华南鹰扬关构造带的大地构造属性与构造演化过程:基于构造解析的认识

夏元,陈家驹,徐先兵

中国地质大学(武汉)地球科学学院,武汉,430074

内容提要: 北北东向鹰扬关构造带位于华南板块西南部,其大地构造属性尚存在蛇绿混杂岩、裂谷带与陆内构造变形带之争。笔者等在物质组成与年代学综述的基础之上开展了详细的构造解析,厘定了鹰扬关构造带的大地构造属性和构造演化过程。鹰扬关构造带主体由新元古代中—晚期岛弧型安山岩和玄武岩、裂谷型双峰式火山岩、盖帽碳酸盐岩与泥砂岩等物质组成。不同时代和不同岩性的混杂是新元古代晚期裂谷和伸展构造背景下重力作用的产物。新元古代沉积混杂岩在显生宙经历了广西期、印支晚期与燕山期造山作用的叠加,导致了不同岩块之间往往呈断层接触。广西期(450~415 Ma)造山作用使新元古代沉积混杂岩发育近E—W向紧闭褶皱和逆断层并被花岗岩侵位。印支晚期(227~220 Ma)造山作用导致NNE向鹰扬关构造带的形成,表现为NNE—SSW向褶皱、逆断层与左旋韧性剪切带。燕山期造山作用使鹰扬关构造带中NNE—SSW向断裂发生构造活化,强烈的正断作用和右行走滑控制了白垩纪上叠盆地的发育。综合物质组成、年代学和构造解析证据,鹰扬关构造带不是新元古代或早古生代蛇绿混杂岩,而是印支晚期陆内构造变形带,不具有板块缝合带的大地构造属性。

关键词:鹰扬关;构造解析;沉积混杂岩;陆内构造变形带;华南板块

鹰扬关构造带位于湘—桂—粤三省交界之处,其地质工作始于1956至1975年1∶20万的区域地质调查工作,其中的岩石组合被命名为震旦纪或寒武纪泥砂岩。李自惠(1979)在鹰扬关构造带浅变质泥砂岩中识别出一套浅变质火山岩,称为“鹰阳关组”。在后期的区域地质调查工作中,其下部改称为“鹰扬关组”,而其上部改称为 “下龙组”或“拱洞组”。根据少量精度不高的年代学和岩石地球化学资料,前人对该套火山岩的活动时代和构造环境形成了不同认识。第一种观点认为其发育于新元古代(约819 Ma或约765 Ma)大陆裂谷环境,是华南板块对罗迪尼亚超大陆裂解的响应(周汉文等,2002;Tian Yang et al., 2020);第二种观点认为其形成于新元古代(822~816 Ma)或早古生代(约415 Ma)汇聚大陆边缘大洋俯冲环境(覃小锋等,2015;Tian Yang et al., 2020);第三种观点认为其沉积于新元古代(750~660 Ma)板内伸展环境(Qi Liang et al., 2021)。基于上述不同的年代学和构造环境解释,鹰扬关构造带被认为是:①新元古代或早古生代蛇绿混杂岩,代表了华夏板块与扬子板块的缝合带(殷鸿福等,1999;覃小锋等,2015;张克信等,2017;Liu Songfeng et al., 2018; 田洋等,2018;王令占等,2020);②新元古代裂谷带(周汉文等,2002);③新元古代至中生代多期变形叠加的陆内构造变形带(舒良树等,2020;徐先兵等,2021)。

基于最近15年来的基础地质调查、岩石地球化学以及年代学工作,笔者等在综述物质组成与年代学的基础之上,对鹰扬关构造带开展了详细的构造解析,讨论了其大地构造属性与构造演化过程。

1 物质组成

鹰扬关构造带主体呈NNE—NE向展布,其南起广西壮族自治区贺州市八步区大宁镇,北达广东省清远市连州市丰阳镇。鹰扬关构造带由码市街韧性剪切带、莲花断层与大宁韧性剪切带等边界断裂及其围限的地质体组成(图1a),长约40 km,最宽处约10 km,整体表现为NE宽、SW窄的喇叭状。在鹰扬关构造带北部,码市街韧性剪切带与莲花断层控制NE—SW走向白垩纪码市—丰阳盆地的展布;在鹰扬关构造带中南部,NNE向码市街韧性剪切带和莲花断层收敛于大宁韧性剪切带。

图1 华南鹰扬关构造带的不同时期不同比例尺地质图
Fig. 1 Geological maps of the Yingyangguan tectonic belt measured at different scales during different periods
(a)1∶100万中南地区地质图;(b)1∶20万江永幅地质图;(c)1∶20万贺县幅地质图;(d)1∶5万桂岭圩幅地质图;(e)1∶5万大宁圩幅地质图。1—韧性剪切带;2—脆性断层;3—燕山期花岗岩;4—印支期花岗岩;5—广西期花岗岩;6—白垩系;7—泥盆系—二叠系;8—寒武系;9—震旦系;10—南华系上统;11—南华系下统;12—青白口系;13—地质剖面; PJSF:萍乡—江山—绍兴断裂;CLYCBF:郴州—临武—鹰扬关—岑溪—博白断裂;YGLNF:永州—桂林—柳州—南宁断裂;LSMF:罗甸—师宗—弥勒断裂
(a) 1∶1,000,000-scale geological map of central—southern China; (b) 1∶200,000-scale geological map of the Jiangyong region; (c) 1∶200,000-scale geological map of Hexian County; (d) 1∶50,000-scale geological map of the Guilingwei region; (e) 1∶50,000-scale geological map of the Daningwei region. 1—Ductile shear zone; 2—brittle fault; 3—Yanshanian granite; 4—Indosinian granite; 5—Kwangsian granite; 6—Cretaceous; 7—Devonian—Permian; 8—Cambrian; 9—Sinian System; 10—Upper Nanhuan System; 11—Lower Nanhuan System; 12—Qingbaikou System; 13—geological section; PJSF:the Pingxiang—Jiangshan—Shaoxing fault; CLYCBF:the Chenzhou—Linwu—Yingyangguan—Cenxi—Bobai fault; YGLNF:the Yongzhou—Guilin—Liuzhou—Nanning fault; LSMF:the Luodian—Shizong—Mile fault

鹰扬关构造带主要由千枚岩(图2a, 图3a)、板岩(图2b, 图3b)、变余砂岩(图2c, 图3c)、变余泥岩(图2d, 图3d)、变质酸性(图3e)和基性火山岩(图3f)、大理岩(图2e, 图3g)、硅质岩(图3h)以及侵位其中的花岗质岩石(图3i)和基性岩脉组成。由于缺乏良好的古生物和同位素年代学制约,在不同单位测制的1∶20万和1∶5万比例尺地质图上,鹰扬关构造带中前寒武纪地质单元被划归为不同时代的岩层,如震旦系、寒武系、南华系和青白口系(图1b—e)。

图2 华南鹰扬关构造带中不同面理的野外照片
Fig. 2 Field photographs of different foliations in the Yingyangguan tectonic belt
(a)千枚岩中的石英质条带成分分异层;(b)硅化板岩中的成分分异层;(c)变质砂岩中的黑色和白色成分分异层;(d)变余砂岩和变余泥岩的分界;(e)大理岩中的黑色变泥质条带;(f)NW向断裂中发育的硅质条带和磁铁矿层
(a) Quartz component layers in the phyllite; (b) component layers in silicified slate; (c) black and white component layers in meta-sandstone; (d) the boundary of slightly metamorphic sandstone and mudstone; (e) pelitic component layers in the marble; (f) cherty bands and magnetite beds in the NW-trending faults

图3 鹰扬关构造带中不同岩性的显微照片
Fig. 3 Micrographs of different lithology in the Yingyangguan tectonic belt
(a)由绢云母组成的千枚理;(b)由断续且平行的绢云母组成的板理;(c)不同粒度的石英组成的变余砂岩成分层;(d)不同粒度的石英和泥质组分构成的变余泥岩成分层;(e)白云母组成的变质酸性火山岩的面理;(f)变质的杏仁状玄武岩,杏仁体主要成分为石英;(g)由方解石、白云石和石英组成的白云岩;(h)主要由石英组成的变质硅质岩;(i)斑状花岗闪长岩,斑晶为斜长石、石英和黑云母
(a) Micrograph of phyllitic foliations consisting of sericite; (b) micrograph of foliations consisting of discontinuous parallel sericite; (c) micrograph of component layers in metasandstone shown by different sizes of quartz grains; (d) micrograph of component layers in mudstone shown by different sizes of quartz grains ; (e) micrograph of foliations in metamorphic acid volcanic rock composed of muscovite; (f) micrograph of metamorphic amygdaloidal basalt, and the amygdala is mainly composed of quartz; (g) micrograph of marble which is composed of calcite, dolomite and quartz; (h) micrograph of metamorphic silicalite which is mainly composed of quartz; (i) micrograph of porphyritic granodiorite, whose phenocryst is composed of plagioclase, quartz and biotite

