en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

谭笑林,男,1995年生,博士研究生,地质资源与地质工程专业;E-mail: txl2021310053@163.com。

通讯作者:

曾联波,男,1967年生,教授,主要从事裂缝性储层与非常规油气储层形成、分布及预测技术研究;E-mail: lbzeng@cup.edu.cn。

参考文献
陈书平, 柳钧译, 勾琪玮, 袁浩伟. 2022. 沉积盆地走滑构造的力学机制和变形特征. 地质论评, 68(5): 1729~1742.
参考文献
邓尚, 李慧莉, 张仲培, 吴鲜, 张继标. 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878~888.
参考文献
邓尚, 刘雨晴, 刘军, 韩俊, 王斌, 赵锐. 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111~1126.
参考文献
高天, 邓尚, 李海英, 刘雨晴, 黄诚, 艾合买提江·阿不都热和曼. 2022. 盆地深部穹隆构造发育特征、成因机制及石油地质意义——以塔里木盆地顺北地区为例. 地质论评, 68(1): 217~232.
参考文献
韩剑发, 苏洲, 陈利新, 郭东升, 张银涛, 吉云刚, 张慧芳, 袁敬一. 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296~1310.
参考文献
何登发, 周新源, 杨海军, 管树巍, 张朝军. 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207~221.
参考文献
焦方正. 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831~839.
参考文献
焦方正. 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207~216.
参考文献
李相文, 李景叶, 刘永雷, 陶春峰, 张亮亮, 张冠卿. 2022. 塔里木盆地超深层走滑断裂带的地震识别方法. 石油地球物理勘探, 57(6): 1418~1426+1261.
参考文献
刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 2023. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨. 地学前缘, 30(6): 95~109.
参考文献
鲁新便, 胡文革, 汪彦, 李新华, 李涛, 吕艳萍, 何新明, 杨德彬. 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347~355.
参考文献
吕文雅, 曾联波, 陈双全, 吕鹏, 董少群, 惠晨, 李睿琦, 王浩南. 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543~556.
参考文献
马德波, 赵一民, 张银涛, 杨鹏飞, 杨敏, 李磊. 2018. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例. 天然气地球科学, 29(6): 817~825.
参考文献
马永生, 蔡勋育, 黎茂稳, 李慧莉, 朱东亚, 邱楠生, 庞雄奇, 曾大乾, 康志江, 马安来, 石开波, 张军涛. 2024. 深层—超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展. 石油勘探与开发, 51(4): 692~707.
参考文献
能源, 杨海军, 邓兴梁. 2018. 塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义. 石油勘探与开发, 45(1): 40~50+127.
参考文献
宋兴国, 陈石, 谢舟, 康鹏飞, 李婷, 杨明慧, 梁鑫鑫, 彭梓俊, 史绪凯. 2023. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏. 石油与天然气地质, 44(2): 335~349.
参考文献
田军, 杨海军, 朱永峰, 邓兴梁, 谢舟, 张银涛, 李世银, 蔡泉, 张艳秋, 黄腊梅. 2021. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术. 石油学报, 42(8): 971~985.
参考文献
汪如军, 王轩, 邓兴梁, 张银涛, 袁敬一, 谢舟, 李婷, 罗枭, 马小平. 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用——以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10~20.
参考文献
王清华, 杨海军, 李勇, 吕修祥, 张银涛, 张艳秋, 孙冲, 欧阳思琪. 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239~251.
参考文献
邬光辉, 马兵山, 韩剑发, 关宝珠, 陈鑫, 杨鹏, 谢舟. 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510~520.
参考文献
许顺山, 彭华, Angel F. NIETO-SAMANIEGO, 陈书平, 吴习东. 2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性. 地质论评, 63(2): 287~301.
参考文献
杨海军, 邬光辉, 韩剑发, 苏洲. 2020. 塔里木克拉通内盆地走滑断层构造解析. 地质科学, 55(1): 1~16.
参考文献
袁敬一, 邬光辉, 万效国, 邓卫, 刘瑞东. 2021. 塔里木盆地碳酸盐岩走滑断层破碎带宽度—高差相关性分析. 地质论评, 67(5): 1487~1496.
参考文献
曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层—超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.
参考文献
Chen Shuping, Liu Junyi, Gou Qiwei, Yuan Haowei. 2022&. Mechanical mechanisms and deformation characteristics of strike-slip structures in sedimentary basins. Geological Review, 68(5): 1729~1742.
参考文献
Choi J H, Edwards P, Ko K, Kim Y S. 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152: 70~87.
参考文献
Deng Shang, Li Huili, Zhang Zhongpei, Wu Xian, Zhang Jibiao. 2018&. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878~888.
参考文献
Deng Shang, Li Huili, Zhang Zhongpei, Zhang Jibiao, Yang Xin. 2019. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. AAPG Bulletin, 103(1): 109~137.
参考文献
Deng Shang, Liu Yuqing, Liu Jun, Han Jun, Wang Bin, Zhao Rui. 2021&. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei area, Tarim basin. Geotectonica et Metallogenia, 45(6): 1111~1126.
参考文献
Deng Shang, Zhao Rui, Kong Qiangfu, Li Yingtao, Li Bing. 2022. Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin: Hydrocarbon accumulation, distribution, and controlling factors. AAPG Bulletin, 106(1): 77~102.
参考文献
Ding Wenlong, Fan Tailiang, Yu Bingsong, Huang Xiaobo, Liu Cong. 2012. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China. Journal of Petroleum Science and Engineering, 86: 62~70.
参考文献
Ding Zhiwen, Wang Rujun, Chen Fangfang, Yang Jianping, Zhu Zhongqian, Yang Zhimin, Sun Xiaohui, Xian Bo, Li Erpeng, Shi Tao, Zuo Chao, Li Yang. 2020. Origin, hydrocarbon accumulation and oil—gas enrichment of fault—karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 306~317.
参考文献
Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Shipton Z K, Wibberley C A J, Withjack M O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557~1575.
参考文献
Gao Tian, Deng Shang, Li Haiying, Liu Yuqing, Huang Cheng, Ahmatjan Abdurahman. 2022&. The structure characteristics, formation mechanism and petroleum geological significance of deep dome structures in the basin—a case study in the Shunbei area of the Tarim Basin. Geological Review, 68(1): 217~232.
参考文献
Han Jianfa, Su Zhou, Chen Lixin, Guo Dongsheng, Zhang Yintao, Ji Yungang, Zhang Huifang, Yuan Jingyi. 2019&. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296~1310.
参考文献
He Dengfa, Zhou Xinyuan, Yang Haijun, Guan Shuwei, Zhang Chaojun. 2008&. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim basin. Earth Science Frontiers, 15(2): 207~221.
参考文献
Jia Chengzao, Wei Guoqi. 2002. Structural characteristics and petroliferous features of Tarim basin. Chinese Science Bulletin, 47(1): 1~11.
参考文献
Jiao Fangzheng. 2017&. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin. Oil & Gas Geology, 38(5): 831~839.
参考文献
Jiao Fangzheng. 2018&. Significance and prospect of ultra-deep carbonate fault—karst reservoirs in Shunbei area, Tarim Basin. Oil & Gas Geology, 39(2): 207~216.
参考文献
Kim Y S, Peacock D C P, Sanderson D J. 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5): 793~812.
参考文献
Kim Y S, Peacock D C P, Sanderson D J. 2004. Fault damage zones. Journal of Structural Geology, 26(3): 503~517.
参考文献
Kim Y S, Sanderson D J. 2005. The relationship between displacement and length of faults: A review. Earth-Science Reviews, 68(3~4): 317~334.
参考文献
Li Sumei, Amrani A, Pang Xiongqi, Yang Haijun, Said-Ahmad W, Zhang Baoshou, Pang Qiuju. 2015. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1~22.
参考文献
Li Xiangwen, Li Jingye, Liu Yonglei, Tao Chunfeng, Zhang Liangliang, Zhang Guanqing. 2022&. Seismic identification method of ultra-deep strikeslip fault zones in Tarim Basin. Oil Geophysical Prospecting, 57(6): 1418~1426+1261.
参考文献
Liu Yuqing, Deng Shang, Zhang Jibiao, Qiu Huabiao, Han Jun, He Songgao. 2023&. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings, Tarim Basin. Earth Science Frontiers, 30(6): 95~109.
参考文献
Lü Wenya, Zeng Lianbo, Chen Shuangquan, Lü Peng, Dong Shaoqun, Hui Chen, Li Ruiqi, Wang Haonan. 2021&. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs. Geological Review, 67(2): 543~556.
参考文献
Lu Xinbian, Hu Wenge, Wang Yan, Li Xinhua, Li Tao, Lyu Yanping, He Xinming, Yang Debin. 2015&. Characteristics and development practice of fault—karst carbonate reservoirs in Tahe area, Tarim Basin. Oil & Gas Geology, 36(3): 347~355.
参考文献
Ma Debo, Zhao Yimin, Zhang Yintao, Yang Pengfei, Yang Min, Li Lei. 2018&. Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China. Natural Gas Geoscience, 29(6): 817~825.
参考文献
Ma Yongsheng, Cai Xunyu, Li Maowen, Li Huili, Zhu Dongya, Qiu Nansheng, Pang Xiongqi, Zeng Daqian, Kang Zhijiang, Ma Anlai, Shi Kaibo, Zhang Juntao. 2024&. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates. Petroleum Exploration and Development, 51(4): 692~707.
参考文献
McGrath A G, Davison I. 1995. Damage zone geometry around fault tips. Journal of Structural Geology, 17(7): 1011~1024.
参考文献
Miller R B. 1994. A mid-crustal contractional stepover zone in a major strike-slip system, North Cascades, Washington. Journal of Structural Geology, 16(1): 47~60.
参考文献
Neng Yuan, Yang Haijun, Deng Xingliang. 2018&. Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong Paleo-uplift, Tarim Basin, NW China. Petroleum Exploration and Development, 45(1): 40~50+127.
参考文献
Peacock D C P, Sanderson D J. 1994. Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78(2): 147~165.
参考文献
Song Xingguo, Chen Shi, Xie Zhou, Kang Pengfei, Li Ting, Yang Minghui, Liang Xinxin, Peng Zijun, Shi Xukai. 2023&. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin. Oil & Gas Geology, 44(2): 335~349.
参考文献
Tan Xiaolin, Zeng Lianbo, She Min, Li Hao, Mao Zhe, Song Yichen, Yao Yingtao, Wang Junpeng, Lü Yuzhen. 2024. Impact of burial dissolution on the development of ultra-deep fault-controlled carbonate reservoirs: Insights from high-temperature and high-pressure dissolution kinetic simulation. Acta Geologica Sinica(English Edition). https: //doi. org/10. 1111/1755~6724. 15166.
参考文献
Tian Jun, Yang Haijun, Zhu Yongfeng, Deng Xingliang, Xie Zhou, Zhang Yintao, Li Shiyin, Cai Quan, Zhang Yanqiu, Huang Lamei. 2021&. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin. Acta Petrolei Sinica, 42(8): 971~985.
参考文献
Ukar E, Baqués V, Laubach S E, Marrett R. 2020. The nature and origins of decametre-scale porosity in Ordovician carbonate rocks, Halahatang oilfield, Tarim Basin, China. Journal of the Geological Society, 177(5): 1074~1091.
参考文献
Wang Qinghua, Yang Haijun, Li Yong, Lü Xiuxiang, Zhang Yintao, Zhang Yanqiu, Sun Chong, Ouyang Siqi. 2022&. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin—a reservoir model. Earth Science Frontiers, 29(6): 239~251.
参考文献
Wang Rujun, Wang Xuan, Deng Xingliang, Zhang Yintao, Yuan Jingyi, Xie Zhou, Li Ting, Luo Xiao, Ma Xiaoping. 2021&. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: A case study of the northern depression in the Tarim Basin. Natural Gas Industry, 41(3): 10~20.
参考文献
Westaway R. 1995. Deformation around stepovers in strike-slip fault zones. Journal of Structural Geology, 17(6): 831~846.
参考文献
Wu Guanghui, Ma Bingshan, Han Jianfa, Guan Baozhu, Chen Xin, Yang Peng, Xie Zhou. 2021&. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Petroleum Exploration and Development, 48(3): 510~520.
参考文献
Wu Xinming, Liang Luming, Shi Yunzhi, Fomel S. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35~IM45.
参考文献
Xu Shunshan, Peng Hua, Nietosamaniego A F, Chen Shuping, Wu Xidong. 2017&. The similarity between riedel shear patterns and strike-slip basin patterns. Geological Review, 63(2): 287~301.
参考文献
Yang Haijun, Wu Guanghui, Han Jianfa, Su Zhou. 2020&. Structural analysis of strike-slip faults in the Tarim intracratonic basin. Chinese Journal of Geology (Scientia Geologica Sinica), 55(1): 1~16.
参考文献
Yao Yingtao, Zeng Lianbo, Mao Zhe, Han Jun, Cao Dongsheng, Lin Bo. 2023. Differential deformation of a strike-slip fault in the Paleozoic carbonate reservoirs of the Tarim Basin, China. Journal of Structural Geology, 173: 104908.
参考文献
Yuan Jingyi, Wu Guanghui, Wan Xiaoguo, Deng Wei, Liu Ruidong. 2021&. The relationship between width—Height difference of strike-slip fault damage zones in the Tarim basin. Geological Review, 67(5): 1487~1496.
参考文献
Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.
参考文献
Zeng Lianbo, Song Yichen, Liu Guoping, Tan Xiaolin, Xu Xiaotong, Yao Yingtao, Mao Zhe. 2023. Natural fractures in ultra-deep reservoirs of China: A review. Journal of Structural Geology, 175: 104954.
参考文献
Zhao Rui, Zhao Teng, Kong Qiangfu, Deng Shang, Li Huili. 2020. Relationship between fractures, stress, strike-slip fault and reservoir productivity, China Shunbei oil field, Tarim Basin. Carbonates and Evaporites, 35(3): 84.
目录contents

