en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙玉洁,女,2000年生,硕士研究生,岩石学专业;E-mail: syj243660@outlook.com。

通讯作者:

张超,男,1982年生,教授,主要从事岩石地球化学和实验岩石学研究;ORCID:0000-0001-7019-5075;E-mail: zhangchao@nwu.edu.cn。

参考文献
曹振辉, 崔恒星, 崔继强, 刘孟合, 张若曦, 杨水源. 2019. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义. 地质科技情报, 38(3): 52~62.
参考文献
陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459~473.
参考文献
范宏瑞, 谢奕汉, 王凯怡, 杨学明. 2001. 碳酸岩流体及其稀土成矿作用. 地学前缘, 8(4): 289~295.
参考文献
凡秀君, 刘杨, 丁沛勋, 钟春荣, 陈莉, 于成涛. 2024. 江西宜春花岗岩型稀有金属矿床的岩浆分异机制及成矿模型. 岩石学报, 40(9): 2803~2818.
参考文献
李静, 孙载波, 黄亮, 徐桂香, 田素梅, 邓仁宏, 周坤. 2017. 滇西勐库退变质榴辉岩的P—T—t轨迹及地质意义. 岩石学报, 33(7): 2285~2301.
参考文献
刘淑春, 章雨旭, 郝梓国, 彭阳. 1999. 白云鄂博赋矿白云岩成因研究历史、问题及新进展. 地质论评, 45(5): 477~486.
参考文献
凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.
参考文献
王强, 李五福, 王秉璋, 王涛, 周金胜, 马林, 李玉龙, 袁博武, 王春涛, 王军. 2024. 与碱性岩—碳酸岩杂岩共生的铌—稀土成矿作用——兼论东昆仑大格勒铌—稀土矿床中的碱性岩—碳酸岩杂岩成因. 大地构造与成矿学, 48(1): 1~37.
参考文献
汪相, 楼法生. 2022. 论岩浆热液矿床的成矿期——以南岭地区燕山期钨矿为例. 地质论评, 68(02): 507~530.
参考文献
王小均, 刘建强, 陈立辉. 2014. HIMU型洋岛玄武岩的地球化学特征. 高校地质学报, 20(3): 353~367.
参考文献
孙赛军, 廖仁强, 丛亚楠, 隋清霖, 李爱. 2020. 钛的地球化学性质与成矿. 岩石学报, 36(1): 68~76.
参考文献
唐勇, 张辉, 吕正航. 2015. 富磷岩浆体系与铌、钽成矿作用的实验研究. 矿物学报, 35(S1): 341.
参考文献
田祥雨, 王瑞, 刘思宇, 孙海微, 陈寿波, 席斌斌. 2024. 云母对伟晶岩型关键金属矿床的成因和勘查指示: 以东天山镜儿泉伟晶岩型Li—Be—Nb—Ta矿床为例. 岩石学报, 40(9): 2944~2962.
参考文献
徐喆, 王迪文, 吴正昌, 符海明, 刘庆宏, 刘杨, 黄新曙. 2018. 江西宜春雅山地区铌钽矿床地质特征及成因探讨. 东华理工大学学报(自然科学版), 41(04): 364~378.
参考文献
杨飞, 武广, 陈公正, 张彤, 李英雷, 李士辉, 师江朋. 2023. 维拉斯托稀有金属—锡多金属矿床铌铁矿族矿物特征及其对岩浆—热液演化的指示. 矿床地质, 42(03): 463~480.
参考文献
章雨旭, 江少卿, 张绮玲, 赖晓东, 彭阳, 杨晓勇. 2008. 中国地质, 35(6): 1129~1137.
参考文献
章雨旭, 吕洪波, 张绮玲, 乔秀夫. 2005. 微晶丘成因新认识. 地球科学进展, 20(6): 693~700.
参考文献
赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1~19.
参考文献
Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan G B V I. 2010. Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic Enclaves and Host Dacite, SE Spain. Journal of Petrology, 51(4): 785~821.
参考文献
Ballouard C, Poujol P, Boulvais Y, Branquet R, Tartèse J L, Vigneresse. 2016. Nb—Ta fractionation in peraluminous granites: A marker of the magmatic—hydrothermal transition. Geology, 44(3): 231~234.
参考文献
Ballouard C, Massuyeau M, Elburg M A, Tappe S, Viljoen F, Brandenburg J T. 2020. The magmatic and magmatic—hydrothermal evolution of felsic igneous rocks as seen through Nb—Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth-Science Reviews, 203: 103115.
参考文献
Barker F, Arth J G. 1976. Generation of trondhjemitic—tonalitic liquids and Archean bimodal trondhjemite—basalt suites. Geology, 4(10): 596~600.
参考文献
Barley M E. 2000. Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. 47(5): 873~883.
参考文献
Barnes S, Arndt N. 2019. Distribution and Geochemistry of Komatiites and Basalts Through the Archean. 103~132.
参考文献
Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3~4): 197~213.
参考文献
Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188~1214.
参考文献
Blundy J, Wood B. 1994. Prediction of crystal—melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.
参考文献
Blundy J, Wood B. 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3~4): 383~397.
参考文献
Brigatti M, Malferrari D, Laurora A, Elmi C. 2011. Structure and mineralogy of layer silicates: recent perspectives and new trends, Layered mineral structures and their application in advanced technologies (M. F. Brigatti and A. Mottana, editors), 1~71.
参考文献
Brigatti M F, Guggenheim S. 2002. Mica Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models. Reviews in Mineralogy and Geochemistry, 46(1): 1~97.
参考文献
Burnham A D, Berry A J, Wood BJ, Cibin G. 2012. The oxidation states of niobium and tantalum in mantle melts. Chemical Geology, 330~331: 228~232.
参考文献
Campbell I H, O’Neill St C H. 2012. Evidence against a chondritic Earth. Nature, 483(7391): 553~558.
参考文献
Cao Zhenhui, Cui Hengxing, Cui Jiqiang, Liu Menghe, Zhang Ruoxi, Yang Shuiyuan. 2019&. Mineralogy and Geological significance of Niobium and Tantalum minerals in the Huangshan Niobium Deposit, Jiangxi Province, South China. Geological Science and Technology Information, 38(03): 52~62.
参考文献
Cerny P, Chapman R, Simmons W B, Chackowsky L E. 1999. Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidation. 84(5~6): 754~763.
参考文献
Chen Tienan, Chen Renxu, Zheng Yongfei, Zhou Kun, Yin Zhuangzhuang, Wang Zhimin, Gong Bing, Zha Xiangping. 2022. The effect of supercritical fluids on Nb—Ta fractionation in subduction zones: Geochemical insights from a coesite-bearing eclogite-vein system. Geochimica et Cosmochimica Acta, 335: 23~55.
参考文献
Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Jijunfeng. 2008&. W—Sn—Nb—Ta-bearing Granites in the Nanling Range and Their Relationship to Metallogengesis. Geological Journal of China Universities, 14(04): 459~473.
参考文献
Chen Wei, Xiong Xiaolin, Wang Jintuan, Xue Shuo, Li Li, Liu Xingcheng, Ding Xing, Song Maoshuang. 2018. TiO2 Solubility and Nb and Ta Partitioning in Rutile—Silica-Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123(6): 4765~4782.
参考文献
Chen Wei, Zhang Guoliang, Ruan Mengfei, Wang Shuai, Xiong Xiaolin. 2021. Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research——Solid Earth, 126(3)
参考文献
Chen Yixiang, Zheng Yongfei. 2015. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite. Geochimica Et Cosmochimica Acta, 150: 53~73
参考文献
Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole“sponge” in arc crust? Geology, 35(9): 787~790
参考文献
Ding Xing, Hu Yuanhua, Zhang Hong, Li Congying, Ling Mingxing, Sun Weidong. 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. Journal of Geology, 121(3): 255~274.
参考文献
Ding Xing, Lundstrom C, Huang Fang, Li Jie, Zhang Zeming, Sun Xiaoming, Liang Jinlong, Sun Weidong. 2009. Natural and experimental constraints on formation of the continental crust based on niobium—tantalum fractionation. International Geology Review, 51(6): 473~501
参考文献
Dyar M D. 2002. Optical and Mossbauer Spectroscopy of Iron in Micas. Reviews in Mineralogy and Geochemistry, 46(1): 313~349.
参考文献
Fan Xinjun, Liu Yang, Ding Peixun, Zhong Chunrong, Chen Li, Yu Chengtao. 2024&. The magmatic differentiation mechanism and metallogenic model of the Yichun granite-type rare metal deposit in Jiangxi Province. Acta Petrologica Sinica, 40(9): 2803~2818.
参考文献
Farges F O, Linnen R L, Brown G E, Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W. The Canadian Mineralogist, 44(3): 795~810.
参考文献
Fiege A, Simon A, Linsler S A, Bartels A, Linnen R L. 2018. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation. Ore Geology Reviews, 94: 383~395.
参考文献
Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837~840.
参考文献
Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489~518.
参考文献
Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilization of Ti—Nb—Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974~4996.
参考文献
Gao Mingdi, Xiong Xiaolin, Huang Fangfang, Wang Jintuan, Wei Chunxia. 2023. Key Factors Controlling Biotite—Silicate Melt Nb and Ta Partitioning: Implications for Nb—Ta Enrichment and Fractionation in Granites. Journal of Geophysical Research——Solid Earth, 128(7).
参考文献
Gao Xu, Michaud J A S, Zhou Zhenhua, Horn I, Almeev R R, Weyer S, Holtz F. 2024. Trace element (Be, Zn, Ga, Rb, Nb, Cs, Ta, W) partitioning between mica and Li-rich granitic melt: Experimental approach and implications for W mineralization. Geochimica et Cosmochimica Acta, 375: 1~18.
参考文献
Goldmann S, Michaud J A S, Krummacker T, Zhang Chao, Holtz F, Khudeir A A, Hamid S, Mohamed A E R. 2024. Nb—Ta—Sn oxides as markers of magmatic fractionation and magmatic—hydrothermal evolution: The example of the Nuweibi granite intrusion, Eastern Desert, Egypt. Geochemistry, 126215.
参考文献
Goss A R, Kay S M. 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, ~68°W). Earth and Planetary Science Letters, 279(1~2): 97~109.
参考文献
Green T H, Adam J. 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3. 0 GPa, 650~700 ℃. European Journal of Mineralogy, 15(5): 815~830.
参考文献
Green T H, Pearson N J. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 51(1): 55~62.
参考文献
Guidotti C V, Cheney J T, Guggenheim S. 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. American Mineralogist, 62(5~6): 438~448.
参考文献
Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1: Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: art. no. 2029. Journal of Geophysical Research: Solid Earth, 108(B1).
参考文献
Henry D J, Guidotti C V. 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal—chemical controls, and petrologic applications. 87(4): 375~382.
参考文献
Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421~436.
参考文献
Hoffmann J E, Münker C, Næraa T, Rosing M T, Herwartz D, Garbe-Schönberg D, Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157~4178.
参考文献
Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
参考文献
Hollings P, Kerrich R. 1999. Trace element systematics of ultramafic and mafic volcanic rocks from the 3Ga North Caribou greenstone belt, northwestern Superior Province. Precambrian Research, . 93(4): p. 257~279.
参考文献
Holycross M E, Watson E B. 2018. Trace element diffusion and kinetic fractionation in wet rhyolitic melt. Geochimica et Cosmochimica Acta, 232: 14~29.
参考文献
Huang Guangyu, Chen Yi, Guo Jinghui, Palin R, Zhao Lei. 2022. Nb and Ta intracrustal differentiation during granulite-facies metamorphism: Evidence from geochemical data of natural rocks and thermodynamic modeling. American Mineralogist, 107(11): 2020~2033
参考文献
Huang J, Xiao Y, Gao Y, Hou Z, Wu W. 2012. Nb—Ta fractionation induced by fluid—rock interaction in subduction-zones: Constraints from UHP eclogite- and vein-hosted rutile from the Dabie orogen, Central—Eastern China. Journal of Metamorphic Geology, 30(8): 821~842.
参考文献
Jochum K P, Seufert H M, Spettel B, Palme H. 1986. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta, 50(6): 1173~1183.
参考文献
Kamber B S, Greig A, Schoenberg R, Collerson K D. 2003. A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation. Precambrian Research, 126(3): 289~308.
参考文献
Kerr A C, La Isla de Gorgona. 2005. Colombia: A petrological enigma? Lithos, 84(1): 77~101.
参考文献
Kerrich R, Wyman D, Fan J, Bleeker W. 1998. Boninite series: low Ti-tholeiite associations from the 2. 7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1): 303~316
参考文献
Laurie A, Stevens G. 2012. Water-present eclogite melting to produce Earth’s early felsic crust. Chemical Geology, 314~317: 83~95.
参考文献
Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta—Nb bearing granites. Ore Geology Reviews 65, 793~810.
参考文献
Li Jianwei, Deng Xiaodong, Zhou Meifu, Lin Yongsheng, Zhao Xinfu, Guo Jingliang. 2010. Laser ablation ICP-MS titanite U—Th—Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu—Fe—Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1~4): 56~67.
参考文献
Li Jing, Sun Zaibo, Huang Liang, Xu Guixiang, Tian Sumei, Deng Rrenhong, Zhou Kun. 2017&. P—T—t path and geological significance of retrograded eclogites from Mengku area in western Yunnnan Province, China. Acta Petrologica Sinica, 33(7): 2285~2301
参考文献
Li L, Xiong X L, Liu X C. 2017. Nb/Ta fractionation by amphibole in hydrous basaltic systems: Implications for arc magma evolution and continental crust formation. Journal of Petrology, 58(1): 3~28.
参考文献
Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1): 27~40.
参考文献
Linnen R L. 1998. The solubility of Nb—Ta—Zr—Hf—W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013~1025.
参考文献
Ling Hongfei. 2011&. Origin of Hydrothermal Fluids of Granite type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193~206.
参考文献
Liu Qiang, Jin Zhenmin, Zhang Junfeng. 2009. An experimental study of dehydration melting of phengite-bearing eclogite at 1. 5~3. 0 GPa. Chinese Science Bulletin, 54(12): 2090~2100.
参考文献
Liu Tao, Jiang Shaoyong, Su Huimin, Cao Mingyu. 2022. Petrogenesis of Ta—Nb mineralization related Early Cretaceous Lingshan granite complex, Jiangxi Province, southeast China: Constraints from geochronology, whole—rock and in-situ mineral geochemistry, and Nd—Hf isotopic compositions. Ore Geology Reviews, 143: 104788
参考文献
Liu Wendi, Yang Yan, Busigny V, Xia Qunke. 2019. Intimate link between ammonium loss of phengite and the deep Earth’s water cycle. Earth and Planetary Science Letters, 513: 95~102.
参考文献
London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(3): 403~420.
参考文献
Marschall H R, Dohmen R, Ludwig T. 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth and Planetary Science Letters, 375: 361~371.
参考文献
Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overviewof adakite, tonalite—trondhjemite—granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1~24.
参考文献
McDonough W F, Sun S. 1995. The composition of the Earth. Chemical Geology, 120(3~4): 223~253.
参考文献
McNeil A G, Linnen R L, Flemming R L. 2020. Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700° and 850 ℃ and 200 MPa. Lithos, 352~353, 105239.
参考文献
Münker C, Pfänder J A, Weyer S, Büchl A, Kleine T, Mezger K. 2003. Evolution of Planetary Cores and the Earth—Moon System from Nb/Ta Systematics. Science, 301(5629): 84~87.
参考文献
Mysen B O. 2007. The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochimica et Cosmochimica Acta, 71(7): 1820~1834.
参考文献
Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309~2322.
参考文献
Nebel O, van Westrenen W, Vroon P Z. Wille M, Raith M M. 2010. Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean. Geochimica et Cosmochimica Acta, 74(15): 4392~4404.
参考文献
Onuma N, Higuchi H, Wakita H, Nagasawa H. 1968. Trace element partition between two pyroxenes and the host lava. Earth and Planetary Science Letters, 5: 47~51.
参考文献
Palin R M, White R W, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic—trondhjemitic—granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Research, 287: 73~90.
参考文献
Piilonen P C, Farges F, Linnen R L, Brown G E, Pawlak M, Pratt A. 2006. Structural environment of Nb5+ in dry and fluid-rich (H2O, F) silicate glasses: : A combined XANES and EXAFS study. The Canadian Mineralogist, 44: 775~794.
参考文献
Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3): 325~394.
参考文献
Polat A, Kerrich R, Wyman D A. 1999. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 94(3): p. 139~173.
参考文献
Porter K A, White W M. 2009. Deep mantle subduction flux. Geochemistry, Geophysics, Geosystems, 10(12).
参考文献
Puchtel I S, Haase K M, Hofmann A W, Chauvel C, Kulikov V S, Garbe-Schönberg C D, Nemchin A A. 1997. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta, 61(6): 1205~1222
参考文献
Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schönberg C D, Samsonov A V, Shchipansky A A. 1999. Combined mantle plume—island arc model for the formation of the 2. 9 Ga Sumozero—Kenozero greenstone belt, Baltic Shield: Isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595
参考文献
Rudnick R, Holland H, Turekian K J T O G. 2003. Treatise on Geochemistry, Volume 3. 3: 659.
参考文献
Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing Refractory Eclogites: Missing Link Between Continents and Depleted Mantle. 287(5451): 278~281.
参考文献
Schmidt M W, Connolly J A D, Günther D, Bogaerts M. 2006. Element partitioning: : The role of melt structure and composition. SCIENCE, 312(5780): 1646~1650.
参考文献
Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1): 361~379.
参考文献
Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K. eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier: 669~701.
参考文献
Scordari F, Dyar M D, Schingaro E, Lacalamita M, Ottolini L. 2010. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy). 95(11~12): 1657~1670.
参考文献
Shannon R. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.
参考文献
Shi Jinhua, Zeng Gang, Chen Lihui, Hanyu Takeshi, Wang Xiaojun, Zhong Yuan, Xie Liewen, Xie Wenli. 2022. An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica et Cosmochimica Acta, 318: 415~427.
参考文献
Stepanov A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167.
参考文献
Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox". Geology, 41(3): 303~306.
参考文献
Sun SaiJun, Liao Renqiang, Cong Yanan, Sui Qinglin, Li Ai. 2020&. Geochemistry and mineralization of titanium. Acta Petrologica Sinica, 36(1): 68~76
参考文献
Tan Dongbo, Xiao Yilin, Li Dongyong, Dai Liqun, Li Wangye, Hou Zhenhui. 2022. Nb—Ta fractionation by amphibole and biotite during magmatic evolution: Implications for the low Nb/Ta ratios of continental crust. Lithos, 434~435: 106941.
参考文献
Tang Ming, Lee C T A, Chen Kang, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10.
参考文献
Tang Yong, Zhang Hui, Lu Zhenghang. 2015#. Experimental study of phosphorus-rich magmatic system and niobium—tantalum mineralization. Mineralogical Journal, 35 ( S1 ): 341.
参考文献
Tian Xiangyu, Wang Rui, Liu Siyu, Sun Haiwei, Chen Shoubo, Xi Binbin. 2024&. Indication of mica minerals for the genesis andexploration of critical metal pegmatite deposits: A case study of the jingerquan Li—Be—Nb—Ta pegmatite ore-field, EasteriTanshan, Xinjiang. Acta Peirologica Sinica, 40(9): 2944~2962.
参考文献
Tiepolo M, Oberti R, Vannucci R. 2002. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191(1~3): 105~119.
参考文献
Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal—chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176(2): 185~201.
参考文献
Timofeev A, Migdisov A A, Williams-Jones A E. 2017. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 197: 294~304.
参考文献
Tomlinson K Y, Hughes D J, Thurston P C, Hall R P. 1999. Plume magmatism and crustal growth at 2. 9 to 3. 0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos, 46(1): 103~136
参考文献
Wade J, Wood B J. 2001. The Earth’s ‘missing’ niobium may be in the core. Nature, 409(6816): 75~78.
参考文献
Wang Qiang, Li Wufu, Wang Bingzhang, Wang Tao, Zhou Jinsheng, Malin, Li Yulong, Yuan Bowu, Wang Chuntao, Wang Jun. 2024#. Niobium—rare earth mineralization associated with alkaline rock—carbonatite complex——On the genesis of alkaline rock—carbonatite complex in the Dagele niobium—rare earth deposit in East Kunlun. Geotectonics and Metallogeny, 48 (1): 1~37.
参考文献
Wang Xiang, Lou Fasheng. 2022. On the metallogenic period of magmatic hydrothermaldeposits——Taking Yanshanian tungsten deposits in Nanling area as an example. Geological Review, 68 (02): 507~530.
参考文献
Wang Xiaojun, Liu Jianqiang, Chen Lihui. 2014&. Geochemical Characteristics of HIMU-Type Oceanic Island Basalts, Geological Journal of China Universities, 20(03): 353~367.
参考文献
Wang Xiaojun, Chen Lihui, Hofmann A W, Hanyu T, Kawabata H, Zhong Yuan, Xie Liewen, Shi Jinhua, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Qing, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682~8687
参考文献
Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537 (7622): 666~670.
参考文献
Wu Huanhuan, Huang He, Zhang Zhaochong, Wang Tao, Guo Lei, Zhang Yinhui, Wang Wei. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb—Ta deposit in the northern margin of the North China Craton, China. Ore Geology Reviews, 125: 103692
参考文献
Xiao Yilin, Sun Weidong, Hoefs J, Simon K, Zhang Zeming, Li Shuguang, Hofmann A W. 2006. Making continental crust through slab melting: Constraints from niobium—tantalum fractionation in UHP metamorphic rutile. Geochimica Et Cosmochimica Acta, 70(18): 4770~4782.
参考文献
Xiong Xiaolin, Keppler H, Audétat A, Ni H, Sun Weidong, Li Yuan. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673~1692.
参考文献
Xiong Xiaolin, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3): 339~359.
参考文献
Xu Zhe, Wang Diwen, Wu Zhengchang. 2018&. Geological characteristics and genesis of the Yashan niobium—tantalum depos it at Yichun, Jiangxi province. Journal of East China University of Technology ( Natural Science), 41(4): 364~378.
参考文献
Yang Fei, Wu Guang, Chen Zhengyi, Zhang Tong, Li Yinglei, Li Shihui, Shi Jiangpeng. 2023. Compositional and textural variations of columbite group minerals from Weilasituo rare metal—tin polymetallic deposit: Implications for tracing magmatic—hydrothermal evolution. Mineral deposit, 42 (03): 463~480.
参考文献
Yang Zhaoyu, Wang Rucheng, Che Xudong, Harlov D. 2023. Restrictions on Niobium enrichment by alteration of Niobium-rich biotite in pure water, acid, alkaline and fluoride-bearing solutions at 200 MPa and 300~600 ℃. Geochimica et Cosmochimica Acta, 343: 115~132.
参考文献
Zack T, John T, 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239(3~4): 199~216.
参考文献
Zack T, Kronz A, Foley S F, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1~2): 97~122.
参考文献
Zhang Chao, Holtz F, Koepke J, Wolff P E, Ma C, Bédard J H. 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Research, 231: 206~217.
参考文献
Zhang Jingbo, Wang Rui, Hong Jun, Tang Ming, Zhu Dicheng. 2021. Nb—Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 133: 104131.
参考文献
Zhang Xiaowei, Zhang Huafeng, Tong Ying. 2023. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science, 34(3): 658~673.
参考文献
Zhao Guochun, Zhang Guowei. 2021&. The Origin of the Continent. Acta Geologica Sinica, 95 (01): 1~19.
参考文献
Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200~3228.
参考文献
Zheng Yi, Yang Shijie. 2014. Topological bands in one-dimensional periodic potentials. Physica B: Condensed Matter, 454: 93~97.
参考文献
Zheng Y F, Gao Teng, Wu Y B, Gong B, Liu X. 2007. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267~283.
参考文献
Zhu Zeying, Wang Ruchen, Marignac C, Cuney M, Mercadier J, Che Xudong, Lespinasse M Y. 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. American Mineralogist 103, 1530~1544.
目录contents

    摘要

    Nb 和 Ta 的地球化学性质相似,但地球各圈层和不同地质体的 Nb / Ta 值都表现为低于球粒陨石的特点,并且不同地幔端元、洋中脊玄武岩、大陆地壳等也具有不同的 Nb / Ta 值。笔者等归纳总结了大量模拟实验和天然样品研究得到的矿物/ 熔体的 Nb、Ta 分配系数,发现金红石、角闪石和黑云母与硅酸盐熔体之间具有相对较高的 Nb、Ta 分配系数,Nb / Ta 值变化较大且受控于岩浆体系的成分和物理化学条件。温度和含水量升高会导致金红石与熔体 Nb、Ta 分配系数的降低。角闪石、黑云母与熔体之间的 Nb、Ta 分配系数主要受到熔体聚合度(NBO/ T)、矿物成分(例如 Mg# )和水含量的共同影响,DNbDTaDNb/ DTa 都表现为随着 Mg#和水含量的降低而增加。金红石由于具有非常高的 Nb、Ta 分配系数被认为是重要的 Nb—Ta 储库,并且其在太古宙 TTG 岩浆形成过程中是必要的残余相, 因此金红石在高压下的分离结晶作用常被用来解释 TTG 的 Nb、Ta 亏损,但是由于扩散作用影响的不确定性,能否导致共存熔体中 Nb / Ta 值的降低还存在争议。对弧岩浆和长英质熔体的演化模拟实验表明,角闪石和黑云母的分离结晶都会导致熔体 Nb / Ta 值呈现降低的趋势,而在岩浆演化晚期阶段黑云母和白云母对熔体 Nb / Ta 值的降低具有更重要的影响,并且 F 等挥发分含量的增加会促进熔体中 Nb—Ta 的富集。俯冲作用过程中富 Ti 矿物的转变和流体控制着 Nb—Ta 的储存、迁移和分异,高压下形成的含角闪石和金红石的榴辉岩是潜在的 Nb—Ta 储库。

    Abstract

    The geochemical properties of niobium and tantalum are similar, but the Nb / Ta ratios of various spheres of the Earth and different geological units are lower than that of chondrites. Different mantle endmembers, continental crust, and mid-ocean ridge basalts also have different Nb / Ta ratios. This review summarizes the Nb— Ta partition coefficients of mineral—melts obtained from a large number of simulation experiments and natural samples. It is found that rutile, amphibole and biotite have relatively high Nb—Ta partition coefficients with silicate melts. The Nb / Ta ratio varies greatly and is controlled by the composition and physical and chemical conditions of the magmatic system. The increase of temperature and water content will lead to the decrease of Nb—Ta partition coefficient between rutile and melt. The Nb—Ta partition coefficient between amphibole, biotite and melt is mainly affected by the degree of polymerization (NBO/ T), mineral composition (such as Mg# ), and water content. DNb, DTa and DNb / DTa all increase with the decrease of Mg# and water content. Since rutile is considered as an important reservoir mineral of Nb—Ta due to its high Nb—Ta partition coefficients, as well as a necessary residual phase in the formation of Archean TTG magma, its fractional crystallization is often used to explain the Nb—Ta depletion of TTG. However, due to the uncertainty of its distribution coefficient ratio and diffusion effect, it is still controversial whether it can lead to the decrease of Nb / Ta ratio in coexisting melts. Based on experimental simulations of magma evolution in arc magmas and felsic melts, it is demonstrated that the fractional crystallization of amphibole and biotite may lead to the decrease of Nb / Ta ratio in the melt. In the late stage of magma evolution, biotite and muscovite have an enhanced effect on the decrease of Nb / Ta ratio in the melt, and the increase of volatile content such as F will promote the enrichment of Nb—Ta in the melt. The transformation of Ti-rich minerals and fluids control the storage, migration and differentiation of Nb—Ta during the process of subduction, the resultant amphibole and rutile-bearing eclogite formed under high pressure may be an important reservoir of Nb—Ta.

  • 铌(Nb)和钽(Ta)作为稀有金属元素具有广泛的应用价值,是现代工业和高技术产业不可或缺的关键金属材料。在地质过程中,Nb 和 Ta 通常被认为是孪生元素,因为它们通常具有相同的价态( + 5),相似的配位数(一般 6 次配位)和离子半径(约 64 pm),都属于高场强元素(HFSE),具有相似的亲石元素特性( Barth et al.,2000; Jochum et al.,1986; Shannon,1976)。理论上,一般的地质作用过程(例如部分熔融和分离结晶)不会导致 Nb / Ta 值发生明显变化,地球各圈层的 Nb / Ta 值也应该与原始未分化的球粒陨石中的 Nb / Ta 值一致。然而,实际地球各圈层的 Nb / Ta 值明显低于球粒陨石,这种现象被称为“Nb 缺失悖论”。显然,地球内部应该存在高 Nb / Ta 值的储库来平衡各圈层中的低 Nb / Ta 值( Rudnick et al.,2000; Stepanov and Hermann,2013),但是目前对于 Nb—Ta 分异的影响因素和控制过程还存在较多不同认识。最近几十年,随着实验岩石学和原位微区分析技术的进步,前人已对各种岩石类型、岩浆源区、温压条件下的矿物与熔(流)体的 Nb、Ta 分配进行了详细的实验模拟和高精度测定,从而在理论层面上丰富和完善了 Nb、Ta 分配系数的数据库,对于更好的解释宏观地质过程的 Nb—Ta 分异现象具有关键作用。笔者等综述了 Nb—Ta 分异的地质意义和时空分布特征,收集和分析了 Nb、Ta 对于不同矿物的分配系数及其变化规律,讨论了相关矿物对 Nb—Ta 分异的潜在贡献,以期更好的限定 Nb / Ta 分异的影响因素和地质过程。

  • 1 Nb、Ta 分异的时空分布

  • 1.1 地球各圈层的 Nb / Ta 值

  • 硅酸岩地球(bulk silicate Earth)的 Nb / Ta 值为~14. 0,月岩的 Nb / Ta 值为~17. 0,火星岩石中 Nb / Ta 值为~18.2,它们皆明显低于球粒陨石的 Nb / Ta 值(19.9±0.6)(McDonough and Sun,1995; Münker et al.,2003)。地球各圈层和地质储库的 Nb / Ta 值也具有显著差异性(图1):原始地幔的 Nb / Ta 值估算为 17.5( Hofmann,1988; Jochum et al.,1986; McDonough and Sun,1995); 大洋中脊玄武岩(MORB)的 Nb / Ta 值平均值为 15.5(Gale et al.,2013); 大陆地壳的 Nb / Ta 值相对较低(8.3~13.4)( Barth et al.,2000; Plank and Langmuir,1998; Rudnick et al.,2003); 地球演化早期太古宙形成的变质玄武岩、科马提岩及镁铁质变泥质岩的 Nb / Ta 值平均为 15.1±1.6(Kamber et al.,2003),而太古宙 TTG 相比于其他地质体的 Nb / Ta 值变化较大(Hoffmann et al.,2011),但总体平均值仍低于球粒陨石; 岛弧火山岩的 Nb / Ta 值也具有较宽的范围,这被认为与弧岩浆不同程度的演化有关,其平均值为约 17.4( Tang Ming et al.,2019b); 板内大陆玄武岩的 Nb / Ta 值平均为约 17.2。

  • 图1 不同地质体的 Nb / Ta 值

  • Fig.1 Nb / Ta ratios of different geological bodies

  • 数据来源:月岩和火星岩石(Münker et al.,2003); 板内大陆玄武岩( Pfänder et al.,2007); 上大陆地壳(Barth et al.,2000); 上中下地壳及平均地壳(Rudnick and Gao,2003); 原始地球( Jochum et al.,2000); 原始地幔( Hofmann et al.,1988); 洋中脊玄武岩(Arevalo and McDonough,2010); 太古宙 TTG( Hofmann et al.,2011); 岛弧火山岩( Stolz et al.,1996; Münker et al.,2004; König and Schuth,2011); 球粒陨石,硅酸盐地球(Münker et al.,2003

  • data sources: Lunarand Martian rock (Münker et al., 2003) ; intraplate continental basalts ( Pfänder et al., 2007) ; upper continental crust ( Barth et al., 2000) ; upper—middle—lower Crust and average Crust ( Rudnick and Gao, 2003) ; bulk Earth (Jochum et al., 2000) ; primitive mantle ( Hofmann et al., 1988) ; MORB (Arevalo and McDonough, 2010) ; Archean TTG ( Hofmann et al., 2011) ; island arc volcanic rocks ( Stolz et al., 1996; Münker et al., 2004; König and Schuth, 2011) ; chondrites, bulk silicate Earth (Münker et al., 2003)

  • 对于如何解释地球岩石相较于球粒陨石具有明显偏低的 Nb / Ta 值(Nb 亏损),以及地球各圈层及岩石类型 Nb / Ta 值的差异性,前人提出了如下几种可能的机制:①在下地壳或地幔深部,可能存在一个超球粒陨石 Nb / Ta 值的储库( Münker et al.,2003; Rudnick et al.,2000; Stepanov and Hermann,2013); ②在地球早期核幔分异过程中,一部分 Nb 进入了地核(Wade and Wood,2001); ③原始硅酸岩地球的 Nb / Ta 值就低于球粒陨石(Campbell and St C. O’ Neill,2012; Wade and Wood,2001)。目前,以上不同的机制模型均缺乏充分证据,仍然处于假说阶段。

  • 1.2 不同地幔端元的 Nb / Ta 值

  • 地幔端元属性对于探讨壳幔物质循环和地球深部过程具有重要的意义。 Hofmann(1988)通过对大洋玄武岩的 Sr— Nd—Pb 同位素的总结确认了地幔不均一性,并根据同位素组成将地幔划分为不同的端元:亏损型地幔端元(DMM),高 U/ Pb 地幔端元(HIMU),富集型地幔端元(EMI,EMII)。笔者等统计了亏损型、高 U/ Pb 型和富集型等主要地幔端元的 Nb—Ta 成分数据,发现不同地幔端元之间的 Nb / Ta 值具有一定的系统性差异,可能与不同地幔端元的成因有关。

  • 大洋中脊玄武岩(MORB)是亏损型地幔端元部分熔融的产物,来自太平洋、印度洋、大西洋的 MORB 样品的 Nb / Ta 值变化范围较宽( 10~20 之间),平均值为 15.5( Gale et al.,2013),略低于其他地幔端元(图2),但高于长英质大陆地壳的 Nb / Ta 值(11~13 之间)(Barth et al.,2000)。由于亏损型地幔的形成与地球的壳— 幔分异过程密切相关,其可能也导致了较为强烈的 Nb—Ta 分异。在地幔部分熔融过程中,TiO2 在玄武岩熔体中的溶解度非常高,金红石一般不能饱和结晶(Green and Pearson,1987; Xiong Xiaolin et al.,2005),因此 MORB 样品中明显的 Nb 亏损趋势可能是受其他矿物结晶分异的影响(例如云母类和角闪石类矿物)。

  • 图2 典型地幔端元的 Nb / Ta 值

  • Fig.2 Nb / Ta ratios of typical mantle endmembers

  • HIMU 型:百慕大群岛、沃尔维斯海脊、鲁鲁土岛、土布艾岛; EM Ⅰ型:戈夫岛、皮特凯恩群岛、特里斯坦岛; EM Ⅱ型:海南岛、萨摩亚群岛、社会群岛; DMM 型:大西洋、印度洋及太平洋 MORB. 数据来源于 Earthchem 数据库

  • HIMU type: Bermuda, WalvisRidge, Rurutu, Tubuai; EM Ⅰ type: Gough, Pitcairn, Tristan; EM Ⅱ type: Hainan Island, Samoa, Society; DMM: Atlantic, Indian, Pacific MORB. Data are from Earthchem database

  • 富集型地幔端元包括 EMI 和 EMII 两种类型,部分熔融产物通常形成洋岛玄武岩(OIB)。 EMI 型以 Gough、 Pitcairn、 Tristan 群岛为代表,EMII 型以 Samoa 和 Society 群岛为代表。笔者等的统计数据显示,EMI 型 OIB 的 Nb / Ta 值(平均值 16.79)高于 EMII 型(平均值 15.94),并且前者的 Nb 含量(平均 57.7×10-6)明显高于后者(30.7×10-6)。前人基于洋岛玄武岩金属稳定同位素和橄榄石斑晶高精度微量元素的研究表明,EMI 和 EMII 都是由再循环地壳物质转变过来的榴辉岩演化而来的,属于残余型富集储库(王小均等,2019)。近期也有研究通过 Mg 同位素的证据表明 EMI 不是再循环的大陆下地壳或者大陆岩石圈地幔,而是有大量古老的含碳酸盐的远洋沉积物的加入(Wang Xiaojun et al.,2018)。两者成分的差异主要表现为再循环沉积物的类型,如 Pitcairn 型 EMI 和 Samoa 型 EMII 分别为洋壳+ 远洋沉积物和洋壳+陆源沉积物演化而来,两者之间的 Nb / Ta 值与 Nb 含量的差异可能也与不同的板块俯冲物质经过长时间演化有关。 Tang Ming 等(2019)提出地壳厚度较大的含金红石的深弧堆晶榴辉岩具有较高的 Nb / Ta 值(~19),当熔体中的含水量小于 10% 且温度小于 1000℃ 时,金红石的 DNb / DTa >1( Xiong Xiaolin et al.,2011)。在逐渐加厚的大陆弧地壳中,由于石榴子石等高密度矿物的不断形成,其密度会大于地幔密度,进而沉入地幔,这也可能导致不同地幔端元 Nb / Ta 值及含量的变化。

  • 高 U/ Pb 地幔端元( HIMU)以 Bermuda、Walvis Ridge、Rurutu、Tubuai 等洋岛为代表,相关 OIB 样品的 Nb / Ta 值(17.38)和 Nb(109.16×10-6)含量均高于其他端元。 HIMU 型地幔端元通常被认为有俯冲洋壳的物质贡献(Porter and White,2009),HIMU 型地幔端元属于交代型富集储库,目前 HIMU 型地幔端元的成因仍存在广泛争议,Hofmann and White(1982)提出 HIMU 与地幔中再循环的洋壳物质直接相关,形成过程中不相容元素 U、Th 和 Pb 之间发生强烈分异。 Weiss 等(2016)则认为 HIMU 组分更可能代表拆沉的、被碳酸盐熔/ 流体交代的古老大陆岩石圈地幔,而非再循环洋壳。 HIMU 型地幔端元具有相对较高的 Nb / Ta 值和 Nb 含量,但是否指示形成时再循环洋壳物质的 Nb—Ta 分异作用尚未可知。此外,流体交代可能是造成 Nb—Ta 分异的关键地质过程之一( Ding Xing et al.,2013; Huang et al.,2012; Liang et al.,2009; Xiao Yilin et al.,2006)。俯冲过程中形成的流体会达到地幔过渡带甚至下地幔深度,导致地幔内部的不均一性,例如 Chen Tienan 等(2022) 提出在俯冲过程中产生的超临界流体具有超球粒陨石的 Nb / Ta 值,因此拆沉榴辉岩和地幔楔橄榄岩经历超临界流体的交代作用,可获得异常高的 Nb / Ta 值。

  • 以上统计数据表明,Nb / Ta 值在 HIMU 型 → EMI 型 →EMII 型 →DMM 型地幔端元中有逐渐降低的趋势。 MORB 样品的 SiO2 含量变化较大,平均值为 50.57%,玄武岩岩浆演化程度差异较大,这可能导致了其 Nb / Ta 值的较大变化。 HIMU 型 → EMI 型 →EMII 型样品数据的 SiO2 含量平均值呈现逐渐升高的趋势,排除 Nb 和 Ta 数据的测量误差,其 Nb / Ta 值的降低可能受控于岩浆演化过程中高 Nb—Ta 矿物(角闪石或黑云母)的分离结晶。目前对于不同地幔端元的 Nb 含量与 Nb / Ta 值差异性的研究不足,值得进一步详细探究,以期对地幔不均一性和壳幔物质循环提供关键制约。

  • 1.3 大陆地壳的 Nb / Ta 值

  • 太古宙大陆克拉通主要由英云闪长岩—奥长花岗岩—花岗闪长岩( TTG,tonalite—trondhjemite— granodiorite)、超基性—基性—酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成,其中 TTG 占太古宙克拉通的 60%~70%,代表古老大陆地壳的主要成分(Barker and Arth,1976)。 TTG 通常被认为是镁铁质地壳在高压下熔融形成的。 Hoffmann 等(2011)发现 TTG 样品相比于太古宙其他类型的岩石储库(Münker et al.,2003)具有更宽的 Nb / Ta 范围(图3),这可能与高压熔融残余相中含有角闪石和富钛相有关(Foley et al.,2002)。由 TTG 质古老地壳重熔而形成的壳内分异型和混合岩型 TTG 的 Nb / Ta 值(平均值~25.7)明显高于其他均质的中太古代—新太古代 TTG( 平均值~16.5),因此 Hoffmann 等(2011) 猜测较古老的大陆地壳中存在高 Nb / Ta 储库,并且认为壳内分异对 Nb / Ta 值的变化具有较大的影响。 Xiong Xiaolin 等(2005)开展的玄武岩部分熔融实验表明,当残留相中没有金红石,熔体的 Nb / Ta 值几乎不变,而金红石的出现会导致熔体 Nb / Ta 值略微升高 10%~15%; 由于金红石是太古宙 TTG 岩浆形成过程中必要的残余相,因此可以解释太古宙 Nb—Ta 分异。 Tang Ming 等(2019) 支持壳内分异对 Nb / Ta 值的影响,但同时认为高压下的壳内分异过程中,由于富金红石残留相的存在,会形成低 Nb / Ta 值的成熟大陆弧与高 Nb / Ta 值的富金红石弧下堆晶体。

  • 图3 太古宙岩石 Nb / Ta 值

  • Fig.3 Nb / Ta ratios of Archean rocks

  • 数据来源/ data sources:古太古代/ Paleoarchean—Kamber et al.,2003; Münker et al.,2003; 中太古代/ Mesoarchean—Hollings and Kerrich 1999; Tomlinson et al.,1999; Puchtel et al.,1999; Barley et al.,2000; 新太古代/ Neoarchean—Kerrich et al.,1998; Polat et al.,1999; 太古宙 TTG/ Archean TTG—Hoffmann et al.,2011

  • 目前,对于长英质大陆壳的生长机制和演化过程还存在较大的争议。 Kamber 等(2002)认为太古代的地壳形成机制类似于现代岛弧。长英质大陆壳(Nb / Ta = 11~13)相比于 MORB(Nb / Ta 平均值≈ 15.5)具有更低的 Nb / Ta 值(Barth et al.,2000)。 Tang Ming 等(2019) 通过对不同厚度岛弧及成熟大陆弧 Nb / Ta 的研究发现,弧岩浆演化过程中 Nb / Ta 分异程度与地壳厚度相关,地壳厚度越大时,弧岩浆的 Nb / Ta 值降低越强烈; 由于原始弧岩浆与 MORB 具有大致相同的 Nb / Ta 值,推测弧岩浆 Nb / Ta 值的变化主要是由壳内岩浆分异作用导致的,而地壳厚度对 Nb / Ta 的控制主要通过高压有利于金红石饱和度的增加来解释。实验岩石学结果表明,金红石具有较强的 Nb—Ta 储存能力,并且在温度<1000℃ 和含水量<10%时,DNb / DTa 大于 1(Xiong Xiaolin et al.,2011)。随着弧岩浆作用的不断进行,火山弧越积越厚导致地壳底部的压力越来越大,同时随着压力的增大会再次发生部分熔融。实验和相平衡模拟研究证实,在自由水的参与下,玄武岩可以在相对低温条件下(750~950℃)的部分熔融产生具有 TTG 化学组成的岩浆( Laurie and Stevens,2012; Tamblyn et al.,2023),其具有亏损Nb、Ta、Ti,且 Nb / Ta 值较低的特征。随着火山弧中酸性岩浆的不断积累,最终可能形成一定规模的长英质陆核,再通过相互拼合形成较大规模的克拉通。大量研究指出,长英质大陆或起源于板块构造下的岛弧( Martin et al.,2005; Hastie et al.,2023; Zhang Xiaowei et al.,2023),或起源于地幔柱下的洋底高原(Bédard,2006; Zhang Chao et al.,2013; Palin et al.,2016; 赵国春和张国伟,2021)。 TTG 的 Nb—Ta 分异特征间接支持长英质大陆是在板块构造体制下的岛弧基础上发展起来的,因此也就支持地球早期存在类似现今板块构造的体制。然而问题似乎尚未完全解决,比如 Chen Wei 等(2021) 在 2. 0 GPa、850~1000℃和含水条件下的实验显示,金红石相对于 Nb、Ta 的分配系数非常接近,因此与之平衡的熔体的 Nb / Ta 值与原岩一致。因此,由于不同实验研究结果存在差异,金红石在地质过程中的对 Nb—Ta 分异的作用仍有争议。

  • 1.4 不同地质时期的 Nb / Ta 值

  • 除太古宙 TTG 外,其他太古宙的岩石类型(尤其是基性玄武质样品)与现代 MORB 样品具有大致相同的、低于球粒陨石的 Nb / Ta 值(图3),这可能指示了 Nb—Ta 分异在太古宙已经有效发生,高 Nb / Ta 储库也许在地球早期核幔分异过程中已经形成,暗示有部分 Nb 进入了地核。 TTG 代表的古老大陆地壳与现代大陆地壳具有显著差异,前者的 Nb / Ta 值平均为~19.8(接近球粒陨石),而后者的 Nb / Ta 值平均为 11~13,造成如此显著差异的原因尚不清楚。

  • 图4 不同地质时期的科马提岩的 Nb / Ta 值

  • Fig.4 Nb / Ta ratios of komatiites from different geological periods

  • 数据来源/ data sources:古太古代/ Paleoarchean—Kamber et al.,2003; Münker et al.,2003; 中太古代/ Mesoarchean—Hollings and Kerrich 1999; Tomlinson et al.,1999; Puchtel et al.,1999; Barley et al.,2000; 新太古代/ Neoarchean—Kerrich et al.,1998; Polat et al.,1999; 古元古代/ Paleoproterozoic—Puchel et al.,1997; 白垩纪/ Cretaceous—Kerr et al.,2005

  • 科马提岩是一种具有独特鬣刺结构的超镁铁质喷出岩,被认为是地球早期地幔柱活动的岩石记录,其广泛分布在太古宙的绿岩带内,在元古宙分布较少,而在显生宙则非常罕见( Barnes and Arndt,2019)。目前哥伦比亚戈尔戈纳岛的白垩纪科马提岩被认为是典型的显生宙科马提岩(Kerr et al.,2005)。图4 显示,不同地质时期的科马提岩多数表现为低于球粒陨石的 Nb / Ta 值,并且不同时期的科马提岩(以及科马提质玄武岩)Nb / Ta 值的分布特征基本相似,与现代 MORB 的差异不大。由此可以大致推断,太古宙地幔的 Nb / Ta 值与现今地幔类似,同样暗示高 Nb / Ta 储库可能在地球早期的核幔分异过程已经形成。但是,考虑到地幔存在明显的化学成分不均一性,需要进一步的研究来解译不同时期地幔的 Nb / Ta 值。

  • 2 矿物分配系数与 Nb / Ta 分异

  • 各种矿物与不同熔流体在各种地质条件下的分配系数是定量研究元素的迁移和分异(包括 Nb—Ta 分异)的理论基础(Zheng Yi and Yang Shijie,2014; Cheng Yixiang and Zheng Yongfei,2015)。得益于最近几十年来开展的大量实验岩石学研究,实验测定的分配系数数据得到了极大的丰富。以下对主要造岩矿物及部分富 Nb、Ta 的副矿物/ 熔体的分配系数及其影响因素进行总结。

  • 2.1 Nb、Ta 在常见矿物与熔体之间的分配系数

  • 对于一些主要造岩矿物,如橄榄石、辉石和斜长石等,Nb 和 Ta 主要表现为强不相容元素(矿物与熔体之间的分配系数小于 0.1),且大多数样品表现为 Ta 的分配系数大于 Nb(图5)。由于这些矿物对 Nb—Ta 的储存能力较小,通常认为它们对 Nb—Ta 在不同地质过程中的的迁移和分异行为的影响较小,不能用来解释不同地质体 Nb / Ta 值的差异性。还有一些具有较高 Nb、Ta 分配系数的造岩矿物和副矿物,比如黑云母、角闪石、多硅白云母、金红石、钛铁矿、榍石等(图5),它们可能在 Nb—Ta 分异过程中起到了关键作用。然而迄今为止,尚不清楚哪种矿物对降低大陆地壳 Nb / Ta 值起主要作用。

  • 金红石、钛铁矿、榍石等副矿物的 Ti 含量较高,由于 Nb—Ta 与 Ti 具有相似的离子价态和半径,它们的地球化学行为相近,导致 Nb 和 Ta 在富 Ti 副矿物与熔体之间具有较高的分配系数。实验模拟和天然样品的统计数据显示,金红石的 DNbDTa 可大于 1000(Xiong Xiaolin et al.,2011),金红石甚至可以与 Nb—Ta 氧化物形成固溶体系列(Cerny et al.,1999)。榍石的 DNbDTa 可大于 100,也是富集 Nb、Ta 的重要载体,其 DNb / DTa 值主要介于 0.1~0.5( Green and Pearson,1987; Prowatke and Klemme,2005; Tiepolo et al.,2002)。钛铁矿的 DNbDTa 主要介于 1~10,DNbDTa 比值通常小于 1( Green and Pearson,1987; Klemme et al.,2006)。

  • 图5 常见矿物与硅酸盐熔体之间的 Nb、Ta 分配系数

  • Fig.5 Partition coefficients of Nb and Ta between common minerals and silicate melts

  • 数据来源:黑云母/ biotite(Acosta-Vigil et al.,2010; Gao et al.,2023; Nash and Crecraft,1985; Stepanov and Hermann,2013); 单斜辉石/ clinopyroxene(Adam and Green,2006; Green et al.,2000; Li et al.,2017; Pertermann et al.,2004); 斜方辉石/ orthopyroxene(Adam and Green,2006; Green et al.,2000; Klemme et al.,2006; Li et al.,2017); 角闪石/ amphibole(Adam and Green,2006; Dalpé and Baker,2000; Fulmer et al.,2010; Klein et al.,1997; Li et al.,2017; Nandedkar et al.,2016; Tiepolo et al.,2000); 石榴子石/ garnet(Adam and Green,2006; Fulmer et al.,2010; Green et al.,2000; Li et al.,2017; Pertermann et al.,2004); 金云母/ phlogopite(Adam and Green,2006; Green et al.,2000); 堇青石/ cordierite(Bea et al.,1994); 钾长石/ K-feldspar(Bea et al.,1994); 斜长石/ plagioclase(Bea et al.,1994; Dunn and Sen,1994; Sun et al.,2017); 金红石/ rutile(Bromiley and Redfern,2008; Green and Pearson,1987; Horng and Hess,2000; Klemme et al.,2005; Schmidt et al.,2004; Xiong Xiaolin et al.,2005; Xiong Xiaolin et al.,2011); 橄榄石/ olivine(Dunn and Sen,1994; Li et al.,2017); 钛铁矿/ ilmenite(Green and Pearson,1987; Klemme et al.,2006; Xiong Xiaolin et al.,2011); 磁铁矿/ magnetite(Green and Pearson,1987; Li et al.,2017; Nielsen and Beard,2000); 榍石/ titanite(Green and Pearson,1987; Prowatke and Klemme,2005; Tiepolo et al.,2002); 磷灰石/ apatite(Prowatke and Klemme,2006); 多硅白云母/ phengite(Stepanov and Hermann,2013

  • 除富 Ti 的副矿物外,一些造岩矿物可能也对 Nb—Ta 的分异具有较大影响,例如角闪石、黑云母等。角闪石和硅酸盐熔体之间的 DNbDTa 均小于 1,变化范围在 0.1~1 之间( Li et al.,2017),DNb / DTa 介于 0.5~2.8。 Gao Xu 等(2024)的实验研究发现,从贫锂到富锂的角闪石,Nb 和 Ta 的地球化学行为可以从不相容变为相容,铁锂闪石 DNbDTa 可以分别达到 2.4 和 3.5。云母也是储存 Nb 和 Ta 的重要载体( Gao Xu et al.,2024; Stepanov and Hermann,2013),不同种类云母的铌钽分配系数存在区别,天然样品中的黑云母在流纹岩和发生部分熔融的混合岩内测得的 DNb 变化范围较大(3.5~9.2),而 DTa 变化范围小(1.2~3.6),DNb / DTa 值在 1.8 至 4.8 之间(Acosta-Vigil et al.,2010; Nash and Crecraft,1985)。锂云母的 DNbDTa 分别为 4.46 和 0.88,其相比黑云母能更有效的分异 Nb—Ta(Gao Xu et al.,2024)。高压实验下多硅白云母与花岗质熔体之间 DNbDTa 随着温度升高而增高(从 900℃ 到 1000℃,DNb 从 0.15 上升到 1.32,而 DTa 从 0. 06 上升到 0.45),但是 DNb / DTa几乎保持不变(2.8~2.9)( Stepanov and Hermann,2013)。 Gao Mingdi 等(2023) 测得黑云母与花岗质熔体的 DNbDTa 分布介于 0.3~2.6 和 0.2~1. 0; 对应的 DNb / DTa 介于 1. 0~2.2 之间。 Were and Keppler(2021)通过实验测得黑云母与长英质熔体之间的 DNbDTa 分别为 3.7 和 1.9,并且认为 15%~30%黑云母的分离结晶就可以使 Nb / Ta 值从球粒陨石值(19.9)降至大陆地壳(11~13)的范围。 Gao Xu 等(2024)基于观测到的矿物/ 熔体分配系数数据,建立了含锂花岗质岩浆结晶过程中金属行为的多级定量分馏模型,其模拟结果表明结晶分异作用会导致熔体中的 Nb 和 Ta 进一步富集,与黑云母相比,富锂云母的结晶更容易导致 Nb—Ta 分异。目前关于白云母 Nb、Ta 分配系数的研究极少,鉴于白云母(以及多硅白云母)与地壳增生和壳内演化的密切关系,有必要进行更多的实验岩石学研究来定量限定白云母对于 Nb—Ta 分异的潜在作用。

  • 限定 Nb、Ta 在矿物和熔体之间的分配系数及其影响因素是理解 Nb—Ta 分异的重要基础之一(Tan Dongbo et al.,2022)。实验岩石学研究表明,造岩矿物、副矿物和熔体之间的 Nb、Ta 分配系数受多种因素控制,对于不同矿物而言的主导因素也有所差别。温度,水含量,熔体成分(如 ASI)、矿物成分(例如 Ti 含量和 Mg#)是最常见的主导因素。笔者等主要基于金红石、角闪石、云母等矿物来分析 Nb、Ta 分配系数的影响因素,因为它们通常具有较高的 DNbDTa,且 DNb / DTa 变化较大,通常被认为是造成 Nb—Ta 分异的主要贡献者。

  • 2.2 温度对 Nb—Ta 分配系数的影响

  • Xiong Xiaolin 等(2005)在 1. 0~2.5 GPa、900~1100℃ 的条件下研究了含水玄武岩部分熔融过程中金红石与熔体之间元素分配系数的变化,实验表明金红石—熔体的 DNb 总是低于 DTaDNbDTa 随温度的增加而降低,DNb / DTa 值随着温度的降低而增大。此后,Xiong Xiaolin 等(2011) 再次通过实验研究了金红石与长英质熔体之间的 Nb、Ta 分配系数,实验结果表明只在温度<1000℃ 和含水量<10% 的条件下,DNb / DTa 大于 1( 图6)。 Chen Wei 等(2018)开展了 Nb、Ta 在金红石与 SiO2 为主要成分的超临界流体之间的分配实验,发现 DNbDTa 随着超临界流体温度的增加而降低。 Li 等(2017) 对中钾和高钾的弧岩浆玄武岩进行了实验,测定了不同温度条件下角闪石—熔体之间的 Nb、Ta 分配系数,发现温度是最重要的影响因素之一,DNbDTa 以及 DNb / DTa 值都随着温度的降低而增大(图7)。 Gao Mingdi 等(2023)通过高温高压实验测定了 0.5~1. 0 GPa 和 850~1000℃ 条件下黑云母与花岗质熔体的 Nb、Ta 分配系数,发现 DNbDTa 以及 DNb / DTa 值也表现出随着温度的降低而上升的趋势(图8)。因此,以上多项实验岩石学工作均一致表明,金红石、角闪石、黑云母等矿物与各种熔流体的 DNbDTaDNb / DTa 主要与温度呈负相关,这可以用温度对 Nb 和 Ta 在熔流体中的活度系数的影响来解释(Linnen,1998)。

  • 图6 金红石与熔体 Nb、Ta 分配系数的影响因素

  • Fig.6 Influencing factors for DNb and DTa between rutile and silicate melt

  • 数据来源/ data sources:Xiong Xiaolin et al.(2011)

  • 2.3 水含量对 Nb—Ta 分配系数的影响

  • 熔体含水量也通过改变熔体组分的活度来影响分配系数。熔体中的水主要通过与熔体中的桥氧发生反应,导致熔体解聚,进而使 Nb—Ta 更容易进入熔体中从而导致分配系数的降低(Mysen,2007)。 Xiong Xiaolin 等(2005)等人通过实验得出金红石的 DNbDTa 以及 DNb / DTa 值随水含量的增加而降低。 Foley 等(2002) 也认为,天然岩浆系统的角闪石和熔体之间的 Nb、Ta 的分配系数很大程度上取决于熔体水含量,并且其他相关实验工作也表明,黑云母和角闪石的 DNbDTa 以及 DNb / DTa 值随着熔体水含量的增加而降低(图7~8)(Gao Mingdi et al.,2023; Li et al.,2017)。因此,熔体水含量与 Nb、Ta 分配系数主要表现为负相关关系,随着岩浆的演化,熔体中水含量的升高会导致矿物 DNbDTaDNb / DTa 的降低。与之不同,Chen Wei 等(2018)的实验研究发现,金红石的 DNbDTa 随着超临界流体中水含量的增加而升高,表明超临界流体和正常硅酸盐熔体的组分活度受水含量控制的机制不同。

  • 2.4 熔体成分对 Nb、Ta 分配系数的影响

  • Nb 和 Ta 在熔体中的溶解度以及活度是影响矿物与熔体之间分配系数的决定性因素之一。除水之外,熔体中的其他挥发分元素也对硅酸盐熔体的结构和物理化学性质发挥重要作用( London,1987)。硅酸盐熔体中的偏酸性(pH≈2)富 HF 流体能够有效增高 Nb、 Ta 氧化物的溶解度( Timofeev et al.,2017)。例如,Liu Tao 等(2022)通过对江西灵山早白垩世花岗岩杂岩的实验工作表明,酸性高分异熔体中富集挥发性和助熔剂元素(如 F 和 Li),有利于 Nb 和 Ta 的强烈富集。 Gao Jun 等(2007)证实 F 含量的增加能提高流体中 Nb 和 Ta 的溶解度,Chen Wei 等(2018) 的实验研究也表明 DNbDTa 随着NaF 溶液浓度升高而减小,这可能是因为熔体中 F 的增加会导致形成更多的非桥氧,进而使得熔体能够溶解更多的 Nb、Ta,它们在矿物与熔体之间的分配系数随之降低。其他因素导致的熔体聚合度(通常用 NBO/ T 表征,NBO/ T = Non-bridging oxygen / Tetrahedrally coordinated Cation,即非桥氧与四面体配位阳离子之比)的改变也能够影响 Nb、Ta 在矿物和熔体之间的分配系数(Piilonen et al.,2006)。低 NBO/ T 熔体中的 Ta 相对于 Nb 更有利于溶解(Schmidt et al.,2006),McNeil 等(2020)的研究表明烧绿石等矿物与熔体之间的 DNbDTa 值随着熔体 NBO/ T 的减小而升高。 Gao Mingdi 等(2023)针对含黑云母岩浆体系的实验研究也得到类似的结论,黑云母与熔体之间的 DNbDTa 以及 DNb / DTa 值随着熔体 NBO/ T 的减小而升高(图8)。此外,Li、 B、P 等元素可以通过置换作用使碱金属离子从“成网离子” 至 “变网离子”,从而改变熔体的聚合状态,影响 Nb 和 Ta 的溶解度以及 Nb—Ta 氧化物的结晶顺序(Fiege et al.,2018; Linnen,1998),进而影响 Nb、Ta 在矿物和熔体之间的分配系数。

  • 图7 角闪石与熔体成分对 Nb、Ta 分配系数的影响因素

  • Fig.7 Effects of amphibole and silicate melt compositions on DNb and DTa

  • 数据来源:Li et al.,2017

  • data sources: Li et al., 2017

  • 图8 黑云母与熔体成分对 Nb、Ta 分配系数的影响因素

  • Fig.8 Effects of biotite and silicate melt compositions on DNb and DTa

  • 数据来源:Gao Mingdi et al.,2023

  • data sources: Gao Mingdi et al., 2023

  • 2.5 矿物成分对 Nb、Ta 分配系数的影响

  • 晶格应变模型( Lattice-strain model)被广泛并成功地应用于解释和预测微量元素(特别是 REE)在矿物晶格和熔体之间的分配系数( Blundy and Wood,1994; Onuma et al.,1968; Wade and Wood,2001)。晶格应变模型在对+1、+2、+3 价态的元素在不同矿物晶格中的分配系数拟合效果较好,但是对+4 价(Th,U,Zr,Hf,Ti)和 +5 价的元素(Nb,Ta)尚存在问题。以角闪石为例,Nb 和 Ta 的分配系数与 M1 位置的空间大小有关,并最终取决于在同一位置上竞争的 Fe、Mg 和 Ti 的含量。角闪石 M1 点位的半径会随着 Mg# 的降低而增加; Mg# Mg#=nMgnMg+nFe2++nFe3+较高时,rTa <rM1 <rNb,Ta5+ 的离子半径比 Nb5+ 小 1~2 pm( Tiepolo et al.,2000)。随着 Mg#逐渐降低,rNb 也会逐渐小于 rM1,此时 DNb / DTa 会逐渐增大,因此 DNb / DTa 值与角闪石 Mg#之间具有强烈的负相关性(图7)。对于黑云母而言,Nb 和 Ta 主要在 M2 位,DNbDTa 与黑云母 Mg#值的关系取决于 Nb、Ta 与 Mg、Fe 的占位关系( Brigatti and Guggenheim,2002; Scordari et al.,2010)。黑云母 Mg#值的越低,能够使得更多半径较大的离子 Fe2+进入 M2 位点,同时半径较小的离子 Ti4+、Nb5+ 和 Ta5+ 也会被并入 M2 位点,补偿 Fe2+增加造成的位点失配( Guidotti et al.,1977; Henry and Guidotti,2002)。 Gao Mingdi 等(2023)的实验工作也表明,Mg#较低的黑云母由于 Ti 的优先掺入导致 Nb—Ta 含量增加,从而导致 DNbDTa 比值升高(图8)。 Nb、Ta 分配系数与寄主矿物成分之间的相关性广泛存在,例如榍石的 DNb / DTa 也与其 Al 含量成负相关( Tiepolo et al.,2002)。此外,锂云母在熔体中具有更大的 Nb、Ta 分配系数(Gao Xu et al.,2024),熔体中的 Li 对 Nb 和 Ta 分配系数也存在影响。

  • 2.6 氧逸度对 Nb、Ta 分配系数的影响

  • 微量元素分配系数受到元素本身价态和离子半径的控制,对熔体的结构研究发现 Nb 和 Ta 在地壳和地幔的氧化条件下具有相同+ 5 价( Burnham et al.,2012)。例如,在 FMQ+1( FMQ 代表 Fayalite— Magnetite—Quartz 缓冲剂(凌洪飞,2011)和 FMQ+ 2.4 的氧化条件下,含水花岗质熔体中的 Nb 和 Ta 只以+5 价存在(Farges et al.,2006),暗示很多情况下氧逸度不能用来解释地质体之间 Nb / Ta 值的分异(Burnham et al.,2012)。 Li 等(2017) 的实验工作表明氧逸度对角闪石与熔体之间的 DNbDTa 没有影响。然而,Xiong Xiaolin 等(2005) 提出氧逸度会对金红石中 V 的分配产生重要的影响; 由于金红石中的 Nb5+和 V4+都取代 Ti4+的八面体位置,因此 V 的分配行为随着氧逸度变化时,也会对 Nb、Ta 的分配产生间接的影响。云母中 Fe 在不同氧逸度条件下的价态变化也会导致其进入不同的晶格位置(四面体 T 位或八面体 M 位),并可能同时造成 M 位的晶格变形(Dyar,2002),这种细微的空间差异以及 Ta5+和 Nb5+ 离子半径的区别( 1~2 pm; Tiepolo et al.,2000)也可能引起 DNb / DTa 的改变(Blundy and Wood,2003; Li et al.,2017)。

  • 2.7 Nb、Ta 分配系数影响因素的小结

  • 总结前人的实验数据可以看出:温度和含水量是影响金红石与熔体之间 Nb、Ta 分配系数的主要因素,熔体成分(尤其是 NBO/ T)、矿物 Mg#、和水含量共同影响了角闪石、黑云母与熔体之间的 Nb、Ta 分配系数,并且黑云母 Mg#比熔体水含量发挥了更重要的作用。显然,各种控制因素之间也会存在叠加和抵消的关系。例如,随着岩浆演化的进行,温度降低会导致分配系数的增大,但同时水含量逐渐增加会导致分配系数的降低。因此还需要探究不同条件下控制分配系数的主要因素。此外,一般认为压力对 Nb、Ta 分配系数的影响可以忽略(Adam and Green,2003; Xiong Xiaolin et al.,2011)。

  • 3 地质过程中的 Nb / Ta 的迁移和分异

  • 3.1 岩浆过程中的 Nb—Ta 分异

  • 在岩浆过程中(包括部分熔融与结晶分异),含 Ti 矿物的稳定是 Nb—Ta 分异的关键环节。前人对岩浆过程中不同含 Ti 矿物与硅酸盐熔体之间的 Nb—Ta 分配行为进行了大量的实验研究,但是由于实验材料、条件和过程的差异导致实验结果存在不一致,因此对于引起熔体 DNb / DTa 值变化的关键矿物仍有争议。如上文所述,在岩浆过程中影响 Nb— Ta 分异的理想候选者主要包括金红石、角闪石和黑云母等(Chen Wei et al.,2021; Foley et al.,2002; Gao Mingdi et al.,2023; Li et al.,2017; Stepanov and Hermann,2013; Tang Ming et al.,2019; Zhang Jingbo et al.,2021),但目前尚不清楚哪一种、两种或更多的矿物相对于形成低 Nb / Ta 值的储库(例如大陆地壳和亏损地幔)发挥关键作用。

  • 金红石(TiO2)的结构为共边型八面体,可以提供一个约 58 pm 的晶位,这与 Nb 和 Ta 的离子半径(64 pm 和 66 pm)较为接近,因此 Nb、Ta 在金红石中具有很大的相容性( Foley,2008)。部分熔融过程中,熔体与高 Nb / Ta 值的富金红石的残余相平衡,例如含金红石的榴辉岩通常具有较高的 Nb、Ta 含量与 Nb / Ta 值( Liang et al.,2009; Rudnick et al.,2000; Zhang Jingbo et al.,2021),被认为是形成低 Nb / Ta 值的大陆地壳和太古宙 TTG 的重要机制( Hoffmann et al.,2011; Xiong Xiaolin et al.,2011; Zhang Jingbo et al.,2013; Tang Ming et al.,2019)。 Zhang Jingbo 等( 2021) 的研究发现,Kohistan 岛弧堆积物中的金红石具有高 Nb、Ta 含量和 Nb / Ta 值,他们选择了 MORB 成分作为起始物质,基于分离结晶模型对 Nb / Ta 值的演化趋势进行计算模拟,结果显示约 2%的金红石分离结晶可以使熔体中的 Nb / Ta 值从玄武质母岩浆值(15.5)达到大陆地壳平均值(12~13),而约 80%角闪石的结晶仅会使 Nb / Ta 值微弱降低(<2%),但是作者的计算模拟采用了极高的金红石—熔体 DNb / DTa 参数,与前人实验研究结果不符。 Xiong Xiaolin 等(20052011)研究了含水玄武岩部分熔融过程中金红石与熔体的 Nb、Ta 分配系数,结果表明金红石是 Nb、Ta 的重要载体,并且 DNb 总是小于 DTa; 当温度和水含量降低时,DNbDTaDNb / DTa 值都会增大,只有在温度<1000℃且熔体水含量<10%时,玄武岩的脱水熔融才可能导致 DNb / DTa 高于 1(图6)。但是,这与 Chen Wei 等(2021)的实验结果相矛盾,他们发现温度 850~1000℃和水含质量分数 4%~20%条件下,金红石的结晶并不会使熔体的 Nb / Ta 值降低。那么如何解释在榴辉岩和岛弧堆晶岩中都发现了超球粒陨石 Nb / Ta 金红石的现象呢? 显然,含水的熔流体与金红石的 Nb、Ta 分配系数存在不确定性,可能与金红石中的 Nb—Ta 扩散分异、高 Nb / Ta 值的流体参与等因素有关。前人研究表明,同一个样品中的不同金红石颗粒之间以及颗粒内部的 Nb、Ta 含量和 Nb / Ta 值都存在显著的不均一性,金红石成分环带普遍; Marschall 等(2013)提出动力学扩散分异模型来加以解释,认为在部分熔融过程中金红石与熔体并不处于平衡状态,并且 Nb、Ta 的扩散系数不同(实验测得 Nb 的扩散系数比 Ta 高 1.6~18 倍),因此在金红石结晶过程中 Nb 相比于 Ta 会更快地扩散到金红石中,从形成高 Nb / Ta 的金红石。

  • 在地壳压力下,角闪石是含水玄武质岩浆体系中的重要矿物相,并且可以具有很高的 Ti 含量。前人的实验研究表明,角闪石的 DNbDTa 集中在 0.1~1 之间,DNb / DTa 值变化于 0.8~2.8 之间(图7),角闪石对岩浆演化过程中 Nb、Ta 的分异具有重要的影响。随着岩浆中 Mg#含量的逐渐降低,角闪石/ 熔体的 DNb / DTa 逐渐增大,变化范围从小于 1 至大于 1,岩浆演化过程中角闪石的结晶分异会导致岩浆的 Nb / Ta 值降低。 Li 等(2017)的模拟计算表明,含水岩浆过程的角闪石分离结晶(采用 DNb / DTa 值 1.27)达到 55%时,残余熔体的 Nb / Ta 值从 15 下降到 13。 Chen Wei 等(2021)也提出大陆地壳的平均成分从玄武质向安山质转变的化学分异主要发生在角闪石稳定域。 Tan Dongbo 等(2022) 整理了全球弧岩浆的主微量元素数据,发现 Nb / Ta 和 Dy / Yb 值具有良好的正相关关系,而 Dy / Yb 和 Nb / Ta 的协同降低是角闪石分离结晶的有力标志( Davidson et al.,2007),说明角闪石是影响弧岩浆 Nb—Ta 分异的重要因素,角闪石作为主要造岩矿物,其在岩浆演化过程中的分离结晶相比于金红石等副矿物具有更重要的影响。并且计算模拟结果显示如果分离矿物组合中的角闪石和黑云母分别占 12%~20%和 4%~15%,残余熔体的 Nb / Ta 值可以从约 15.5(MORB 值)降至约 12.5(大陆地壳值)。

  • 前人对云母中 Nb、Ta 分配系数的研究主要针对黑云母,它结构中的八面体位可以被 Ti4+离子占据( Brigatti et al.,2011; Brigatti and Guggenheim,2002)。实验研究表明,虽然黑云母对 Nb、Ta 的分配系数远小于金红石,但是 Nb 在黑云母中的相容性高于 Ta,因此岩浆过程中黑云母的分离结晶更加趋向于形成低 Nb / Ta 值的残余熔体,暗示黑云母作为关键造岩矿物对长英质大陆地壳演化过程中 Nb / Ta 值的变化具有不可忽视的影响( Stepanov and Hermann,2013)。黑云母的早期分离结晶导致岩浆 Nb / Ta 分异作用不明显。随着岩浆演化的进行,从长英质岩浆结晶的低 Mg#黑云母可显著分馏出 Nb 和 Ta,降低岩浆的 Nb—Ta 含量和 Nb / Ta 值。 Gao Mingdi 等(2023) 通过高温高压实验测定了 0.5~1. 0 GPa 和 850~1000℃ 条件下黑云母与花岗质熔体的分配系数并得到了一致的结论,计算模拟表明黑云母和白云母的共同结晶能够有效地导致残余熔体中 Ta 的相对富集和 Nb / Ta 的降低。岩浆演化初始阶段具有较高的 Mg#,黑云母/ 熔体的铌钽分配系数会受到熔体 Mg# 的影响(图8)。 Tan Dongbo 等(2022)通过研究大别造山带北部以角闪石和黑云母堆晶岩发现,Mg#相同的情况下,黑云母相比角闪石具有更强的 Nb—Ta 分异能力,并且岩浆分异形成的的脉岩中 Nb / Ta 值随着 SiO2 含量的升高而降低,与角闪石和黑云母堆晶进行比较,发现两者之间 Nb / Ta 的演化趋势相反并互补。这些现象说明,角闪石和黑云母的堆晶作用能够形成 Nb / Ta 值较低的残余岩浆。此外,Tan Dongbo 等(2022)通过估算指出,如果占硅酸盐地球总质量 0.12%~0.24%的角闪石和黑云母在岩浆过程中形成熔融残余相或岩浆堆晶体(即可能的高 Nb / Ta 储库),就可以平衡整个硅酸盐地球的 Nb 亏损。

  • 在岩浆演化的早期阶段,角闪石和黑云母的分离结晶会导致熔体中 Nb / Ta 值的降低。由于受不同温压条件下不同矿物分离结晶的影响,导致长英质岩石中 Nb—Ta 含量及 Nb / Ta 值具有较大的差异。例如,从 A1 型到 A2 型火成岩套,再到含白云母过铝质花岗岩(MPG),Nb / Ta 值呈递减趋势。此外,通常需要 90%以上的分离结晶才能解释富稀有金属的岩浆岩中 Nb 和 Ta 含量的变化范围。岩浆热液蚀变形成的交代岩及其围岩通常富含 Ta、Nb 并具有较低的 Nb / Ta 值,这体现了热液流体对 Nb、 Ta 分馏作用的重要作用( Ballouard et al.,2020)。在岩浆演化的晚阶段,由于挥发分 F 含量的升高,会增加岩浆中非桥氧的数量,导致 Nb 和 Ta 在熔体中的溶解度进一步增大。此外 Li、P、B 等挥发性元素的置换作用,会使碱金属离子从“成网离子”转化为“变网离子”,从而降低熔体的聚合度,更有利于 Nb 和 Ta 在熔体中的富集( Linnen,1998),最终导致熔体中的 Nb 和 Ta 含量上升直到铌、钽矿石矿物的饱和结晶。通常稀有金属花岗岩型铌—钽矿床 Ti 含量相对较低,并富含白云母(陈骏等,2008)。在岩浆演化晚阶段形成的长英质岩浆中,云母的分离结晶可能是导致高分异伟晶岩 Nb—Ta 富集矿化且 Nb / Ta 值降低的主要原因,因为作为主要矿物的云母结晶会导致熔体中 Ti 含量的降低,抑制富 Ti 副矿物的饱和,限制了金红石和榍石等富具有较高 Nb、Ta 分配系数的含 Ti 副矿物的结晶,从而可以使 Nb、Ta 最大限度地存留和富集于残余熔体。

  • 白云母的 Nb / Ta 值可以作为指标识别伟晶岩成矿带,并且伟晶岩演化过程中云母中 Nb、Ta 含量的增加可以反映伟晶岩中的 Nb、Ta 富集(田祥雨等,2024)。在岩浆晚期演化过程中,云母的出现通常表现为黑云母—白云母—锂云母的转变。低 NBO/ T 与 Mg#的降低会导致黑云母 DNb / DTa的进一步增大。白云母的 Nb、Ta 分配系数及影响因素目前的相关研究较为欠缺。 Stepanov and Hermann(2013)通过实验模拟发现多硅白云母的 DNbDTa 都大于 1,并且 DNb / DTa >1。岩浆演化晚阶段,由于挥发分 Li 含量的升高形成的富锂白云母具有较高的 DNbDTa(分别为 4.46 和 0.88),因此相比黑云母能更有效地分异 Nb、Ta(Gao Xu et al.,2024)。此外,低 NBO/ T 熔体中的 Ta 相对于 Nb 具有更高的溶解度,从而导致高演化熔体中的 Nb / Ta 值会呈现逐渐降低的趋势。

  • 通常富钽矿石矿物相对于富铌矿石矿物会具有更高的溶解度,例如钽锰矿相对于铌锰矿在岩浆晚期熔体中具有更高的溶解度。此外,硅酸盐熔体中 Li 含量的增加会提高 Nb 和 Ta 的溶解度,但是对 Ta 的效果更加明显(曹振辉等,2019)。因此,Nb / Ta 值越低时可能表示岩浆的演化程度越高。 Ballouard 等(2016)提出,可以根据 Nb / Ta 值将过铝质花岗岩划分为结晶分异成因(Nb / Ta>5)和岩浆—热液相互作用成因(Nb / Ta<5)。岩浆高度分异和岩浆—流体混合作用是目前对于铌钽富集成矿的两种常见的争议性观点。徐喆等(2018) 通过对江西宜春稀有金属矿床的研究发现矿化程度与节理发育程度表现为正相关的关系,而节理可以为流体运移提供通道。在岩体外接触带发育透辉石等热液交代矿物。因此认为岩浆分异仅导致了铌钽的富集,而流体交代才是铌钽成矿的关键。 McNeil 等(2020) 通过实验模拟的熔体—热液流体相互作用过程中流体提供的 Mn 元素可以促进铌锰矿的饱和,并且可以结晶出铌铁矿,细晶石等铌钽矿石矿物。流体提供的 P 可以降低铌钽锰矿在熔体中的溶解度,促进铌钽锰矿的沉淀(唐勇等,2015)。而凡秀君等(2024)对江西宜春稀有金属矿床的研究发现随着成矿岩体岩浆分异的演化,全岩 Nb 和 Ta 含量逐步增加,并且铌、钽矿石矿物主要表现为浸染状分布而非脉状,指示铌— 钽矿化主要是岩浆高度演化分异的结果。

  • 综上,在岩浆演化过程中,早期主要是角闪石和黑云母的分离结晶导致了熔体中 Nb / Ta 值的降低,而在岩浆演化的晚期阶段和岩浆—热液阶段,主要是白云母和富锂云母等结晶导致 Nb / Ta 值的持续降低,直至最终的铌钽富集成矿。在岩浆后期阶段,云母的 Nb / Ta 值及 Nb、Ta 含量还可以指示伟晶岩中 Nb—Ta 的富集过程与成矿阶段。

  • 3.2 俯冲作用过程中的 Nb—Ta 分异

  • 前人通过对榴辉岩及各种超高压变质岩及脉体的研究,发现在俯冲变质过程中 Nb、Ta 等高场强元素能够发生明显的迁移和分异(Ding Xing et al.,2013)。 Liang 等( 2009) 对中国大陆科学钻探(CCSD)项目获得的钻孔岩芯进行了研究,发现不同的深度榴辉岩中的金红石的 Nb—Ta 含量和 Nb / Ta 值有较大的差异,认为这是由板块俯冲作用导致的。由于富 Ti 矿物常富集 Nb、Ta 等高场强元素,对于 Nb—Ta 具有相对较大的相容性,如金红石、榍石、钛铁矿、角闪石、黑云母等。因此可以通过追踪俯冲变质过程中不同变质阶段不同岩性中的主要富 Ti 矿物的转变探究 Nb、Ta 的迁移与储存。在俯冲作用早期的低级变质阶段,榍石是主要的富 Ti 矿物,榍石的 DNbDTa 可以达到 100 以上,可能是 Nb 和 Ta 的主要载体之一。在绿片岩相变质阶段,Nb 和 Ta 的载体主要为黑云母。在角闪岩相变质阶段,角闪石和辉石为主要的含 Ti 矿物,Nb 和 Ta 的迁移和储存主要受控于角闪石。在角闪岩相之后的变质增温阶段,角闪石释放的 Ti 与 Fe 共同形成钛铁矿,而钛铁矿的 DNbDTa 主要介于 1~10,这可能也暗示了在变质增温阶段 Nb 和 Ta 由角闪石向钛铁矿的转移。当俯冲过程中的变质作用持续进行,体系的压力和温度进一步升高,发生角闪岩相向榴辉岩相的转变,并达到金红石形成的压力条件( >1.5 GPa)。金红石是榴辉岩中最主要的含 Ti 矿物,被认为可以存储体系大部分的 Nb 和 Ta。在俯冲晚期的退变质阶段,榍石往往是金红石和钛铁矿被交代之后的产物,从而导致在 Nb—Ta 迁移到榍石等矿物(孙赛军等,2020)。

  • Xiao Yilin 等(2006)提出了一个“区域精炼”脱水模型来解释俯冲作用过程中 Nb—Ta 的迁移与分异:在俯冲的早期阶段,板块内部较冷的区域被较热的层所包围,而在蓝片岩向角闪岩转变过程中,角闪石大量形成而金红石不能稳定存在,脱水主要发生在两侧较热的区域,由于角闪石等对 Nb 具有更大的相容性,会形成高 Nb / Ta 值的角闪石和低 Nb / Ta 值的流体,并逐渐向较冷的区域迁移。 Ding Xing 等(2009)进行的含水安山岩热迁移实验证明了流体的迁移现象,实验结果表明在热梯度的驱动下,Nb、 Ta 和 Ti 会优先通过超临界流体扩散迁移到实验的较冷端,并且由于 Nb 和 Ta 的热迁移模式不同,Nb—Ta 在冷端会发生剧烈的分异; 作者认为这一过程最可能发生在蓝片岩—角闪榴辉岩的进变质作用过程中,由于角闪石的作用会形成富 Nb—Ta—Ti 但低 Nb / Ta 的流体。高压至超高压榴辉岩中金红石颗粒的 Nb / Ta 值会受到含水流体的影响。形成高 Nb / Ta 值的金红石。与之平衡的流体则强烈亏损 Nb—Ta 且具有较低的 Nb / Ta 值,它们可能会被含水矿物保留在较冷、较湿的地区或者通过流体与岩石反应转移到地幔楔。随着来自这些富流体源区的弧岩浆最终加入大陆地壳,从而降低大陆地壳的 Nb / Ta 值( Hacker et al.,2003; Xiao Yilin et al.2006; Zack and John,2007; Ding Xing et al.2009)。

  • 俯冲板块随后的折返过程往往伴随退变质作用。总体上来看,退变质会削弱俯冲作用对 Nb / Ta 分异的影响( Ding Xing et al.,2013)。李静等(2017)对滇西勐库的退变质榴辉岩研究发现,退变质过程中降温降压使得榴辉岩发生大规模角闪岩相退变质作用,金红石不再稳定而转变为榍石( Li Jianwei et al.,2010; Zack et al.,2002),因为金红石与榍石的转变压力在 1.5 GPa 左右(Xiong Xiaolin et al.,2005)。榍石的 Nb、Ta 含量远低于金红石(Ding Xing et al.,2009),因此金红石—榍石转变会释放大量的 Nb 和 Ta。并且,由于榍石对 Ta 具有更大的相容性,该过程释放的 Nb 可能更多储存在退变质形成的角闪石中。低 Mg 角闪石相比于高 Mg 角闪石对 Nb 具有更大的相容性,例如 Liang 等(2009)在中国大陆科学钻探工程(CCSD)样品中发现了与金红石和榍石共存的低 Mg 角闪石具有较高的 Nb / Ta 值,因此,折返过程中的 Nb—Ta 分异主要由残余金红石、榍石和角闪石共同控制。

  • 退变质过程除了导致金红石转变为榍石和钛铁矿等,还会引起多硅白云母等高压—超高矿物的分解。 Stepanov and Hermann(2013)通过实验模拟研究了多硅白云母与熔体之间的 Nb、Ta 分配系数,发现 DNbDTa 都大于 1,并且 DNb / DTa >1。实验数据表明,俯冲带地温梯度下的多硅白云母可以在 300 km 的深度稳定存在( Liu Wendi et al.,2019; Schmidt and Poli,1998; Schmidt and Poli,2014),并且多硅白云母的脱水分解温度(压力范围 2.3~3.2 GPa)与榴辉岩的部分熔融温度非常接近。 Liu Qiang 等(2009)以大别山东部碧溪岭超高压变质榴辉岩为实验样品进行了高温高压实验,结果显示石英榴辉岩相向角闪岩相转变的折返过程中伴随多硅白云母的脱水部分熔融。由于多硅白云母对 Nb— Ta 的强相容性,含多硅白云母的榴辉岩脱水熔融可能会释放 Nb、Ta 并进入金红石,亦或者进入脱水熔融产生的流体并进而促进 Nb、Ta 的运移。

  • 综上,俯冲作用过程中富 Ti 矿物的转变和流体控制着 Nb、Ta 的储存,迁移和分异。大量的 Nb 和 Ta 可能最终储存在含角闪石和金红石的榴辉岩中。含角闪石和金红石的榴辉岩发生脱流体反应或与流体发生水岩反应可以形成低 Nb / Ta 值的流体,而由这些流体交代地幔楔触发形成的弧岩浆可能是降低大陆地壳 Nb / Ta 值的因素。

  • 3.3 流体在 Nb—Ta 分异中的作用

  • 流体是变质反应过程中物质迁移的重要介质,并且被认为是造成 Nb—Ta 分异的潜在重要因素之一(Xiao Yilin et al.,2006)。 Huang 等(2012)在高压—超高压榴辉岩中发现了 Nb—Ta 强烈分异的长英质岩脉,并且靠近岩脉的榴辉岩中的金红石 Nb / Ta 值变化很大(7.8~49.8),而没有明显流体活动迹象的区域则没有明显的 Nb—Ta 分异,说明流体对 Nb—Ta 的分异与运移有重要的影响。 Zheng 等(2007)提出超高压流体可以溶解大量的 Na、Al 和 Si,这些元素与 Nb—Ta 在高温下形成配体从而促进了它们的迁移。

  • 超临界流体对于 Nb—Ta 的迁移具有重要的影响。超临界流体一般伴随着超高压变质作用,是从俯冲板块向地幔楔传递物质的理想介质。 Zhang Xiaowei 等(2023)认为变质作用中产生的含水流体不能使 Nb—Ta 等高场强元素进行远距离迁移,Nb—Ta 等元素的迁移应该是超临界流体参与的结果。超临界流体黏度低,对于 Nb、Ta 等高场强元素具有很高的溶解度,二者溶解度的差异可能会导致分异( Ding Xing et al.,2009)。 Chen Tienan 等(2022)发现榴辉岩脉中的流体包裹体富含 REE 和 HFSE(高场强元素,High-field-strength element),认为这种流体属于超临界流体且有长距离运移的能力,相对于 Ta,其更易溶解 Nb。因此,俯冲榴辉岩脱水产生的超球粒陨石 Nb / Ta 值的超临界流体,一旦进入地幔楔交代橄榄岩则可使其获得超球粒陨石的 Nb / Ta 值,而经过这种超临界流体通过交代作用形成了具有高 Nb / Ta 值的超高压榴辉岩则可能是地球缺失的高 Nb / Ta 储库。与之相反,Zhang Zeming 等(2008)基于苏鲁造山带榴辉岩脉中金红石的强 Nb—Ta 分异特征,估算得到交代流体具有低球粒陨石的 Nb / Ta 值。

  • 3.4 岩浆演化后期的 Nb—Ta 成矿作用及 Nb—Ta 分异

  • 与 Ta 矿床相关的 MPG(含白云母过铝质花岗岩和伟晶岩)与 A2 型花岗岩通常表现为 Nb—Ta 含量与 Nb / Ta 值呈负相关。 MPG 为含云母地壳岩石的低温熔融形成(Ballouard et al.,2020),云母是其 Nb—Ta 富集成矿的关键矿物。由于黑云母、白云母等的结晶分异作用会降低 Nb / Ta 值,随着演化过程中熔体聚合度等因素的影响,云母等矿物对岩浆 Nb / Ta 值的降低作用逐渐显著。不同云母对于 Nb、 Ta 具有不同的富集程度,如锂云母 Nb—Ta 含量可分别达到 190×10-6 和 230×10-6Li Jie 等,2015),锂铁云母中 Nb 含量可以达到 1347×10-6Zhu Zeying 等,2018)。东天山镜儿泉伟晶岩型 Nb—Ta 矿床的白云母是 Nb—Ta 的主要赋存矿物,钛铁矿、榍石、金红石等虽然也具有相对较高的 Nb、Ta 分配系数,但其含量远小于云母。白云母的分离结晶导致的低 Nb / Ta 值是发生 Nb—Ta 矿化的关键,不同成矿带中白云母 Nb / Ta 值的显著差异指示了成矿过程 Nb—Ta 的变化(田祥雨等,2024)。初始阶段的白云母具有相对较高的 Nb / Ta 值和 Nb 含量,这是由于金红石、钛铁矿等矿物(DNb / DTa <1)分离结晶导致了熔体的 Nb / Ta 值升高和 Nb 的逐渐富集。第二阶段,随着白云母分离结晶的不断进行,会消耗熔体中的富 Ti 矿物,抑制金红石和钛铁矿等对熔体中 Nb—Ta 的消耗,同时会导致 Nb / Ta 值的逐渐降低和 Ta 的大量富集,此时对 Nb 的含量变化几乎没有影响。第三阶段 Ta 大量富集直至饱和,随着白云母分离结晶的不断进行,导致了 Nb、Ta 的富集及 Nb / Ta 值的降低。由于 Nb 在熔体中的溶解性小于 Ta,铌铁矿等矿石矿物会首先析出,并且伴随着流体交代作用后期形成的富 Ta 矿石矿物会逐渐交代早期形成的铌铁矿等。

  • 富稀有金属火成岩中 Nb—Ta 的变化范围较大,实验表明这需要黑云母、白云母等矿物的极端分馏,虽然最近的研究有发现黑云母中 Nb 的超常富集,但是仅仅依靠云母等矿物在岩浆过程的分离结晶不足以导致 Nb / Ta 的极端比值(Ballouard et al.,2020)。云母不仅为岩浆阶段的产物,也参与热液过程。 Nb—Ta 成矿过程中的矿石矿物也会造成 Nb—Ta 的强烈分馏。当熔体后期 Nb、Ta 含量富集到一定程度后,会形成 CGM(铌铁矿族矿物)等 Nb、 Ta 矿石矿物。 CGM 也会导致熔体 Nb / Ta 值的降低,并且会迅速降低熔体的 Nb—Ta 含量。岩浆演化后期的流体交代作用在其中具有不可忽视的作用,如江西宜春以 Ta 为主的铌钽矿床( 徐喆等,2018),矿化强度与蚀变强度呈正相关。维拉斯托稀有金属矿床石英斑晶的雪球结构和共生的熔流体包裹体都指示了岩浆后期热液流体演化过程的重要影响(杨飞等,2023)。 Goldmann 等( 2024) 对埃及东部沙漠 Nuweibi 花岗岩岩浆—热液演化这一阶段铌钽锡氧化物的转变过程 Nb / Ta 值的降低做出了合理解释。花岗质熔体向上迁移并不断发生分离结晶,导致残余熔体中 Nb—Ta 等不相容元素和挥发分含量的不断升高,由于 Ta 相比于 Nb 在岩浆演化后期熔体中具有更大的溶解度,因此会先形成富 Nb 的 CGM 矿物,随着挥发分含量的不断积累,流体达到饱和时会发生出溶,流体活动还会不断萃取岩体中的成矿元素向上运移,至岩体顶部由于物理化学条件的改变,从而发生强烈的交代作用。出溶形成的岩浆成因的富 F 酸性还原性流体具有很高的 Nb—Ta 溶解度,可以达到三个数量级,并且相比于 Nb 具有更高的 Ta 含量。其交代蚀变作用会导致花岗岩中 Nb / Ta 含量的降低,导致铌铁矿边部 Ta 含量的增加,并形成锡锰钽矿,细晶石等 Ta 含量更高的矿物交代早期形成的铌铁矿。除此之外,部分矿石矿物的分馏会导致 Nb / Ta 值的升高,如 PGM(烧绿石族矿物)和 EGM(异性石族矿物)作为辅助矿物相出现在整个侵入体中,可能导致 Nb / Ta 显著增加。例如,0.5%的 EGM 和 0. 035%的 PGM 结晶可以使残余熔体的 Nb / Ta 比分别提高到 40 和 25。汪相和楼法生(2022)提出南岭燕山期的含 W 等稀有金属花岗岩是大规模岩浆侵入体经历了长期(约 20Ma)的分离结晶演化,从而通过高度分异和熔离作用形成富集亲石元素、不相容元素(包括 Nb 和Ta)以及挥发分( H2O、F 等)的白云母花岗岩(熔体)和同源流体。由于 W 和 Nb、Ta 等元素一般在富 F 酸性还原性流体或超临界流体中才具有很高的溶解度,这限定了与高分异花岗岩有关的 W— Nb—Ta 矿(例如南岭大吉山)通常赋存于相较于主体岩体更加浅部的残余岩浆形成的岩枝或岩脉。

  • Nb 矿床除了与 A1 型花岗岩和硅不饱和的霞石正长岩有关外,碱性岩—碳酸岩杂岩也是 Nb 矿床的最重要的来源。例如,白云鄂博超大型铁铌稀土矿床中白云岩的 Nb / Ta 具有极端比值,矿区镁铁质—超镁铁质岩和碳酸岩明显富集 Nb、Ta,其主要起源于软流圈地幔(王强等,2024)。对于白云鄂博铁铌稀土矿床的成矿过程和成矿时代尚有不同的认识(刘淑春等,1999; 章雨旭等,20052008),其形成时代可以追溯到中元古代,并且后期多阶段流体的交代作用(范宏瑞等,2001)可能对 Nb—Ta 分异和超常富集具有重要贡献。由于碳酸岩熔体与硅酸盐熔体具有显著差别,并且碱性岩—碳酸岩杂岩的形成机制还存在较大争议,其 Nb 和稀土的超常富集与成矿作用更需要进一步研究。

  • 4 结论和展望

  • 目前,关于 Nb—Ta 分异的可能机制和控制因素还存在很大的争议。地球不同圈层和地质体的 Nb、Ta 含量和 Nb / Ta 值存在显著差异。不同地幔端元的 Nb / Ta 值存在一定的差异性,这可能与地幔端元的成因具有密切联系。大陆地壳相比于 MORB 的低 Nb / Ta 值是值得关注的问题,这可能与角闪石,黑云母和金红石的分异作用有关。由于金红石、角闪石和黑云母等矿物具有相对较大的 Nb、Ta 分配系数,并且角闪石和黑云母常常作为主要造岩矿物,被认为是导致形成大陆地壳低 Nb / Ta 值的关键矿物。而金红石作为 TTG 的必要残余相,可以大量地储存铌、钽,因此金红石可能导致了大陆地壳的铌钽亏损现象。对于这一过程的解释目前存在较大争议。 Nb、Ta 在这些矿物和熔体之间的分配系数主要受到温度、氧逸度、熔体和矿物成分等因素的影响,并且随着地质过程的进行,各种控制因素之间也会存在相互叠加和抵消。随着岩浆演化过程的持续进行,各种控制因素之间也会存在相互叠加和抵消。随着岩浆演化过程的持续进行,Nb / Ta 值具有相对一致的总体趋势。在岩浆演化早期角闪石和黑云母的分离结晶过程会导致 Nb / Ta 值的降低。在岩浆演化的后期阶段,F、Li 等挥发分大量富集会促进熔体中铌、钽溶解度的升高并富集在熔体,黑云母,白云母及富锂云母是这一阶段导致熔体 Nb / Ta 值降低的重要原因,并对 Nb、Ta 的富集成矿阶段具有很好的指示作用。俯冲作用过程中 Nb、Ta 的迁移和储存可以通过追踪不同阶段主要富 Ti 矿物相的转变。早期阶段的角闪岩相主要受到角闪石的作用形成低 Nb / Ta 值的流体,随着压力的进一步升高至榴辉岩相,Nb、Ta 主要受到金红石的控制,大量的 Nb 和 Ta 储存在含金红石榴辉岩中,在退变质作用过程中金红石不能稳定存在,在转化成榍石的过程中,部分 Nb、Ta 会进一步储存在角闪石中并形成低 Nb / Ta 值的流体。超临界流体可能作为俯冲地质条件下携带铌、钽等高场强元素远距离运移的重要载体。岩浆后期的流体与熔体相互作用可能会促进铌—钽矿石矿物的沉淀。

  • 前人已发表的基于高温高压实验的不同矿物 Nb、Ta 分配系数存在不一致性,导致选择不同的分配系数进行的分离结晶和部分熔融的计算模拟结果相差较大,因此还需要进行进一步的、更加系统的高温高压实验来限定不同地质过程中各种控制因素对关键矿物分配系数的影响。例如,不同温度、压力和含水量条件下金红石和含水熔体的 DNb / DTa 的变化规律,这对于解释金红石对熔体中的 Nb / Ta 值变化的影响具有决定性作用。此外,当前关于白云母、多硅白云母、榍石等矿物 Nb、Ta 分配系数的高温高压实验极为有限,鉴于白云母及多硅白云母与岩浆后期铌钽成矿过程、地壳增生以及俯冲带岩浆作用密切相关,并且榍石常常作为深俯冲过程中金红石退变质作用的产物,有关它们的实验研究亟待加强。最后,对于稀有金属花岗岩型铌钽矿床的形成机制,到底是受控于岩浆的高度演化分异还是流体的参与仍然存在争议。

  • 参考文献

    • 曹振辉, 崔恒星, 崔继强, 刘孟合, 张若曦, 杨水源. 2019. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义. 地质科技情报, 38(3): 52~62.

    • 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459~473.

    • 范宏瑞, 谢奕汉, 王凯怡, 杨学明. 2001. 碳酸岩流体及其稀土成矿作用. 地学前缘, 8(4): 289~295.

    • 凡秀君, 刘杨, 丁沛勋, 钟春荣, 陈莉, 于成涛. 2024. 江西宜春花岗岩型稀有金属矿床的岩浆分异机制及成矿模型. 岩石学报, 40(9): 2803~2818.

    • 李静, 孙载波, 黄亮, 徐桂香, 田素梅, 邓仁宏, 周坤. 2017. 滇西勐库退变质榴辉岩的P—T—t轨迹及地质意义. 岩石学报, 33(7): 2285~2301.

    • 刘淑春, 章雨旭, 郝梓国, 彭阳. 1999. 白云鄂博赋矿白云岩成因研究历史、问题及新进展. 地质论评, 45(5): 477~486.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 王强, 李五福, 王秉璋, 王涛, 周金胜, 马林, 李玉龙, 袁博武, 王春涛, 王军. 2024. 与碱性岩—碳酸岩杂岩共生的铌—稀土成矿作用——兼论东昆仑大格勒铌—稀土矿床中的碱性岩—碳酸岩杂岩成因. 大地构造与成矿学, 48(1): 1~37.

    • 汪相, 楼法生. 2022. 论岩浆热液矿床的成矿期——以南岭地区燕山期钨矿为例. 地质论评, 68(02): 507~530.

    • 王小均, 刘建强, 陈立辉. 2014. HIMU型洋岛玄武岩的地球化学特征. 高校地质学报, 20(3): 353~367.

    • 孙赛军, 廖仁强, 丛亚楠, 隋清霖, 李爱. 2020. 钛的地球化学性质与成矿. 岩石学报, 36(1): 68~76.

    • 唐勇, 张辉, 吕正航. 2015. 富磷岩浆体系与铌、钽成矿作用的实验研究. 矿物学报, 35(S1): 341.

    • 田祥雨, 王瑞, 刘思宇, 孙海微, 陈寿波, 席斌斌. 2024. 云母对伟晶岩型关键金属矿床的成因和勘查指示: 以东天山镜儿泉伟晶岩型Li—Be—Nb—Ta矿床为例. 岩石学报, 40(9): 2944~2962.

    • 徐喆, 王迪文, 吴正昌, 符海明, 刘庆宏, 刘杨, 黄新曙. 2018. 江西宜春雅山地区铌钽矿床地质特征及成因探讨. 东华理工大学学报(自然科学版), 41(04): 364~378.

    • 杨飞, 武广, 陈公正, 张彤, 李英雷, 李士辉, 师江朋. 2023. 维拉斯托稀有金属—锡多金属矿床铌铁矿族矿物特征及其对岩浆—热液演化的指示. 矿床地质, 42(03): 463~480.

    • 章雨旭, 江少卿, 张绮玲, 赖晓东, 彭阳, 杨晓勇. 2008. 中国地质, 35(6): 1129~1137.

    • 章雨旭, 吕洪波, 张绮玲, 乔秀夫. 2005. 微晶丘成因新认识. 地球科学进展, 20(6): 693~700.

    • 赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1~19.

    • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan G B V I. 2010. Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic Enclaves and Host Dacite, SE Spain. Journal of Petrology, 51(4): 785~821.

    • Ballouard C, Poujol P, Boulvais Y, Branquet R, Tartèse J L, Vigneresse. 2016. Nb—Ta fractionation in peraluminous granites: A marker of the magmatic—hydrothermal transition. Geology, 44(3): 231~234.

    • Ballouard C, Massuyeau M, Elburg M A, Tappe S, Viljoen F, Brandenburg J T. 2020. The magmatic and magmatic—hydrothermal evolution of felsic igneous rocks as seen through Nb—Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth-Science Reviews, 203: 103115.

    • Barker F, Arth J G. 1976. Generation of trondhjemitic—tonalitic liquids and Archean bimodal trondhjemite—basalt suites. Geology, 4(10): 596~600.

    • Barley M E. 2000. Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. 47(5): 873~883.

    • Barnes S, Arndt N. 2019. Distribution and Geochemistry of Komatiites and Basalts Through the Archean. 103~132.

    • Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3~4): 197~213.

    • Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188~1214.

    • Blundy J, Wood B. 1994. Prediction of crystal—melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.

    • Blundy J, Wood B. 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3~4): 383~397.

    • Brigatti M, Malferrari D, Laurora A, Elmi C. 2011. Structure and mineralogy of layer silicates: recent perspectives and new trends, Layered mineral structures and their application in advanced technologies (M. F. Brigatti and A. Mottana, editors), 1~71.

    • Brigatti M F, Guggenheim S. 2002. Mica Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models. Reviews in Mineralogy and Geochemistry, 46(1): 1~97.

    • Burnham A D, Berry A J, Wood BJ, Cibin G. 2012. The oxidation states of niobium and tantalum in mantle melts. Chemical Geology, 330~331: 228~232.

    • Campbell I H, O’Neill St C H. 2012. Evidence against a chondritic Earth. Nature, 483(7391): 553~558.

    • Cao Zhenhui, Cui Hengxing, Cui Jiqiang, Liu Menghe, Zhang Ruoxi, Yang Shuiyuan. 2019&. Mineralogy and Geological significance of Niobium and Tantalum minerals in the Huangshan Niobium Deposit, Jiangxi Province, South China. Geological Science and Technology Information, 38(03): 52~62.

    • Cerny P, Chapman R, Simmons W B, Chackowsky L E. 1999. Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidation. 84(5~6): 754~763.

    • Chen Tienan, Chen Renxu, Zheng Yongfei, Zhou Kun, Yin Zhuangzhuang, Wang Zhimin, Gong Bing, Zha Xiangping. 2022. The effect of supercritical fluids on Nb—Ta fractionation in subduction zones: Geochemical insights from a coesite-bearing eclogite-vein system. Geochimica et Cosmochimica Acta, 335: 23~55.

    • Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Jijunfeng. 2008&. W—Sn—Nb—Ta-bearing Granites in the Nanling Range and Their Relationship to Metallogengesis. Geological Journal of China Universities, 14(04): 459~473.

    • Chen Wei, Xiong Xiaolin, Wang Jintuan, Xue Shuo, Li Li, Liu Xingcheng, Ding Xing, Song Maoshuang. 2018. TiO2 Solubility and Nb and Ta Partitioning in Rutile—Silica-Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123(6): 4765~4782.

    • Chen Wei, Zhang Guoliang, Ruan Mengfei, Wang Shuai, Xiong Xiaolin. 2021. Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research——Solid Earth, 126(3)

    • Chen Yixiang, Zheng Yongfei. 2015. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite. Geochimica Et Cosmochimica Acta, 150: 53~73

    • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole“sponge” in arc crust? Geology, 35(9): 787~790

    • Ding Xing, Hu Yuanhua, Zhang Hong, Li Congying, Ling Mingxing, Sun Weidong. 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. Journal of Geology, 121(3): 255~274.

    • Ding Xing, Lundstrom C, Huang Fang, Li Jie, Zhang Zeming, Sun Xiaoming, Liang Jinlong, