en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

万永平,男,1981年生,博士,正高级工程师,主要从事非常规油气勘探开发研究;E-mail: wanhunter@163.com。

通讯作者:

蒲仁海,男,1962年生,博士,教授,主要从事勘探地震资料解释和油气地质勘探方面的教学与科研;E-mail: purenhai@126.com。

折印楠,男,1989年生,硕士,工程师,主要从事鄂尔多斯盆地延安气田天然气勘探研究工作;E-mail: 447837297@qq.com。

参考文献
陈全红, 李可永, 张道锋, 金栓联, 郭艳琴, 庞军刚, 袁珍. 2010. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系. 中国地质, 37(2): 421~429.
参考文献
段长江, 谢英刚, 潘新志, 肖二莲, 朱珊珊. 2015. 鄂尔多斯盆地东缘临兴地区本溪组—太原组沉积环境及沉积相研究. 石油天然气学报, 37(5): 6~9.
参考文献
樊宇洁, 孟祥振, 蒲仁海, 高小平, 强腾, 宋明. 2024. 鄂尔多斯盆地延长探区本溪组物源分析. 地质科技通报. doi: 10. 19509/j. cnki. dzkq. tb20240191
参考文献
冯娟萍, 欧阳征健, 陈全红, 李文厚. 2021. 鄂尔多斯盆地及周缘地区上石炭统沉积特征. 古地理学报, 23(1): 53~64.
参考文献
高小平. 2019. 延长—延川东部探区上古生界有利储层主控因素研究. 石化技术, 26(7): 25~26.
参考文献
侯云东, 陈安清, 赵伟波, 董国栋, 杨帅, 徐胜林, 高志东, 李富详, 刘新昕, 张晓星. 2018. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境. 成都理工大学学报 (自然科学版), 45(4): 393~401.
参考文献
侯中帅, 陈世悦, 王越, 李天宝, 赫庆庆, 崔绮梦. 2018. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征. 古地理学报, 20(2): 231~243.
参考文献
贾浪波, 钟大康, 孙海涛, 严锐涛, 张春林, 莫午零, 邱存, 董媛, 李兵, 廖广新. 2019. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义. 沉积学报, 37(5): 1087~1103.
参考文献
李文厚, 陈强, 李克永, 张倩, 李玉宏, 马瑶, 冯娟萍, 郭艳琴, 袁珍, 欧阳征健, 王妍, 李智超, 范萌萌, 孙娇鹏, 陈全红, 王若谷, 刘溪. 2023. 鄂尔多斯盆地野外剖面沉积相图集. 北京: 地质出版社: 127~212.
参考文献
李文厚, 张倩, 李克永, 陈强, 郭艳琴, 马瑶, 冯娟萍, 张道锋. 2021. 鄂尔多斯盆地及周缘地区晚古生代沉积演化. 古地理学报, 23(1): 39~52.
参考文献
林进, 李云, 何剑. 2013. 鄂尔多斯延长探区本溪组物源及沉积体系分析. 中国地质, 40(5): 1542~1551.
参考文献
任文军, 张庆龙, 张进, 郭令智. 1999. 鄂尔多斯盆地中央古隆起板块构造成因初步研究. 大地构造与成矿学, 23(2): 191~196.
参考文献
苏东旭, 于兴河, 李胜利, 单新, 周进松. 2017. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律. 天然气工业, 37(9): 48~56.
参考文献
王若谷, 周进松, 杜永慧, 李文厚. 2021. 鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式. 地质科学, 56(4): 1088~1105.
参考文献
王越, 陈世悦, 梁绘媛, 王剑, 李天宝. 2016. 鄂尔多斯盆地保德地区上古生界沉积相与沉积演化特征. 沉积学报, 34(4): 775~784.
参考文献
于兴河, 王香增, 王念喜, 单新, 周进松, 韩小琴, 李亚龙, 杜永慧, 赵晨帆. 2017. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征. 古地理学报, 19(6): 935~954.
参考文献
Andrew D S. 1992. Beach systems of the central Netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.
参考文献
Bridges P H. 1976. Lower Silurian transgressive barrier islands, southwest Wales. Sedimentology, 23(3): 347~362.
参考文献
Chen Quanhong, Li Keyong, Zhang Daofeng, Jin Shuanlian, Guo Yanqin, Pang Jungang, Yuan Zhen. 2010&. Relationship between fan delta sedimentation and oil and gas accumulation of Benxi Formation—Taiyuan Formation in Ordos Basin. Geology in China, 37(2): 421~429.
参考文献
Duan Changjiang, Xie Yinggang, Pan Xingzhi, Xiao Erlian, Zhu Shanshan. 2015#. Study on sedimentary environment and sedimentary facies of Benxi Formation—Taiyuan Formation in Linxing area, eastern margin of Ordos Basin. Journal of Oil and Gas Technology, 37(5): 6~9.
参考文献
Fan Yujie, Meng Xiangzhen, Pu Renhai, Gao Xiaoping, Qiang Teng, Song Ming. 2024 &. Provenance Analysis of Benxi Formation in Yanchang Exploration Area of Ordos Basin. Bulletin of Geological Science and Technology. doi: 10. 19509/j. cnki. dzkq. tb20240191
参考文献
Feng Juanping, Ouyang Zhengjian, Chen Quanhong, Li Wenhou. 2021&. Sedimentary characteristics of the upper Carboniferous in Ordos Basin and its adjacent areas. Journal of Paleogeography, 23(1): 53~64.
参考文献
FitzGerald D, Buynevich I, Christopher H. 2012. Morphodynamics and Facies Architecture of Tidal Inlets and Tidal Deltas. In: Davis R A Jr, Dalrymple R W, eds. Priciples of Tidal Sedimentology. New York: Springer: 301~333.
参考文献
Flemming B W. 2012. Siliciclastic back-barrier tidal flats. In: Davis R A, Dalrymple R W. Principles of Tidal Sedimentology. New York: Springer: 231~267.
参考文献
Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources, Second Completely Rrevised. New York: Springer, 126~158.
参考文献
Gao Xiaoping. 2019#. Study on the main controlling factors of Upper Paleozoic favorable reservoirs in the eastern exploration area of Yanchang—Yanchuan. Petrochemical Industry Technology, 26(7): 25~26.
参考文献
Hamilton D S. 1995. Approaches to identifying reservoir heterogeneity in barrier/strand plain reservoirs and the opportunities for increased oil recovery: an example from the prolific oil-producing Jackson—Yegua trend, south Texas. Marine & Petroleum Geology, 12(3): 273~290.
参考文献
Hobday D K and Tankard A J. 1978. Transgressive-barrier and shallow-shelf interpretation of the lower Paleozoic Peninsula Formation, South Africa. Geological Society of America Bulletin, 89(12): 1733~1744
参考文献
Hou Yundong, Chen Anqing, Zhao Weibo, Dong Guodong, Yang Shuai, Xu Shenglin, Gao Zhidong, Li Fuxiang, Liu Xinxin, Zhang Xiaoxing, 2018&. Sedimentary environment of tidal—delta composite sand body of Benxi Formation in Ordos Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4): 393~401.
参考文献
Hou Zhongshuai, Chen Shiyue, Wang Yue, Li Tianbao, He Qingqing, Cui Qimeng. 2018&. Characteristics of sequence stratigraphy and sedimentary facies of Upper Paleozoic in Baode area, eastern margin of Ordos Basin. Journal of Palaeogeography, 20(2): 231~243.
参考文献
Hudock J W, Flaig P P, Wood L J. 2014. Washover Fans: A modern geomorphologic analysis and proposed classification scheme to improve reservoir models. Journal of Sedimentary Research, 84(10): 854~865.
参考文献
Jia Langbo, Zhong Dakang, Sun Haitao, Yan Ruitao, Zhang Chunlin, Mo Wulin, Qiu Cun, Dong Yuan, Li Bing, Liao Guangxin. 2019&. Discussion on sediment provenance of Benxi Formation in Ordos Basin and its tectonic significance. Acta Sedimentologica Sinica, 37(5): 1087~1103.
参考文献
Johannesen P N, Nielsen L H, Møller I, Pejrup M, Andersen T J. 2015. Architecture of an Upper Jurassic barrier island sandstone reservoir, Danish Central Graben: Implications of a Holocene—Recent analogue from the Wadden Sea. Petroleum Geology Conference, 7: 145~155.
参考文献
Li Wenhou, Chen Qiang, Li Keyong, Zhang Qian, Li Yuhong, Ma Yao, Feng Juanping, Guo Yanqin, Yuan Zhen, Ouyang Zhengjian, Wang Yan, Li Zhichao, Fan Mengmeng, Sun Jiaopeng, Chen Quanhong, Wang Ruogu, Liu Xi. 2023. Sedimentary Facies Atlas of Field Profiles in the Ordos Basin. Beijing: Geological Publishing House: 127~212
参考文献
Li Wenhou, Zhang Qian, Li Keyong, Chen Qiang, Guo Yanqin, Ma Yao, Feng Juanping, Zhang Daofen. 2021&. Depositional evolution of the Late Paleozoic in Ordos Basin and its adjacent area. Journal of Paleogeography (Chinese Edition), 23(1): 39~52.
参考文献
Lin Jin, Li Yun, He Jian. 2013&. Analysis of provenance and sedimentary system of Benxi Formation in Yanchang exploration area of Ordos. Geology in China, 40(5): 1542~1551.
参考文献
Mccubbin D G. 1982. Barrier island and strand plain facies. Sandstone Depositional Environments. American Association of Petroleum Geologists Bulletene, 58: 247~279.
参考文献
Meng Xiangzhen, Pu Renhai, Dou Tiancai, Liu Gang, Gong Hujun, Song Ming, Fan Yujie. 2024. Longshore changes in the microfacies and distribution of clastic barrier coastal sandbodies: A case from the Benxi Formation in the Ordos Basin, China. Journal of Petroleum Exploration and Production Technology, 14: 1129~1148.
参考文献
Mulhern J S, Johnson C L, Martin J M. 2019. Modern to Ancient Barrier Island Dimensional Comparisons: Implications for Analog Selection and Paleomorphodynamics. Front Earth Science, 7(109): 1~22.
参考文献
Ren Wenjun, Zhang Qinglong, Zhang Jin, Guo Lingzhi. 1999&. The plate tectonics formation of the central paleouplift in the Ordos Basin Geotectonica et Metallogenia, 23(2): 191~196.
参考文献
Reynolds A D. 1999. Dimensions of paralic sandstone bodies. American Association of Petroleum Geologists Bulletene, 83(3): 211~229.
参考文献
Rieu R, van der Heteren S, Spek A J F, DeBoer P L. 2005. Development and preservation of a mid-Holocene tidal channel network offshore the western Netherlands. Journal Sedimentary Research, 75: 409~419.
参考文献
Sanders J E, Kumar N. 1975. Evidence of shoreface retreat and in-place "drowning" during Holocene submergence of barriers, shelf off Fire Island, New York. Geological Society of America Bulletin, 86(1): 65~76.
参考文献
Short A D. 1992. Beach systems of the central Netherlands coast: Processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.
参考文献
Su Dongxu, Yu Xinghe, Li Shengli, Shan Xin, Zhou Jinsong. 2017&. Sedimentary characteristics and distribution of barrier coast of Benxi Formation in southeastern Ordos Basin. Natural Gas Industry, 37(9): 48~56.
参考文献
Tavener Smith R. 1982. Prograding coastal facies associations in the Vryheid Formation (Permian) at Effingham quarries near Durban, South Africa. Sedimentary Geology, 32: 111~140.
参考文献
Van Maren D S. 2005. Barrier formation on an actively prograding delta system: The Red River Delta, Vietnam. Marine Geology, 224: 123~143.
参考文献
Wang Ruogu, Zhou Jinsong, Du Yonghui, Li Wenhou. 2021&. Sedimentary evolution model of Carboniferous—Permian in Yan’an gas field in southeastern Ordos Basin. Chinese Journal of Geology, 56(4): 1088~1105.
参考文献
Wang Yue, Chen Shiyue, Liang Huiyuan, Wang Jian, Li Tianbao. 2016&. Sedimentary facies and evolution characteristics of Upper Paleozoic in Baode area, Ordos Basin. Acta Sedimentologica Sinica, 34(4): 775~784.
参考文献
Yu Xinghe, Wang Xiangzeng, Wang Nianxi, Shan Xin, Zhou Jinsong, Han Xiaoqin, Li Yalong, Du Yonghui, Zhao Chenfan. 2017&. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sand bodies of Upper Paleozoic in southeastern Ordos Basin. Journal of Palaeogeography, 19(6): 935~954.
目录contents

    摘要

    鄂尔多斯盆地东南部甘泉—富县上石炭统本溪组天然气藏主要为障壁砂坝砂岩储层。在平均井距 2 ~ 3 km 的密井网条件下,钻井资料揭示了障壁砂体纵横向微相组合和分布特征。本文根据岩芯、测井、露头和薄片资料,对甘泉—富县地区本溪组障壁砂坝的砂体展布、微相类型与组合、剖面结构、测井相等沉积特征进行了分析。结果表明,甘泉—富县本溪组本一和本二段均发育东、西两个平行岸线的北西向延伸的障壁砂坝,沿古岩溶凹槽与高地之间的斜坡分布。障壁砂岩呈串珠状加厚,砂岩含量最高约 50%,单层砂岩最厚 22 m。障壁宽度一般 3 ~ 10 km,长度超过 40 km,延伸至研究区外。在中低潮差潮汐和弱波浪共同作用下,障壁砂坝自下而上往往呈入潮口细砾—似潮道砂—似浅滩砂—冲溢扇含泥砾砂等序列特征。入潮口一般由粒序层理细砾岩、含砾粗—中砂岩组成,底界有冲刷面。障壁中下部似潮道微相多由单向板状交错层理和平行层理中—细砂岩组成,偶见双向羽状交错层理; 障壁中上部的似浅滩微相一般由平行层理、低角度楔状交错层理中细砂岩组成,可见生物扰动等;障壁顶部冲溢扇中细砂岩一般含冲刷成因的泥砾或风暴成因的撕裂泥质条带。横向上障壁砂坝边缘往往为潮坪薄互层砂泥岩或涨落潮三角洲薄砂岩,逐渐过渡为沼泽煤层或潟湖泥岩。障壁砂坝及周缘砂岩存在箱型、漏斗型、鈡型、齿型四种测井相,以齿形和箱型最常见。障壁环境的砂岩成分成熟度高,结构成熟度中等至偏低。总体上根据岩性、结构、沉积构造、旋回、砂体的剖面与平面形态等特征可以把障壁沙坝砂岩与单纯的潮道、三角洲或浅滩砂岩区分开来。

    Abstract

    Objectives: The natural gas reservoir of the Benxi Formation in Fuxian—Ganquan area, southeastern Ordos Basin, is mainly composed of barrier sandstone. Under the condition of a dense well network with an average well spacing of 2~3 km, drilling data revealed the vertical and horizontal microfacies combination and distributions of barrier sandbars.

    Methods: We analyze the distribution of sandbodies, microfacies types and combinations, profile structures, and sedimentary characteristics of the Benxi Formation barrier sandbars in the Ganquan — Fuxian area based on core, logging, outcrop, and thin section data.

    Results: Both the Ben-1 and Ben-2 Member of the Benxi Formation occured two northwest extending barrier sandbars parallel to shorelines, distributed along the slopes between ancient karst grooves and highlands. The barrier sandstone is thickened in a bead like manner, with a maximum sandstone content of about 50%, and a maximum thickness of 22 m for a single layer of sandstone. The width of the barrier is generally 3~10 km, with a length exceeding 40 km, extending beyond the study area. Under the combined action of low to medium tide and weak waves, barrier sandbars are often composed of inlet fine gravels, tidal-channel-like sands, shoal-like sands, and washover-fan sands from bottom to top. The tidal inlet is generally composed of fine-grained conglomerate and coarse to medium sandstone with a scour at the base. The tidal-channel-like microfacies located in the middle and lower parts of the barrier are mostly composed of unidirectional tabular cross-bedded and parallel bedded medium to fine sandstone, occasionally seen bi-directional herringbone cross-bedding. The shoal-like microfacies located in the upper part of the barrier sandbar are generally composed of parallel bedding and low angle wedge-shaped crossbedded fine sandstone, occasionally seen biological disturbances, etc. Fine sandstones in washover fans generally contain mud—gravel caused by storms. Barrier sandbar change into thin interbedded sand and mudstone of tidal flat or ebb and flood tidal delta laterally, or into swamp coal seams or lagoon mudstones. There are four types of logging facies related to barrier environment: box shaped, funnel shaped, bell shaped, and toothed, with toothed and box shaped being the most common. Sandstones in barrier environments have high compositional maturity and moderate to low structural maturity.

    Conclusions: Barrier sandbar sandstone can be distinguished from pure tidal channel, delta, or shoal sandstone based on characteristics such as lithology, texture, sedimentary structure, cycles, and the profile and planar morphology of sand bodies.

  • 鄂尔多斯盆地位于中国大陆中部一个稳定的矩形地块,内部划分为伊盟隆起、渭北隆起、晋西挠褶带、陕北斜坡、天环坳陷及西缘逆冲断裂构造带 6 个一级构造单元。研究区位于鄂尔多斯盆地东南部甘泉—富县地区,构造单元属于陕北斜坡,朝西缓倾(图1a)。上石炭统本溪组为一次二级海进海退层序,下伏奥陶系碳酸盐岩,上覆太原组泥晶灰岩,底部广泛沉积了铝土岩,顶界一般为 2~4 m 煤层,内部为暗色泥岩、粉砂岩夹 1~3 层较厚砂岩和含砾砂岩,地层中见海相蜓类生物群,局部见薄层泥晶石灰岩和泥炭沉积(图1b)。研究区上古生界煤层和暗色泥岩为烃源岩,广泛分布于本溪组与山西组,累计厚度 5~20 m,属海陆交互相沉积。本溪组砂岩为重要的天然气储层,盖层为太原组灰岩。

  • 鄂尔多斯盆地石炭纪沉积时为中央古隆起所分隔的东西两个海湾,碎屑物源主要来自南部的秦岭造山带和北部的阴山造山带(林进等,2013; 贾浪波等,2019)。研究区靠近西南方向剥蚀古陆边界,古海岸线大致呈北北西延伸。

  • 中国含油气盆地中陆源碎屑障壁海岸沉积极为少见,对障壁砂坝沉积特征的认识较为薄弱,尤其缺乏对典型障壁砂坝内部单元和结构的解剖。鄂尔多斯盆地东南部甘泉—富县地区面积约 2700 km2(图1a),区内本溪组砂岩是主要的产气层。尽管多位学者认为本溪组砂岩属于障壁砂坝沉积(王越等,2016; 于兴河等,2017; 苏董旭等,2017; 侯中帅等,2018; 高小平,2019; 李文厚等 2021,2023; 王若谷等,2021; 冯娟萍等,2021),但也有人认为属于潮道(段长江等,2015)或潮汐三角洲(候云东等,2018)、扇三角洲(陈全红等,2010)或浅水三角洲砂岩(李洁,2011)。所以,如何鉴别障壁砂岩,尤其对障壁砂岩的沉积构造、微相组成,纵横向变化等缺乏明确的认识。此外,关于盆地中部本溪组物源方向也存在不同认识,林进等( 2013) 认为主要来自东北方向,贾浪波等(2019)则认为主要来自于西南方向东祁连和西秦岭造山带。产生以上不同观点的原因在于障壁砂坝砂岩比较特殊,与滨海、潮道、三角洲等沉积特征存在一些相似之处,所以,把障壁砂坝与典型潮道、浅滩、三角洲前缘等砂体明确区分存在较大的难度。

  • 图1 鄂尔多斯东南甘泉—富县研究区位置(a)和上石炭统本溪组综合地层柱状剖面图(b)

  • Fig.1 Location of study area of southeastern Ordos Basin (a) and comprehensive stratigraphic column section of the Upper Carboniferous Benxi Formation (b)

  • 国外学者研究表明认为障壁岛形成于中低潮差弱波浪环境下(Galloway,1996),障壁砂岩受潮汐作用为主,波浪淘洗作用不明显或特征不突出,砂岩结构成熟度、沉积构造、剖面结构与潮道较为类似(Bridges,1976; Hobday and Tankard,1978; Tavener,1982; Flemming,2012; FitzGerald et al.,2012; Hudock et al.,2014),但在砂体规模、平面形态和延伸方向上障壁砂体与潮道和浅滩砂体有明显区别(Reynolds,1999; Rieu et al,2005)。当海岸波浪作用增强时,障壁逐渐被破坏,砂体朝浅滩或滨面沉积类型过渡,也呈近平行岸线展布( Short,1992; Van,2005),但典型浪控滨海砂坝的规模更大,连片性更好(Mccubbin,1982; Andrew,1992; Hamilton,1995; Reynolds,1999; Mulhern et al,2019),如塔里木盆地的上泥盆统东河砂岩。

  • 延长气田近年在甘泉—富县地区完成了 380 口勘探开发井,密井网地区的平均井距约 1~2 km,13 口井在本溪组有取芯资料。本文针对甘泉—富县地区的本溪组典型碎屑障壁海岸沉积,利用岩芯、测井、薄片等资料综合研究,在障壁沙坝内部组成与纵横向变化、与相邻微相的关系、控制因素等方面提出了新认识。

  • 1 地层学和岩石学特征

  • 鄂尔多斯盆中南部本溪组是奥陶系顶界不整合面上第一次二级海平面升降旋回所形成的一套地层。上覆太原组灰岩,下伏奥陶系灰岩,内部主要为砂泥岩互层,泥岩中偶见介形虫、纺锤虫等海相化石,局部含薄煤层、煤线和薄灰岩,底部普遍发育铝土岩或铝土质泥岩,顶部普遍发育 1~4 m 的煤层。研究区本溪组厚度介于 10~60 m,根据略等厚原则分为上、下两个地层段,分别称为本一段和本二段(图1b)。本一和本二段为两个正或反旋回,由于古地貌逐渐填平补齐,故本二段的厚度及其横向变化稍大于本一段。本一段底界一般为反旋回泥岩底面或正旋回砂岩的底面,正、反旋回和加积序列取决于碎屑供应速度与海平面上升速度的相对关系,在平面上随微相变化而变化。本溪组在盆地西南缘和中央古隆起上缺失( 王若谷等,2021; 李文厚等,2023)。

  • 本溪组障壁砂岩成分成熟度总体较高,石英和硅质岩屑含量 95%左右,单晶石英占绝对优势,有时含 10%左右的石英岩碎屑或燧石,少量岩屑主要为泥岩与火山碎屑。

  • 图2 鄂尔多斯东南甘泉—富县地区本溪组障壁砂坝砂岩显微照片

  • Fig.2 Microphotographs of barrier sandbar sandstones of the Benxi Formation in Ganqun—Fuxian area, southeastern Ordos Basin

  • (a)延 1045 井本一段 3553 m 灰色细粒石英砂岩,次圆———次棱角状,分选较好,单偏光,填隙物为黏土和黄铁矿,致密;( b)同( a)正交偏光;(c)延 1050 井本一段 3216 m 浅灰色石英砂岩,次圆—次棱角状,分选中等,蓝色为孔隙,单偏光,染色,方解石胶结;(d)同(c),正交偏光;(e)延 864 井 3198.1 m,中粒石英砂岩,高岭石晶间孔和绿泥石薄膜,次圆状,分选好,铸体薄片,单偏光;( f)延 505 井 3386.9 m,灰白色中粒石英砂岩,铁白云石胶结,粒间、粒内溶孔,次圆—次棱角状,分选中等,单,染色;(g)延 1003 井 5 回次 3 / 69 块,3053.9 m,灰色粉— 细粒岩屑石英砂岩,菱铁矿胶结,见泥岩岩屑,次棱角状,分选较差,单偏光,染色;(h)延 377 井 5 回次 2067.1 m,泥质细砂岩,分选较差,早期成岩压实导致致密,单偏光

  • (a) Gray fine-grained quartz sandstone of the Ben-1 Member at 3553 m, the Well Yan 1045, sub-rounded to sub-angular, well sorted, and filled with clay and pyrite, compact, single polarized; (b) same as (a) , orthogonal polarization; (c) at 3216 m, the Well Yan1050, composed of light gray quartz sandstone, sub-rounded to sub-angular, moderate sorting, calcite cementation, the blue color represents pores, single polarization, staining; (d) the same as (c) , orthogonal polarization; (e) at 3198.1 m, the Well Yan 864, medium grained quartz sandstone, intergranular pores of kaolinite, thin films of chlorite, subcircular, well sorted, casting and single; ( f) at 3386.9 m, the Well Yan 505, gray white medium grained quartz sandstone, cemented with dolomite, intergranular and intragranular dissolved pores, sub-rounded to sub-angular, moderately sorted, single, dyed; (g) at 3053.9 m, the Well Yan 1003, gray powder fine grained quartz sandstone, siderite cementation, mudstone debris, subangular, poorly sorted, single, stained; (h) at 2067.1 m, the Well Yan 377, fine muddy sandstone, poor sorting, compact, single polarized

  • 由于受潮汐作用为主和弱波浪作用的改造,障壁砂岩总体结构成熟度中等,局部较好或较差(图2a—e),颗粒支撑,黏土胶结为主,局部为碳酸盐(图2c、d)或菱铁矿(图2g)胶结,发育粒间或粒内溶蚀孔隙和高岭石晶间微孔。障壁砂坝纵向上分为入潮口、似潮道、似浅滩等多种微相砂岩,具中等分选和圆度,似潮道微相占主体,少量似浅滩砂岩分选和磨圆度较高。局部结构成熟度变差和砂岩杂基含量增高可能与冲溢扇风暴作用、火山碎屑和火山灰(图2h)掺入有关。甘泉—富县地区本溪组部分砂岩较高成熟度与波浪淘洗的浅滩微相有关。

  • 2 砂体平面形态和规模

  • 本一段和本二段砂岩累加厚度图和砂岩百分含量等值线图上,均存在两个平行岸线的砂坝,呈北西向平行岸线串珠状展布,单沙坝宽 3~4 km,长 30~50 km,并延伸至研究区外。本一或本二段累计砂厚一般 4~10 m,单砂层最厚 22 m,砂岩百分含量最大 50%(图3a、b)。

  • 本溪组砂岩的平面展布形态和规模显示了障壁砂坝平面形态与组合特点(Galoway,1996),与潮道和滨海环境的砂坝有所不同。潮道砂岩一般宽度小于 1 km,斜交或垂直岸线延伸,不同于平行岸线延伸的障壁砂坝。典型的滨浅海沿岸砂坝虽然也平行岸线展布,但厚度和面积很大,厚度一般在数十米以上,面积可达数千至上万平方千米( Reynolds,1999)。障壁砂坝的规模介于潮道和滨海沿岸砂坝之间,且在障壁与岸线之间存在低能潟湖或潮坪沼泽沉积。本溪组沉积期鄂尔多斯盆地中央古隆起的东界(本溪组尖灭线)位于黄龙—志丹县一线,呈北北西延伸(王若谷等,2021),图3a、b 障壁砂坝也呈北北西向延伸,大致指示了本溪组古海岸线的方向。

  • 图3 鄂尔多斯东南甘泉—富县地区本溪组砂岩百分含量与沉积相平面图:(a)本一段;(b)本二段

  • Fig.3 Sedimentary facies map of the Benxi Formation in Ganquan—Fuxian areas, southeastern Ordos Basin: (a) the 1st Member of Benxi Formation; (b) the 2nd Member of Benxi Formation

  • 从砂岩分布的宽度和厚度来看,本一段和本二段远离岸线的第二障壁规模稍大于靠近岸线的第一障壁规模。单一本一段或本二段第一障壁砂体宽度 3~5 km,单层砂岩厚度一般 2~8 m; 第二障壁砂体宽度 10~15 km,单层砂岩厚度一般 4~10 m。甘泉—富县地区本一段和本二段均同时出现了两个障壁,Sanders( 1975)Mccubbin( 1982)Flemming(2012)等认为双障壁可能属于海平面上升的不同阶段所形成,但本溪组的双障壁可能还与奥陶系顶面一凸两凹岩溶古地貌有关,详见第 7 节。

  • 纵向上本一段的障壁砂体的厚度和宽度稍大于本二段的规模,而且从本二至本一段,障壁砂坝朝南西岸线迁移了约 5 km 左右(图3a、b),反映海面整体逐渐上升,沉积范围沿古斜坡逐渐扩大的过程。

  • 第一和第二障壁之间为潟湖沉积,并局部发育冲溢扇或涨落潮三角洲砂体。如图3a 中 Y1065 井本一段砂体位于第二障壁的靠岸(南西方向)一侧,推测为涨潮三角洲或冲溢扇沉积; 图3b 中 Y619 井本二段砂体位于第一和第二障壁之间,并距第一障壁的入潮口稍近,可能为落潮三角洲。

  • 3 沉积模式与微相类型

  • 根据国外古代和现代有关障壁海岸沉积特征的研究,障壁岛附近的砂岩存在潮道、滨面、入潮口和涨、落潮三角洲、冲溢扇等微相类型(图4),其中障壁砂坝的主体部分主要由似潮道和似浅滩砂岩组成。这些微相在古代沉积岩中可依据沉积构造识别出来,如入潮口一般底界具冲刷,含滞留砾石和粒序层理; 向上变为似潮道砂岩,其内部往往见槽状和板状交错层理和平行层理,偶见双向羽状交错层理; 再向上变为似浅滩砂岩,识别特征为低角度楔状交错层理和平行层理或( 面状层理)( Bridges,1976; Hobday et al.,1978; Tavener,1982; FitzGerald et al.,2012)。其他沉积微相如冲溢扇、涨、落潮三角洲等砂岩等一般单层厚度较薄,多小于 3 m,宽度 0.1~1.5 km,面积多小于 1 km2,可存在底界突变的正旋回和底界渐变的反旋回两种剖面结构(Hudock et al.,2014)。冲溢扇中可见到风暴冲刷泥砾(Hobday et al.,1978)。但对于井下地层,冲溢扇与涨落潮三角洲很难识别,依靠砂体规模和平面上与障壁的位置关系进行推测。在难以区分以上微相类型的情况下,一般把非障壁砂坝部分简单统称为障壁后沉积,主要为潮坪潟湖环境的薄层状砂岩、粉砂岩、泥岩互层夹沼泽煤层(Johannesen,2015)。

  • 图4 鄂尔多斯东南甘泉—富县地区本溪组障壁海岸沉积环境模式(改自 Hudock et al.,2014

  • Fig.4 Sedimentary environment model of barrier coast of the Benxi Formation in Ganquan—Fuxian areas, southeastern Ordos Basin (modified from Hudock et al., 2014)

  • 图5 鄂尔多斯东南甘泉一富县地区地区本溪组平行第一障壁走向的连井沉积相对比剖面图

  • Fig.5 The well correlation section of sedimentary facies of the Benxi Formation parallel to first barrier strike in Ganquan-Fuxian areas,southeastern Ordos Basin

  • 图6 鄂尔多斯东南甘泉—富县地区本溪组垂直第二障壁走向的部分连井沉积相对比剖面图

  • Fig.6 The well correlation section of sedimentary facies of the Benxi Formation perpendicular to the second barrier strike in the Ganquan—Fuxian areas, southeastern Ordos Basin

  • 图7 鄂尔多斯东南甘泉—富县地区延 864 井本一段障壁砂坝的入潮口—似浅滩微相岩芯照片

  • Fig.7 Core photos of tidal inlet and shoal-like microfacies in barrier sandbar from the 1st Member of Benxi Formation of Wel Y864 in Ganquan-Fuxian areas of southeastern Ordos Basin

  • (a)粒序层理细砾—粗砂岩,底界冲刷,入潮口;(b)粒序层理细砾岩,入潮口;( c)交错层理中—细砂岩,含生物扰动,似浅滩微相;(d)低角度斜层理或近平行层理细砂岩,似浅滩微相

  • (a) Graded bedding fine gravel to coarse sandstone, scored base, tidal inlet; ( b) fine conglomerate with graded bedding, tidal inlet; (c) cross bedded medium-fine sandstone with bioturbation, shoal-like barrier; (d) low angle cross bedded or nearly parallel bedded fine sandstone, shoal-like barrier

  • 大型障壁砂坝是涨落潮和海浪共同作用的结果(Galloway,1996),在次级海平面振荡和涨落潮作用下,似潮道、似浅滩(滨面)砂岩相互叠置,形成较厚的障壁砂坝。

  • 障壁砂坝、潮道与涨、落潮三角洲等砂岩在钻井剖面上的区别主要表现在砂体规模、宽厚比、旋回性和平面上与障壁砂坝主体的位置关系等方面(图3,图5,图6)。

  • 古代障壁岛比现代障壁岛宽 6~15 倍,长 2~5 倍(Mulhern et al.,2019)。甘泉—富县地区的本溪组障壁砂坝厚度、宽度和宽厚比相对较大,宽度可超过 5 km,长度超过 50 km,延伸至工区外。潮道砂体宽度和宽厚比较小,一般小于 100 ∶ 1,但单层厚度可以较大,3 m 以上多见,厚于涨落潮三角洲。潮道本身大小有别,小型砂体常为潮渠、潮沟所形成。潮道为正旋回结构,砂岩底界与泥岩或煤层突变,平面上斜交岸线延伸或从入潮口朝岸线分叉延伸(FitzGerald et al.,2012),有时呈微弯曲状(Rieu,2005)。障壁砂体一般宽厚比可超过 1000 ∶ 1,即 10 m 厚的砂岩宽度可达 10000 m 以上。涨、落潮三角洲规模小,宽厚比介于以上二者之间( Reynolds,1999)。

  • 除规模、宽厚比和旋回性存在差异外,潮道和涨落潮三角洲砂岩与障壁岛毗邻位置也有所不同,潮道可发育在障壁内侧和潟湖近岸一侧,涨落潮三角洲则发育在入潮口两侧( Mccubbin,1982; Galloway,1996)。

  • 在本溪组取芯和露头剖面上,障壁砂坝自下而上往往由入潮口细砾—似潮道砂—似浅滩砂—冲溢扇含泥砾砂岩等微相组成,最下和最上两个微相可缺失,在障壁边缘相变为潮坪、沼泽或潟湖沉积(图7— 图10)。常见的砂岩微相类型包括以下几种类型。

  • 入潮口:见于障壁砂坝的底部,由石英质滞留细砾岩(图7a)、含砾砂岩组成,底界为冲刷面,内部具正粒序层理(图7b)。与本一段相比,本二段障壁砂坝底部入潮口微相更常见,它是古代入潮口砂砾平行岸线迁移所形成,有一定的延伸长度和宽度,但并非在障壁砂坝底界处处存在。如位于第二障壁岛上的延 864 井和延 1063 井相距约 10 km(图3),本一段均为障壁砂坝砂体,但前者底部含入潮口细砾岩(图7a、b; 图9d),后者底部却无入潮口细砾岩,而是潟湖泥岩直接上覆似潮道细砂岩(图8g,图9e)。再如,韩城竹园村露头本二段障壁砂坝底部存在入潮口石英细砾石(图10a、b),但该露头以北约 20 km 的河津柏木渠剖面本二段砂岩底部不含石英细砾(图10c、d)。

  • 图8 鄂尔多斯本溪组障壁砂坝砂岩沉积特征取芯照片

  • Fig.8 Core photos of sedimentary characteristics of barrier sandbar sandstone in the Benxi Formation in the Ordos Basin

  • (a)板状交错层理,延 930 井 9 回次;(b)楔状交错层理,延 1051 井 5 回次;(c)波状层理,延 377 井 5 回次;(d)羽状交错层理,延 600 井 6 回次;(e)羽状交错层理,延 887 井,10 回次;(f)冲溢扇风暴成因含撕裂状泥砾砂岩;(g)潮道砂岩底部突变,延 1063

  • ( a) Tabular cross bedding, the 9th core of the Well Yan 930; (b) wedge cross bedding, the 5th core of the Well Yan1051; (c) wavy bedding, the 5th core of the Well Yan 377; (d) herringbone cross bedding of the 6th core of the Well Yan 600; (e) herringbone cross bedding of the 10th core in the Well Yan887; (f) storm related torn mudstone and gravel sandstone in washover fan; (g) the abrupt change of the tidal sandstone base from mudstone in the Well Y1063

  • 图9 鄂尔多斯东南甘泉—富县地区部分钻井本溪组取芯段障壁砂坝综合柱状剖面图:( a)第一障壁本一段冲溢扇,延 1045 井第 8 回次取芯;(b)第一障壁中心本二落潮三角洲,延 1227 井第 3 回次;(c)第二障壁南缘潮道、沼泽和砂坪,泉 56 井第 6 回次;(d)第二障壁入潮口、障壁砂坝,延 864 井第 3 回次;(e)本一段第二障壁砂坝,延 1063 井第 7 回次;( f)本一段第二障壁砂坝延 1050 井第 5 回次

  • Fig.9 Comprehensive columnar profile of the core section of the Benxi Formation barrier sandbar from partial wells in the Ganquan—Fuxian areas, southeastern Ordos Basin: (a) Washover fan on the 1st barrier bar of the 1st Member of Benxi Fomation from the 8th core of the Well Y104; (b) ebb delta on central the 1st barrier bar from the 2nd Member of Benxi Formation in the 3rd core of the Well Y1227; (c) tidal flat, swamp and sand-flat at the south edge of the 2nd barrier bar from the 6th core of the Well Quan 56; (d) tidal inlet and barrier bar on the 2nd barrier island from the 3rd cored of the Well Y864; (e) the 2nd barrier bar of the 1st Member of Benxi Formation from the 7th core of the Well Y1063; ( f) the 2nd barrier bar of the 1st Member of Benxi Formation from the 5th core of the Well Y1050