    摘要

    走滑断裂控制的缝网系统是塔里木盆地超深层碳酸盐岩的有效储集空间和主要渗流通道,不同典型分段的缝网系统分布特征存在较大差异。笔者等基于卷积神经网络的方法对富满地区 F 17 断裂带进行识别并划分典型分段,通过 FDI 的方法定量刻画典型分段缝网系统发育带宽度,根据单井产能分析反映典型分段及其内部缝网系统分布特征。富满地区 F17 断裂带可划分为叠接拉分段、叠接挤压段、平移段和转折侧接段等 4 种类型,总共 14 个分段,其中转折侧接段又可进一步划分为侧接挤压段和侧接拉分段。不同典型分段缝网系统发育带平均宽度存在明显差异,在发育规模相近的情况下,缝网系统发育程度存在转折侧接段>叠接挤压段>叠接拉分段>平移段的规律,其中叠接拉分段缝网系统有效性强于叠接挤压段。叠接段和转折侧接段的两侧,以及平移段中的主干断裂、主干断裂与次级断裂交汇部位均为缝网系统优势发育部位。叠(侧)接挤压段的中部具有一定的缝网系统发育程度,但叠(侧)接拉分段的中部发育程度较弱。结合典型分段缝网系统发育带宽度与单井产能分析结果,最终建立了超深层走滑断裂典型分段缝网系统非均质发育模式。

    Abstract

    Objectives: The fracture networks controlled by strike-slip faults serves as the effective storage space and primary flow pathway for ultra-deep carbonate rocks in the Tarim Basin. Significant differences exist in the distribution characteristics of fracture networks in different typical segments.

    Methods: Convolutional neural network-based methods were employed to identify and divide the F17 fault in the Fuman area into typical segments. The width of the fracture network development zone for each segment is quantitatively characterized through the FDI analysis. The distribution characteristics of fracture networks within the typical segments and their internal features are reflected through production capacity analysis of individual wells.

    Results: The F17 fault in the Fuman area can be classified into four types of segments: pull-apart stepover zone, push-up stepover zone, translation zone, and inflection-and-stepover zone, totaling 14 segments. Among these, the inflection-and-stepover zone can be further subdivided into push-up and pull-apart zone. A notable variation exists in the average width of the fracture network development zones across the different typical segments. Under similar scales, the degree of fracture network development follows a distinct pattern: inflection-and-stepover zone > push-up stepover zone > pull-apart stepover zone > translation zone. Notably, the effectiveness of the fracture networks in the pull-apart stepover zone is stronger than that in the push-up stepover zone. The areas on both sides of the stepover zones and inflection-and-stepover zones, as well as the primary faults and the intersections between primary and secondary faults within the translation zones, are the dominant locations for the development of the fracture network. The central regions of the push-up stepover zones ( or the push-up region in the inflectionand-stepover zones) exhibit a certain degree of fracture network development, whereas the central regions of the pull-apart stepover zones ( or the pull-apart region in the inflection-and-stepover zones) show a comparatively weaker level of development.

    Conclusions: By combining the analysis of the fracture network development zone widths for each segment with the production capacity analysis of individual wells, a heterogeneous development model for the fracture networks in typical segments of ultra-deep strike-slip faults was ultimately established.

  • 近年来,塔里木盆地超深层(埋深>7500 m)受走滑断裂控制的碳酸盐岩油气勘探取得重大突破,发现了富满、顺北等多个大型油气田,显示受板内走滑断裂控制的缝洞型碳酸盐岩储层具有巨大的油气勘探开发潜力(鲁新便等,2015; 焦方正,2018; Zhao Rui et al.,2020; 邬光辉等,2021; 马永生等,2024)。超深层碳酸盐岩储层的基质孔隙几乎已破坏殆尽,受走滑断裂控制的多期次、多尺度天然裂缝组成的缝网系统是该类储层的有效储集空间和主要渗流通道(Ukar et al.,2020; Ding Zhiwen et al.,2020; 吕文雅等,2021; 王清华等,2022; 曾联波等,2024)。

  • 由于多期构造活动叠加改造,走滑断裂内部结构十分复杂,具有“纵向分层变形、平面分段变形” 的特征(杨海军等,2020; 邓尚等,2021)。受运动学和几何学影响,走滑断裂在平面上通常可以分为平移段、叠接段、转折段和端部,不同分段局部应力存在较大差异,进而导致其内部缝网系统发育的强烈非均质性( Peacock and Sanderson,1994; McGrath and Davison,1995; Kim et al.,2004; Deng Shang et al.,2019; 陈书平等,2022; Zeng Lianbo et al.,2023)。其中,平移段主要受基底断裂控制,内部应力释放较小,通常沿主位移带呈现线性展布,两侧地层构造幅度较低(能源等,2018; 汪如军等,2021),缝网系统发育程度较低。叠接段是指两个平移段的末端以雁列式排列并重叠的位置( Miller,1994; Westaway,1995),由于展布阶式和滑移方向的差异,叠接段可表现为局部挤压或拉张的应力特征(邓尚等,2018)。当滑移方向与展布阶式相同时,叠接段呈现为局部拉张的应力特征(叠接拉分段),相反时则呈现为局部挤压的应力特征(叠接挤压段),叠接挤压段缝网系统发育程度和非均质性通常高于叠接拉分段(Zeng Lianbo et al.,2023)。转折段和端部均会发生应力集中( Tan Xiaolin et al.,2024),缝网系统发育程度较高,其中端部通常发育马尾状和羽状构造,以及同向和反向断裂(Kim et al.,20032004)。羽状构造中的裂缝长度小于马尾状构造,但前者连通性较好,可形成具有良好渗流能力的缝网系统(Zeng Lianbo et al.,2023)。缝网系统发育程度一般存在平移段<端部<叠接段的规律(Kim et al.,2004),其中叠接拉分段缝网系统发育程度虽然弱于叠接挤压段,但其产量却表现出相反的特征,这显然还涉及到缝网系统有效性的问题( Deng Shang et al.,2022; Zeng Lianbo et al.,2023)。

  • 前人对于超深层走滑断裂典型分段缝网系统发育规律方面已经进行了一定程度的研究,目前主要针对不同典型分段之间的差异,而对于同一典型分段内部的缝网系统发育规律研究还较为欠缺。笔者等在三维卷积神经网络断裂识别结果的基础上,对富满地区 F 17 断裂带进行典型分段划分。通过 FDI 的方法(Yao Yingtao et al.,2023)定量刻画缝网系统发育带宽度,同时结合单井产能分析,进而反映超深层走滑断裂典型分段及其内部的缝网系统发育规律,对于该类储层的勘探与开发具有重要意义。

  • 1 地质背景

  • 塔里木盆地是中国最大的含油气克拉通盆地,整体呈东西向展布,是一个典型的叠合盆地,主要经历了从伸展到挤压的 3 期构造演化,造成了地层的多期抬升与剥蚀,并将其划分为多个构造单元(图1)(Jia Chengzao and Wei Guoqi,2002; Li Sumei et al.,2015)。富满地区位于塔里木盆地北部坳陷中部的阿满过渡带,地处塔北和塔中隆起之间的构造低部位,东西倾没于满加尔坳陷和阿瓦提坳陷,整体呈现为“鞍状” 的展布特征(图1)。主要目的层奥陶系现今构造平缓,整体呈现北高南低、东西倾没的大型鼻状特征,平均埋深约 7500 m(田军等,2021)。

  • 图1 塔里木盆地富满地区区域构造位置及邻区下古生界走滑断裂分布图(据田军等,2021 修改)

  • Fig.1 Regional structural location and distribution map of strike-slip faults of Lower Paleozoic in Fuman region, Tarim Basin (modified from Tian Jun et al., 2021&)

  • 塔里木盆地台盆区走滑断裂主要分布于塔中— 阿满过渡带—塔北地区(图1),走滑断裂系统呈现明显的南北分区、东西分带特征(杨海军等,2020)。在平面上主要包括单一走向走滑断裂和共轭走滑断裂两种体系。单一走向走滑断裂以 NE—SW 向为主,部分为 NW—SE 向,共轭走滑断裂呈 NNW 和 NE(或 NNE)走向交叉展布(韩剑发等,2019),整体具有“平面分段”的特征(邓尚等,2018)。阿满过渡带走滑断裂体系的发育具有明显的分区分带特征: 以 F5 断裂为界,东侧主要发育 NEE 向走滑断裂,而西侧则主要发育一系列 NW 向走滑断裂,整体形态呈类似扫帚状展布(宋兴国等,2023)。

  • 富满地区古生界地层发育完整,其中寒武系自下而上为玉尔吐斯组、肖尔布拉克组、吾松格尔组、沙依里克组、阿瓦塔格组和下秋里塔格组; 奥陶系自下而上发育蓬莱坝组、鹰山组、一间房组、吐木休克组、良里塔格组和桑塔木组。该区目前的主要勘探目的层为奥陶系的一间房组和鹰山组,主力烃源岩为下寒武统玉尔吐斯组,盖层主要为上奥陶统桑塔木组发育的区域性厚层泥岩,三者构成了重要的生—储—盖组合( 宋兴国等,2023)。文中 TO3t、 TO1-2y2、 TO1-2y、TO、TH3 分别是一间房组顶、鹰山组 1~2 段底、鹰山组 3~4 段底、蓬莱坝组底和上寒武统底的地层代号。

  • 古生代以来,阿满过渡带经历了多期构造演化阶段,区域应力场随之发生变化(何登发等,2008):①加里东早期,处于弱拉张区域应力环境之中; ②加里东中期,处于挤压应力状态并持续至海西早期; ③海西中晚期—印支期,处于持续挤压的应力状态; ④燕山—喜山期持续埋深,喜山期最终构造定型。阿满过渡带走滑断裂体系主要经历了 3 期构造演化,其中加里东中期为研究区奥陶系走滑断裂体系主要的形成期; 加里东晚期—海西早期为走滑断裂主要活动期; 海西中—晚期为走滑断裂再活动期(Ding Wenlong et al.,2012; 焦方正,2017; 邬光辉等,2021; 刘雨晴等,2023)。

