en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨潘,男,1999年生,硕士,主要从事地震地质综合解释及海洋沉积研究(地质资源与地质工程专业);E-mail: y1458651011@foxmail.com。

通讯作者:

李磊,男,1979年生,教授,主要从事地震地质综合解释及海洋沉积研究;E-mail: lilei@xsyu.edu.cn。

参考文献
蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源—汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.
参考文献
陈忠云, 杜学斌, 李帅. 2022. 东海西湖凹陷平湖斜坡带平湖组沉积体系平面分区特征及差异性展布. 石油实验地质, 44(5): 780~789.
参考文献
郭芪恒, 史书婷, 金振奎, 李阳, 王金艺, 任奕霖, 王凌. 2022. 河口湾潮坪潮汐水道发育特征及地质意义——以钱塘江为例. 沉积学报, 40(1): 182~191.
参考文献
高伟中. 2020. 西湖凹陷中央反转带中北部天然气高效成藏主控因素及富集规律. 地质科技通报, 39(3): 40~48.
参考文献
黄庆超, 石巍方, 刘广龙, 王雨春, 周怀东, 朱端卫. 2017. 基于Delft3D的三峡水库不同工况下香溪河水动力水质模拟. 水资源与水工程学报, 28(2): 33~39.
参考文献
李宁, 汤睿, 赵洪, 覃军, 刘洋. 2017. 西湖凹陷平湖构造带物源特征分析. 海洋石油, 37(2): 21~26.
参考文献
李帅, 俞伟哲, 秦兰芝, 张粲. 2024. 西湖凹陷平湖斜坡带物源—坡折耦合控砂模式. 海洋地质前沿, 40(7): 36~44.
参考文献
刘雪萍, 卢双舫, 唐明明, 孙东权, 唐佳凡, 张克鑫, 何涛华, 齐宁, 卢明月. 2021. 河流—潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944~2957.
参考文献
刘雪萍. 2021. 基于沉积动力学方法的潮控河口湾储层沉积模式研究. 导师: 卢双舫. 中国石油大学(华东)硕士学位论文: 1~84.
参考文献
刘英辉, 蔡华, 段冬平, 荣乘锐, 常吟善, 徐清海. 2022. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲—潮坪沉积特征及模式. 海洋地质前沿, 38(1): 33~40.
参考文献
彭旸, 龚承林, 李顺利. 2022. 河流—波浪—潮汐混合作用过程研究进展. 沉积学报, 40(4): 957~978.
参考文献
彭晨阳, 唐明明, 洪瑞峰, 熊思琛. 2024. 基于沉积动力学的潮控三角洲沉积数值模拟研究. 沉积学报, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.
参考文献
王杨君, 尹太举, 邓智浩, 程钊. 2016. 水动力数值模拟的河控三角洲分支河道演化研究. 地质科技情报, 35(1): 44~52.
参考文献
王泽宇, 徐清海, 侯国伟, 张昌明, 朱锐, 刘思琦. 2021. 东海陆架盆地西湖凹陷W井区平湖组潮汐沉积模式. 海相油气地质, 26(2): 159~169.
参考文献
徐东浩, 秦兰芝, 李帅, 蔡坤, 王宇. 2024. 西湖凹陷平北斜坡平湖组潮坪环境砂体沉积模式及控制因素. 中国海上油气, 36(5): 57~67.
参考文献
张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨——沉积数值模拟与现代沉积分析启示. 沉积学报, 36(1): 81~91.
参考文献
张兰, 何贤科, 段冬平, 常吟善, 汪文基, 刘英辉. 2023. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质, 43(4): 140~149.
参考文献
张丽芬, 杨作升, 张凡, 李占海, 汪亚平, 高抒. 2022. 长江河口南槽纵向余环流: 径流、潮汐和地形耦合机制. 中国科学: 地球科学, 52(2): 256~269.
参考文献
张年念, 蒋一鸣. 2025. 基于叠前地震沉积学的岩性圈闭潜力评价——以东海盆地西湖凹陷平湖斜坡带某气田周边无井区为例. 天然气地球科学. http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.
参考文献
张宙, 何新建, 唐贤君, 朱虹浩. 2022. 东海盆地西湖凹陷构造圈闭特征及其油气藏类型. 海洋地质前沿, 38(3): 27~35.
参考文献
郑欣, 阴国锋, 王健伟, 董文秀. 2021. 东海盆地西湖凹陷平北北部地区平湖组储层成岩相分析. 天然气地球科学, 32(7): 971~981.
参考文献
周涵, 黄继新, 冯文杰, 刘尚奇, 尹艳树. 2020. 潮控河口湾砂坝发育特征及形成因素分析——以钱塘江为例. 地质论评, 66(1): 101~112.
参考文献
周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.
参考文献
Ayyappan K, Thiruvenkatasamy K, Balu R, et al. 2024. Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east Coast of Bay of Bengal. Environmental research, 248: 118304.
参考文献
Burgess P M. 2012. A Brief Review of Developments in Stratigraphic Forward Modelling. Boston: Elsevier: 378~404.
参考文献
Caldwell R L. 2013. The Effect of Grain Size on River Delta Process and Morphology. Thesis advisor: Edmonds D A. Boston: Boston College: 9~40.
参考文献
Cai Hua, Qin Lanzhi, Liu Yinghui. 2019&. Differentiation and coupling model of source-to-sink system with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897.
参考文献
Carballo R, Iglesias G, Castro A. 2009. Numerical bodel evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6): 1517~1524.
参考文献
Chen Zhongyun, Du Xuebin, Li Shuai. 2022&. Distributional signatures of depositional system of Pinghu Formation, Pinghu slope, Xihu sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 44(5): 780~789.
参考文献
Fadlillah L N, Widyastuti M, Sunarto, Marfai M A. 2020. Comparison of tidal model using Mike21 and Delft3d-flow in part of Java sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 451(1): 012067.
参考文献
Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources (2nd ed). New York: Springer.
参考文献
Granjeon D, Joseph P. 1999. Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic Modeling. Tulsa: SEPM Special Publication: 197~210.
参考文献
Griffiths C M, Dyt C, Paraschivoiu E. 2001. SEDSIM in Hydrocarbon Exploration. Boston: Springer: 71~97.
参考文献
Guo Qiheng, Shi ShutTing, Jin ZhenKui, Li Yang, Wang Jinyi, Ren Yilin, Wang Ling. 2022&. Characteristics and geological significance of tidal channels in an estuarine tidal flat: A case study from the Qiantang River Estuary. Acta Sedimentologica Sinica, 40(1): 182~191.
参考文献
Gao Weizhong. 2020&. Major controlling factors and enrichment rules of highly efficient gas reservoiring in the north—central part of the central inversion belt, Xihu depression. Bulletin of Geological Science and Technology, 39(3): 40~48.
参考文献
Huang Qingchao, Shi Weifang, Liu Guanglong, Wang Yuchun, Zhou Huaidong, Zhu Duanwei. 2017&. Modeling the hydrodynamics and water quality of xiangxi river under different working conditions of Three Gorges Reservoir based on Delft 3D. Journal of Water Resources & Water Engineering, 28(2): 33~39.
参考文献
Ge Jianzhong, Shen Fang, Guo Wenyun, Chen changsheng, Ding Pingxing. 2015. Estimation of critical shear stress for erosion in the Changjiang Estuary: Synergy research of observation, GOCI sensing and modeling. Journal of Geophysical Research: Oceans120(12): 8439~8465.
参考文献
Lesser G R, Roelvink J A, Van Kester J A T M, Stelling G S. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8~9): 883~915.
参考文献
Li Ning, Tang Rui, Zhao Hong, Qin Jun, Liu Yang. 2017&. Provenance characteristics of Pinghu Tectonic Zone in Xihu Sag. Offshore Oil, 37(2): 21~26.
参考文献
Li Shuai, Yu Weizhe, Qin Lanzhi, Zhang Can. 2024&. Sand-controlling model of source—slope-break coupling in Pinghu slope belt, Xihu Sag. Marine Geology Frontiers, 40(7): 1~9.
参考文献
Liu Xueping. 2021&. Study on sedimentary model of tide-dominated estuary reservoir based on sedimentary dynamics. Thesis advisor: Lu Shuangfang. China University of Petroleum (East China): 1~84.
参考文献
Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Quandong, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue. 2021&. Numerical simulation of sedimentary dynamics to estuarine bar under the coupled fluvial — tidal control. Earth Science, 46(8): 2944~2957.
参考文献
Liu Yinghui, Cai Hua, Duan Dongping, Rong Chengrui, Chang Yinshan, Xu Qinghai. 2022&. The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area, Xihu sag. Marine Geology Frontiers, 38(1): 33~40.
参考文献
Nardin W, Fagherazzi S. 2012. The effect of wind waves on the development of river mouth bars. Geophysical Research Letters, 39(12): L12607.
参考文献
Peng Yang, Gong Chenglin, Li Shunli. 2022&. Recent advances in river—wave—tide mixed processes. Acta Sedimentologica Sinica, 40(4): 957~978.
参考文献
Peng Chenyang, Tang Mingming, Hong Ruifeng, Xiong Sichen. 2024&. Numerical simulation of tidal delta sedimentation based on sedimentary dynamics. Acta Sedimentologica Sinica, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.
参考文献
Thomas R. Taylor, Mark G. Kittridge, Peter Winefield, L. Taras Bryndzia, Linda M. Bonnell. 2015. Reservoir quality and rock properties modeling – Triassic and Jurassic sandstones, Greater Shearwater area, UK Central North Sea. Marine & Petroleum Geology, 65(Complete): 1~21.
参考文献
Van d L W I, Feldman H. 2018. Process-based modelling of morphodynamics and bar architecture in confined basins with fluvial and tidal currents. Marine Geology, 398: 35~47.
参考文献
Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016&. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information, 35(1): 44~52.
参考文献
Wang Zeyu, Xu Qinghai, Hou Guowei, Zhang Changming, Zhu Rui, Liu Siqi. 2021&. Tidal depositional model of Pinghu Formation in W Well block of Xihu sag, East China Sea Shelf Basin. Marine Origin Petroleum Geology, 26(2): 159~169.
参考文献
Xu Donghao, Qin Lanzhi, Li Shuai, Cai Kun, Wang Yu. 2024&. Sedimentary models and controlling factors of sand bodies in tidal flat environment of Pinghu Formation on Pingbei slope of Xihu sag. China Offshore Oil and Gas, 36(5): 57~67.
参考文献
Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018&. Discussion on evolution of bar in sandy braided river: Insights form sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~91.
参考文献
Zhang Lan, He Xianke, Duan Dongping, Chang Yinshan, Wang Wenji, Liu Yinghui. 2023&. Sedimentological analysis of coal stratigraphy of Pinghu Formation in the Pinghu Slope belt, Xihu sag, East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 43(4): 140~149.
参考文献
Zhang Lifen, Yang Zuosheng, Zhang Fan, Li Zhanhai, Wang Yaping, Gao Shu. 2021&. Longitudinal residual circulation in the south passage of yangtze estuary: Combined influences from runoff, tide and bathymetry. Science China Earth Sciences, 64(12): 2129~2143.
参考文献
Zhang Niannian, Jiang Yiming. 2025&. Potential evaluation of lithological traps based on prestack seimic sedimentology——Taking the Non-Drilled Area Surrounding a Gas Field in the Pinghu Slope Zone of the Xihu Sag in the East China Sea Basin as an Example. Natural Gas Geoscience, http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.
参考文献
Zhang Zhou, He Xinjian, Tang Xianjun, Zhu Honghao. 2022&. Structural trap characteristics and reservoir types in Xihu Sag, East China Basin. Marine Geology Frontiers, 38(3): 27~35.
参考文献
Zheng Xin, Yin Guofeng, Wang Jianwei, Dong Wenxiu. 2021&. Study on diagenetic facies of reservoir of Pinghu Formation in the Northern Pingbei area of the Xihu Depression, East China Sea Basin. Natural Gas Geoscience, 32(7): 971~981
参考文献
Zhou Han, Huang Jixin, Feng Wenjie, Liu Shangqi, Yin Yanshu. 2020&. Analysis on formation factors and development characteristics of sand bar in Tide-Dominated Estuaries——A case study based on Qiantang River. Geological Review, 66(1): 101~112.
参考文献
Zhou Xinhuai. 2020&. Geological Understanding and Innovation in Xihu Sag and Breakthroughs in Oil and Gas Exploration. China Offshore Oil and Gas, 32(1): 1~12.
目录contents

    摘要

    井震资料与沉积数值模拟结合分析有望厘清东海盆地西湖凹陷古近系平湖组中—上段水下低凸起与河潮交互作用间的耦合关系。利用井震资料初步探究研究区复杂地形地貌特点、潮汐作用特征;利用沉积数值模拟方法(Delft3D),建立理想化模型,通过改变地形特征和潮汐幅度条件,探究研究区水下低凸起—潮流耦合关系特征。模拟结果显示:①受水下低凸起地形影响,研究区砂体在涨潮与退潮过程中发育规模性潮汐砂坝与砂席。 ②特定地貌特征下,三角洲被改造程度分别和潮汐幅度、河流流量呈正相关,发育规模性潮汐砂坝、砂席及潮汐砂脊;相同潮汐幅度下,水下低凸起地形较障壁岛地形,形成砂坝、砂席及潮汐砂脊规模更大。研究表明,研究区三角洲的改造演化历程可以划分为 3 个阶段:河流主控阶段、潮汐改造阶段、地形—河潮耦合控制阶段。研究区复杂地貌—潮流的耦合作用对砂体的改造效应在由水下低凸起所塑造的潮汐通道两侧主要表现为潮汐砂坝与砂席。这一特殊地貌与河潮水动力的相互作用,显著区别于障壁岛海岸体系,更有利于形成规模性岩性圈闭。

    Abstract

    Objectives: This study aims to clarify the coupling relationship between subaqueous low-relief uplifts and fluvio-tidal interactions in the Pinghu Formation(the middle and upper sections) of the Xihu Sag, East China Sea Basin, by integrating well-seismic data with sedimentary simulations.

    Methods: Using well-seismic data, the complex topography, landforms, and tidal action features of the study area were first analyzed. An idealized model was then established using the Delft3D sedimentary numerical simulation method, which investigated the coupling between subaqueous low-relief uplifts and tidal currents by altering topographic characteristics and tidal amplitude conditions.

    Results: The results reveal that the underwater low-relief topography promotes the development of large-scale tidal sandbars and extensive sand sheets during flood and ebb tides, while delta modification is positively correlated with tidal amplitude and river discharge, forming larger tidal sandbars, sheets, and ridges compared to barrier island systems under similar conditions.

    Conclusions: The evolution of delta in the study area progresses through three stages: river-dominated, tidal reworking, and topography—river—tidal coupling control. The interaction between complex geomorphology and tidal currents primarily shapes tidal sandbars and sand sheets along tidal channels, driven by low-relief topography. This unique geomorphic—hydrodynamic interaction, distinct from barrier island systems, is more favorable for the formation of large-scale lithologic traps.

  • 复杂地貌与河流—潮汐的相互作用是海洋地质学中的重要研究课题,它为油气、矿产等资源的勘探提供了关键的地质背景信息,特别是在河口、三角洲等沉积丰富的区域。同时,该研究揭示了地貌演化与沉积水动力及气候变化的响应机制,深化了对地球表层过程的理解,推动了地球系统科学的发展,为资源开发和环境保护提供了科学依据。

  • 在特殊地形地貌背景下,海洋近岸砂体的形成和发育主要受复杂地貌与河、潮、浪交互作用控制。 Galloway(1996)根据沉积物注入、波浪能量与潮汐能量 3 种作用的相对关系,建立了三角洲三端元分类方案,将三角洲分为河控三角洲、浪控三角洲以及潮控三角洲 3 类。东海盆地西湖凹陷古近系平湖组上段为潮坪沉积环境,受潮汐和河流的影响,形成复杂的砂体类型,具有复杂的地貌特征,因此,导致认识上的差异。

  • 前人针对西湖凹陷潮坪沉积环境已取得了较为丰富的进展,王泽宇等(2021)明确了平湖组的潮控三角洲—潮坪沉积体系并建立了西湖凹陷平湖组潮控三角洲—潮坪沉积模式; 郑欣等(2021)利用平湖组薄片鉴定、储层参数二维与三维交会等方法验证了平北地区平湖组主要发育受潮汐影响的三角洲; 张兰(2023)基于地震沉积学原理明确了平湖组垂向上由受潮汐影响的三角洲—潮坪沉积体系向三角洲平原分流河道—决口扇沉积体系的沉积展布和演化过程。

  • 沉积耦合是指在沉积过程中各种沉积控制因素相互影响导致其沉积速率发生改变,进而影响沉积过程和结果。研究区对沉积耦合关系的研究主要集中于源汇系统(蔡华等,2019)、物源—坡折系统(李帅等,2024)以及物源体系—地貌单元耦合系统(张丽芬等,2022),而对复杂地形—潮汐耦合作用的研究极少。对复杂地形—潮流耦合关系研究中主要集中三角洲分支河道演化(王杨君等,2016)、辫状河心滩( 张可等,2018)、潮控河口湾( 郭芪恒等,2022)、障壁岛等。其中,对局限性海岸的研究主要集中在障壁岛沉积体系,对水下低凸起沉积体系的研究极少制约了岩性油气圈闭的勘探与开发。

  • 图1 东海盆地西湖凹陷平北地区地质概况(a)(b)及平湖组中—上段古地貌图(c)

  • Fig.1 Geological overview (a) (b) and the section palaeogeomorphic map (c) from the middle—upper sections of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 对特殊地貌背景下的潮汐三角洲沉积来说,潮汐作用发生变化时,会对三角洲的坝体发育产生一定程度的影响从而形成独特的沉积响应(Taylor et al.,2015; Van et al.,2018)。然而,由于海陆过渡相的自然露头较为罕见,加之水下低凸起地貌的实地观测难度极大,这导致我们对复杂局限性海岸中的潮汐三角洲的理解尚存局限。沉积模拟技术是沉积学研究的关键方法,它依据水动力学、沉积学和地质学原理,通过缩小自然界的碎屑沉积体系并提取主控因素,在物理定律指导下,建立模拟模型与真实情况间的相似关系。数值模拟能够定量化、直观化、即时化、可视化地还原沉积环境中砂体空间展布,直接助力油气勘探潜力区预测。目前沉积数值模拟处于半定量—定量化的模拟阶段,主要体现在实际沉积环境和数值模拟的紧密结合。模拟方法根据理论方法可分为基于扩散方程模型( Granjeon et al.,1999)、基于几何规则模型(Burgess,2012378~404)、基于模糊逻辑模型、基于元胞自动机模型,以及基于水动力方程模型(Burgess,2012378~404)5 类( Lesser et al.,2004833~915)。基于上述模型,前人也开发出了相应的沉积模拟软件,如 Delft3D( Carballo et al.,20091517~1524; Nardin et al.,2012)、SEDSIM(Griffiths et al.,200171~97)、 Dionisos( Granjeon et al.,1999197~210)等。

  • 笔者等拟采用水动力方程作为沉积模拟模型,结合实际地貌特征,建立复杂局限性海岸影响下的潮汐三角洲,模拟水下低凸起—河潮交互作用下的砂体沉积过程,研究河流流量、潮汐幅度以及复杂地貌的变化对潮汐三角洲发育的影响。在对研究区井震资料深入分析的基础上,结合沉积数值模拟方法,从水动力的角度对研究区水下低凸起—河潮交互作用进行定量研究和论证。

  • 1 研究区域地质概况

  • 东海陆架盆地西湖凹陷以新生界碎屑岩沉积为主,是在中生代残留盆地背景上发育起来的新生代断陷盆地,其主要成因为太平洋板块向欧亚板块的俯冲,特别是在晚侏罗纪或古新世时,俯冲作用导致了该区域的断陷期。自新生代以来,西湖凹陷共经历了 7 次构造运动,其中玉泉运动、花港运动和龙井运动为 3 期重要的构造反转事件( 张宙等,2022)。自始新末玉泉运动以来,西湖凹陷进入拗陷—反转演化阶段,中新世末龙井运动后,凹陷进入区域沉降演化阶段,具有明显的早期断陷、后期断—拗转换的演变特征( 周心怀,2020)。

  • 表1 东海盆地西湖凹陷平北地区平湖组中—上段砂体特征

  • Table1 Characteristics of sand bodies in the middle—upper sections of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 图2 东海盆地西湖凹陷平北地区平湖组中—上段 Well-2 单井相图

  • Fig.2 The well-based facies analysis (the Well-2) for the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 西湖凹陷于晚白垩世末期开始沉积,自西向东依次划分为西部斜坡带、中央反转构造带以及东部断阶带,其中西部斜坡带自北向南又分为杭州构造带、平湖构造带以及天台构造带 3 部分整体表现为“东西分带、南北分区”的特征(李宁等,2017)。西湖凹陷地层自下而上包含古近系古新统、始新统平湖组、渐新统花港组、新近系中新统龙井组、玉泉组和柳浪组、上新统三潭组以及第四系东海群(高伟中等,2020),其中始新统平湖组为油气勘探的主要层位(陈忠云等,2022)。

  • 本次研究区位于平湖斜坡带平北地区,西部紧临海礁隆起,东抵西次洼,北毗邻杭州斜坡带,探井约 50 口,主要目的层为始新统平湖组平中段,地震波速率为 3600~4000 m / s,地震垂向分辨率为 20~25 m,可探测厚度为 10~13 m。

  • 2 复杂地貌—潮流耦合关系分析

  • 2.1 地貌特征

  • 海底地形在很大程度上影响了潮流的流向、流速以及潮汐过程中沉积物的运移方式,进而影响沉积体系的形成和演化。根据调研研究区沉积学资料和研究区地震资料解释,针对研究区目的层进行古地貌恢复,得到三维古地貌图(图1c)。研究区目的层段呈水下低凸起局限性海岸特征,水下低凸起位于潮下带,低凸起之间为潮汐通道,其中东侧水下低凸起和海岸之间受断层影响形成断阶带。潮流方向总体上为南东—北西向。

  • 图3 西湖凹陷平北地区平中上段L1(a)和 L2(b)连井相图,剖面位置见图1c

  • Fig.3 The L1 well-tie profile(a)and the L2 well-tie profile(b)in the middle and upper members of Pingbei area in Xihu sag,the cross-sectional position is shown in Fig.Ic

  • 图4 东海盆地西湖凹陷平北地区平湖组中—上段地震剖面解释图,剖面位置见图1c

  • Fig.4 Seismic profile interpretation diagram of the middle— upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin; the cross-sectional position is shown in Fig.1c

  • (a)地震反演剖面解释 L1;(b)L1 剖面砂体刻画;(c)地震反演剖面 L2;(d)L2 剖面砂体刻画

  • ( a) Seismic inversion profile interpretation L1; ( b) sand delineation on L1 profile; ( c) seismic inversion profile L2; ( d) sandbody delineation on L2 profile

  • 表2 东海盆地西湖凹陷平北地区平湖组中—上段各砂体面积统计表

  • Table2 Statistical table of sand areas in the middle— upper sections of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 2.2 沉积特征

  • 通过井震资料分析,从单井—连井—剖面—平面的角度,结合 90°相位反转技术及地震反演剖面(vp / vs)对平湖组平中段进行砂体精细刻画。 Well-2 井(图2)作为典型井,于三角洲前缘,分析显示其砂体受河流与潮汐作用的交替控制,测井特征上 GR 曲线呈“钟形” 与“漏斗形” 交替出现(刘英辉等,2022),岩性表现为细砂岩与中砂岩夹杂薄煤层,结合沉积环境分析该区域细砂岩主要发育潮汐砂坝,中砂岩—细砂岩主要发育分流河道。结合剖面分析,自西向东依次以分流河道、潮汐砂坝、潮汐砂脊的沉积特征且砂体厚度逐渐减小(图3a),地震剖面上体现为前积—上凸形透镜状砂体—下凹形透镜状砂体的趋势(图4a、b)研究区西部主要为三角洲前缘的沉积环境,向东逐渐向潮坪环境转换; 对南北向,以潮汐砂坝与分流河道的沉积特征为主( 图3b),地震剖面特点为下凹形透镜状砂体—上凸形透镜状砂体—下凹形透镜状砂体(图4c、d),这进一步证实了 Well-2 井处主要沉积环境为三角洲前缘,且地处潮汐通道口,受地形—潮流耦合作用影响大,砂体易被改造。

  • 2.3 砂体展布

  • 依据研究区平湖组中上段单井分析、连井对比、地震剖面解析及砂体厚度数据综合绘制砂体平面展布图(图5),并对平湖组中上段各类砂体特征(表1)(周涵等,2020)和面积规模(表2)进行统计。该区段砂体按面积由大到小主要可归类为砂席砂、分流河道砂、潮汐砂脊砂和潮汐砂坝砂四大类,其中砂席砂总面积最大,其次为分流河道砂、潮汐砂脊砂,潮汐砂坝砂总面积最小。

  • 具体而言:砂席砂总面积最大,通过砂体厚度分析,砂席砂具有面积大,厚度薄,连通性较好的特点,在潮汐作用和地形的相互控制下砂席砂向外海域一侧发育; 因潮流改造作用形成的潮汐砂坝砂平均面积最小,从平面展布上看潮汐砂坝砂整体上面积较均匀,由于地形、潮流改造作用等多因素作用平面上呈不规则形状,主要集中分布在三角洲前缘及水下低凸起靠陆地一侧,主要成因为河流上游沉积物搬运至此受潮汐改造作用; 潮汐砂脊砂主要分布于水下低凸起靠海域一侧,具有数量较多,受潮流影响呈顺潮流方向的长条形; 分流河道砂则显著聚集于 Well-1 井周边区域,表明该区域受河流作用控制,沉积物搬运与堆积作用显著。

  • 图5 东海盆地西湖凹陷平北地区平湖组中—上段砂体厚度及砂体类型展布

  • Fig.5 Sand thickness and distribution of the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 总体来看,砂体的平面分布格局主要受控于复杂地貌—潮流耦合作用,同时,随着河流作用的逐渐增强,结合海退过程导致的海岸线后退,各类砂体呈向海洋方向迁移的趋势(周涵等,2020; 徐东浩等,2024)。

  • 3 沉积数值模拟

  • 通过沉积特征与砂体展布分析可知,研究区砂体主要有砂席砂、潮汐砂坝砂、潮汐砂脊砂以及分流河道砂,各类砂体在不同时期受不同主控因素影响形成具有研究区特点的砂体。研究区早期主要为三角洲沉积,以河流作用为主并伴有较小的潮汐作用影响,主要发育分流河道与潮汐砂坝; 中期以潮汐作用为主,期间发育潮汐砂坝砂; 后期由地形影响形成复杂地形—河潮耦合作用主控的沉积环境,期间主要在地形因素的影响下对前中期三角洲前缘与潮汐砂坝等砂体进行改造,发育潮汐砂坝砂、砂席砂及潮汐砂脊砂,同时整个沉积过程中均有波浪作用参与(彭旸等,2022)。通过以上砂体类型与砂体展布分析,针对研究区复杂地形与河—潮耦合作用的研究,将沉积数值模拟中主要变量设置为地貌、潮汐强度与河流流速,并使用控制变量法将模拟分为 18 组(表3)进行对比分析。

  • 为探究研究区平湖组中上段复杂地形—潮流耦合作用的影响因素,将水动力方程模型作为沉积模拟模型,建立理想化海岸,模拟河流和潮汐共同作用下砂体的搬运、沉积过程(彭晨阳等,2024)。研究在不同潮汐幅度下水下低凸起对砂体沉积过程的影响,以及在相同潮汐强度情况下水下低凸起模式与障壁岛模式对砂体沉积过程影响的不同特征。设计对照组并对模拟结果展开讨论,分析总结不同条件下砂体沉积演化过程(Caldwell,2013)。

  • 表3 东海盆地西湖凹陷平北地区平湖组中—上段沉积数值模拟分组设计

  • Table3 Numerical simulation grouping design for sedimentation in the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 图6 东海盆地西湖凹陷平北地区平湖组中—上段沉积数值模拟模型图

  • Fig.6 Numerical simulation model of sedimentation of the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 本次数值模拟采用 Delft3D 软件中的 Flow 模块,Delft3D 是由荷兰 Delft 大学研发的一套功能强大的软件包,主要应用于自由地表水环境(Ge Jianzhong et al.,2015)。模型实现了水深变化与水动力计算之间的即时反馈机制,从而能够精确捕捉并模拟沉积过程的动态变化,确保了模拟结果的高度准确性和实用性( Fadlillah et al.,2020; 刘雪萍,2021; Ayyappan et al.,2024)。

  • 3.1 模型参数设定

  • 本次模拟定义的网格大小为 111 m×111 m,模拟区大小为 50 km×35 km,由河道和海洋组成。初始模型边界条件如图所示(图6),其中上下为封闭边界,左右为开放边界,由左往右是河流环境向浅海环境过渡。左侧河道长 20 km,宽 1 km,; 右侧海洋面积为 1050 km2,在不考虑特殊地形的前提下,左右高差约 5 m,其高度自左至右呈线性递减(坡度约 0. 03°)。为探究特殊地貌作用下河潮对沉积过程的影响以及水下低凸起特征与障壁岛特征下地貌—河潮耦合作用的区别,在同一模型中分别设置水深的两种情况:水下低凸起与障壁岛。两种地貌特征位置相同,均位于距右侧海洋开放边界 15 km 处,其中水下低凸起水深最浅约 3 m,障壁岛为出露水面且表面无水流通过。

  • 通过研究区实际井震资料分析,结合研究区岩心资料情况设置相关定量参数(刘雪萍等,2021),模拟总时长为 10 a,离散时间步长为 1 min,沉积物粒度为 150 \mud,砂泥比为 3 ∶ 1(张年念等,2025),砂岩密度为0. 003kg / m3,泥岩物源密度为0. 001kg / m3,详见表4。

  • 表4 东海盆地西湖凹陷平北地区平湖组中—上段沉积数值模拟参数设定表

  • Table4 Parameter setting table for numerical simulation of sediments in the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 表5 东海盆地西湖凹陷平北地区平湖组中—上段数值模拟编号定义

  • Table5 Definition of numerical simulation numbers for the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • 3.2 数值模拟结果及分析

  • 本次模拟设定河流流量、潮汐强度和地形特点 3 个变量利用控制变量法将模拟分为 6 组进行并编号以便分析,具体如表5。

  • 根据模拟结果不难发现,潮汐作用对有三角洲的发育具有显著影响。在三角洲发育早期,来自上游的沉积物迅速沉积形成砂坝,同时潮汐作用所携带的沉积物也随潮流沉积下来形成早期的潮汐砂坝,全局对比下来早期形成的潮汐砂坝多位于水下低凸起靠海一侧,其中水下低凸起地形特征中有少量沉积物通过潮汐通道在靠陆地一侧沉积,同时有沉积物随潮流,障壁岛地形特征中则只在靠海一侧沉积。

  • 随着时间推移,三角洲不断向海洋推进同时形成分流河道,同时潮汐对三角洲的改造作用逐渐明显,如模拟 A-Ⅰ-1、A-Ⅰ-2 及 A-Ⅰ-3(图7a):在水下低凸起环境中,河流流速一定的情况下,三角洲前缘被改造程度随潮汐幅度的增大而增大,模拟 A-Ⅰ-3 中三角洲被改造程度最大。特别地,在模拟 A-Ⅰ-2 中河流流量小、潮汐幅度都较低的情况下,水下低凸起靠左侧发育潮汐砂坝,右侧发育砂席与潮汐砂脊。而在河潮因素与模拟 A-Ⅰ-2 完全相同的模拟 B-Ⅰ-2(图7b,模拟 B-Ⅰ-2)中,受障壁岛影响,水流仅能从潮汐通道往复运动,沉积物搬运路径单一,障壁岛内侧未发育潮汐砂坝,同时为陆地一侧的三角洲沉积提供了较为稳定的沉积环境,故三角洲前缘改造程度较小,而障壁岛靠海一侧潮汐砂脊规模较小,原因仍在于沉积物搬运路径的单一性。

  • 图7 西湖凹陷平北地区平中上段水下低凸起模式(a)和障壁岛模式(b)沉积数值模拟过程分布图

  • Fig.7 Distribution map of numerical simulation process of underwater low uplift model(a)and barrier island model(b) sedimentation from the middle and upper members in the Pingbei area of Xihu sag

  • 当潮汐作用一定时,纵向对比河流作用对沉积过程影响时可以发现,三角洲发育程度随河流流量增大而增大。对比河潮作用在不同地貌特征中的影响时,不妨先只讨论河流作用,故将潮汐幅度设为 0 m 时,可以发现河流流量为 500 m3 / s 时(图7a,模拟 A-Ⅰ-1; 图7b,模拟 B-Ⅰ-1),在模拟晚期三角洲的发育规模在两种地貌特征下相差无几,均未突破水下低凸起或障壁岛; 当河流流量为 1000 m3 / s 时(图7a,模拟 A-Ⅱ-1; 图7b,模拟 B-Ⅱ-1),在水下低凸起地貌特征中,截至模拟晚期时,三角洲前缘恰好与水下低凸起接触,且小部分沉积物已经在低凸起上沉积下来,而相同条件下在障壁岛环境中沉积物已填满潮汐通道; 当河流流量为 1500 m3 / s 时(图7a,模拟 A-Ⅲ-1; 图7b,模拟 B-Ⅲ-1),水下低凸起上有大面积沉积且厚度薄,障壁岛环境中沉积物已通过潮汐通道到达开阔海域中。

  • 从总体模拟结果中不难发现两种地形条件下潮汐通道均为沉积物搬运至右侧开阔海域的主要路径,结合潮汐作用分析,潮流在潮汐通道中往复运动,将沉积物从左侧局限海域搬运至右侧开阔海域并沉积下来,最后在通道两侧形成涨潮退潮三角洲,与实际砂体空间展布特征相符。

  • 从水动力的角度分析,水流在通过潮汐通道的过程中流速发生先增加后减少的变化,同时携带的沉积物在流速减小时发生沉积,从而形成涨潮退潮三角洲,这个过程中有潮汐从开阔海域带来的物源较少,大多物源是河流从上游搬运而来,形成三角洲后经潮汐作用对三角洲进行改造,最终形成潮汐砂坝、潮汐砂脊、砂席等沉积微相,整个过程即为地貌—河潮耦合作用对三角洲的改造沉积。

  • 结合实际分析,西湖凹陷平北地区平中上段水下低凸起环境下,近陆地一侧的潮汐砂坝主要受河流、潮汐作用联合控制,在潮汐作用的影响下三角洲前缘被不断改造冲刷而变得碎片化,与此同时水下低凸起背景下形成的涨潮退潮三角洲与原三角洲前缘相混合,导致潮汐砂坝的形态各异,而靠开阔海洋一侧的潮汐砂脊砂主要受潮汐作用控制,形态较为规律。对比沉积模拟结果分析可以看出当潮汐幅度在 8 m 左右时河潮作用对三角洲的改造程度并不高,水下低凸起两侧发育单个且大面积的潮汐砂坝,这与实际情况不符; 当潮汐幅度在 16 m 时,三角洲在发育过程中不断受强潮汐能量改造,三角洲前缘呈碎片化发育,到晚期时形成更明显的涨潮退潮三角洲特征,同时在河流作用影响下低凸起内侧砂体呈两个三角洲相对叠置的展布特征,而低凸起外侧发育顺潮流方向的潮汐砂脊与大片砂席,整体来看模拟 A-Ⅰ-3 的模拟过程与平中上段实际情况最接近。

  • 4 沉积模式

  • 通过以上复杂地貌分析、砂体展布分析结合沉积数值模拟得出研究区平中上段为水下低凸起沉积体系(图8a),结合传统障壁岛体系(图8b)进行对比分析:河流携带的沉积物首先在三角洲平原和三角洲前缘区域堆积,形成了丰富的沉积层,随后因水下低凸起形成的复杂地貌—河潮耦合作用对三角洲前缘的沉积层进行周期性堆积和侵蚀,潮流的流速、流向在该区域受水下低凸起影响,对砂体往复冲刷,结合河流作用形成形态各异的潮汐砂坝,由于整个沉积过程伴随着海退,水下低凸起最高点水深逐渐减小,潮汐砂坝整体呈向海迁移的趋势,在海退过程中水下低凸起近海一侧水动力和可容纳空间制约发育向海扩散的片状砂席与细小的潮汐砂脊。

  • 水下低凸起体系与障壁岛体系均为局限性海岸沉积体系,其主要区别在于是否出露水面,水下低凸起沉积体系中潮流主体上通过潮汐通道,同时有部分潮流通过水下低凸起上部,在此过程中潮流被水下低凸起部分阻挡,能量减弱,导致潮流所携带的沉积物部分沉积在水下低凸起上,同时随着潮流来回冲刷形成大片砂席,在潮汐通道与水下低凸起内侧发育小型砂坝。而在障壁岛体系中,潮流仅能通过潮汐通道来回运动且能量较强,导致潮汐通道中无法形成砂坝体,仅能在障壁岛靠海一侧发育砂席且规模较小。

  • 5 结论

  • (1)研究区域三角洲被改造的演化过程可分为 3 个阶段:河流主控阶段、潮汐改造阶段、地形—河潮耦合控制阶段。演化过程中主要发育潮汐砂坝、分流河道、潮汐砂脊以及砂席等沉积微相。

  • (2)基于障壁岛海岸特点建立了水下低凸起局限型海岸模式,丰富了局限性海岸沉积理论,为海相碎屑岩油气勘探增加了地质理论依据。

  • 图8 东海盆地西湖凹陷平北地区平湖组中—上段水下低凸起沉积模式(a)及障壁岛沉积模式(b)

  • Fig.8 Underwater low uplift sedimentary model (a) and barrier island sedimentary model (b) of the middle—upper section of the Pinghu Formation in Pingbei area, the Xihu Sag, East China Sea Basin

  • (3)在局限性海岸中,潮流对三角洲改造作用与潮汐强度成正比。相同潮汐强度下,水下低凸起体系中潮汐砂坝改造特征更为明显,易在低凸起两侧发育潮汐砂坝; 障壁岛体系对潮流的约束能力更强,潮汐砂坝仅发育在靠海一侧。水下低凸起—潮汐通道沉积体系水动力特点更复杂。

  • 参考文献

    • 蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源—汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.

    • 陈忠云, 杜学斌, 李帅. 2022. 东海西湖凹陷平湖斜坡带平湖组沉积体系平面分区特征及差异性展布. 石油实验地质, 44(5): 780~789.

    • 郭芪恒, 史书婷, 金振奎, 李阳, 王金艺, 任奕霖, 王凌. 2022. 河口湾潮坪潮汐水道发育特征及地质意义——以钱塘江为例. 沉积学报, 40(1): 182~191.

    • 高伟中. 2020. 西湖凹陷中央反转带中北部天然气高效成藏主控因素及富集规律. 地质科技通报, 39(3): 40~48.

    • 黄庆超, 石巍方, 刘广龙, 王雨春, 周怀东, 朱端卫. 2017. 基于Delft3D的三峡水库不同工况下香溪河水动力水质模拟. 水资源与水工程学报, 28(2): 33~39.

    • 李宁, 汤睿, 赵洪, 覃军, 刘洋. 2017. 西湖凹陷平湖构造带物源特征分析. 海洋石油, 37(2): 21~26.

    • 李帅, 俞伟哲, 秦兰芝, 张粲. 2024. 西湖凹陷平湖斜坡带物源—坡折耦合控砂模式. 海洋地质前沿, 40(7): 36~44.

    • 刘雪萍, 卢双舫, 唐明明, 孙东权, 唐佳凡, 张克鑫, 何涛华, 齐宁, 卢明月. 2021. 河流—潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944~2957.

    • 刘雪萍. 2021. 基于沉积动力学方法的潮控河口湾储层沉积模式研究. 导师: 卢双舫. 中国石油大学(华东)硕士学位论文: 1~84.

    • 刘英辉, 蔡华, 段冬平, 荣乘锐, 常吟善, 徐清海. 2022. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲—潮坪沉积特征及模式. 海洋地质前沿, 38(1): 33~40.

    • 彭旸, 龚承林, 李顺利. 2022. 河流—波浪—潮汐混合作用过程研究进展. 沉积学报, 40(4): 957~978.

    • 彭晨阳, 唐明明, 洪瑞峰, 熊思琛. 2024. 基于沉积动力学的潮控三角洲沉积数值模拟研究. 沉积学报, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.

    • 王杨君, 尹太举, 邓智浩, 程钊. 2016. 水动力数值模拟的河控三角洲分支河道演化研究. 地质科技情报, 35(1): 44~52.

    • 王泽宇, 徐清海, 侯国伟, 张昌明, 朱锐, 刘思琦. 2021. 东海陆架盆地西湖凹陷W井区平湖组潮汐沉积模式. 海相油气地质, 26(2): 159~169.

    • 徐东浩, 秦兰芝, 李帅, 蔡坤, 王宇. 2024. 西湖凹陷平北斜坡平湖组潮坪环境砂体沉积模式及控制因素. 中国海上油气, 36(5): 57~67.

    • 张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨——沉积数值模拟与现代沉积分析启示. 沉积学报, 36(1): 81~91.

    • 张兰, 何贤科, 段冬平, 常吟善, 汪文基, 刘英辉. 2023. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质, 43(4): 140~149.

    • 张丽芬, 杨作升, 张凡, 李占海, 汪亚平, 高抒. 2022. 长江河口南槽纵向余环流: 径流、潮汐和地形耦合机制. 中国科学: 地球科学, 52(2): 256~269.

    • 张年念, 蒋一鸣. 2025. 基于叠前地震沉积学的岩性圈闭潜力评价——以东海盆地西湖凹陷平湖斜坡带某气田周边无井区为例. 天然气地球科学. http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.

    • 张宙, 何新建, 唐贤君, 朱虹浩. 2022. 东海盆地西湖凹陷构造圈闭特征及其油气藏类型. 海洋地质前沿, 38(3): 27~35.

    • 郑欣, 阴国锋, 王健伟, 董文秀. 2021. 东海盆地西湖凹陷平北北部地区平湖组储层成岩相分析. 天然气地球科学, 32(7): 971~981.

    • 周涵, 黄继新, 冯文杰, 刘尚奇, 尹艳树. 2020. 潮控河口湾砂坝发育特征及形成因素分析——以钱塘江为例. 地质论评, 66(1): 101~112.

    • 周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.

    • Ayyappan K, Thiruvenkatasamy K, Balu R, et al. 2024. Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east Coast of Bay of Bengal. Environmental research, 248: 118304.

    • Burgess P M. 2012. A Brief Review of Developments in Stratigraphic Forward Modelling. Boston: Elsevier: 378~404.

    • Caldwell R L. 2013. The Effect of Grain Size on River Delta Process and Morphology. Thesis advisor: Edmonds D A. Boston: Boston College: 9~40.

    • Cai Hua, Qin Lanzhi, Liu Yinghui. 2019&. Differentiation and coupling model of source-to-sink system with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897.

    • Carballo R, Iglesias G, Castro A. 2009. Numerical bodel evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6): 1517~1524.

    • Chen Zhongyun, Du Xuebin, Li Shuai. 2022&. Distributional signatures of depositional system of Pinghu Formation, Pinghu slope, Xihu sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 44(5): 780~789.

    • Fadlillah L N, Widyastuti M, Sunarto, Marfai M A. 2020. Comparison of tidal model using Mike21 and Delft3d-flow in part of Java sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 451(1): 012067.

    • Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources (2nd ed). New York: Springer.

    • Granjeon D, Joseph P. 1999. Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic Modeling. Tulsa: SEPM Special Publication: 197~210.

    • Griffiths C M, Dyt C, Paraschivoiu E. 2001. SEDSIM in Hydrocarbon Exploration. Boston: Springer: 71~97.

    • Guo Qiheng, Shi ShutTing, Jin ZhenKui, Li Yang, Wang Jinyi, Ren Yilin, Wang Ling. 2022&. Characteristics and geological significance of tidal channels in an estuarine tidal flat: A case study from the Qiantang River Estuary. Acta Sedimentologica Sinica, 40(1): 182~191.

    • Gao Weizhong. 2020&. Major controlling factors and enrichment rules of highly efficient gas reservoiring in the north—central part of the central inversion belt, Xihu depression. Bulletin of Geological Science and Technology, 39(3): 40~48.

    • Huang Qingchao, Shi Weifang, Liu Guanglong, Wang Yuchun, Zhou Huaidong, Zhu Duanwei. 2017&. Modeling the hydrodynamics and water quality of xiangxi river under different working conditions of Three Gorges Reservoir based on Delft 3D. Journal of Water Resources & Water Engineering, 28(2): 33~39.

    • Ge Jianzhong, Shen Fang, Guo Wenyun, Chen changsheng, Ding Pingxing. 2015. Estimation of critical shear stress for erosion in the Changjiang Estuary: Synergy research of observation, GOCI sensing and modeling. Journal of Geophysical Research: Oceans120(12): 8439~8465.

    • Lesser G R, Roelvink J A, Van Kester J A T M, Stelling G S. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8~9): 883~915.

    • Li Ning, Tang Rui, Zhao Hong, Qin Jun, Liu Yang. 2017&. Provenance characteristics of Pinghu Tectonic Zone in Xihu Sag. Offshore Oil, 37(2): 21~26.

    • Li Shuai, Yu Weizhe, Qin Lanzhi, Zhang Can. 2024&. Sand-controlling model of source—slope-break coupling in Pinghu slope belt, Xihu Sag. Marine Geology Frontiers, 40(7): 1~9.

    • Liu Xueping. 2021&. Study on sedimentary model of tide-dominated estuary reservoir based on sedimentary dynamics. Thesis advisor: Lu Shuangfang. China University of Petroleum (East China): 1~84.

    • Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Quandong, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue. 2021&. Numerical simulation of sedimentary dynamics to estuarine bar under the coupled fluvial — tidal control. Earth Science, 46(8): 2944~2957.

    • Liu Yinghui, Cai Hua, Duan Dongping, Rong Chengrui, Chang Yinshan, Xu Qinghai. 2022&. The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area, Xihu sag. Marine Geology Frontiers, 38(1): 33~40.

    • Nardin W, Fagherazzi S. 2012. The effect of wind waves on the development of river mouth bars. Geophysical Research Letters, 39(12): L12607.

    • Peng Yang, Gong Chenglin, Li Shunli. 2022&. Recent advances in river—wave—tide mixed processes. Acta Sedimentologica Sinica, 40(4): 957~978.

    • Peng Chenyang, Tang Mingming, Hong Ruifeng, Xiong Sichen. 2024&. Numerical simulation of tidal delta sedimentation based on sedimentary dynamics. Acta Sedimentologica Sinica, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.

    • Thomas R. Taylor, Mark G. Kittridge, Peter Winefield, L. Taras Bryndzia, Linda M. Bonnell. 2015. Reservoir quality and rock properties modeling – Triassic and Jurassic sandstones, Greater Shearwater area, UK Central North Sea. Marine & Petroleum Geology, 65(Complete): 1~21.

    • Van d L W I, Feldman H. 2018. Process-based modelling of morphodynamics and bar architecture in confined basins with fluvial and tidal currents. Marine Geology, 398: 35~47.

    • Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016&. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information, 35(1): 44~52.

    • Wang Zeyu, Xu Qinghai, Hou Guowei, Zhang Changming, Zhu Rui, Liu Siqi. 2021&. Tidal depositional model of Pinghu Formation in W Well block of Xihu sag, East China Sea Shelf Basin. Marine Origin Petroleum Geology, 26(2): 159~169.

    • Xu Donghao, Qin Lanzhi, Li Shuai, Cai Kun, Wang Yu. 2024&. Sedimentary models and controlling factors of sand bodies in tidal flat environment of Pinghu Formation on Pingbei slope of Xihu sag. China Offshore Oil and Gas, 36(5): 57~67.

    • Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018&. Discussion on evolution of bar in sandy braided river: Insights form sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~91.

    • Zhang Lan, He Xianke, Duan Dongping, Chang Yinshan, Wang Wenji, Liu Yinghui. 2023&. Sedimentological analysis of coal stratigraphy of Pinghu Formation in the Pinghu Slope belt, Xihu sag, East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 43(4): 140~149.

    • Zhang Lifen, Yang Zuosheng, Zhang Fan, Li Zhanhai, Wang Yaping, Gao Shu. 2021&. Longitudinal residual circulation in the south passage of yangtze estuary: Combined influences from runoff, tide and bathymetry. Science China Earth Sciences, 64(12): 2129~2143.

    • Zhang Niannian, Jiang Yiming. 2025&. Potential evaluation of lithological traps based on prestack seimic sedimentology——Taking the Non-Drilled Area Surrounding a Gas Field in the Pinghu Slope Zone of the Xihu Sag in the East China Sea Basin as an Example. Natural Gas Geoscience, http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.

    • Zhang Zhou, He Xinjian, Tang Xianjun, Zhu Honghao. 2022&. Structural trap characteristics and reservoir types in Xihu Sag, East China Basin. Marine Geology Frontiers, 38(3): 27~35.

    • Zheng Xin, Yin Guofeng, Wang Jianwei, Dong Wenxiu. 2021&. Study on diagenetic facies of reservoir of Pinghu Formation in the Northern Pingbei area of the Xihu Depression, East China Sea Basin. Natural Gas Geoscience, 32(7): 971~981

    • Zhou Han, Huang Jixin, Feng Wenjie, Liu Shangqi, Yin Yanshu. 2020&. Analysis on formation factors and development characteristics of sand bar in Tide-Dominated Estuaries——A case study based on Qiantang River. Geological Review, 66(1): 101~112.

    • Zhou Xinhuai. 2020&. Geological Understanding and Innovation in Xihu Sag and Breakthroughs in Oil and Gas Exploration. China Offshore Oil and Gas, 32(1): 1~12.

  • 参考文献

    • 蔡华, 秦兰芝, 刘英辉. 2019. 西湖凹陷平北斜坡带海陆过渡相源—汇系统差异性及其耦合模式. 地球科学, 44(3): 880~897.

    • 陈忠云, 杜学斌, 李帅. 2022. 东海西湖凹陷平湖斜坡带平湖组沉积体系平面分区特征及差异性展布. 石油实验地质, 44(5): 780~789.

    • 郭芪恒, 史书婷, 金振奎, 李阳, 王金艺, 任奕霖, 王凌. 2022. 河口湾潮坪潮汐水道发育特征及地质意义——以钱塘江为例. 沉积学报, 40(1): 182~191.

    • 高伟中. 2020. 西湖凹陷中央反转带中北部天然气高效成藏主控因素及富集规律. 地质科技通报, 39(3): 40~48.

    • 黄庆超, 石巍方, 刘广龙, 王雨春, 周怀东, 朱端卫. 2017. 基于Delft3D的三峡水库不同工况下香溪河水动力水质模拟. 水资源与水工程学报, 28(2): 33~39.

    • 李宁, 汤睿, 赵洪, 覃军, 刘洋. 2017. 西湖凹陷平湖构造带物源特征分析. 海洋石油, 37(2): 21~26.

    • 李帅, 俞伟哲, 秦兰芝, 张粲. 2024. 西湖凹陷平湖斜坡带物源—坡折耦合控砂模式. 海洋地质前沿, 40(7): 36~44.

    • 刘雪萍, 卢双舫, 唐明明, 孙东权, 唐佳凡, 张克鑫, 何涛华, 齐宁, 卢明月. 2021. 河流—潮汐耦合控制下河口湾坝体沉积动力学数值模拟. 地球科学, 46(8): 2944~2957.

    • 刘雪萍. 2021. 基于沉积动力学方法的潮控河口湾储层沉积模式研究. 导师: 卢双舫. 中国石油大学(华东)硕士学位论文: 1~84.

    • 刘英辉, 蔡华, 段冬平, 荣乘锐, 常吟善, 徐清海. 2022. 西湖凹陷平湖地区平湖组海侵体系域潮控三角洲—潮坪沉积特征及模式. 海洋地质前沿, 38(1): 33~40.

    • 彭旸, 龚承林, 李顺利. 2022. 河流—波浪—潮汐混合作用过程研究进展. 沉积学报, 40(4): 957~978.

    • 彭晨阳, 唐明明, 洪瑞峰, 熊思琛. 2024. 基于沉积动力学的潮控三角洲沉积数值模拟研究. 沉积学报, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.

    • 王杨君, 尹太举, 邓智浩, 程钊. 2016. 水动力数值模拟的河控三角洲分支河道演化研究. 地质科技情报, 35(1): 44~52.

    • 王泽宇, 徐清海, 侯国伟, 张昌明, 朱锐, 刘思琦. 2021. 东海陆架盆地西湖凹陷W井区平湖组潮汐沉积模式. 海相油气地质, 26(2): 159~169.

    • 徐东浩, 秦兰芝, 李帅, 蔡坤, 王宇. 2024. 西湖凹陷平北斜坡平湖组潮坪环境砂体沉积模式及控制因素. 中国海上油气, 36(5): 57~67.

    • 张可, 吴胜和, 冯文杰, 郑定业, 喻宸, 刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨——沉积数值模拟与现代沉积分析启示. 沉积学报, 36(1): 81~91.

    • 张兰, 何贤科, 段冬平, 常吟善, 汪文基, 刘英辉. 2023. 东海陆架盆地西湖凹陷平湖斜坡带平湖组煤系地层地震沉积学研究. 海洋地质与第四纪地质, 43(4): 140~149.

    • 张丽芬, 杨作升, 张凡, 李占海, 汪亚平, 高抒. 2022. 长江河口南槽纵向余环流: 径流、潮汐和地形耦合机制. 中国科学: 地球科学, 52(2): 256~269.

    • 张年念, 蒋一鸣. 2025. 基于叠前地震沉积学的岩性圈闭潜力评价——以东海盆地西湖凹陷平湖斜坡带某气田周边无井区为例. 天然气地球科学. http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.

    • 张宙, 何新建, 唐贤君, 朱虹浩. 2022. 东海盆地西湖凹陷构造圈闭特征及其油气藏类型. 海洋地质前沿, 38(3): 27~35.

    • 郑欣, 阴国锋, 王健伟, 董文秀. 2021. 东海盆地西湖凹陷平北北部地区平湖组储层成岩相分析. 天然气地球科学, 32(7): 971~981.

    • 周涵, 黄继新, 冯文杰, 刘尚奇, 尹艳树. 2020. 潮控河口湾砂坝发育特征及形成因素分析——以钱塘江为例. 地质论评, 66(1): 101~112.

    • 周心怀. 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1~12.

    • Ayyappan K, Thiruvenkatasamy K, Balu R, et al. 2024. Numerical model study on stability of a micro-tidal inlet at Muttukadu along the east Coast of Bay of Bengal. Environmental research, 248: 118304.

    • Burgess P M. 2012. A Brief Review of Developments in Stratigraphic Forward Modelling. Boston: Elsevier: 378~404.

    • Caldwell R L. 2013. The Effect of Grain Size on River Delta Process and Morphology. Thesis advisor: Edmonds D A. Boston: Boston College: 9~40.

    • Cai Hua, Qin Lanzhi, Liu Yinghui. 2019&. Differentiation and coupling model of source-to-sink system with transitional facies in Pingbei slope of Xihu sag. Earth Science, 44(3): 880~897.

    • Carballo R, Iglesias G, Castro A. 2009. Numerical bodel evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renewable Energy, 34(6): 1517~1524.

    • Chen Zhongyun, Du Xuebin, Li Shuai. 2022&. Distributional signatures of depositional system of Pinghu Formation, Pinghu slope, Xihu sag, East China Sea Shelf Basin. Petroleum Geology & Experiment, 44(5): 780~789.

    • Fadlillah L N, Widyastuti M, Sunarto, Marfai M A. 2020. Comparison of tidal model using Mike21 and Delft3d-flow in part of Java sea, Indonesia. IOP Conference Series: Earth and Environmental Science, 451(1): 012067.

    • Galloway W E, Hobday D K. 1996. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources (2nd ed). New York: Springer.

    • Granjeon D, Joseph P. 1999. Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic Modeling. Tulsa: SEPM Special Publication: 197~210.

    • Griffiths C M, Dyt C, Paraschivoiu E. 2001. SEDSIM in Hydrocarbon Exploration. Boston: Springer: 71~97.

    • Guo Qiheng, Shi ShutTing, Jin ZhenKui, Li Yang, Wang Jinyi, Ren Yilin, Wang Ling. 2022&. Characteristics and geological significance of tidal channels in an estuarine tidal flat: A case study from the Qiantang River Estuary. Acta Sedimentologica Sinica, 40(1): 182~191.

    • Gao Weizhong. 2020&. Major controlling factors and enrichment rules of highly efficient gas reservoiring in the north—central part of the central inversion belt, Xihu depression. Bulletin of Geological Science and Technology, 39(3): 40~48.

    • Huang Qingchao, Shi Weifang, Liu Guanglong, Wang Yuchun, Zhou Huaidong, Zhu Duanwei. 2017&. Modeling the hydrodynamics and water quality of xiangxi river under different working conditions of Three Gorges Reservoir based on Delft 3D. Journal of Water Resources & Water Engineering, 28(2): 33~39.

    • Ge Jianzhong, Shen Fang, Guo Wenyun, Chen changsheng, Ding Pingxing. 2015. Estimation of critical shear stress for erosion in the Changjiang Estuary: Synergy research of observation, GOCI sensing and modeling. Journal of Geophysical Research: Oceans120(12): 8439~8465.

    • Lesser G R, Roelvink J A, Van Kester J A T M, Stelling G S. 2004. Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8~9): 883~915.

    • Li Ning, Tang Rui, Zhao Hong, Qin Jun, Liu Yang. 2017&. Provenance characteristics of Pinghu Tectonic Zone in Xihu Sag. Offshore Oil, 37(2): 21~26.

    • Li Shuai, Yu Weizhe, Qin Lanzhi, Zhang Can. 2024&. Sand-controlling model of source—slope-break coupling in Pinghu slope belt, Xihu Sag. Marine Geology Frontiers, 40(7): 1~9.

    • Liu Xueping. 2021&. Study on sedimentary model of tide-dominated estuary reservoir based on sedimentary dynamics. Thesis advisor: Lu Shuangfang. China University of Petroleum (East China): 1~84.

    • Liu Xueping, Lu Shuangfang, Tang Mingming, Sun Quandong, Tang Jiafan, Zhang Kexin, He Taohua, Qi Ning, Lu Mingyue. 2021&. Numerical simulation of sedimentary dynamics to estuarine bar under the coupled fluvial — tidal control. Earth Science, 46(8): 2944~2957.

    • Liu Yinghui, Cai Hua, Duan Dongping, Rong Chengrui, Chang Yinshan, Xu Qinghai. 2022&. The sedimentary characteristics of tidal delta and tidal flat in transgressive system tract of Pinghu Formation in Pinghu area, Xihu sag. Marine Geology Frontiers, 38(1): 33~40.

    • Nardin W, Fagherazzi S. 2012. The effect of wind waves on the development of river mouth bars. Geophysical Research Letters, 39(12): L12607.

    • Peng Yang, Gong Chenglin, Li Shunli. 2022&. Recent advances in river—wave—tide mixed processes. Acta Sedimentologica Sinica, 40(4): 957~978.

    • Peng Chenyang, Tang Mingming, Hong Ruifeng, Xiong Sichen. 2024&. Numerical simulation of tidal delta sedimentation based on sedimentary dynamics. Acta Sedimentologica Sinica, https: //doi. org/10. 14027/j. issn. 1000-0550. 2024. 081.

    • Thomas R. Taylor, Mark G. Kittridge, Peter Winefield, L. Taras Bryndzia, Linda M. Bonnell. 2015. Reservoir quality and rock properties modeling – Triassic and Jurassic sandstones, Greater Shearwater area, UK Central North Sea. Marine & Petroleum Geology, 65(Complete): 1~21.

    • Van d L W I, Feldman H. 2018. Process-based modelling of morphodynamics and bar architecture in confined basins with fluvial and tidal currents. Marine Geology, 398: 35~47.

    • Wang Yangjun, Yin Taiju, Deng Zhihao, Cheng Zhao. 2016&. Terminal distributary channels in fluvial-dominated delta systems from numerical simulation of hydrodynamics. Geological Science and Technology Information, 35(1): 44~52.

    • Wang Zeyu, Xu Qinghai, Hou Guowei, Zhang Changming, Zhu Rui, Liu Siqi. 2021&. Tidal depositional model of Pinghu Formation in W Well block of Xihu sag, East China Sea Shelf Basin. Marine Origin Petroleum Geology, 26(2): 159~169.

    • Xu Donghao, Qin Lanzhi, Li Shuai, Cai Kun, Wang Yu. 2024&. Sedimentary models and controlling factors of sand bodies in tidal flat environment of Pinghu Formation on Pingbei slope of Xihu sag. China Offshore Oil and Gas, 36(5): 57~67.

    • Zhang Ke, Wu Shenghe, Feng Wenjie, Zheng Dingye, Yu Chen, Liu Zhaowei. 2018&. Discussion on evolution of bar in sandy braided river: Insights form sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81~91.

    • Zhang Lan, He Xianke, Duan Dongping, Chang Yinshan, Wang Wenji, Liu Yinghui. 2023&. Sedimentological analysis of coal stratigraphy of Pinghu Formation in the Pinghu Slope belt, Xihu sag, East China Sea Shelf Basin. Marine Geology & Quaternary Geology, 43(4): 140~149.

    • Zhang Lifen, Yang Zuosheng, Zhang Fan, Li Zhanhai, Wang Yaping, Gao Shu. 2021&. Longitudinal residual circulation in the south passage of yangtze estuary: Combined influences from runoff, tide and bathymetry. Science China Earth Sciences, 64(12): 2129~2143.

    • Zhang Niannian, Jiang Yiming. 2025&. Potential evaluation of lithological traps based on prestack seimic sedimentology——Taking the Non-Drilled Area Surrounding a Gas Field in the Pinghu Slope Zone of the Xihu Sag in the East China Sea Basin as an Example. Natural Gas Geoscience, http: //kns. cnki. net/kcms/detail/62. 1177. TE. 20241226. 1737. 004. html.

    • Zhang Zhou, He Xinjian, Tang Xianjun, Zhu Honghao. 2022&. Structural trap characteristics and reservoir types in Xihu Sag, East China Basin. Marine Geology Frontiers, 38(3): 27~35.

    • Zheng Xin, Yin Guofeng, Wang Jianwei, Dong Wenxiu. 2021&. Study on diagenetic facies of reservoir of Pinghu Formation in the Northern Pingbei area of the Xihu Depression, East China Sea Basin. Natural Gas Geoscience, 32(7): 971~981

    • Zhou Han, Huang Jixin, Feng Wenjie, Liu Shangqi, Yin Yanshu. 2020&. Analysis on formation factors and development characteristics of sand bar in Tide-Dominated Estuaries——A case study based on Qiantang River. Geological Review, 66(1): 101~112.

    • Zhou Xinhuai. 2020&. Geological Understanding and Innovation in Xihu Sag and Breakthroughs in Oil and Gas Exploration. China Offshore Oil and Gas, 32(1): 1~12.