千枚岩、板岩和变质酸性火山岩的次生面理发育,主要表现为成分分异层,如变质砂岩和千枚岩中的石英条带(图2a—c)和白云岩中的泥质条带(图2e)。次生面理与原生面理近平行,其走向以NE—SW为主,倾向SE或NW,倾角中等。变余砂岩和变余泥岩的面理以原生层理为主,表现为不同的颜色(图2d)、粒度和成分层(图2f)。原生面理走向以NW—SE为主,倾向NE或SW,倾角为低至中等角度。

在1∶5万地质图上(图1d, e),鹰扬关构造带东侧南华纪变余砂泥岩表现为NW—SE走向向斜,其原生面理主要表现为NW—SE走向。而在鹰扬关构造带之中,原生面理少见,主要表现为次生面理,其走向主要表现为NE—SW向,倾向NW或SE,倾角为低至中高角度不等。

2 年代学综述

锆石U-Pb年代学表明鹰扬关构造带发育两期新元古代火山岩作用(表1)。早期火山岩以中—基性安山岩和玄武质岩为主,形成于822~816 Ma;晚期火山岩为双峰式火山岩,由长英质流纹岩和火山碎屑岩与基性岩组成,形成于765~753 Ma。覃小锋等(2015)利用LA-ICP-MS锆石U-Pb法测得下龙地区基性岩形成于439~415 Ma,与利用TIMS 锆石U-Pb法测得的819±11 Ma(周汉文等,2002)明显不同。但舒良树等(2020)通过重复采样和定年,认为下龙细粒辉绿岩形成于新元古代而非早古生代,且被约430 Ma高温花岗质岩浆热液所改造。该期构造热事件也得到了锆石U-Pb年龄为约419 Ma大宁岩体(程顺波等,2009)和约378 Ma的绢云母40Ar/39Ar年龄的佐证(王令占等,2019)。

碎屑锆石U-Pb年代学指示鹰扬关构造带中不纯大理岩和变余砂泥岩的最大沉积年龄为约661 Ma,且其中的凝灰岩形成于约670 Ma(Qi Liang et al., 2021)。上述年龄指示鹰扬关断裂中发育南华纪至震旦纪碳酸盐岩和泥砂岩,与华南新元古代斯图特冰期(约717~659 Ma)年龄(Zhou Chuanming et al., 2004, 2019; Lan Zhongwu et al., 2015, 2020)基本一致,指示鹰扬关构造带内不纯大理岩可能是斯图特冰期的盖帽碳酸盐岩经变质作用形成。

鹰扬关构造带中还发育广西期、印支期以及燕山期岩浆作用,如441~415 Ma的永和岩体和大宁岩体、约220 Ma的太堡岩体和160~150 Ma的禾洞岩体(表1)。绢云母40Ar/39Ar年代学表明,鹰扬关构造带还发育广西期(约378 Ma)和印支期(227~224 Ma)构造—热事件(王令占等,2019)。绢云母40Ar/39Ar的封闭温度(250~300℃; Leitch and McDougall, 1979; Hunziker et al., 1986)远远低于花岗岩中锆石的封闭温度(>800℃; Lee et al., 1997)。广西期绢云母40Ar/39Ar年龄(约378 Ma)远远小于广西期花岗岩年龄(441~415 Ma),指示约378 Ma的绢云母40Ar/39Ar年龄可能代表的是区域花岗岩的冷却年龄。但构造带内印支期花岗岩锆石U-Pb年龄(约220 Ma)小于印支期绢云母40Ar/39Ar年龄(227~224 Ma),指示227~224 Ma的绢云母40Ar/39Ar年龄是鹰扬关构造带印支期韧性变形的冷却年龄。

表1 华南鹰扬关构造带中原岩的形成年龄和变形—变质年龄
Table 1 Ages of deposition and deformation—metamorphism in the Yingyangguan tectonic belt

样品岩性地理位置年龄(Ma)测试方法年龄意义参考文献安山质岩石贺州八步区下龙村822±3LA-ICP-MS 锆石U-Pb火山喷发年龄Tian Yang et al., 2020安山质岩石贺州八步区下龙村822±3LA-ICP-MS 锆石U-Pb火山喷发年龄Tian Yang et al., 2020安山质岩石贺州八步区下龙村821±4LA-ICP-MS 锆石U-Pb火山喷发年龄Tian Yang et al., 2020变基性火山岩贺州八步区下龙村819±11 TIMS 锆石U-Pb火山喷发年龄周汉文等, 2002安山质岩石贺州八步区下龙村816±5LA-ICP-MS 锆石U-Pb火山喷发年龄Tian Yang et al., 2020砂岩贺州八步区芦冲口~770LA-ICP-MS 锆石U-Pb最大沉积年龄Qi Liang et al., 2021流纹质岩石贺州八步区底垌村765±3LA-ICP-MS 锆石U-Pb火山喷发年龄Tian Yang et al., 2020火山碎屑岩贺州八步区庙角村~754LA-ICP-MS 锆石U-Pb最大沉积年龄Qi Liang et al., 2021基性岩贺州八步区下龙村753±5LA-ICP-MS 锆石U-Pb火山喷发年龄Qi Liang et al., 2021凝灰岩贺州八步区庙角村670±6LA-ICP-MS 锆石U-Pb火山喷发年龄Qi Liang et al., 2021泥质灰岩贺州八步区寺田水口村~661 LA-ICP-MS 锆石U-Pb最大沉积年龄Qi Liang et al., 2021辉长岩连山县水井冲450±2LA-ICP-MS 锆石U-Pb岩体侵位年龄Tian Yang et al., 2021永和岩体连山县永和镇441±2LA-ICP-MS 锆石U-Pb岩体侵位年龄1∶5万地质报告❶大宁岩体贺州八步区大宁镇419±4SHRIMP 锆石U-Pb岩体侵位年龄程顺波等, 2009千枚岩贺州八步区下龙村378±3绢云母40Ar/39Ar冷却年龄王令占等, 2019千枚岩贺州八步区下龙村227±2绢云母40Ar/39Ar变形年龄王令占等, 2019千枚岩贺州八步区下龙村224±2绢云母40Ar/39Ar变形年龄王令占等, 2019太堡岩体连山县太堡镇220±1LA-ICP-MS 锆石U-Pb岩体侵位年龄李响等,2021a禾洞岩体连山县禾洞镇160±1LA-ICP-MS 锆石U-Pb岩体侵位年龄李响等,2021b二长花岗岩连山县上草镇159±1LA-ICP-MS 锆石U-Pb岩体侵位年龄Li Xiang et al., 2018大坪岩体连山县永和镇150±2LA-ICP-MS 锆石U-Pb岩体侵位年龄Wang et al., 2018太堡岩体连山县太堡镇150±2LA-ICP-MS 锆石U-Pb岩体侵位年龄Wang et al., 2018

3 构造解析

鹰扬关构造带中构造变形主要包括褶皱、断层和石香肠构造等,从微观到宏观尺度均有发育。宏观构造和微观变形既具有统一性,又存在一定的差别。

3.1 褶皱构造

褶皱构造主要表现在野外露头尺度(图4)和1∶5万填图尺度(图1)。新元古代岩层均不同程度地卷入了褶皱构造。其在变质砂岩、板岩和大理岩中较易识别,而在千枚岩中由于片理化发育难以识别。褶皱转折端以圆弧状为主,在板岩中表现为尖棱状。翼间角主要为30°~90°,属于开阔褶皱和中常—紧闭褶皱。根据其轴迹的方位,鹰扬关构造带中发育的褶皱以NNE—SSW走向和NW—SE走向为主。

在不纯的中—薄层泥质条带大理岩中,褶皱形态主要由弯曲的灰黑色泥质条带和白色大理岩表达(图4a、b、c)。褶皱转折端呈圆弧状,翼间角为30°~50°,属中常褶皱。在原位露头中,褶皱轴面呈中等—高角度倾向SE或NW,枢纽产状近水平,属于斜歪水平褶皱或直立水平褶皱(图5)。在桂岭镇大竹山大理石矿区,在采石中可见非原位的叠加褶皱发育。早期紧闭—同斜褶皱的轴面再次发生弯曲,形成晚期中常褶皱(图4c)。

图4 华南鹰扬关构造带中发育的褶皱变形
Fig. 4 Folds in the Yingyangguan tectonic belt
(a)永和—鹰扬关—大宁公路(323国道)旁大理岩中发育的紧闭褶皱,其翼间角为30°,轴面产状为120°∠79°;(b)八步区桂岭镇大竹山矿区中大理岩石块中发育的中常褶皱,其翼间角为46°;(c)八步区桂岭镇大竹山矿区中大理岩石块中发育的叠加褶皱,早期紧闭—同斜褶皱的轴面发生弯曲,形成晚期中常褶皱;(d)八步区大宁镇灰绿色中—厚层变余砂岩中发育的NW—SE走向中常向斜,其NE翼产状为120°∠79°,SW翼产状为87°∠57°,翼间角为67°;(e)八步区桂岭镇大竹山矿区西侧灰绿色中—薄层变余砂岩中发育的NW—SE走向开阔背斜,其东翼产状为140°∠8°,西翼产状为192°∠75°,翼间角为85°;(f)永和—鹰扬关—大宁公路(323国道)旁寺田路口砾岩中发育的圆弧状中常褶皱;(g)变质岩中由面理组成的对称状褶皱(非原位);(h)变质岩中由面理组成的对称状褶皱(非原位);(i)变质岩中沿面理发生顺层逆冲作用,形成不对称褶皱和膝折带;(j)千枚状板岩中沿面理发生顺层逆冲作用,形成不对称褶皱
(a) A tight fold developed in the marble beside Yonghe—Yingyangguan—Daning Highway (National Highway 323), with an interlimb angle of 30° and an axial plane occurrence of 120°∠79°; (b) the close fold developed in the marble rock in Dazhushan deposit, Guiling town, Babu district, with an interlimb angle of 46°; (c) the superimposed fold developed in the marble rock in Dazhushan deposit, Guiling Town, Babu district, and the early axial plane of the tight- isoclinal fold was bent to form the close folds; (d) the NW—SE trend close syncline occurred in thick gray-green metasandstone in Daning Town, Babu district, whose occurrences of the NE limb and SW are 120°∠79° and 87°∠57°, respectively, and their withinterlimb angle is 67°; (e) the NW—SE trend open anticline occurred in thin gray-green medium metasandstone in the Dazhushan deposit, Guiling Town, Babu district, whose occurrences of the east limb and west limb are 140°∠8° and 192°∠75°, respectively, and their withinterlimb angle is 85°; (f) a circular close fold developed in conglomerate at the Sitian road intersection beside the Yonghe—Yingyangguan—Daning Highway (National Highway 323); (g) symmetrical folds (not in situ) composed of foliation in metamorphic rocks; (h) symmetrical folds (not in situ) composed of foliation in metamorphic rocks; (i) foliation-parallel thrust occurred in metamorphic rocks resulting in asymmetric folds and kink band; (j) foliation-parallel thrust occurred in phyllitic slate and formed asymmetric folds

图5 华南鹰扬关构造带三条地质剖面图(剖面位置在图1中标示)
Fig. 5 Three structural sections in the Yingyangguan tectonic belt (the location of section is indicated in Fig. 1a)

在大宁镇北部灰绿色中—厚层变余砂岩中可见露头尺度的向斜发育,表现为转折端呈圆弧状,翼间角为67°的中常褶皱(图4d)。该向斜的NE翼产状较缓,SW翼产状较陡,枢纽近水平(169°∠12°),表现为NWW—SEE走向的斜歪水平褶皱。在桂岭镇大竹山矿区西侧中—薄层变余砂岩中,可见露头尺度的背斜发育,其东翼产状近水平,西翼产状陡立,枢纽近水平(104°∠7°),表现为NWW—SEE走向的斜歪水平褶皱(图4e)。在寺田路口,可见非原位砾岩中发育转折端呈圆弧状的中常褶皱,翼间角约为70°,两翼产状近对称(图4f)。综上可见,南华纪变余砂岩中发育的褶皱主要表现为走向NW—SE的中常褶皱,与1∶5万图面上南华系内发育的褶皱形态一致(图1e)。

在鹰扬关构造带中还可见由片岩和板岩中早期面理组成的褶皱,其形态表现为对称状和不对称状(图5)。对称状褶皱翼间角为45°~80°,转折端呈圆弧状(图4g、h)。不对称褶皱主要是由顺层滑动作用形成,转折端呈膝折状,指示由NWW向SEE的逆冲作用(图4i、j)。在强烈变形区,还可见不对称褶皱的短翼发育膝折带(图4i)。

3.2 断层构造

鹰扬关构造带中断层主要发育在不同岩性的接触面或构造薄弱带中。按断层走向,主要可以分为NNE—SSW向(图6a、b、d—i)和NW—SE走向断层(图6c),且以NNE—SSW向为主(图7);按断层运动学特征,可以划分为逆断层(图6a—d)、正断层(图6d, e)、左旋走滑断层(图6f—h)和右行走滑断层(图6i);按断层性质,可以划分为脆性断层和韧性剪切带(图6f—h),其中以脆性断层为主。很多断层面上都保留了多期断层活动的证据,指示鹰扬关断裂带发育了多期构造活动。

在鹰扬关构造带中,可见不同岩性的岩块之间主要表现为逆断层接触。在大桂山矿区边界可见大理岩岩块与变余砂岩之间呈逆断层接触(图6a),断层走向NNE—SSW,倾向SE,倾角中等。断层带内发育石英片岩,远离断层带渐变为正常大理岩和变余砂岩。不对称石英布丁构造(图6a)和发育在变余砂岩中的褶皱(图4e)均指示NNE—SSW走向的逆冲作用,与露头尺度逆断层一致(图4i, 图6b, d)。在323国道旁,可见低角度变余砂岩叠覆于近直立的板岩之上,二者产状明显不一致,早期被解释为新元古代角度不整合(徐志贤等,2006)。由于缺少底砾岩,且接触面为一套强面理化变质砂岩,沿面理还发育石英条带和磁铁矿层(图3f),因此认为变余砂岩与板岩以NW—SE走向逆断层相接触,与露头尺度逆断层一致(图6c),不属于角度不整合。

鹰扬关构造带中正断层较为少见,断层走向以NNE—SSW向为主(图6d, e)。正断层一般叠加在早期的逆断层之上,表现为先逆后正向滑动(图6d)。

图6 华南鹰扬关构造带中不同性质断层的野外照片
Fig. 6 Field photographs of faults with different shear senses in the Yingyangguan tectonic belt
(a)大理岩与变余砂岩以NNE—SSW走向逆断层接触,石英布丁构造指示逆冲剪切;(b)节理脉指示NNE—SSW走向断层为逆断层;(c)节理脉和不对称褶皱指示NW—SE走向断层为逆断层;(d)不对称褶皱和擦痕指示NNE—SSW走向断层早期为逆断层,晚期为正断层;(e)不对称碎斑指示NNE—SSW走向断层为正断层;(f)不对称石英布丁构造指示NNE—SSW走向断层为左行走滑断层;(g)“槽中脊”型韧性擦痕与阶步指示NNE—SSW走向断层为左行走滑断层;(h)“槽中脊”型韧性擦痕与阶步指示NNE—SSW走向断层为左行走滑断层;(i)擦痕和阶步指示NNE—SSW走向断层为右行走滑断层
(a) The marble overlay on the metasandstone by NNE—SSW-trending thrust fault, and the quartz boudinage indicates thrust shearing; (b) the joint veins indicate that the NNE—SSW-trending fault is a reverse fault; (c) the joint veins and asymmetric folds indicate that the NW—SE-trending fault is a reverse fault; (d) asymmetric folds and striae indicate that the NNE—SSW-trending fault is a reverse fault in the early stage and a normal fault in the late stage; (e) asymmetrical porphyroclast indicates that the NNE—SSW-trending fault is a normal fault; (f) asymmetrical quartz boudinage indicates that the NNE—SSW-trending fault is a reverse fault; (g) the ridge-in-groove slickenside striae and step indication the NNE—SSW-striking fault is a sinistral strike-slip fault; (h) the ridge-in-groove slickenside striae and step indication the NNE—SSW-striking fault is a sinistral shear zone; (i) striae and step indication the NNE—SSW-striking fault is a right-lateral strike-slip fault