  • 2 富满地区 F17 断裂带典型分段样式

  • 开展走滑断裂典型分段样式研究的前提是断裂的识别工作,断裂识别的精细程度决定了其典型分段划分的准确性和科学性。相干、AFE、最大似然、正(负)曲率等地震属性被广泛应用于断裂的识别中(马德波等,2018; 李相文等,2022)。上述常规的地震属性进行断裂识别的原理各有不同,但均具有一定的局限性,例如相干类属性主要对于同相轴错断较为敏感,曲率类属性对同相轴弯曲识别效果较好。超深层板内走滑断裂埋藏深度大,活动强度弱,变形量和滑移距小,这导致了常规地震属性对其识别效果有限。本次研究亦尝试了通过上述常规地震属性对 F17 断裂带进行识别,结果发现仅能识别出断裂带的基本几何特征和部分典型分段。对地震剖面逐道分析后表明,存在更多未识别出的典型分段,显然其识别精细程度不足。近年来的研究表明,卷积神经网络的方法相比常规地震属性能更准确、更有效的从三维地震图像中识别断裂(Wu Xinming et al.,2019),笔者等采用该方法对富满地区 F 17 断裂带进行识别。结果表明,除了更加清晰的刻画了 F17 断裂的展布特征之外,叠接段之间的连接更为清晰,识别细节更丰富,有利于正确认识断裂的典型分段样式。

  • 图2 塔里木盆地富满地区 F17 断裂带平面分段特征

  • Fig.2 Planar segmentation characteristics of the F17 fault in Fuman region, Tarim Basin

  • F17 断裂平面延伸超过 200 km,横跨塔中隆起和阿满过渡带,其中分布于富满地区的长度超过 60 km; 平面上由南至北,断裂走向发生逆时针旋转,由 NE—SW 向逐渐变为 NNE—SSW 向。根据平面几何特征和剖面构造样式,可以将富满地区 F 17 断裂带划分为叠接拉分段、叠接挤压段、平移段和转折侧接段等 4 种类型,总共 14 个分段(图2)。其中转折侧接段是研究区发育的一种特殊分段,包含转折和叠接的特征,由南至北从挤压特征过渡为拉分特征,故本次研究又将其进一步分为侧接挤压段和侧接拉分段。叠接拉分段剖面上呈现出明显的下掉特征,发育典型的负花状构造(图3a)。叠接挤压段剖面上呈现出明显的挤压隆升特征,发育典型的正花状构造(图3b)。平移段地层无明显起伏,发育单条直立断裂(图3c)。侧接挤压段和侧接拉分段剖面特征分别与叠接挤压段和叠接拉分段类似,其中侧接挤压段和侧接拉分段之间存在一个过渡部位,其剖面特征与平移段类似,地层无明显起伏( 图3d)。富满地区 F 17 断裂带右阶叠接段呈现为挤压隆升特征,而左阶叠接段呈现为拉分下掉特征,故而可以判定该条断裂在研究区内为左行走滑。此外,断裂识别平面图中分布有部分弧形构造,显然不符合走滑断裂的基本特征,该部位在地震剖面上可见明显的岩浆侵入现象,结合前人研究推测其为岩浆侵入形成的穹隆构造(高天等,2022)。

  • 3 超深层走滑断裂典型分段缝网系统发育特征

  • 走滑断裂带内部结构主要包括断裂核与损伤带两部分,其中损伤带是缝网系统的主要发育区,其缝网系统发育程度明显高于围岩,并存在距断裂核部的距离增加而降低的规律(Choi et al.,2016)。根据走滑断裂内部结构和构造部位可以进一步将损伤带划分为端部损伤带、围岩损伤带和叠接损伤带(Kim et al.,2004)。同时损伤带的宽度随断裂的位移量增大而扩大,但其增长速率会逐渐减小(Faulkner et al.,2010)。断裂的高差与损伤带的宽度亦具有某种相关性(袁敬一等,2021)。显然,获取损伤带与围岩的边界对于研究走滑断裂控制下的缝网系统分布特征十分关键。损伤带与围岩的边界通常表现为构造裂缝或变形区的频率降低到背景水平的位置,但由于地震分辨率和断裂识别效果的限制,再加上损伤带结构的复杂性以及主观定义的影响,我们如果采用传统的测量方式获得损伤带与围岩的边界显然会存在较大误差,例如色标的人为调整会导致损伤带的范围扩大或缩小。故本次研究在三维卷积神经网络断裂识别的基础上(图2),采用 FDI 分析方法(Yao Yingtao et al.,2023),对 F 17 断裂典型分段缝网系统发育带宽度进行定量刻画,表达式为:

  • 图3 塔里木盆地富满地区 F17 断裂带典型分段地震剖面:(a)叠接拉分段;(b)叠接挤压段;(c)平移段;(d)转折侧接段

  • Fig.3 Seismic profiles of the typical segments of the F17 fault in Fuman region, Tarim Basin: (a) pull-apart stepover zone; (b) push-up stepover zone; (c) translation zone; (d) inflection and stepover zone

  • FDI=1-λmaxj=1J λj

  • 式中 FDI 为裂缝发育指数,λmax 为代表优势能量的最大特征值,λjj = 1,2,···,j)为协方差矩阵的第 j 个特征值。 FDI 值越大,缝网系统发育程度越高,故而可以用于定量表征缝网系统发育带宽度。利用 FDI 定量刻画断裂缝网系统发育带宽度的基本流程为: ①提取卷积神经网络识别结果; ②设置一系列垂直于断裂走向的平行等间距地震测线,沿每条地震测线间隔 20 m 进行重采样③计算每条测线上的 FDI 值,分析其变化规律,进而确定损伤带与围岩区的分界线。其中横坐标的 0 值为缝网系统发育程度最高的位置,也是主断裂核所在位置(图4)。 FDI 值的大小仅受地震属性能量大小控制,而不随色标改变。

  • 本次研究沿富满地区 F17 断裂带总共布置 58 条地震测线,根据 FDI 曲线高于背景值(即围岩区域)部分的覆盖范围,分析每一条测线上的缝网系统发育带宽度。结果表明,富满地区 F 17 断裂缝网系统发育带宽度分布范围为 159.9~1991.3 m,平均 645.8 m。不同典型分段缝网系统发育带平均宽度存在明显差异,其中叠接拉分段为 876 m,叠接挤压段为 674.8 m,平移段为 313.6 m,转折侧接段为1320.2 m。然而,我们不能仅根据各典型分段的缝网系统发育带平均宽度来阐明其差异性。对不同规模(平面延伸长度)的典型分段缝网系统发育带宽度进一步分析,发现叠接段的规模与其缝网系统发育带宽度呈正相关关系,而平移段的规模则对其缝网系统发育带宽度影响较小。选取研究区内发育规模相近的叠接拉分段(平面延伸长度 3117.3 m)、叠接挤压段(平面延伸长度 3280.8 m)和平移段(平面延伸长度 2947.1 m)以及转折侧接段(平面延伸长度 3300.5 m)进行对比,缝网系统发育带宽度存在转折侧接段>叠接挤压段>叠接拉分段>平移段的规律(图5)。

  • 图4 塔里木盆地富满地区 F17 断裂带典型分段 FDI 曲线特征:(a)叠接拉分段;(b)叠接挤压段;(c)平移段;(d)转折侧接段

  • Fig.4 The FDI characteristics of the typical segments of the F17 fault in Fuman region, Tarim Basin: (a) pull-apart stepover zone; (b) push-up stepover zone; (c) translation zone; (d) inflection and stepover zone

  • 图5 塔里木盆地富满地区 F17 断裂带不同典型分段缝网系统发育带宽度箱型图

  • Fig.5 Box chart of the width of fracture networks in the different typical segments of the F17 fault in the Fuman region, Tarim Basin

  • 走滑断裂不同构造部位 FDI 曲线形态存在差异,其中叠接段整体表现为典型的“双峰式” 特征,反映了两条断裂叠接部位的缝网系统分布(图4a,b); 平移段呈现明显的“单峰式”特征,反映了单条断裂控制的缝网系统分布,其高于背景值的区域范围最小(图4c); 转折侧接段则表现为“多峰式” 特征,高于背景值的区域范围最大,反映了多条断裂交汇部位的缝网系统分布(图4d)。侧接挤压段和侧接拉分段 FDI 曲线特征分别与叠接挤压段和叠接拉分段类似,过渡部位与平移段类似(图4)。叠(侧)接段中部区域均存在一定范围的 FDI 低值区,但该低值区在叠(侧)接拉分段和叠(侧)接挤压段中存在明显差异,进而导致其 FDI 曲线的差异(图4a,b,d):叠(侧)接拉分段呈现“深 V”特征,叠(侧)接挤压段呈现“浅 V”特征,反映了前者中部区域缝网系统发育程度弱于后者。

  • 4 超深层走滑断裂典型分段缝网系统差异发育模式

  • 前面已经提到,超深层走滑断裂存在多种类型的典型分段,其缝网系统的分布十分复杂,走滑断裂典型分段及其内部的单井产能差异间接反映了其缝网系统发育的非均质性。笔者等对富满地区 F 17 断裂自北向南不同典型分段共 26 口井的单井产能进行了统计分析,发现不同典型分段单井平均产能存在明显差异,存在转折侧接段>叠接拉分段>叠接挤压段>平移段的规律(图6)。然而,前文已经提到,叠接挤压段缝网系统发育带宽度大于叠接拉分段,但单井产能却呈现出相反的规律。说明叠接挤压段缝网系统发育程度虽然大于叠接拉分段,但前者有效性却弱于后者。

  • 除此之外,本次研究还发现普遍存在走滑断裂同一典型分段中单井产能差异较大的现象。例如平移段中的 W1 井和 W5 井,叠接拉分段中的 W2 井和 W3 井,叠接挤压段中的 W9 井和 W10 井,侧接拉分段中的 W6 井和 W7 井等(图2)。说明同一典型分段内部的缝网系统分布仍然具有较强的非均质性。其中平移段的单井产能普遍低于叠接段和转折侧接段,但由于构造部位的不同,导致部分单井产能差异较大(图6)。例如 W1 井,该井靶点位置位于主干断裂与次级断裂交汇部位,单井产能最高; 而 W5 井靶点位置位于次级断裂之上,单井产能最低。 W2 井、W3 井和 W4 井位于同一叠接拉分段内,但 W2 井和 W4 井分别位于叠接拉分段两侧,而 W3 井则位于中部,W3 井单井产能远低于 W2 井和 W4 井。此外,根据几何特征分析结合前人研究成果(Kim et al.,2005许顺山等,2017),研究区内共发育两种阶段的叠接拉分段,随着断裂演化至成熟期,主位移带逐渐发育,几何形态转变为辫状特征。 W11 井位于成熟期的叠接拉分段内部一侧,单井产能最高。W9 井和 W10 井所在的叠接挤压段规模相近,但 W9 井靶点位置位于叠接挤压段的一侧,而 W10 井靶点位置则位于叠接挤压段的中部,W9 井单井产能远高于 W10 井。也就是说,叠接拉分段和叠接挤压段的两侧均为缝网系统优势发育部位。同时,W10 井所在叠接挤压段发育规模远小于 W3 井所在叠接拉分段,且二者靶点位置均位于叠接段的中部,但前者单井产能却远高于后者。结合前文所述缝网系统发育带宽度分析结果,认为叠接段的两侧是缝网系统优势发育部位,叠接挤压段的中部具有一定的缝网系统发育程度,但叠接拉分段的中部缝网系统发育程度较弱。研究区转折侧接段中侧接挤压段布井较少,故本次研究只能分析侧接拉分段内部单井产能差异。前面已经提到,侧接拉分段缝网系统分布特征与叠接拉分段类似,该结论在单井产能方面也得到了验证:W7 井靶点位置位于侧接拉分段中部,缝网系统发育程度较低,单井产能最低; W6 井和 W8 井位于侧接拉分段两侧,缝网系统发育程度较高,单井产能也较高。

  • 图6 塔里木盆地富满地区 F17 断裂带单井产能统计图

  • Fig.6 Statistical chart of single well productivity in the F17 fault in Fumin region, Tarim Basin

  • 图7 超深层走滑断裂典型分段缝网系统非均质发育模式图

  • Fig.7 Diagram of the heterogeneous development patterns of fracture networks in typical segments of ultradeep strike-slip faults

  • 结合 F17 断裂带典型分段缝网系统发育带宽度与单井产能分析结果,我们最终可以建立超深层走滑断裂典型分段缝网系统非均质发育模式(图7)。

  • 5 结论

  • (1)塔里木盆地富满地区 F 17 断裂带可划分为叠接拉分段、叠接挤压段、平移段和转折侧接段等 4 种类型,总共 14 个分段,其中转折侧接段又可进一步划分为侧接挤压段和侧接拉分段两个亚段;

  • (2)塔里木盆地富满地区 F 17 断裂带不同典型分段缝网系统发育带平均宽度存在明显差异,在发育规模相近的情况下,缝网系统发育程度存在转折侧接段>叠接挤压段>叠接拉分段>平移段的规律,其中叠接拉分段缝网系统有效性强于叠接挤压段;

  • (3)叠接段和转折侧接段的两侧,以及平移段中的主干断裂、主干断裂与次级断裂交汇部位均为缝网系统优势发育部位。叠(侧)接挤压段的中部具有一定的缝网系统发育程度,叠(侧)接拉分段的中部缝网系统发育程度较弱。结合典型分段缝网系统发育带宽度与单井产能分析结果,最终建立了超深层走滑断裂典型分段缝网系统非均质发育模式。

  • 参考文献

    • 陈书平, 柳钧译, 勾琪玮, 袁浩伟. 2022. 沉积盆地走滑构造的力学机制和变形特征. 地质论评, 68(5): 1729~1742.

    • 邓尚, 李慧莉, 张仲培, 吴鲜, 张继标. 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878~888.

    • 邓尚, 刘雨晴, 刘军, 韩俊, 王斌, 赵锐. 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111~1126.

    • 高天, 邓尚, 李海英, 刘雨晴, 黄诚, 艾合买提江·阿不都热和曼. 2022. 盆地深部穹隆构造发育特征、成因机制及石油地质意义——以塔里木盆地顺北地区为例. 地质论评, 68(1): 217~232.

    • 韩剑发, 苏洲, 陈利新, 郭东升, 张银涛, 吉云刚, 张慧芳, 袁敬一. 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296~1310.

    • 何登发, 周新源, 杨海军, 管树巍, 张朝军. 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207~221.

    • 焦方正. 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831~839.

    • 焦方正. 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207~216.

    • 李相文, 李景叶, 刘永雷, 陶春峰, 张亮亮, 张冠卿. 2022. 塔里木盆地超深层走滑断裂带的地震识别方法. 石油地球物理勘探, 57(6): 1418~1426+1261.

    • 刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 2023. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨. 地学前缘, 30(6): 95~109.

    • 鲁新便, 胡文革, 汪彦, 李新华, 李涛, 吕艳萍, 何新明, 杨德彬. 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347~355.

    • 吕文雅, 曾联波, 陈双全, 吕鹏, 董少群, 惠晨, 李睿琦, 王浩南. 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543~556.

    • 马德波, 赵一民, 张银涛, 杨鹏飞, 杨敏, 李磊. 2018. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例. 天然气地球科学, 29(6): 817~825.

    • 马永生, 蔡勋育, 黎茂稳, 李慧莉, 朱东亚, 邱楠生, 庞雄奇, 曾大乾, 康志江, 马安来, 石开波, 张军涛. 2024. 深层—超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展. 石油勘探与开发, 51(4): 692~707.

    • 能源, 杨海军, 邓兴梁. 2018. 塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义. 石油勘探与开发, 45(1): 40~50+127.

    • 宋兴国, 陈石, 谢舟, 康鹏飞, 李婷, 杨明慧, 梁鑫鑫, 彭梓俊, 史绪凯. 2023. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏. 石油与天然气地质, 44(2): 335~349.

    • 田军, 杨海军, 朱永峰, 邓兴梁, 谢舟, 张银涛, 李世银, 蔡泉, 张艳秋, 黄腊梅. 2021. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术. 石油学报, 42(8): 971~985.

    • 汪如军, 王轩, 邓兴梁, 张银涛, 袁敬一, 谢舟, 李婷, 罗枭, 马小平. 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用——以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10~20.

    • 王清华, 杨海军, 李勇, 吕修祥, 张银涛, 张艳秋, 孙冲, 欧阳思琪. 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239~251.

    • 邬光辉, 马兵山, 韩剑发, 关宝珠, 陈鑫, 杨鹏, 谢舟. 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510~520.

    • 许顺山, 彭华, Angel F. NIETO-SAMANIEGO, 陈书平, 吴习东. 2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性. 地质论评, 63(2): 287~301.

    • 杨海军, 邬光辉, 韩剑发, 苏洲. 2020. 塔里木克拉通内盆地走滑断层构造解析. 地质科学, 55(1): 1~16.

    • 袁敬一, 邬光辉, 万效国, 邓卫, 刘瑞东. 2021. 塔里木盆地碳酸盐岩走滑断层破碎带宽度—高差相关性分析. 地质论评, 67(5): 1487~1496.

    • 曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层—超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.

    • Chen Shuping, Liu Junyi, Gou Qiwei, Yuan Haowei. 2022&. Mechanical mechanisms and deformation characteristics of strike-slip structures in sedimentary basins. Geological Review, 68(5): 1729~1742.

    • Choi J H, Edwards P, Ko K, Kim Y S. 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152: 70~87.

    • Deng Shang, Li Huili, Zhang Zhongpei, Wu Xian, Zhang Jibiao. 2018&. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878~888.

    • Deng Shang, Li Huili, Zhang Zhongpei, Zhang Jibiao, Yang Xin. 2019. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. AAPG Bulletin, 103(1): 109~137.

    • Deng Shang, Liu Yuqing, Liu Jun, Han Jun, Wang Bin, Zhao Rui. 2021&. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei area, Tarim basin. Geotectonica et Metallogenia, 45(6): 1111~1126.

    • Deng Shang, Zhao Rui, Kong Qiangfu, Li Yingtao, Li Bing. 2022. Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin: Hydrocarbon accumulation, distribution, and controlling factors. AAPG Bulletin, 106(1): 77~102.

    • Ding Wenlong, Fan Tailiang, Yu Bingsong, Huang Xiaobo, Liu Cong. 2012. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China. Journal of Petroleum Science and Engineering, 86: 62~70.

    • Ding Zhiwen, Wang Rujun, Chen Fangfang, Yang Jianping, Zhu Zhongqian, Yang Zhimin, Sun Xiaohui, Xian Bo, Li Erpeng, Shi Tao, Zuo Chao, Li Yang. 2020. Origin, hydrocarbon accumulation and oil—gas enrichment of fault—karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 306~317.

    • Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Shipton Z K, Wibberley C A J, Withjack M O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557~1575.

    • Gao Tian, Deng Shang, Li Haiying, Liu Yuqing, Huang Cheng, Ahmatjan Abdurahman. 2022&. The structure characteristics, formation mechanism and petroleum geological significance of deep dome structures in the basin—a case study in the Shunbei area of the Tarim Basin. Geological Review, 68(1): 217~232.

    • Han Jianfa, Su Zhou, Chen Lixin, Guo Dongsheng, Zhang Yintao, Ji Yungang, Zhang Huifang, Yuan Jingyi. 2019&. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296~1310.

    • He Dengfa, Zhou Xinyuan, Yang Haijun, Guan Shuwei, Zhang Chaojun. 2008&. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim basin. Earth Science Frontiers, 15(2): 207~221.

    • Jia Chengzao, Wei Guoqi. 2002. Structural characteristics and petroliferous features of Tarim basin. Chinese Science Bulletin, 47(1): 1~11.

    • Jiao Fangzheng. 2017&. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin. Oil & Gas Geology, 38(5): 831~839.

    • Jiao Fangzheng. 2018&. Significance and prospect of ultra-deep carbonate fault—karst reservoirs in Shunbei area, Tarim Basin. Oil & Gas Geology, 39(2): 207~216.

    • Kim Y S, Peacock D C P, Sanderson D J. 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5): 793~812.

    • Kim Y S, Peacock D C P, Sanderson D J. 2004. Fault damage zones. Journal of Structural Geology, 26(3): 503~517.

    • Kim Y S, Sanderson D J. 2005. The relationship between displacement and length of faults: A review. Earth-Science Reviews, 68(3~4): 317~334.

    • Li Sumei, Amrani A, Pang Xiongqi, Yang Haijun, Said-Ahmad W, Zhang Baoshou, Pang Qiuju. 2015. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1~22.

    • Li Xiangwen, Li Jingye, Liu Yonglei, Tao Chunfeng, Zhang Liangliang, Zhang Guanqing. 2022&. Seismic identification method of ultra-deep strikeslip fault zones in Tarim Basin. Oil Geophysical Prospecting, 57(6): 1418~1426+1261.

    • Liu Yuqing, Deng Shang, Zhang Jibiao, Qiu Huabiao, Han Jun, He Songgao. 2023&. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings, Tarim Basin. Earth Science Frontiers, 30(6): 95~109.

    • Lü Wenya, Zeng Lianbo, Chen Shuangquan, Lü Peng, Dong Shaoqun, Hui Chen, Li Ruiqi, Wang Haonan. 2021&. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs. Geological Review, 67(2): 543~556.

    • Lu Xinbian, Hu Wenge, Wang Yan, Li Xinhua, Li Tao, Lyu Yanping, He Xinming, Yang Debin. 2015&. Characteristics and development practice of fault—karst carbonate reservoirs in Tahe area, Tarim Basin. Oil & Gas Geology, 36(3): 347~355.

    • Ma Debo, Zhao Yimin, Zhang Yintao, Yang Pengfei, Yang Min, Li Lei. 2018&. Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China. Natural Gas Geoscience, 29(6): 817~825.

    • Ma Yongsheng, Cai Xunyu, Li Maowen, Li Huili, Zhu Dongya, Qiu Nansheng, Pang Xiongqi, Zeng Daqian, Kang Zhijiang, Ma Anlai, Shi Kaibo, Zhang Juntao. 2024&. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates. Petroleum Exploration and Development, 51(4): 692~707.

    • McGrath A G, Davison I. 1995. Damage zone geometry around fault tips. Journal of Structural Geology, 17(7): 1011~1024.

    • Miller R B. 1994. A mid-crustal contractional stepover zone in a major strike-slip system, North Cascades, Washington. Journal of Structural Geology, 16(1): 47~60.

    • Neng Yuan, Yang Haijun, Deng Xingliang. 2018&. Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong Paleo-uplift, Tarim Basin, NW China. Petroleum Exploration and Development, 45(1): 40~50+127.

    • Peacock D C P, Sanderson D J. 1994. Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78(2): 147~165.

    • Song Xingguo, Chen Shi, Xie Zhou, Kang Pengfei, Li Ting, Yang Minghui, Liang Xinxin, Peng Zijun, Shi Xukai. 2023&. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin. Oil & Gas Geology, 44(2): 335~349.

    • Tan Xiaolin, Zeng Lianbo, She Min, Li Hao, Mao Zhe, Song Yichen, Yao Yingtao, Wang Junpeng, Lü Yuzhen. 2024. Impact of burial dissolution on the development of ultra-deep fault-controlled carbonate reservoirs: Insights from high-temperature and high-pressure dissolution kinetic simulation. Acta Geologica Sinica(English Edition). https: //doi. org/10. 1111/1755~6724. 15166.

    • Tian Jun, Yang Haijun, Zhu Yongfeng, Deng Xingliang, Xie Zhou, Zhang Yintao, Li Shiyin, Cai Quan, Zhang Yanqiu, Huang Lamei. 2021&. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin. Acta Petrolei Sinica, 42(8): 971~985.

    • Ukar E, Baqués V, Laubach S E, Marrett R. 2020. The nature and origins of decametre-scale porosity in Ordovician carbonate rocks, Halahatang oilfield, Tarim Basin, China. Journal of the Geological Society, 177(5): 1074~1091.

    • Wang Qinghua, Yang Haijun, Li Yong, Lü Xiuxiang, Zhang Yintao, Zhang Yanqiu, Sun Chong, Ouyang Siqi. 2022&. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin—a reservoir model. Earth Science Frontiers, 29(6): 239~251.

    • Wang Rujun, Wang Xuan, Deng Xingliang, Zhang Yintao, Yuan Jingyi, Xie Zhou, Li Ting, Luo Xiao, Ma Xiaoping. 2021&. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: A case study of the northern depression in the Tarim Basin. Natural Gas Industry, 41(3): 10~20.

    • Westaway R. 1995. Deformation around stepovers in strike-slip fault zones. Journal of Structural Geology, 17(6): 831~846.

    • Wu Guanghui, Ma Bingshan, Han Jianfa, Guan Baozhu, Chen Xin, Yang Peng, Xie Zhou. 2021&. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Petroleum Exploration and Development, 48(3): 510~520.

    • Wu Xinming, Liang Luming, Shi Yunzhi, Fomel S. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35~IM45.

    • Xu Shunshan, Peng Hua, Nietosamaniego A F, Chen Shuping, Wu Xidong. 2017&. The similarity between riedel shear patterns and strike-slip basin patterns. Geological Review, 63(2): 287~301.

    • Yang Haijun, Wu Guanghui, Han Jianfa, Su Zhou. 2020&. Structural analysis of strike-slip faults in the Tarim intracratonic basin. Chinese Journal of Geology (Scientia Geologica Sinica), 55(1): 1~16.

    • Yao Yingtao, Zeng Lianbo, Mao Zhe, Han Jun, Cao Dongsheng, Lin Bo. 2023. Differential deformation of a strike-slip fault in the Paleozoic carbonate reservoirs of the Tarim Basin, China. Journal of Structural Geology, 173: 104908.

    • Yuan Jingyi, Wu Guanghui, Wan Xiaoguo, Deng Wei, Liu Ruidong. 2021&. The relationship between width—Height difference of strike-slip fault damage zones in the Tarim basin. Geological Review, 67(5): 1487~1496.

    • Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.

    • Zeng Lianbo, Song Yichen, Liu Guoping, Tan Xiaolin, Xu Xiaotong, Yao Yingtao, Mao Zhe. 2023. Natural fractures in ultra-deep reservoirs of China: A review. Journal of Structural Geology, 175: 104954.

    • Zhao Rui, Zhao Teng, Kong Qiangfu, Deng Shang, Li Huili. 2020. Relationship between fractures, stress, strike-slip fault and reservoir productivity, China Shunbei oil field, Tarim Basin. Carbonates and Evaporites, 35(3): 84.

  • 参考文献

    • 陈书平, 柳钧译, 勾琪玮, 袁浩伟. 2022. 沉积盆地走滑构造的力学机制和变形特征. 地质论评, 68(5): 1729~1742.

    • 邓尚, 李慧莉, 张仲培, 吴鲜, 张继标. 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878~888.

    • 邓尚, 刘雨晴, 刘军, 韩俊, 王斌, 赵锐. 2021. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义: 以塔里木盆地顺北地区为例. 大地构造与成矿学, 45(6): 1111~1126.

    • 高天, 邓尚, 李海英, 刘雨晴, 黄诚, 艾合买提江·阿不都热和曼. 2022. 盆地深部穹隆构造发育特征、成因机制及石油地质意义——以塔里木盆地顺北地区为例. 地质论评, 68(1): 217~232.

    • 韩剑发, 苏洲, 陈利新, 郭东升, 张银涛, 吉云刚, 张慧芳, 袁敬一. 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296~1310.

    • 何登发, 周新源, 杨海军, 管树巍, 张朝军. 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207~221.

    • 焦方正. 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831~839.

    • 焦方正. 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207~216.

    • 李相文, 李景叶, 刘永雷, 陶春峰, 张亮亮, 张冠卿. 2022. 塔里木盆地超深层走滑断裂带的地震识别方法. 石油地球物理勘探, 57(6): 1418~1426+1261.

    • 刘雨晴, 邓尚, 张继标, 邱华标, 韩俊, 何松高. 2023. 塔里木盆地顺北及邻区走滑断裂体系差异发育特征及成因机制探讨. 地学前缘, 30(6): 95~109.

    • 鲁新便, 胡文革, 汪彦, 李新华, 李涛, 吕艳萍, 何新明, 杨德彬. 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347~355.

    • 吕文雅, 曾联波, 陈双全, 吕鹏, 董少群, 惠晨, 李睿琦, 王浩南. 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543~556.

    • 马德波, 赵一民, 张银涛, 杨鹏飞, 杨敏, 李磊. 2018. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例. 天然气地球科学, 29(6): 817~825.

    • 马永生, 蔡勋育, 黎茂稳, 李慧莉, 朱东亚, 邱楠生, 庞雄奇, 曾大乾, 康志江, 马安来, 石开波, 张军涛. 2024. 深层—超深层海相碳酸盐岩成储成藏机理与油气藏开发方法研究进展. 石油勘探与开发, 51(4): 692~707.

    • 能源, 杨海军, 邓兴梁. 2018. 塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义. 石油勘探与开发, 45(1): 40~50+127.

    • 宋兴国, 陈石, 谢舟, 康鹏飞, 李婷, 杨明慧, 梁鑫鑫, 彭梓俊, 史绪凯. 2023. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏. 石油与天然气地质, 44(2): 335~349.

    • 田军, 杨海军, 朱永峰, 邓兴梁, 谢舟, 张银涛, 李世银, 蔡泉, 张艳秋, 黄腊梅. 2021. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术. 石油学报, 42(8): 971~985.

    • 汪如军, 王轩, 邓兴梁, 张银涛, 袁敬一, 谢舟, 李婷, 罗枭, 马小平. 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用——以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10~20.

    • 王清华, 杨海军, 李勇, 吕修祥, 张银涛, 张艳秋, 孙冲, 欧阳思琪. 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239~251.

    • 邬光辉, 马兵山, 韩剑发, 关宝珠, 陈鑫, 杨鹏, 谢舟. 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510~520.

    • 许顺山, 彭华, Angel F. NIETO-SAMANIEGO, 陈书平, 吴习东. 2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性. 地质论评, 63(2): 287~301.

    • 杨海军, 邬光辉, 韩剑发, 苏洲. 2020. 塔里木克拉通内盆地走滑断层构造解析. 地质科学, 55(1): 1~16.

    • 袁敬一, 邬光辉, 万效国, 邓卫, 刘瑞东. 2021. 塔里木盆地碳酸盐岩走滑断层破碎带宽度—高差相关性分析. 地质论评, 67(5): 1487~1496.

    • 曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层—超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.

    • Chen Shuping, Liu Junyi, Gou Qiwei, Yuan Haowei. 2022&. Mechanical mechanisms and deformation characteristics of strike-slip structures in sedimentary basins. Geological Review, 68(5): 1729~1742.

    • Choi J H, Edwards P, Ko K, Kim Y S. 2016. Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152: 70~87.

    • Deng Shang, Li Huili, Zhang Zhongpei, Wu Xian, Zhang Jibiao. 2018&. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878~888.

    • Deng Shang, Li Huili, Zhang Zhongpei, Zhang Jibiao, Yang Xin. 2019. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. AAPG Bulletin, 103(1): 109~137.

    • Deng Shang, Liu Yuqing, Liu Jun, Han Jun, Wang Bin, Zhao Rui. 2021&. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal: A case study of the Shunbei area, Tarim basin. Geotectonica et Metallogenia, 45(6): 1111~1126.

    • Deng Shang, Zhao Rui, Kong Qiangfu, Li Yingtao, Li Bing. 2022. Two distinct strike-slip fault networks in the Shunbei area and its surroundings, Tarim Basin: Hydrocarbon accumulation, distribution, and controlling factors. AAPG Bulletin, 106(1): 77~102.

    • Ding Wenlong, Fan Tailiang, Yu Bingsong, Huang Xiaobo, Liu Cong. 2012. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China. Journal of Petroleum Science and Engineering, 86: 62~70.

    • Ding Zhiwen, Wang Rujun, Chen Fangfang, Yang Jianping, Zhu Zhongqian, Yang Zhimin, Sun Xiaohui, Xian Bo, Li Erpeng, Shi Tao, Zuo Chao, Li Yang. 2020. Origin, hydrocarbon accumulation and oil—gas enrichment of fault—karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 306~317.

    • Faulkner D R, Jackson C A L, Lunn R J, Schlische R W, Shipton Z K, Wibberley C A J, Withjack M O. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11): 1557~1575.

    • Gao Tian, Deng Shang, Li Haiying, Liu Yuqing, Huang Cheng, Ahmatjan Abdurahman. 2022&. The structure characteristics, formation mechanism and petroleum geological significance of deep dome structures in the basin—a case study in the Shunbei area of the Tarim Basin. Geological Review, 68(1): 217~232.

    • Han Jianfa, Su Zhou, Chen Lixin, Guo Dongsheng, Zhang Yintao, Ji Yungang, Zhang Huifang, Yuan Jingyi. 2019&. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296~1310.

    • He Dengfa, Zhou Xinyuan, Yang Haijun, Guan Shuwei, Zhang Chaojun. 2008&. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim basin. Earth Science Frontiers, 15(2): 207~221.

    • Jia Chengzao, Wei Guoqi. 2002. Structural characteristics and petroliferous features of Tarim basin. Chinese Science Bulletin, 47(1): 1~11.

    • Jiao Fangzheng. 2017&. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin. Oil & Gas Geology, 38(5): 831~839.

    • Jiao Fangzheng. 2018&. Significance and prospect of ultra-deep carbonate fault—karst reservoirs in Shunbei area, Tarim Basin. Oil & Gas Geology, 39(2): 207~216.

    • Kim Y S, Peacock D C P, Sanderson D J. 2003. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5): 793~812.

    • Kim Y S, Peacock D C P, Sanderson D J. 2004. Fault damage zones. Journal of Structural Geology, 26(3): 503~517.

    • Kim Y S, Sanderson D J. 2005. The relationship between displacement and length of faults: A review. Earth-Science Reviews, 68(3~4): 317~334.

    • Li Sumei, Amrani A, Pang Xiongqi, Yang Haijun, Said-Ahmad W, Zhang Baoshou, Pang Qiuju. 2015. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1~22.

    • Li Xiangwen, Li Jingye, Liu Yonglei, Tao Chunfeng, Zhang Liangliang, Zhang Guanqing. 2022&. Seismic identification method of ultra-deep strikeslip fault zones in Tarim Basin. Oil Geophysical Prospecting, 57(6): 1418~1426+1261.

    • Liu Yuqing, Deng Shang, Zhang Jibiao, Qiu Huabiao, Han Jun, He Songgao. 2023&. Characteristics and formation mechainism of the strike-slip fault networks in the Shunbei area and the surroundings, Tarim Basin. Earth Science Frontiers, 30(6): 95~109.

    • Lü Wenya, Zeng Lianbo, Chen Shuangquan, Lü Peng, Dong Shaoqun, Hui Chen, Li Ruiqi, Wang Haonan. 2021&. Characterization methods of multi-scale natural fractures in tight and low-permeability sandstone reservoirs. Geological Review, 67(2): 543~556.

    • Lu Xinbian, Hu Wenge, Wang Yan, Li Xinhua, Li Tao, Lyu Yanping, He Xinming, Yang Debin. 2015&. Characteristics and development practice of fault—karst carbonate reservoirs in Tahe area, Tarim Basin. Oil & Gas Geology, 36(3): 347~355.

    • Ma Debo, Zhao Yimin, Zhang Yintao, Yang Pengfei, Yang Min, Li Lei. 2018&. Application of maximum likelihood attribute to fault identification: A case study of Rewapu block in Halahatang area, Tarim Basin, NW China. Natural Gas Geoscience, 29(6): 817~825.

    • Ma Yongsheng, Cai Xunyu, Li Maowen, Li Huili, Zhu Dongya, Qiu Nansheng, Pang Xiongqi, Zeng Daqian, Kang Zhijiang, Ma Anlai, Shi Kaibo, Zhang Juntao. 2024&. Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates. Petroleum Exploration and Development, 51(4): 692~707.

    • McGrath A G, Davison I. 1995. Damage zone geometry around fault tips. Journal of Structural Geology, 17(7): 1011~1024.

    • Miller R B. 1994. A mid-crustal contractional stepover zone in a major strike-slip system, North Cascades, Washington. Journal of Structural Geology, 16(1): 47~60.

    • Neng Yuan, Yang Haijun, Deng Xingliang. 2018&. Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong Paleo-uplift, Tarim Basin, NW China. Petroleum Exploration and Development, 45(1): 40~50+127.

    • Peacock D C P, Sanderson D J. 1994. Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78(2): 147~165.

    • Song Xingguo, Chen Shi, Xie Zhou, Kang Pengfei, Li Ting, Yang Minghui, Liang Xinxin, Peng Zijun, Shi Xukai. 2023&. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin. Oil & Gas Geology, 44(2): 335~349.

    • Tan Xiaolin, Zeng Lianbo, She Min, Li Hao, Mao Zhe, Song Yichen, Yao Yingtao, Wang Junpeng, Lü Yuzhen. 2024. Impact of burial dissolution on the development of ultra-deep fault-controlled carbonate reservoirs: Insights from high-temperature and high-pressure dissolution kinetic simulation. Acta Geologica Sinica(English Edition). https: //doi. org/10. 1111/1755~6724. 15166.

    • Tian Jun, Yang Haijun, Zhu Yongfeng, Deng Xingliang, Xie Zhou, Zhang Yintao, Li Shiyin, Cai Quan, Zhang Yanqiu, Huang Lamei. 2021&. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin. Acta Petrolei Sinica, 42(8): 971~985.

    • Ukar E, Baqués V, Laubach S E, Marrett R. 2020. The nature and origins of decametre-scale porosity in Ordovician carbonate rocks, Halahatang oilfield, Tarim Basin, China. Journal of the Geological Society, 177(5): 1074~1091.

    • Wang Qinghua, Yang Haijun, Li Yong, Lü Xiuxiang, Zhang Yintao, Zhang Yanqiu, Sun Chong, Ouyang Siqi. 2022&. Control of strike-slip fault on the large carbonate reservoir in Fuman, Tarim Basin—a reservoir model. Earth Science Frontiers, 29(6): 239~251.

    • Wang Rujun, Wang Xuan, Deng Xingliang, Zhang Yintao, Yuan Jingyi, Xie Zhou, Li Ting, Luo Xiao, Ma Xiaoping. 2021&. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation: A case study of the northern depression in the Tarim Basin. Natural Gas Industry, 41(3): 10~20.

    • Westaway R. 1995. Deformation around stepovers in strike-slip fault zones. Journal of Structural Geology, 17(6): 831~846.

    • Wu Guanghui, Ma Bingshan, Han Jianfa, Guan Baozhu, Chen Xin, Yang Peng, Xie Zhou. 2021&. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin, NW China. Petroleum Exploration and Development, 48(3): 510~520.

    • Wu Xinming, Liang Luming, Shi Yunzhi, Fomel S. 2019. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics, 84(3): IM35~IM45.

    • Xu Shunshan, Peng Hua, Nietosamaniego A F, Chen Shuping, Wu Xidong. 2017&. The similarity between riedel shear patterns and strike-slip basin patterns. Geological Review, 63(2): 287~301.

    • Yang Haijun, Wu Guanghui, Han Jianfa, Su Zhou. 2020&. Structural analysis of strike-slip faults in the Tarim intracratonic basin. Chinese Journal of Geology (Scientia Geologica Sinica), 55(1): 1~16.

    • Yao Yingtao, Zeng Lianbo, Mao Zhe, Han Jun, Cao Dongsheng, Lin Bo. 2023. Differential deformation of a strike-slip fault in the Paleozoic carbonate reservoirs of the Tarim Basin, China. Journal of Structural Geology, 173: 104908.

    • Yuan Jingyi, Wu Guanghui, Wan Xiaoguo, Deng Wei, Liu Ruidong. 2021&. The relationship between width—Height difference of strike-slip fault damage zones in the Tarim basin. Geological Review, 67(5): 1487~1496.

    • Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.

    • Zeng Lianbo, Song Yichen, Liu Guoping, Tan Xiaolin, Xu Xiaotong, Yao Yingtao, Mao Zhe. 2023. Natural fractures in ultra-deep reservoirs of China: A review. Journal of Structural Geology, 175: 104954.

    • Zhao Rui, Zhao Teng, Kong Qiangfu, Deng Shang, Li Huili. 2020. Relationship between fractures, stress, strike-slip fault and reservoir productivity, China Shunbei oil field, Tarim Basin. Carbonates and Evaporites, 35(3): 84.