  • GR—自然伽玛; AC—声波时差; LLD—侧向电阻率

  • GR—gamma ray; AC—acoustic log; LLD—lateral resistivity

  • 图10 鄂尔多斯盆地东南缘韩城—河津—柳林地区本溪组障壁砂坝、潮道和浅滩砂岩露头照片

  • Fig.10 Photos of barrier sandbar inlet, tidal channel and shoal microfacies of the Benxi Formation in southeast edge of the Ordos Basin

  • (a)韩城竹园村剖面本二段入潮口石英质细砾岩—障壁砂坝中砂岩,低角度楔状交错层理和平行层理;(b)图( a)细砾岩局部放大;( c)河津柏木渠本溪组潟湖潮坪泥质岩、沼泽煤线与潮道砂岩两个泥岩—砂岩旋回构成本一段和本二段;(d)图(c)中的本二段潮道砂岩下伏 10 cm 煤线;(e)图(d)本二段砂岩右方约 100 m 发育板状交错层理和羽状交错层理,夹一个静潮期泥岩层;( f)柳林县成家庄剖面本二段灰黑色潟湖泥岩与浅滩细砂岩之间的突变;(g)柳林县成家庄剖面本二段自下而上铝土质泥岩、泥质粉砂岩、黑色页岩、细砂岩,位于图( f)右侧约 80 m;(h)图(g)上方本二段细砂岩局部放大,示浅滩细砂岩与下伏深水潟湖泥岩之间存在板状交错层理、低角度楔状交错层理、平行层理粉—细砂岩渐变

  • ( a) The tidal inlet quartzose fine conglomerate and barrier bar sandstone of the 2nd Member of Benxi Formation in the Zhuyuan Village, Hancheng, containg low angle wedge-shaped cross bedding and parallel bedding; (b) local enlargement of fine conglomerate in (a) ; (c) two cycles of the 1st and 2nd Member of Benxi Formation from lagoon and tidal mudstone, swamp coal to tidal channel sandstone in Baimuqu, Hejin; (d) the 10 cm coal seam underlying the tidal sandstone of the 2nd Member of Benxi Formation in ( c) ; ( e) tabular cross and herringbone cross bedding sandstones containing a static tidal mudstone layer located about 100 m to the right of the sandstone in (d) ; (f) the abrupt change between the gray black lagoon mudstone and shallow sandstone in the Chengjiazhuang, Liulin County; ( g) aluminum mudstone, argillaceous sandstone, black shale, and fine sandstone from bottom to top of the 2nd Member of Benxi Formation located in the Chengjiazhuang, Liulin County about 80 meters to the right of ( f) ; (h) the partial enlargement of the fine sandstone in the upper part of (g) , showing a gradual transition from deep-water lagoon mudstone to the tabular cross bedded, low angle wedge cross bedded, and parallel bedded silt to fine sandstone

  • 似潮道砂岩:位于障壁砂坝中下部(图9a—f),具中低潮差潮流作用下潮道砂岩的沉积特点,以单向高角度交错层理中—细砂岩为主(图8a),偶见羽状交错层理(图8d、e)或静潮期沉积的单或双泥岩层(图10e),砂岩底界突变或有冲刷(图8g,图10c、 d),与下伏潟湖(图7a、b,图8g,图9c、e)、潮坪(图9a、f)、沼泽(图10c、d)等微相可直接接触。

  • 似浅滩砂岩:位于障壁砂坝上部(图9b—f),具弱波浪作用下的浅滩砂体的沉积特点,以低角度楔状交错层理和平行层理细砂岩、粉—细砂岩为主(图7c、d,图8b,图10a),单层厚度薄,粒度偏细,见生物扰动等。在盆地北部因波浪相对增强,障壁砂岩受强波浪改造朝浅滩砂岩过渡,可能转变为典型的浅滩砂体( 图10f—h)( Meng Xiangzhen et al.,2024)。

  • 冲溢扇:位于障壁砂坝或障壁岛的顶部( 图9a),具风成沙丘特点,含撕裂状泥砾或泥质条带的中—细砂岩(图8f),块状或错动变形层理,底界见冲刷。

  • 涨、落潮三角洲:属于障壁岛入潮口靠陆或海一侧的小型扇形沉积(图3、图4),由涨、落潮潮汐流动形成,以 2~3 m 厚的薄层砂岩为主,含泥,剖面上构成向上变粗或变细的剖面结构(图9b),与潟湖或陆棚泥岩过渡(图5,图6)。古代涨落潮三角洲砂岩的识别有较大难度,主要根据其砂体宽厚比和平面上与障壁和入潮口的位置关系来推测。

  • 砂坪:障壁侧缘的潮间带中、下潮坪可形成与薄泥岩间互的薄层粉—细砂岩(图9a、c、f),可见小型交错层理、波状层理(图8c)或脉状层理,纵向上与障壁砂岩过渡,具有齿形测井相特点(见下一节)。

  • 4 剖面结构与测井相类型

  • 前人研究表明,无论是障壁砂坝,还是涨落潮三角洲均存在两种剖面结构,一种是底界冲刷突变,向上变细的正旋回结构(FitzGerald,2012),一种是底界渐变向上变粗的反旋回结构( Johannessen et al.,2015)。前者障壁底部存在入潮口或主潮道沉积,后者底部为低能—高能水动力逐渐增强的环境,前一种剖面结构更常见。

  • 甘泉—富县地区本溪组也具有类似两种剖面结构特点。仅从岩芯观察和测井相方面来看,障壁砂坝正旋回剖面结构和沉积构造与潮道、河道沉积十分相似,难以区分; 反旋回剖面结构与小型三角洲沉积也具有一定的相似性。

  • 根据自然伽马测井曲线,将砂岩划分为箱型、漏斗型、钟形、齿形四种类型,不含砂岩则为线性。结合岩芯观察,不同测井相代表了不同的剖面结构,其中箱型代表砂岩顶底突变,底部可能存在冲刷,且可能含滞留细砾和粗砂,内部较均一的剖面结构。漏斗型或多层砂岩组合形成的复合漏斗型代表砂岩底界与泥岩渐变,具向上变粗的剖面结构。钟形代表向上变细的剖面结构,砂体底界与箱型类似。齿形一般为薄的 1~3 层小型砂体,旋回性不清楚,砂岩底界可能突变,也可能渐变(图11a)。同时对不同类型测井相的井数(图11b、c)、测井计算的平均孔隙度(图11e、f)等进行了统计,以了解不同测井相类型的物性变化,并与不同测井相平面展布( 图11a、b)进行比较。

  • 图11 鄂尔多斯本溪组测井相类型、含量和物性关系:(a)测井相类型;(b)本一段砂岩各类测井相井数和占比;( c)本二段砂岩各类测井相井数和占比,括号内为井数;(d)本一段砂岩各类测井相占比;(e)本一段砂岩各类测井相占比;

  • Fig.11 Relationship between logging facies types, contents, and geophysical properties of the Benxi Formation sandstones in Ordos Basin: (a) types of logging facies; ( b) the well number and proportion of various logging facies in the 1st Member of Benxi Formation, with the number of wells in parentheses; (c) well number in parentheses and proportion of different logging facies of the 2nd Member of Benxi Formation; ( d) the proportion of various logging facies of sandstone in the 1st Member of Benxi Formation; (e) the proportions of different logging facies of the 1st Member of Benxi Formation

  • GR—自然伽玛

  • GR—gamma ray

  • 从测井相类型含量和平面分布来看,齿形的井数和含量最高,本一段和本二段齿型含量分别为 40%和 36%; 其次为箱型,本一、二段的箱型含量分别为 33%和 26%。漏斗形和钟形的含量最少,且本一段的钟形多于漏斗形,分别为 17%和 10%; 本二段的钟形少于漏斗形,分别为 22%和 28%,这种差异可能与本二段和本一段分别为相对海进和海退有关。齿形测井相类型虽然最多,但从平面分布来看,该类型主要分布在障壁坝的边缘和可能的入潮口位置(图8,图9,图14),结合这些位置的砂岩厚度薄和规模小特点,推测对应沉积微相主要为潮坪—潟湖泥夹砂沉积,包含部分入潮口和涨潮、落潮三角洲,以及冲溢扇砂岩等。

  • 第二大测井相类型箱型主要分布在障壁坝的中心,与砂体最厚位置基本吻合,为障壁的主体组成部分。结合岩芯观察,该类测井相主要为似潮道和似浅滩砂组成。

  • 含量较少的漏斗形和钟型测井相或分布在障壁的较中心位置,或边缘,推测可能与潮汐三角洲、冲溢扇微相有关。

  • 从不同测井相类型的砂岩平均孔隙度来看,箱型的孔隙度最高,本一、二段砂岩平均孔隙度分别为 7.1%~6.9%; 其次为漏斗形,分别为 6.5%和 6.6%; 钟形和齿形的平均孔隙度最小,介于 5%~6%之间。孔隙度也与砂岩的厚度有关,砂层越薄,孔隙度越小。齿形和钟形砂体厚度一般也较小。总体上,障壁中心的箱型和漏斗型测井相平均孔隙度比障壁边部的其他测井相平均孔隙度高 1%~2%。

  • 本溪组的工业气井主要位于障壁砂坝上,障壁之间的潟湖—潮坪沉积中缺乏砂岩储层,多数井失利。障壁砂坝内部储层也存在较强的非均质性,平均孔隙度变化较大,气藏仅存在于平均孔隙度大于 4%的透镜状优质砂岩储层中,障壁边缘砂厚小于 2 m 或孔隙度小于 4%的砂岩以水层和干层为主。如本一段第二障壁带平面上共有约 25 个孤立的不规则卵圆形气藏呈串珠状排列,大于 6 m 的气层共 13 个,最大单气层厚度 16 m,单个平面上近卵圆形气藏的直径 2~5 km,平均孔隙度 6~10%,障壁中心的气藏厚度和产能高于障壁边部。

  • 图12 鄂尔多斯本一段砂岩测井相(a)、本二段测井相类型(b)平面分布图

  • Fig.12 Distribution map of sandstone logging facies of the 1st Member of Benxi Formation (a) and logging facies types of the 2nd Member of Benxi Formation ( b) in Ordos Basin

  • 5 障壁与古地貌的关系

  • 本溪组厚度是对奥陶纪末碳酸盐岩岩溶古地貌填平补齐的反映,故该厚度也可近似地称为古地貌图(图13)。该图反映本溪组沉积期甘泉—富县地区为一个北东倾的斜坡,其上叠加了两个平行相间排列的北西延伸的古岩溶高地与凹槽,相邻高地和凹槽之间最大落差约 30 m,去压实校正后约 48 m。

  • 图13 鄂尔多斯东南甘泉—富县地区本溪组等厚图

  • Fig.13 Isopach map of Benxi Formation in Ganquan—Fuxian areas of southeastern Ordos Basin

  • 研究区本溪组沉积时物源剥蚀区位于研究区西南方向祁连山—秦岭造山带,它们与鄂尔多斯盆地中央古隆起相连,西南高北东低,中央古隆起的最高点位于庆阳平凉一带(任文军等,1999; 王若谷等,2021)。结合近年在延长探区南部本溪组采集的砂岩碎屑锆石和重矿物分析,甘泉—富县地区的本溪组沉积物从西南古隆起朝北东古坳陷搬运(樊宇洁等,2024)。

  • 比较图3 和图13 可以看出,障壁砂坝与本溪组沉积期的古地貌关系密切。障壁砂岩含量最高的位置既不在古地貌高地,也不在古地貌凹槽,而是位于古地貌高地与凹槽之间的斜坡上,此处应属于潮下带波浪作用较强的前滨—临滨带(也称为滨面带)。第一和第二障壁之间对应为古地貌高地,为古水深较浅的朝间带—朝上带。第一障壁西南侧和第二障壁北东侧对应于古地貌凹槽,分别属于潮坪—潟湖和陆棚泥沉积环境。所以,本溪组双障壁的形成可能与所处古地貌位置水动力能量较高有关。

  • 6 结论

  • (1)甘泉—富县本溪组障壁砂坝为中小潮差和弱波浪海岸环境形成的平行岸线展布的串珠状砂体,沉积特征介于滨海和潮道砂岩之间,障壁砂岩底界与泥岩存在突变和渐变两种类型,砂岩总体成分成熟度高,结构成熟度中—低。大部分障壁砂坝由中下部的似潮道砂岩和上部的似浅滩砂岩组成,底部有时存在入潮口细砾岩—含砾砂岩,顶部有时存在冲溢扇或风成沙丘的含泥砾砂岩。顶底均与潟湖、潮坪或沼泽微相接触。剖面上障壁砂坝以箱型自然伽马曲线形态为主,少量为漏斗型; 障壁边部主要为钟型和齿型测井相。

  • (2)本一段和本二段障壁砂坝宽 5~15 km,长 40~50 km,单个本一段或本二段的障壁砂坝砂岩一般厚度 4~10 m,单层最厚 22 m。障壁砂坝分布受奥陶系顶面古岩溶斜坡地貌控制,东、西双障壁位于北东倾斜坡上平行岸线的次级古高地两侧,古高地以潮坪沉积为主,古凹地以潟湖沉积为主。

  • (3)密井网条件下在识别了障壁砂体分布后,根据岩芯沉积构造、测井相、剖面结构、砂体宽厚比及其平面上与障壁的位置关系可进一步识别入潮口、潮道、涨、落潮三角洲和冲溢扇等砂岩微相。

  • 参考文献

    • 陈全红, 李可永, 张道锋, 金栓联, 郭艳琴, 庞军刚, 袁珍. 2010. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系. 中国地质, 37(2): 421~429.

    • 段长江, 谢英刚, 潘新志, 肖二莲, 朱珊珊. 2015. 鄂尔多斯盆地东缘临兴地区本溪组—太原组沉积环境及沉积相研究. 石油天然气学报, 37(5): 6~9.

    • 樊宇洁, 孟祥振, 蒲仁海, 高小平, 强腾, 宋明. 2024. 鄂尔多斯盆地延长探区本溪组物源分析. 地质科技通报. doi: 10. 19509/j. cnki. dzkq. tb20240191

    • 冯娟萍, 欧阳征健, 陈全红, 李文厚. 2021. 鄂尔多斯盆地及周缘地区上石炭统沉积特征. 古地理学报, 23(1): 53~64.

    • 高小平. 2019. 延长—延川东部探区上古生界有利储层主控因素研究. 石化技术, 26(7): 25~26.

    • 侯云东, 陈安清, 赵伟波, 董国栋, 杨帅, 徐胜林, 高志东, 李富详, 刘新昕, 张晓星. 2018. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境. 成都理工大学学报 (自然科学版), 45(4): 393~401.

    • 侯中帅, 陈世悦, 王越, 李天宝, 赫庆庆, 崔绮梦. 2018. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征. 古地理学报, 20(2): 231~243.

    • 贾浪波, 钟大康, 孙海涛, 严锐涛, 张春林, 莫午零, 邱存, 董媛, 李兵, 廖广新. 2019. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义. 沉积学报, 37(5): 1087~1103.

    • 李文厚, 陈强, 李克永, 张倩, 李玉宏, 马瑶, 冯娟萍, 郭艳琴, 袁珍, 欧阳征健, 王妍, 李智超, 范萌萌, 孙娇鹏, 陈全红, 王若谷, 刘溪. 2023. 鄂尔多斯盆地野外剖面沉积相图集. 北京: 地质出版社: 127~212.

    • 李文厚, 张倩, 李克永, 陈强, 郭艳琴, 马瑶, 冯娟萍, 张道锋. 2021. 鄂尔多斯盆地及周缘地区晚古生代沉积演化. 古地理学报, 23(1): 39~52.

    • 林进, 李云, 何剑. 2013. 鄂尔多斯延长探区本溪组物源及沉积体系分析. 中国地质, 40(5): 1542~1551.

    • 任文军, 张庆龙, 张进, 郭令智. 1999. 鄂尔多斯盆地中央古隆起板块构造成因初步研究. 大地构造与成矿学, 23(2): 191~196.

    • 苏东旭, 于兴河, 李胜利, 单新, 周进松. 2017. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律. 天然气工业, 37(9): 48~56.

    • 王若谷, 周进松, 杜永慧, 李文厚. 2021. 鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式. 地质科学, 56(4): 1088~1105.

    • 王越, 陈世悦, 梁绘媛, 王剑, 李天宝. 2016. 鄂尔多斯盆地保德地区上古生界沉积相与沉积演化特征. 沉积学报, 34(4): 775~784.

    • 于兴河, 王香增, 王念喜, 单新, 周进松, 韩小琴, 李亚龙, 杜永慧, 赵晨帆. 2017. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征. 古地理学报, 19(6): 935~954.

    • Andrew D S. 1992. Beach systems of the central Netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.

    • Bridges P H. 1976. Lower Silurian transgressive barrier islands, southwest Wales. Sedimentology, 23(3): 347~362.

    • Chen Quanhong, Li Keyong, Zhang Daofeng, Jin Shuanlian, Guo Yanqin, Pang Jungang, Yuan Zhen. 2010&. Relationship between fan delta sedimentation and oil and gas accumulation of Benxi Formation—Taiyuan Formation in Ordos Basin. Geology in China, 37(2): 421~429.

    • Duan Changjiang, Xie Yinggang, Pan Xingzhi, Xiao Erlian, Zhu Shanshan. 2015#. Study on sedimentary environment and sedimentary facies of Benxi Formation—Taiyuan Formation in Linxing area, eastern margin of Ordos Basin. Journal of Oil and Gas Technology, 37(5): 6~9.

    • Fan Yujie, Meng Xiangzhen, Pu Renhai, Gao Xiaoping, Qiang Teng, Song Ming. 2024 &. Provenance Analysis of Benxi Formation in Yanchang Exploration Area of Ordos Basin. Bulletin of Geological Science and Technology. doi: 10. 19509/j. cnki. dzkq. tb20240191

    • Feng Juanping, Ouyang Zhengjian, Chen Quanhong, Li Wenhou. 2021&. Sedimentary characteristics of the upper Carboniferous in Ordos Basin and its adjacent areas. Journal of Paleogeography, 23(1): 53~64.

    • FitzGerald D, Buynevich I, Christopher H. 2012. Morphodynamics and Facies Architecture of Tidal Inlets and Tidal Deltas. In: Davis R A Jr, Dalrymple R W, eds. Priciples of Tidal Sedimentology. New York: Springer: 301~333.

    • Flemming B W. 2012. Siliciclastic back-barrier tidal flats. In: Davis R A, Dalrymple R W. Principles of Tidal Sedimentology. New York: Springer: 231~267.

    • Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources, Second Completely Rrevised. New York: Springer, 126~158.

    • Gao Xiaoping. 2019#. Study on the main controlling factors of Upper Paleozoic favorable reservoirs in the eastern exploration area of Yanchang—Yanchuan. Petrochemical Industry Technology, 26(7): 25~26.

    • Hamilton D S. 1995. Approaches to identifying reservoir heterogeneity in barrier/strand plain reservoirs and the opportunities for increased oil recovery: an example from the prolific oil-producing Jackson—Yegua trend, south Texas. Marine & Petroleum Geology, 12(3): 273~290.

    • Hobday D K and Tankard A J. 1978. Transgressive-barrier and shallow-shelf interpretation of the lower Paleozoic Peninsula Formation, South Africa. Geological Society of America Bulletin, 89(12): 1733~1744

    • Hou Yundong, Chen Anqing, Zhao Weibo, Dong Guodong, Yang Shuai, Xu Shenglin, Gao Zhidong, Li Fuxiang, Liu Xinxin, Zhang Xiaoxing, 2018&. Sedimentary environment of tidal—delta composite sand body of Benxi Formation in Ordos Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4): 393~401.

    • Hou Zhongshuai, Chen Shiyue, Wang Yue, Li Tianbao, He Qingqing, Cui Qimeng. 2018&. Characteristics of sequence stratigraphy and sedimentary facies of Upper Paleozoic in Baode area, eastern margin of Ordos Basin. Journal of Palaeogeography, 20(2): 231~243.

    • Hudock J W, Flaig P P, Wood L J. 2014. Washover Fans: A modern geomorphologic analysis and proposed classification scheme to improve reservoir models. Journal of Sedimentary Research, 84(10): 854~865.

    • Jia Langbo, Zhong Dakang, Sun Haitao, Yan Ruitao, Zhang Chunlin, Mo Wulin, Qiu Cun, Dong Yuan, Li Bing, Liao Guangxin. 2019&. Discussion on sediment provenance of Benxi Formation in Ordos Basin and its tectonic significance. Acta Sedimentologica Sinica, 37(5): 1087~1103.

    • Johannesen P N, Nielsen L H, Møller I, Pejrup M, Andersen T J. 2015. Architecture of an Upper Jurassic barrier island sandstone reservoir, Danish Central Graben: Implications of a Holocene—Recent analogue from the Wadden Sea. Petroleum Geology Conference, 7: 145~155.

    • Li Wenhou, Chen Qiang, Li Keyong, Zhang Qian, Li Yuhong, Ma Yao, Feng Juanping, Guo Yanqin, Yuan Zhen, Ouyang Zhengjian, Wang Yan, Li Zhichao, Fan Mengmeng, Sun Jiaopeng, Chen Quanhong, Wang Ruogu, Liu Xi. 2023. Sedimentary Facies Atlas of Field Profiles in the Ordos Basin. Beijing: Geological Publishing House: 127~212

    • Li Wenhou, Zhang Qian, Li Keyong, Chen Qiang, Guo Yanqin, Ma Yao, Feng Juanping, Zhang Daofen. 2021&. Depositional evolution of the Late Paleozoic in Ordos Basin and its adjacent area. Journal of Paleogeography (Chinese Edition), 23(1): 39~52.

    • Lin Jin, Li Yun, He Jian. 2013&. Analysis of provenance and sedimentary system of Benxi Formation in Yanchang exploration area of Ordos. Geology in China, 40(5): 1542~1551.

    • Mccubbin D G. 1982. Barrier island and strand plain facies. Sandstone Depositional Environments. American Association of Petroleum Geologists Bulletene, 58: 247~279.

    • Meng Xiangzhen, Pu Renhai, Dou Tiancai, Liu Gang, Gong Hujun, Song Ming, Fan Yujie. 2024. Longshore changes in the microfacies and distribution of clastic barrier coastal sandbodies: A case from the Benxi Formation in the Ordos Basin, China. Journal of Petroleum Exploration and Production Technology, 14: 1129~1148.

    • Mulhern J S, Johnson C L, Martin J M. 2019. Modern to Ancient Barrier Island Dimensional Comparisons: Implications for Analog Selection and Paleomorphodynamics. Front Earth Science, 7(109): 1~22.

    • Ren Wenjun, Zhang Qinglong, Zhang Jin, Guo Lingzhi. 1999&. The plate tectonics formation of the central paleouplift in the Ordos Basin Geotectonica et Metallogenia, 23(2): 191~196.

    • Reynolds A D. 1999. Dimensions of paralic sandstone bodies. American Association of Petroleum Geologists Bulletene, 83(3): 211~229.

    • Rieu R, van der Heteren S, Spek A J F, DeBoer P L. 2005. Development and preservation of a mid-Holocene tidal channel network offshore the western Netherlands. Journal Sedimentary Research, 75: 409~419.

    • Sanders J E, Kumar N. 1975. Evidence of shoreface retreat and in-place "drowning" during Holocene submergence of barriers, shelf off Fire Island, New York. Geological Society of America Bulletin, 86(1): 65~76.

    • Short A D. 1992. Beach systems of the central Netherlands coast: Processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.

    • Su Dongxu, Yu Xinghe, Li Shengli, Shan Xin, Zhou Jinsong. 2017&. Sedimentary characteristics and distribution of barrier coast of Benxi Formation in southeastern Ordos Basin. Natural Gas Industry, 37(9): 48~56.

    • Tavener Smith R. 1982. Prograding coastal facies associations in the Vryheid Formation (Permian) at Effingham quarries near Durban, South Africa. Sedimentary Geology, 32: 111~140.

    • Van Maren D S. 2005. Barrier formation on an actively prograding delta system: The Red River Delta, Vietnam. Marine Geology, 224: 123~143.

    • Wang Ruogu, Zhou Jinsong, Du Yonghui, Li Wenhou. 2021&. Sedimentary evolution model of Carboniferous—Permian in Yan’an gas field in southeastern Ordos Basin. Chinese Journal of Geology, 56(4): 1088~1105.

    • Wang Yue, Chen Shiyue, Liang Huiyuan, Wang Jian, Li Tianbao. 2016&. Sedimentary facies and evolution characteristics of Upper Paleozoic in Baode area, Ordos Basin. Acta Sedimentologica Sinica, 34(4): 775~784.

    • Yu Xinghe, Wang Xiangzeng, Wang Nianxi, Shan Xin, Zhou Jinsong, Han Xiaoqin, Li Yalong, Du Yonghui, Zhao Chenfan. 2017&. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sand bodies of Upper Paleozoic in southeastern Ordos Basin. Journal of Palaeogeography, 19(6): 935~954.

  • 参考文献

    • 陈全红, 李可永, 张道锋, 金栓联, 郭艳琴, 庞军刚, 袁珍. 2010. 鄂尔多斯盆地本溪组—太原组扇三角洲沉积与油气聚集的关系. 中国地质, 37(2): 421~429.

    • 段长江, 谢英刚, 潘新志, 肖二莲, 朱珊珊. 2015. 鄂尔多斯盆地东缘临兴地区本溪组—太原组沉积环境及沉积相研究. 石油天然气学报, 37(5): 6~9.

    • 樊宇洁, 孟祥振, 蒲仁海, 高小平, 强腾, 宋明. 2024. 鄂尔多斯盆地延长探区本溪组物源分析. 地质科技通报. doi: 10. 19509/j. cnki. dzkq. tb20240191

    • 冯娟萍, 欧阳征健, 陈全红, 李文厚. 2021. 鄂尔多斯盆地及周缘地区上石炭统沉积特征. 古地理学报, 23(1): 53~64.

    • 高小平. 2019. 延长—延川东部探区上古生界有利储层主控因素研究. 石化技术, 26(7): 25~26.

    • 侯云东, 陈安清, 赵伟波, 董国栋, 杨帅, 徐胜林, 高志东, 李富详, 刘新昕, 张晓星. 2018. 鄂尔多斯盆地本溪组潮汐—三角洲复合砂体沉积环境. 成都理工大学学报 (自然科学版), 45(4): 393~401.

    • 侯中帅, 陈世悦, 王越, 李天宝, 赫庆庆, 崔绮梦. 2018. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征. 古地理学报, 20(2): 231~243.

    • 贾浪波, 钟大康, 孙海涛, 严锐涛, 张春林, 莫午零, 邱存, 董媛, 李兵, 廖广新. 2019. 鄂尔多斯盆地本溪组沉积物物源探讨及其构造意义. 沉积学报, 37(5): 1087~1103.

    • 李文厚, 陈强, 李克永, 张倩, 李玉宏, 马瑶, 冯娟萍, 郭艳琴, 袁珍, 欧阳征健, 王妍, 李智超, 范萌萌, 孙娇鹏, 陈全红, 王若谷, 刘溪. 2023. 鄂尔多斯盆地野外剖面沉积相图集. 北京: 地质出版社: 127~212.

    • 李文厚, 张倩, 李克永, 陈强, 郭艳琴, 马瑶, 冯娟萍, 张道锋. 2021. 鄂尔多斯盆地及周缘地区晚古生代沉积演化. 古地理学报, 23(1): 39~52.

    • 林进, 李云, 何剑. 2013. 鄂尔多斯延长探区本溪组物源及沉积体系分析. 中国地质, 40(5): 1542~1551.

    • 任文军, 张庆龙, 张进, 郭令智. 1999. 鄂尔多斯盆地中央古隆起板块构造成因初步研究. 大地构造与成矿学, 23(2): 191~196.

    • 苏东旭, 于兴河, 李胜利, 单新, 周进松. 2017. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律. 天然气工业, 37(9): 48~56.

    • 王若谷, 周进松, 杜永慧, 李文厚. 2021. 鄂尔多斯盆地东南部延安气田石炭系—二叠系沉积演化模式. 地质科学, 56(4): 1088~1105.

    • 王越, 陈世悦, 梁绘媛, 王剑, 李天宝. 2016. 鄂尔多斯盆地保德地区上古生界沉积相与沉积演化特征. 沉积学报, 34(4): 775~784.

    • 于兴河, 王香增, 王念喜, 单新, 周进松, 韩小琴, 李亚龙, 杜永慧, 赵晨帆. 2017. 鄂尔多斯盆地东南部上古生界层序地层格架及含气砂体沉积演化特征. 古地理学报, 19(6): 935~954.

    • Andrew D S. 1992. Beach systems of the central Netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.

    • Bridges P H. 1976. Lower Silurian transgressive barrier islands, southwest Wales. Sedimentology, 23(3): 347~362.

    • Chen Quanhong, Li Keyong, Zhang Daofeng, Jin Shuanlian, Guo Yanqin, Pang Jungang, Yuan Zhen. 2010&. Relationship between fan delta sedimentation and oil and gas accumulation of Benxi Formation—Taiyuan Formation in Ordos Basin. Geology in China, 37(2): 421~429.

    • Duan Changjiang, Xie Yinggang, Pan Xingzhi, Xiao Erlian, Zhu Shanshan. 2015#. Study on sedimentary environment and sedimentary facies of Benxi Formation—Taiyuan Formation in Linxing area, eastern margin of Ordos Basin. Journal of Oil and Gas Technology, 37(5): 6~9.

    • Fan Yujie, Meng Xiangzhen, Pu Renhai, Gao Xiaoping, Qiang Teng, Song Ming. 2024 &. Provenance Analysis of Benxi Formation in Yanchang Exploration Area of Ordos Basin. Bulletin of Geological Science and Technology. doi: 10. 19509/j. cnki. dzkq. tb20240191

    • Feng Juanping, Ouyang Zhengjian, Chen Quanhong, Li Wenhou. 2021&. Sedimentary characteristics of the upper Carboniferous in Ordos Basin and its adjacent areas. Journal of Paleogeography, 23(1): 53~64.

    • FitzGerald D, Buynevich I, Christopher H. 2012. Morphodynamics and Facies Architecture of Tidal Inlets and Tidal Deltas. In: Davis R A Jr, Dalrymple R W, eds. Priciples of Tidal Sedimentology. New York: Springer: 301~333.

    • Flemming B W. 2012. Siliciclastic back-barrier tidal flats. In: Davis R A, Dalrymple R W. Principles of Tidal Sedimentology. New York: Springer: 231~267.

    • Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources, Second Completely Rrevised. New York: Springer, 126~158.

    • Gao Xiaoping. 2019#. Study on the main controlling factors of Upper Paleozoic favorable reservoirs in the eastern exploration area of Yanchang—Yanchuan. Petrochemical Industry Technology, 26(7): 25~26.

    • Hamilton D S. 1995. Approaches to identifying reservoir heterogeneity in barrier/strand plain reservoirs and the opportunities for increased oil recovery: an example from the prolific oil-producing Jackson—Yegua trend, south Texas. Marine & Petroleum Geology, 12(3): 273~290.

    • Hobday D K and Tankard A J. 1978. Transgressive-barrier and shallow-shelf interpretation of the lower Paleozoic Peninsula Formation, South Africa. Geological Society of America Bulletin, 89(12): 1733~1744

    • Hou Yundong, Chen Anqing, Zhao Weibo, Dong Guodong, Yang Shuai, Xu Shenglin, Gao Zhidong, Li Fuxiang, Liu Xinxin, Zhang Xiaoxing, 2018&. Sedimentary environment of tidal—delta composite sand body of Benxi Formation in Ordos Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 45(4): 393~401.

    • Hou Zhongshuai, Chen Shiyue, Wang Yue, Li Tianbao, He Qingqing, Cui Qimeng. 2018&. Characteristics of sequence stratigraphy and sedimentary facies of Upper Paleozoic in Baode area, eastern margin of Ordos Basin. Journal of Palaeogeography, 20(2): 231~243.

    • Hudock J W, Flaig P P, Wood L J. 2014. Washover Fans: A modern geomorphologic analysis and proposed classification scheme to improve reservoir models. Journal of Sedimentary Research, 84(10): 854~865.

    • Jia Langbo, Zhong Dakang, Sun Haitao, Yan Ruitao, Zhang Chunlin, Mo Wulin, Qiu Cun, Dong Yuan, Li Bing, Liao Guangxin. 2019&. Discussion on sediment provenance of Benxi Formation in Ordos Basin and its tectonic significance. Acta Sedimentologica Sinica, 37(5): 1087~1103.

    • Johannesen P N, Nielsen L H, Møller I, Pejrup M, Andersen T J. 2015. Architecture of an Upper Jurassic barrier island sandstone reservoir, Danish Central Graben: Implications of a Holocene—Recent analogue from the Wadden Sea. Petroleum Geology Conference, 7: 145~155.

    • Li Wenhou, Chen Qiang, Li Keyong, Zhang Qian, Li Yuhong, Ma Yao, Feng Juanping, Guo Yanqin, Yuan Zhen, Ouyang Zhengjian, Wang Yan, Li Zhichao, Fan Mengmeng, Sun Jiaopeng, Chen Quanhong, Wang Ruogu, Liu Xi. 2023. Sedimentary Facies Atlas of Field Profiles in the Ordos Basin. Beijing: Geological Publishing House: 127~212

    • Li Wenhou, Zhang Qian, Li Keyong, Chen Qiang, Guo Yanqin, Ma Yao, Feng Juanping, Zhang Daofen. 2021&. Depositional evolution of the Late Paleozoic in Ordos Basin and its adjacent area. Journal of Paleogeography (Chinese Edition), 23(1): 39~52.

    • Lin Jin, Li Yun, He Jian. 2013&. Analysis of provenance and sedimentary system of Benxi Formation in Yanchang exploration area of Ordos. Geology in China, 40(5): 1542~1551.

    • Mccubbin D G. 1982. Barrier island and strand plain facies. Sandstone Depositional Environments. American Association of Petroleum Geologists Bulletene, 58: 247~279.

    • Meng Xiangzhen, Pu Renhai, Dou Tiancai, Liu Gang, Gong Hujun, Song Ming, Fan Yujie. 2024. Longshore changes in the microfacies and distribution of clastic barrier coastal sandbodies: A case from the Benxi Formation in the Ordos Basin, China. Journal of Petroleum Exploration and Production Technology, 14: 1129~1148.

    • Mulhern J S, Johnson C L, Martin J M. 2019. Modern to Ancient Barrier Island Dimensional Comparisons: Implications for Analog Selection and Paleomorphodynamics. Front Earth Science, 7(109): 1~22.

    • Ren Wenjun, Zhang Qinglong, Zhang Jin, Guo Lingzhi. 1999&. The plate tectonics formation of the central paleouplift in the Ordos Basin Geotectonica et Metallogenia, 23(2): 191~196.

    • Reynolds A D. 1999. Dimensions of paralic sandstone bodies. American Association of Petroleum Geologists Bulletene, 83(3): 211~229.

    • Rieu R, van der Heteren S, Spek A J F, DeBoer P L. 2005. Development and preservation of a mid-Holocene tidal channel network offshore the western Netherlands. Journal Sedimentary Research, 75: 409~419.

    • Sanders J E, Kumar N. 1975. Evidence of shoreface retreat and in-place "drowning" during Holocene submergence of barriers, shelf off Fire Island, New York. Geological Society of America Bulletin, 86(1): 65~76.

    • Short A D. 1992. Beach systems of the central Netherlands coast: Processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology, 107: 103~137.

    • Su Dongxu, Yu Xinghe, Li Shengli, Shan Xin, Zhou Jinsong. 2017&. Sedimentary characteristics and distribution of barrier coast of Benxi Formation in southeastern Ordos Basin. Natural Gas Industry, 37(9): 48~56.

    • Tavener Smith R. 1982. Prograding coastal facies associations in the Vryheid Formation (Permian) at Effingham quarries near Durban, South Africa. Sedimentary Geology, 32: 111~140.

    • Van Maren D S. 2005. Barrier formation on an actively prograding delta system: The Red River Delta, Vietnam. Marine Geology, 224: 123~143.

    • Wang Ruogu, Zhou Jinsong, Du Yonghui, Li Wenhou. 2021&. Sedimentary evolution model of Carboniferous—Permian in Yan’an gas field in southeastern Ordos Basin. Chinese Journal of Geology, 56(4): 1088~1105.

    • Wang Yue, Chen Shiyue, Liang Huiyuan, Wang Jian, Li Tianbao. 2016&. Sedimentary facies and evolution characteristics of Upper Paleozoic in Baode area, Ordos Basin. Acta Sedimentologica Sinica, 34(4): 775~784.

    • Yu Xinghe, Wang Xiangzeng, Wang Nianxi, Shan Xin, Zhou Jinsong, Han Xiaoqin, Li Yalong, Du Yonghui, Zhao Chenfan. 2017&. Sequence stratigraphic framework and sedimentary evolution characteristics of gas-bearing sand bodies of Upper Paleozoic in southeastern Ordos Basin. Journal of Palaeogeography, 19(6): 935~954.