左行走滑断层在鹰扬关构造带中强烈发育,以NNE—SSW走向为主,断层面倾向SE为主,倾角较陡(图6f—h)。在断层核部可见强烈的韧性变形,不对称石英布丁构造、“槽中脊”型韧性擦痕与阶步均指示左行走滑(图6f—h)。

鹰扬关构造带中右行走滑断层较为少见,断层走向以NNE—SSW为主,高角度倾向SE,倾角近直立(图6 i)。断面上擦痕近水平(图7),阶步指示右行走滑。

3.3 石香肠构造

鹰扬关构造带中石香肠构造也较为发育,主要表现为板岩中的石英石香肠构造和不纯大理岩中泥质条带石香肠构造(图5)。大型石英石香肠构造在露头尺度仅见一个石香肠体(图8a),其平面形态呈椭透镜状,与围岩界线清楚;而小型石英石香肠构造在露头尺度可见多个连续的香肠体,其连线方向与层理/面理平行(图8b),指示是垂直层面的挤压作用形成。不纯大理岩中泥质条带石香肠整体也与层面平行(图8c),由垂直于层面的挤压作用形成。

图7 鹰扬关构造带三条构造剖面中断面、擦痕与面理产状赤平投影(等面积下半球)
Fig. 7 Stereographic projections of fault planes, fault striae and foliations in the three structural sections of
Yingyangguan tectonic belt

图8 华南鹰扬关构造带中石香肠构造
Fig. 8 Boudinage structures in the Yingyangguan tectonic belt
(a)板岩中大型石英石香肠构造;(b)板岩中小型石英石香肠构造;(c)不纯大理岩中泥质条带石香肠构造
(a) Large quartz boudinage in slate; (b) small quartz boudinage in slate; (c) boudinage in the impure mud-banded marble

4 解释与讨论

4.1 鹰扬关构造带的大地构造属性

华南板块主要是由扬子地块和华夏地块拼合形成(Charvet et al., 1996; Shu Liangshu et al., 2021)。扬子地块和华夏地块的拼合位置在华南东段较为清晰,为萍乡—江山—绍兴断裂(Zhang Zhongjie et al., 2005; Li Xianhua et al., 2009; 舒良树,2012)。由于显生宙沉积覆盖,对扬子和华夏陆块在华南西段的拼合位置存在不同认识(图1):①郴州—临武—鹰扬关—岑溪—博白断裂(Wang Yuejun et al., 2003, 2008; Liu Songfeng et al., 2018);②永州—桂林—柳州—南宁断裂(饶家荣等,2012; Guo Lianghui et al., 2019; 舒良树等, 2020);③罗甸—师宗—弥勒断裂(董云鹏和朱炳全,1999; Guo Liguo et al., 2009)。

茶陵—郴州断裂两侧的莫霍面深度(Zhang Zhongjie and Wang Yanghua, 2007;)、物质组成(Wang Yuejun et al., 2003, 2008)和早古生代古地理格局差异明显(马永生等,2009; 张克信等,2017),且发育了显生宙多期构造变形(李三忠等,2016;Xu Xianbing et al., 2021a, b)。郴州—临武断裂向南的鹰扬关和岑溪地区还发育“构造混杂岩”(彭松柏等,2006, 2016a, b; 覃小锋等,2007, 2015, 2017; Liu Songfeng et al., 2018),指示萍乡—江山—绍兴断裂带可能经郴州—临武断裂向南过鹰扬关构造带并连接岑溪—博白断裂(Yang Xue et al., 2022)。但后期的岩石地球化学研究表明鹰扬关和岑溪地区火山岩并不是蛇绿岩成因(Wang Yuejun et al., 2018;Tian Yang et al., 2020)。最新的地球物理资料也指示萍乡—江山—绍兴断裂带向南延伸至郴州—临武断裂,但其在鹰扬关构造带北部的九嶷山地区发生向西偏转,并未向南延伸到鹰扬关构造带和岑溪—博白断裂(He Lipeng et al., 2021)。

基于对鹰扬关构造带内火山岩的形成环境和形成时代的不同认识,鹰扬关构造带的大地构造属性被解释为:①新元古代中期蛇绿混杂岩与扬子和华夏板块的分界线(田洋等,2018;王令占等,2020);②新元古代中期裂谷(周汉文等,2002);③早古生代绿混杂岩,代表扬子和华夏板块的分界线(殷鸿福等,1999;覃小锋等,2015;张克信等,2017);④陆内构造变形带(舒良树等,2020;徐先兵等,2021)。

鹰扬关构造带内的主体岩性为822~816 Ma安山岩和玄武质岩(周汉文等,2002;Tian Yang et al., 2020)、765~753 Ma双峰式火山岩(Tian Yang et al., 2020;Qi Liang et al., 2021)、670~660 Ma碳酸盐岩(Qi Liang et al., 2021)、片岩、板岩与变余泥砂岩等。其中,变余泥砂岩被广西期大宁岩体和永和岩体(程顺波等,2009)所侵位,指示其形成于志留纪之前。由此可知,鹰扬关构造带确实是由新元古代至早古生代时期的不同岩性单元混杂形成。

“混杂岩(mélange)”最早由Greenly(1919)年提出,是指1∶2.5万或更大比例尺的地质填图单元,由透入性变形的基质及其内部无序的混杂岩块组成(闫臻等,2018; Festa et al., 2019; 张克信等, 2020)。按形成过程和成因机制,混杂岩可以划分为构造混杂岩、沉积混杂岩、底辟混杂岩以及复合成因混杂岩(Festa et al., 2010; 闫臻等,2018)。混杂岩可以形成于被动大陆边缘、走滑构造带、转换构造带、汇聚大陆边缘和洋壳俯冲、大陆碰撞和陆内变形等不同大地构造环境(Festa et al., 2010; 闫臻等,2018;王国灿和张攀,2019)。

不同成因的混杂岩具有不同的大地构造地质意义(Festa et al., 2010, 2012, 2019; Dilek et al., 2012; Kimura et al., 2012; 闫臻等,2018; 张克信等,2020)。构造混杂岩因普遍含有基性至超基性蛇绿岩岩块,往往被认为是汇聚板块边缘和缝合带的鉴定标志(Cawood et al., 2009; Wakabayashi and Dilek, 2011; Kimura et al., 2012)。地球化学指示鹰扬关构造带内新元古代火山岩形成于岛弧或者陆内裂谷环境(周汉文等,2002;Tian Yang et al., 2020;Qi Liang et al., 2021),且缺少超基性岩、辉长岩、枕状熔岩以及远洋放射虫硅质岩等蛇绿岩套的组成单元,因此鹰扬关构造带内新元古代火山岩不属于蛇绿岩的组成单元,更谈不上构造混杂岩。

由于无底辟构造发育,鹰扬关构造带只可能是沉积混杂岩或者复合成因混杂岩。沉积混杂岩是无序的岩石单元,其中的外来块体通过沉积(重力)过程与基质结合和混合(Festa et al., 2010, 2012,2019)。由于鹰扬关构造带在新元古代晚期处于裂谷环境或被动大陆边缘的伸展环境(周汉文等,2002;Qi Liang et al., 2021),822~816 Ma岛弧型火山岩、765~753 Ma双峰式火山岩和670~660 Ma碳酸盐岩在重力作用下可以混入新元古代晚期的砂泥岩之中。由于岩块与泥砂岩之间为构造薄弱面,在后期构造应力作用下,岩块与泥砂岩由于能干性不同容易呈断层接触或岩块在泥砂岩中呈石香肠体分布。由此可以认为,鹰扬关构造带在新元古代晚期伸展构造环境下属于沉积混杂岩,后经显生宙广西期、印支期和燕山期构造运动叠加和改造。

4.2 鹰扬关构造带的形成过程

构造解析表明,鹰扬关构造带内发育两类不同走向的褶皱,分别为NW—SE走向褶皱和NNE—SSW走向褶皱。在1∶5万图面上,NW—SE走向褶皱由南华系构成,且被广西期岩体侵位,指示其形成于南华系之后,志留纪之前。结合区域构造运动(舒良树,2012),鹰扬关构造带内南华系NW—SE走向褶皱形成于广西期造山运动,其早期可能为近E—W走向褶皱,但受到后期NE—SW向褶皱叠加或NE—SW向断层的走滑牵引,使其走向改变为NW—SE向(李三忠等,2016;李智等,2019;徐先兵等,2021)。在670~660 Ma不纯大理岩之中可见早期NW—SE走向褶皱被晚期NNE—SSW走向褶皱所叠加,指示NNE—SSW走向褶皱形成于印支期或燕山期造山运动。结合区域上近东西向褶皱被印支晚期或燕山期NNE—SSW向褶皱所叠加(徐先兵等,2009, 2021;张岳桥等,2009;柏道远等,2012;Shi Wei et al., 2015; Li Jianhua et al., 2018; Wang Yuejun et al., 2021; 杨俊等,2021),鹰扬关构造带内NNE—SSW走向褶皱形成于印支晚期或燕山期。

构造解析表明,鹰扬关构造带内发育两类不同走向的断层,分别为NW—SE走向断层和NNE—SSW走向断层(图7)。NW—SE走向断层为逆断层,其应力场与NW—SE走向褶皱一致,且其发育在南华系变余砂岩之中或其与板岩的接触边界,因此推测NW—SE走向逆断层同样形成于广西期造山作用。绢云母40Ar/39Ar年代学指示NNE—SSW走向断层形成于227~224 Ma(王令占等,2019)。运动学分析表明NNE—SSW走向断层的运动学指向主要表现为逆冲或左行走滑,其区域应力场为NW—SE挤压。区域上,NNE—SSW走向断层的褶皱—逆冲带和韧性剪切带广泛发育于雪峰山地区(Wang Yuejun et al., 2005; Chu Yang et al., 2012a, b)和武夷山地区(Xu et al., 2011; Li Jianhua et al., 2017, 2022),是早中生代陆内变形的产物。

鹰扬关构造带内NNE—SSW走向断层还发育正断或右行走滑作用。交切关系表明,沿NNE—SSW走向断层的正断作用晚于逆冲作用,且其主要表现为脆性断层活动,指示其形成时代晚于227~224 Ma。NNE—SSW走向断层的右行走滑也是表现为脆性活动,指示其形成时代同样晚于227~224 Ma的韧性变形。区域上,NNE—SSW走向断层的脆性正断作用和右行走滑作用,主要发生在燕山期(Li Jianhua et al., 2014, 2020; Xu Xianbing et al., 2016, 2021b; Chu Yang et al., 2019, 2020)。因此,鹰扬关构造带内还叠加了燕山期构造活动。

综合物质组成、构造解析以及年代学结果,鹰扬关构造带新元古代至中生代构造演化过程如下:①新元古代中期(822~816 Ma),鹰扬关构造带位于活动大陆边缘,接受岛弧型火山岩沉积(Tian Yang et al., 2020),扬子与华夏陆块在约810 Ma拼合形成华南板块(Xu Xianbing et al., 2014, 2018; Yao Jinlong et al., 2019; Shu Liangshu et al., 2021)。随着罗迪尼亚大陆的裂解,华南板块内部发育陆内裂谷(Wang Jian and Li Zhengxiang, 2003; Li et al., 2008)和伸展作用(Qi Liang et al., 2021),重力作用导致822~816 Ma 岛弧型火山岩与765~753 Ma裂谷型双峰式火山岩发生沉积混杂(图9a)。新元古代晚期,鹰扬关构造带继续接受670~660 Ma碳酸盐岩和泥砂岩沉积;②早古生代晚期(441~415 Ma),广西期造山作用在鹰扬关构造带中形成近E—W向褶皱、逆断层和花岗岩体(图9b);③早中生代(227~220 Ma),印支晚期造山作用导致NNE—SSW走向褶皱和韧性剪切带的发育,鹰扬关构造带的变形样式基本定型(图9c);④晚中生代,燕山期造山作用导致鹰扬关构造带发生活化,强烈的伸展作用和走滑作用导致NNE—SSW走向白垩纪盆地发育。

图9 华南鹰扬关构造带新元古代中晚期至早中生代构造演化模型图
Fig. 9 Tectonic evolution model of the Yingyangguan tectonic belt during mid—late Neoproterozoic to Early Mesozoic

5 结论

通过物质组成和年代学综述,结合详细的构造解析,厘定了鹰扬关构造带的构造变形序列、大地构造属性和构造演化过程。

(1)鹰扬关构造带主要由新元古代中—晚期岛弧型安山岩和玄武岩、裂谷型双峰式火山岩、盖帽碳酸盐岩与泥砂岩等物质组成,其在新元古代晚期裂谷和伸展构造背景下因重力作用经沉积混杂而形成。

(2)鹰扬关构造带主要记录了广西期(450~415 Ma)近E—W向褶皱和逆断层作用、印支晚期(227~220 Ma)NNE—SSW向褶皱和左旋韧性剪切和燕山期NNE—SSW向断层活化(正断作用和右行左滑)。

(3)结合物质组成、构造变形序列与年代学数据,建立了鹰扬关构造带新元古代中—晚期、广西期、印支晚期与燕山期等4期构造演化过程。

致谢:感谢梁承华博士在野外地质调查中给予的帮助,感谢南京大学舒良树教授和另一位审稿专家对文章提出的宝贵建议,使得文章质量得以提升。

注 释 / Note

❶ 中国地质调查局武汉地质调查中心. 2016. 1 ∶50000富川县幅、涛圩幅、桂岭圩幅、太保圩幅区域地质矿产调查报告.武汉:中国地质调查局武汉地质调查中心.

参 考 文 献 / References

(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

柏道远, 贾宝华, 钟响, 刘耀荣, 贾朋远, 黄文义. 2012. 湘东南印支运动变形特征研究. 地质论评, 58(1): 19~29.

程顺波, 付建明, 徐德明, 陈希清, 马丽艳, 王晓地, 庞迎春. 2009. 桂东北大宁岩体锆石SHRIMP年代学和地球化学研究. 中国地质, 36(6): 1278~1288.

董云鹏, 朱炳泉. 1999. 滇东南建水岛弧型枕状熔岩及其对华南古特提斯的制约. 科学通报, 44(21): 2323~2328.

李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲. 2016. 全球早古生代造山带(Ⅱ): 俯冲—增生型造山. 吉林大学学报(地球科学版), 46(4): 968~1004.

李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言. 2021a. 粤西北印支期太保岩体的锆石U-Pb年代学、地球化学及岩石成因. 地球科学, 46(4): 1199~1216.

李响, 王令占, 涂兵, 田洋, 谢国刚, 张楗钰, 张宗言. 2021b. 广东连山地区禾洞高分异花岗岩的锆石U-Pb年代学及岩石成因. 地球科学, doi: 10.3799/dqkx.2021.175.

李智, 颜丹平, 陈文, 李林, 陈峰. 2019. 湘中盆地龙山穹窿构造样式及其成因机制. 地质学报, 93(11): 2742~2758.

李自惠. 1979. 广西贺县鹰扬关海相火山岩基本地质特征初步认识. 广西地质学会第二届会员代表及学术报告论文摘要集. 桂林: 广西区域地质调查研究院, 21~28.

马永生, 陈洪德, 王国力等. 2009. 中国南方层序地层与古地理. 北京: 科学出版社.

彭松柏, 金振民, 付建明, 何龙清, 蔡明海, 刘云华. 2006. 云开地区新元古代蛇绿岩的地球化学证据及其构造意义. 地质学报, 80(6): 814~825.

彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016a. 华夏早古生代俯冲作用(Ⅰ): 来自糯垌蛇绿岩的新证据. 地球科学, 41(5): 765~778.

彭松柏, 刘松峰, 林木森, 吴长峰, 韩庆森. 2016b. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁—镁质安山岩新证据. 地球科学, 41(6): 931~947.

覃小锋, 潘元明, 夏斌, 李容森, 周府生, 胡贵昂, 陆国斌. 2007. 云开地块北缘构造带中变质基性火山岩的地球化学特征及其大地构造意义. 地球化学, 36(3): 311~322.

覃小锋, 王宗起, 王涛, 熊彬, 冯佐海, 杨文, 朱安汉, 宋炯, 黄杰. 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283~292.

覃小锋, 王宗起, 宫江华, 赵国英, 石浩, 詹俊彦, 王震. 2017. 云开地块北缘加里东期中—基性火山岩的厘定: 钦—杭结合带南西段早古生代古洋盆存在的证据. 岩石学报, 33(3): 791~809.

饶家荣, 肖海云, 刘耀荣, 柏道远, 邓延林. 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484~502.

舒良树. 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035~1053.

舒良树, 陈祥云, 楼法生. 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333~360.

田洋, 王令占, 李响, 谢国刚, 涂兵, 张宗言. 2018. 桂东北鹰扬关群时代及构造背景: 来岩石学、地球化学及锆石年代学的证据. 中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 270.

王国灿, 张攀. 2019. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示. 地球科学, 44(5): 1688~1704.

王令占, 田洋, 李响, 涂兵, 谭娟娟, 谢国刚, 张宗言, 张楗钰. 2019. 桂东地区鹰扬关构造混杂岩~(40)Ar/~(39)Ar年龄及其构造意义. 地球科学与环境学报, 41(6): 631~643.

王令占, 田洋, 李响, 谢国刚, 涂兵, 张宗言, 张楗钰, 曾波夫. 2020. 桂东鹰扬关构造混杂岩物质组成及变形特征. 大地构造与成矿学, 44(3): 340~356.

徐先兵, 张岳桥, 贾东, 舒良树, 王瑞瑞. 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573~593.

徐先兵, 梁承华, 陈家驹, 徐亚东. 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133~1150.

徐志贤, 李锦诚, 黄勇. 2006. 论鹰扬关地区天子地组与拱洞组角度不整合界面特征及地质意义. 广西地质学会. 华南青年地学学术研讨会论文集. 桂林: 广西区域地质调查研究院: 157~160.

闫臻, 王宗起, 付长垒, 牛漫兰, 计文化, 李荣社, 祁生胜, 毛晓长. 2018. 混杂岩基本特征与专题地质填图. 地质通报, 37(Z1): 167~191.

杨俊, 罗鹏, 凌跃新, 杨少辉, 柏道远, 魏方辉, 曹顺红, 彭能立. 2021. 湘北桑植—石门一带早中生代褶皱叠加特征及变形机制. 地质科技通报, 40(6): 43~54.

殷鸿福, 吴顺宝, 杜远生, 彭元桥. 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1~12.

张克信, 何卫红, 徐亚东, 宋博文, 骆满生等. 2017. 中国沉积岩建造与沉积大地构造. 北京: 地质出版社.

张克信, 李仰春, 王丽君, 王嘉轩, 徐亚东, 王永和, 辛后田, 赵小明, 尹福光, 李智佩, 谷永昌, 杨祝良, 付俊彧. 2020. 造山带混杂岩及相关术语. 地质通报, 39(6): 765~782.

张岳桥, 徐先兵, 贾东, 舒良树. 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234~247.

周汉文, 李献华, 王汉荣, 李江, 李惠民. 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(S1): 22~25.

Bai Daoyuan, Jia Baohua, Zhong Xiang, Liu Yaorong, Jia Pengyuan, Hang Wenyi. 2012&. Study on the deformation of Indosinian movement in Southeastern Hunan. Geological Review, 58(1): 19~29.

Cawood P A, Kröner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geological Society, London: Special Publications, 318(1): 1~36.

Charvet J, Shu Liangshu, Shi Yangshen, Guo Lingzhi, Faure M. 1996. The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences, 13(3~5): 223~235.

Chen Shunbo, Fu Jianming, Xu Deming, Chen Xiqing, Ma Liyan, Wang Xiaodi, Peng Yingchun. 2009&. Zircon SHRIMP U-Pb dating and geochemical characteristics of daning batholith in northeast Guangxi. Geology of China, 36(6): 1278~1288.

Chu Yang, Faure M, Lin Wei, Wang Qingchen. 2012a. Early Mesozoic tectonics of the South China block: Insights from the Xuefengshan intracontinental orogen. Journal of Asian Earth Sciences, 61: 199~220.

Chu Yang, Faure M, Lin Wei, Wang Qingchen, Ji Wenbin. 2012b. Tectonics of the Middle Triassic intracontinental Xuefengshan Belt, South China: new insights from structural and chronological constraints on the basal décollement zone. International Journal of Earth Sciences, 101(8): 2125~2150.

Chu Yang, Lin Wei, Faure M, Xue Zhenhua, Ji Wenbin, Feng Zhentian. 2019. Cretaceous episodic extension in the South China Block, East Asia: evidence from the Yuechengling Massif of central South China. Tectonics, 38(10): 3675~3702.

Chu Yang, Lin Wei, Faure M, Allen M B, Feng Zhentian. 2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: Delayed unroofing of an orogenic plateau across the South China Block? Tectonophysics, 793: 228592.

Dilek Y, Festa A, Ogawa Y, Pini G A. 2012. Chaos and geodynamics: Mélanges, mélange-forming processes and their significance in the geological record. Tectonophysics, 568~569: 1~6.

Dong Yunpeng and Zhu Bingquan. 1999#. Island-arc Pillow Lava from Jianshui and Its Constraints on the Paleo-Tethys of South China in Southeastern Yunnan. Chinese Science Bulletin, 44(21): 2323~2328.

Festa A, Pini G A, Dilek Y, Codegone G. 2010. Mélanges and mélange-forming processes: A historical overview and new concepts. International Geology Review, 52(10~12): 1040~1105.

Festa A, Dilek Y, Pini G A, Codegone G, Ogata K. 2012. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges. Tectonophysics, 568: 7~24.

Festa A, Pini G A, Ogata K, Dilek Y. 2019. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction—accretion complexes. Gondwana Research, 74: 7~30.

Greenly E. 1919. The Geology of Anglesey. HM Stationery Office.

Guo Liguo, Liu Yuping, Li Chaoyang, Xu Wei, Ye Lin. 2009. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochemical Journal, 43(2): 101~122.

Guo Lianghui, Gao Rui, Shi Lei, Huang Zhangrong, Ma Yawei. 2019. Crustal thickness and Poisson's ratios of South China revealed from joint inversion of receiver function and gravity data. Earth and Planetary Science Letters, 510: 142~152.

He Lipeng, Sun Xinlei, Li Pengfei, Ai Sanxi, Li Jianming. 2021. Lithospheric structure near Jiuyishan, South China: Implications for asthenospheric upwelling and lithospheric modification. Geophysical Research Letters, doi: 10. 1029/2021GL096572.

Hunziker J C, Frey M, Clauer N, Dallmeyer R D, Friedrichsen H, Flehmig W, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H. 1986. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92(2): 157~180.

Kimura G, Yamaguchi A, Hojo M, Kitamura Y, Kameda J, Ujiie K, Hamada Y, Hamahashi M, Hina S. 2012. Tectonic mélange as fault rock of subduction plate boundary. Tectonophysics, 568: 25~38.

Lan Zhongwu, Li Xianhua, Zhu Maoyan, Zhang Qirui, Li Qiuli. 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age constraints and regional and global significance. Precambrian Research, 263: 123~141.

Lan Zhongwu, Huyskens M H, Lu Kai, Li Xianhua, Zhang Gangyang, Lu Dingbai, Yin Qingzhu. 2020. Toward refining the onset age of Sturtian glaciation in South China. Precambrian Research, 338: 105555.

Lee J K W, Williams I S, Ellis D J. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390(6656): 159~162.

Leitch E, McDougall I. 1979. The age of orogenesis in the Nambucca Slate Belt: AK‐Ar study of low‐grade regional metamorphic rocks. Journal of the Geological Society of Australia, 26(3~4): 111~119.

Li Jianhua, Zhang Yueqiao, Dong Shuwen, Johnston S T. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134: 98~136.

Li Jianhua, Zhang Yueqiao, Zhao Guochun, Johnston Stephen T, Dong Shuwen, Koppers A, Miggins D P, Sun Hanshen, Wang Wenbao, Xin Yujia. 2017. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia. Tectonics, 36(5): 819~853.

Li Jianhua, Dong Shuwen, Cawood P A, Zhao Guochun, Johnston S T, Zhang Yueqiao, Xin Yujia. 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling. Earth and Planetary Science Letters, 490: 170~179.

Li Jianhua, Cawood P A, Ratschbacher L, Zhang Yueqiao, Dong Shuwen, Xin Yujia, Hang Yang, Zhang Peixing. 2020. Building Southeast China in the late Mesozoic: Insights from alternating episodes of shortening and extension along the Lianhuashan fault zone. Earth-Science Reviews, 201: 103056.

Li Jianhua, Zhang Yueqiao, Ratschbacher L, Zhao Guochun, Dong Shuwen, Xin Yujia, Lü Fang. 2022. Polyphase deformation in the Badu complex: Insights into Triassic intraplate orogeny in South China. Journal of Structural Geology, 104475.

Li Sanzhong, Yang Zhao, Zhao Shujuan, Li Xiyao, Suo Yanhui, Guo Linli, Yu Shan, Dai Liming, Li Shaojun, Mu Dunling. 2016&. Global early paleozoic orogens(Ⅱ): Subduction—accretionary-type orogeny. Journal of Jilin University(Earth Science Edition), 46(4): 968~1004.

Liu Songfeng, Peng Songbai, Kusky T, Polat A, Han Qingsen. 2018. Origin and tectonic implications of an Early Paleozoic (460~440 Ma) subduction—accretion shear zone in the northwestern Yunkai Domain, South China. Lithos, 322: 104~128.

Li Xiang, Tu Bing, Wang Lingzhan, Tian Yang, Xie Guogang, Zhang Jianyu. 2018. New discovery and zircon Hf isotopic composition of the Early Yanshannian monzogranite in the Yingyangguan Group of eastern Guangxi, China. Acta Geologica Sinica (English Edition), 92(4): 1653~1655.

Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan. 2021a&. Zircon geochronology, geochemistry and petrogenesis of the Taibao pluton in northwest Guangdong province. Earth Science, 46(4): 1199~1216.

Li Xiang, Wang Lingzhan, Tu Bing, Tian Yang, Xie Guogang, Zhang Jianyu, Zhang Zongyan. 2021b&. Zircon Geochronology and Petrogenesis of the Hedong Highly Fractionated I-type Granite in the Lianshan, Guangdong Province. Earth Science, doi: 10.3799/dqkx.2021.175.

Li Xianhua, Li Wuxian, Li Zhengxiang, Lo C H, Wang Jian, Ye Meifang, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd—Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1~2): 117~128.

Li Zhi, Yan Danping, Chen Wen, Li Lin, Chen Feng. 2019&. The structural style and genetics mechanism of the Longshan dome in Xiangzhong basin, Xuefengshan orogenic belt. Acta Geologica Sinica, 93(11): 2742~2758.

Li Z X, Bogdanova S V, Collins A S, Davidson A, Waele B D, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian research, 160(1~2): 179~210.

Peng Songbai, Jin Zhenmin, Fu Jianming, He Longqing, Cai Minghai, Liu Yunhua. 2006&. The geochemical evidences and tectonic significance of Neoproterozoic ophiolite in Yunkai area, western Guangdong province, China. Acta Geologica Sinica, 80(6): 814~825.

Peng Songbai, Liu Songfeng, Lin Musen, Wu Changfeng, Han Qingsen. 2016a&. Early Paleozoic subduction in Cathaysia(Ⅰ): New evidence from Nuodong ophiolite. Earth Science, 41(5): 765~778.

Peng Songbai, Liu Songfeng, Lin Musen, Wu Changfeng, Han Qingsen. 2016b&. Early Paleozoic subduction in Cathaysia(Ⅱ): New evidence from the Dashuang high magnesian—magnesian andesite. Earth Science, 41(6): 931~947.

Qi Liang, Xu Yajun, Cawood P A, Zhang Hangchun, Zhang Zukun, Du Yuansheng. 2021. Implications for supercontinent reconstructions of mid—late Neoproterozoic volcanic—sedimentary rocks from the Cathaysia Block, South China. Precambrian Research, 354: 106056.

Qin Xiaofeng, Pan Yuanming, Xia Bin, Li Rongsen, Zhou Fusheng, Hu Guiang, Lu Guobin. 2007&. Geochemical characteristics and tectonic signification of metabasic volcanic rocks in tectonic belt of northern margin of Yunkai block, southern Guangxi. Geochimica, 36(3): 311~322.

Qin Xiaofeng, Wang Zongqi, Wang Tao, Xiong Bin, Feng Zuohai, Yang Wen, Zhu Anhan, Song Jiong, Huang Jie. 2015&. The reconfirmation of age and tectonic setting of the volcanic rocks of Yingyangguan Group in the eastern Guangxi: Constraints on the structural pattern of the southwestern of Qinzhou—Hangzhou joint belt. Acta Geoscientica Sinica, 36(3): 283~292.

Qin Xiaofeng, Wang Zongqi, Gong Jianghua, Zhao Guoying, Shi Hao, Zhan Junyan, Wang Zhen. 2017&. The confirmation of caledonian intermediate—mafic volcanic rocks in northern margin of Yunkai block: Evidence for Early Paleozoic basin in southwestern segment of Qinzhou—Hangzhou joint belt. Acta Petrologica Sinica, 33(3): 791~809.

Rao Jiarong, Xiao Haiyun, Liu Yaorong, Bai Daoyuan, Deng Yanlin. 2012&. Location of the Yangtze—Cathaysia plate convergence zone in Hunan. Chinese Journal of Geophysics, 55(2): 484~502.

Shi Wei, Dong Shuwen, Zhang Yueqiao, Huang Shiqi. 2015. The typical large-scale superposed folds in the central South China: Implications for Mesozoic intracontinental deformation of the South China Block. Tectonophysics, 664: 50~66.

Shu Liangshu. 2012&. An analysis of principal features of tectonic evidence in South China Block. Geological Bulletin of China, 31(7): 1035~1053.

Shu Liangshu, Chen Xiangyun, Lou Fasheng. 2020&. Pre-Jurassic tectonic of the South China. Acta Geologica Sinica, 31(7): 1035~1053.

Shu Liangshu, Yao Jinlong, Wang Bo, Faure M, Charvet J, Chen Yan. 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Science Reviews, 103596.

Tian Yang, Wang Wei, Wang Lingzhan, Li Xiang, Xie Guogag, Huang Sifang. 2020. Age and petrogenesis of the Yingyangguan volcanic rocks: Implications on constraining the boundary between Yangtze and Cathaysia blocks, South China. Lithos, 376: 105775.

Tian Yang, Huang Sifang, Wang Lingzhan, Li Xiang, Xie Guogang. 2021. Newly identified Caledonian gabbro (450 Ma) in the eastern Guangxi, South China: Production of intraplate orogenic process, China Geology, 4: 367~370.

Wakabayashi J, Dilek Y. 2011. Mélanges: Processes of formation and societal significance. Geological Society of America.

Wang Guocan, Zhang Pan. 2019&. A new understanding on the emplacement of ophiolitic Mélangs and its tectoninc significance: Insight from the structural analysis of the remnant oceanic basin-type ophiolitic Mélangs. Earth Science, 44(5): 1688~1704.

Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122(1~4): 141~158.

Wang Lingzhan, Tian Yang, Li Xiang, Tu Bing, Tan Juanjuan, Xie Guogang, Zhang Zongyan, Zhang Jianyu. 2019&. 40Ar/39Ar dating of Yingyangguan tectonic Mélang in the eastern Guangxi, China and its tectonic implications. Journal of Earth Science and Environment, 41(6): 631~643.

Wang Lingzhan, Tian Yang, Li Xiang, Xie Guogang, Tu Bing, Zhang Zongyan, Zhang Jianyu, Zeng Bofu. 2020&. Composition and deformation of the Yingyangguan tectonic Mélang in eastern Guangxi. Geotectonica et Metallogenia, 44(3): 340~356.

Wang Yuejun, Fan Weiming, Guo Feng, Peng Touping, Li Chaowen. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou—Linwu fault, South China: implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. International Geology Review, 45(3): 263~286.

Wang Yuejun, Zhang Yanhua, Fan Weiming, Peng Touping. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. Journal of Structural Geology, 27(6): 985~998.

Wang Yuejun, Fan Weiming, Cawood P A, Li Sanzhong. 2008. Sr—Nd—Pb isotopic constraints on multiple mantle domains for Mesozoic mafic rocks beneath the South China Block hinterland. Lithos, 106(3~4): 297~308.

Wang Yuejun, He Huiying, Gan Chengshi, Zhang Yuzhi. 2018. Petrogenesis of the early Silurian Dashuang high-Mg basalt—andesite—dacite in eastern South China: origin from a palaeosubduction-modified mantle. Journal of the Geological Society, 175(6): 949~966.

Wang Yuejun, Wang Yang, Zhang Yuzhi, Cawood P A, Qian Xin, Gan Chengshi, Zhang Feifei, Zhang Peizhen. 2021. Triassic two-stage intra-continental orogensis of the South China Block, driven by Paleotethyan closure and interactions with adjoining blocks. Journal of Asian Earth Sciences, 206: 104648.

Wang J Q, Shu Liangshu, Santosh M. 2018. Petrogenesis and tectonic significance of late Mesozoic granitic and adakitic rocks from inland South China: constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Journal of the Geological Society, 175(4): 679~693.

Xu X B, Zhang Y Q, Shu L S, Jia D. 2011. La-ICP-MS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: Constraints on the timing of Early Paleozoic and Early Mesozoic tectono—thermal events in SE China. Tectonophysics, 501(1~4): 71~86.

Xu Xianbing, Zhang Yueqiao, Jia Dong, Shu Liangshu, Wang Ruirui. 2009&. Early Mesozoic geotectonic processes in Southern China. Geology of China, 36(3): 573~593.

Xu Xianbing, Xue Dejie, Li Yuan, Hu Peng, Chen Nengsong. 2014. Neoproterozoic sequences along the Dexing—Huangshan fault zone in the eastern Jiangnan orogen, South China: geochronological and geochemical constrains. Gondwana Research, 25(1): 368~382.

Xu Xianbing, Tang Shuai, Lin Shoufa. 2016. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China. Journal of Geodynamics, 98: 31~52.

Xu Xianbing, Li Qiming, Gui Lin, Zhang Xuefen. 2018. Detrital zircon U-Pb geochronology and geochemistry of early Neoproterozoic sedimentary rocks from the northwestern Zhejiang basin, South China. Marine and Petroleum Geology, 98: 607~621.

Xu Xianbing, Liang Chenghua, Chen Jiaju, Xu Yadong. 2021a. Provenance analysis of Jurassic basins along Chaling—Chenzhou—Linwu fault, South China: Implications for palaeogeographic reconstruction and Mesozoic tectonic transition. Geological Journal, 56(5): 2656~2675.

Xu Xianbing, Liang Chenghua, Chen Jiaju, Xu Yadong. 2021&. Fundamental geological features and metallogenic geological backgrounds of Nanling tectonic belt. Earth Science, 46(4): 1133~1150.

Xu Xianbing, Liang Chenghua, Xu Yadong. 2021b. Kinematic analysis of fault-slip data in the Nanling tectonic belt and cretaceous to paleogene tectonic evolution of the Central South China block. Journal of Asian Earth Sciences, 221: 104951.

Yan Zhen, Wang Zongqi, Fu Changlei, Niu Manlan, Ji Wenhua, Li Rongshe, Qi Shengsheng, Mao Xiaochang. 2018&. Characteristics and thematic geological mapping of Mélangs. Geological Bulletin of China, 37(Z1): 167~191.

Yang Jun, Luo Peng, Ling Yuexin, Yang Shaohui, Bai Daoyuan, Wei Fanghui, Cao Shunhong, Peng Nengli. 2021&. Superimposed feature and deformation mechanism of Early Mesozoic folds in the Sangzhi—Shimen area, northern Hunan. Bulletin of Geological Science and Tecthnology, 40(6): 43~54.

Yang Xue, Wang Yuejun, Zhang Yuzhi, Gan Chengshi, Qian Xin. 2022. Early Neoproterozoic (~840 Ma) assemblage in South China and the southern extension of the Jiangshan—Shaoxing zone: Records from the Zhoutan and Shenshan igneous rocks in central Jiangxi. Precambrian Research, 371: 106573

Yao Jinlong, Cawood P A, Shu Liangshu, Zhao Guochun. 2019. Jiangnan orogen, South China: A~ 970~820 Ma Rodinia margin accretionary belt. Earth-Science Reviews, 196: 102872.

Yin Hongfu, Wu Shunbao, Du Yuansheng, Peng Yuanqiao. 1999&. South China defined as part of Tethyan archipelagic ocean system. Earth Science, 24(1): 1~12.

Zhang Kexin, Li Yangchun, Wang Lijun, Wang Jiaxuan, Xu Yadong, Wang Yonghe, Xin Houtian, Zhao Xiaoming, Yin Fuguang, Li Zhipei, Gu Yongchang, Yang Zhuliang, Fu Junyu. 2020&. The division of Mélangs in the orogenic belt and its associated terminologies. Geological Bulletin of China, 39(6): 765~782.

Zhang Yueqiao, Xu Xianbing, Jia Dong, Shu Liangshu. 2009&. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related system in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234~247.

Zhang Zhongjie, Badal J, Li Yinkang, Chen Yun, Yang Liqiang, Teng Jiwen. 2005. Crust—upper mantle seismic velocity structure across Southeastern China. Tectonophysics, 395(1~2): 137~157.

Zhang Zhongjie, Wang Yangua. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, 165(1~2): 114~126.

Zhou Chuanming, Tucker R, Xiao Shuhai, Peng Zhanziong, Yuan Xunlai, Chen Zhe. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 32(5): 437~440.

Zhou Chuanming, Huyskens M H, Lang Xianguo, Xiao Shuhai, Yin Qingzhu. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47(3), 251~254.

Zhou Hanwen, Li Xianhua, Wang Hanrong, Li Jiang, Li Huimin. 2002&. U-Pb zircon geochronology of basic volcanic rocks of the Yingyangguan Group in Hezhou, Guangxi and its tectonic implications. Geological Review, 48(S1): 22~25.

Tectonic nature and evolution of the Yingyangguan tectonic belt, South China: Constrains from structural analysis

XIA Yuan, CHEN Jiaju, XU Xianbing

School of Earth Sciences, China University of Geosciences, Wuhan, 430074

Abstract: The NNE-striking Yingyangguan Tectonic Belt is located in the southwestern part of the South China Block. It is still controversial about whether it is an ophiolite mélange, a rift zone or an intracontinental tectonic deformation zone. Based on reviews of petrographic compositions and geochronology, structural analysis was executed in the Yingyangguan Tectonic Belt, and its tectonic attribute and tectonic evolution were proposed. The Yingyangguan Tectonic Belt is mainly composed of middle to late Neoproterozoic island arc-type andesites and basalts, rift-type bimodal volcanic rocks, cap carbonate rocks and sandstones and mudstones. The rock association with different ages and rocks are sedimentary mélange caused by gravity under the background of late Neoproterozoic rift and extension. The Neoproterozoic sedimentary mélange experienced the Kwangsian, Late Indosinian and Yanshanian orogeny during the Phanerozoic era, which formed the fault contact relationships between different blocks. The Kwangsian orogeny (450~415 Ma) led to the development of the near E—W-trending tight folds, thrust faults and granite emplacement in the Neoproterozoic sedimentary mélange. The late Indosinian orogeny (227~220 Ma) built the NNE-trending Yingyangguan Tectonic Belt, which was characterized by NNE—SSW-striking folds, thrust faults and sinistral ductile shear zones. The Yanshanian orogeny re-activated strongly the NNE—SSW-trending faults to normal faults and right-lateral strike-slip faults, which controlled the development of the Cretaceous basin. Based on petrographic compositions, geochronology and structural analysis, the Yingyangguan Tectonic Belt is only a Late Indosinian intracontinental tectonic belt instead of a Neoproterozoic or an Early Paleozoic ophiolite mélange with suture nature.

Keywords: Yingyangguan tectonic belt; structural analysis; sedimentary mélange; intracontinental tectonic belt; South China Block

注:本文为中国地质调查局项目(编号:DD20190811)的成果。

收稿日期:2022-01-04;改回日期:2022-03-09;网络首发:2022-04-20;责任编辑:刘志强。Doi: 10.16509/j.georeview.2022.04.001

作者简介:夏元,男,1998年生,硕士研究生,构造地质学专业;ORCID:0000-0002-8514-9706;Email: yxia@cug.edu.cn。通讯作者:徐先兵,男,1983年生,博士,副教授,主要从事构造地质和地质调查的教学与研究工作; ORCID: 0000-0002-5341-9492;Email: xbxu2011@cug.edu.cn。

Acknowledgements: The work is supported by the China Geological Survey Project titled “Regional Geological Survey of Chengbu—Nanxiong Area in Nanling—Geotectonic Framework and Resource Background Investigation of Hezhou—Chenzhou” (No. DD20190811)

First author:

XIA Yuan, male, born in 1998, postgraduate student, mainly engaged in the research of structural geology; Email: yxia@cug.edu.cn

Corresponding author:XU Xianbing, male, born in 1983, associate professor, mainly engaged in the teaching and research of sturctural geology and geological survey; Email: xbxu2011@cug.edu.cn

Manuscript received on: 2022-01-04; Accepted on: 2022-03-09; Network published on: 2022-04-20

Doi: 10. 16509/j. georeview. 2022. 04. 001

Edited by: LIU Zhiqiang