong, Yu Haijun, Li Yongping. 2020&. Zircon U-Pb age and Hf isotope characteristics of caledonian Pinghe composite granite Pluton: Its mineralization of granite weathering crust type REE deposit. Journal of Jilin University Earth Science Edition, 50(6): 1685~1702.

Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956~983

Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. London: Geological Society of Special Publication, 42(1): 313~345.

Sun Yan, Wang Denghong, Wang Chenghui, Li Jiankang, Zhao Zhi, Wang Yan, Guo Weiming. 2019&. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in china. Acta Geologica Sinica, 93(6): 1231~1244.

Sun Yan, Wang Ruijiang, Qi Feng, Li Jiankang, Mei Yanxiong. 2013&. The global status of rubidium research and suggestions on its development and utilization in China. China Mining Magazine, 22(9): 12~17.

Wang Denghong, Wang Ruijiang, Li Jiankang, Zhao Zhi, Yu Yang, Dai Jingjing, Chen Zhenghui, Li Dexian, Qu Wenjun, Deng Maochun, Fu Xiaofang, Sun Yan, Zheng Guodong. 2013&. The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources. Geology in China, 40(2): 361~370.

Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019&. Micas: Important indicators of granite—pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75.

Wang Zhen, Chen Zhenyu, Li Jiankang, Li Peng, Xiong Xin, Yang Han, Zhou Fangchun. 2019&. Indication of mica minerals for magmatic—hydrothermal evolution of Renli rare metal pegmatite deposit. Mineral Deposits, 38(5): 1039~1052.

Wen Chunhua, Zhang Jinfu, Xiao Donggui, Meng Zhengyong, Lin Bihai, Yu Yushuai. 2017&. Geochemical features and mineralization of the daping rubidium ore deposit in Shuangfeng County, Hunan Province. Geologica Science and Technology Information, 36(6): 94~103.

Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.

Wiedenbeck M, Alle P, Corfu F, Griffinm W L, Meierf M, Oberlia F, Von Quadtj A, Roddick C, Spiegel W. 1995. Three natural zircon standards for U—Th—Pb, Lu—Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1): 1~23.

Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007&. Lu—Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220.

Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234: 105~126.

Yang Zhili, Zhang Xiaofei, Yuan Lingling. 2021&. Late Jurassic high silica granites from the border area between Liaoning and Inner Mongolia: Petrogenesis and tectonic implication. Acta Petrologica Sinica, 37(4): 1061~1081.

Zhang Jiaming, Xu Bei, Yan Linjie, Wang Yanyang. 2021&. Magmatic records of the Pan-African orogeny in northeast China: Evidence from detrital zircon chronology and Hf isotope of the Tongshan Formation in the Zhalantun area. Geotectonica et Metallogenia, 45(2): 356~369.

Zhao Haijun, Zhang Qingcao. 2018&. Application of electron microprobe in the study of Rb deposit in Liuzhangshan. Hunan Nonferrous Metals, 34(5): 13~16.

Zhao Jianhua. 2007&. Problems related to the use of discriminant graphical solutions for the tectonic environment of trace elements in rocks. Geotectonica et Metallogenia, 31(1): 92~103.

Zhao Zhenhua. 2010&. Trace element geochemistry of accessory minerais and its applications in petrogenesis and metallogenesis. Earth Science Frontiers, 17(1): 267~286.

Zhou Hongzhi, Wei Junhao, Shi Wenjie, Zhang Songtao, Chen Jiajie, Zhang Xinming, Shen Zhiyuan, Wang Yilong, Zeng Rongling. 2020&. Late Triassic post-collision extension at Elashan magmatic belt, East Kunlun Orogenic Belt: Insights from Suolagou highly fractionated I-type granite. Bulletion of Geological Science and Technology, 39 (4): 150~164.

LA-ICP-MS zircon U-Pb dating, geochemical characteristics of the Early Jurassic granite in northern Fuxin area, Liaoning, and rubidium mineralization

PENG Youbo, LIU Wenbin, YAO Yujian, ZHAO Jun, XIE Zhong, LUO Niangang

Liaoning Survey Academy of Geology and Mineral Resources Co., Ltd, Shenyang, 110031

Objectives: The rare metal rubidium is rich in Nouthern area of Liaoning Fuxin. The plutonic rock related to Rb mineralization is mainly medium—fine-grained monzogranite. This paper aims to solve the age, geochemical characteristics, tectonic environment of granite and its relationship with rubidium mineralization.

Methods: We performed the zircon SHRIMP U-Pb isotopic dating, in situ micro-area Lu—Hf isotope test, the major elements、trace elements compositions of the Early Jurassic granite in Nouthern area of Liaoning Fuxin.

Results: The crystallization age of the fine-grained monzogranite granite is 175.6±2.8 Ma, which belongs to peak period of the Early Jurassic magmatic activity. The plutonic rock is alkali rich, peraluminous, high degree of differentiation. Enrichment HREE, Th, U, Hf, loss Sr, P, Ti. The plutonic rock contain low content of K/Rb (70.92~82.93) 、Strong negative Eu anomaly(δEu=0.20~0.40)、total rare earth elements(ΣREE=56.35~122.23) and the ratio of LREE/ HREE(LREE/ HREE =3.10~4.73), Nb/Ta(Nb/Ta =7.90~10.18) Lower than the upper crust (Nb/Ta =13.4). The zircon εHf(t)values of TC1301RZ1 are between 3.5~8.8, TDM2 are between 659 Ma and 992 Ma。

Conclusions: The Rb—(Y+Nb) and Rb/10—Hf—3Ta graphic reflects that the tectonic environment for the formation of the rock mass is intra-plate environment. Study on rare metal rubidium in combination region, it is considered that the Early Jurassic fine-grained monzogranite in this area is one of the important prospecting indicators for rare metal rubidium deposits.

Keywords: Early Jurassic;monzogranite;zircon U-Pb Dating;rare metals;rubidium ore; Fuxin, Liaoning

注:本文为辽宁省省级地质勘查项目(编号:JH20-210000-05760)的成果。

收稿日期:2021-07-12;改回日期:2022-05-07;网络首发:2022-05-20;责任编辑:章雨旭。Doi: 10.16509/j.georeview.2022.05.075

作者简介:彭游博,男,1987年生,硕士研究生,高级工程师,主要从事区域地质调查和固体矿产勘查等研究; Email:pyblnddy@163.com。

Acknowledgements: This study is supported by Liaoning Provincial Geological Exploration Project(No. JH-20-210000-05760). Thanks to colleagues for their valuable suggestions for revision on the article. Thanks to review experts and Prof. ZHANG Yuxu for their valuable amendments and suggestions.

First author: PENG Youbo, male, born in 1987, senior engineer, mainly engaged in regional geological survey and solid mineral exploration; Email: pyblnddy@163.com

Manuscript received on: 2021-07-12;Accepted on: 2022-05-07; Network published on: 2022-05-20

Doi: 10. 16509/j. georeview. 2022. 05. 075

Edited by: ZHANG Yuxu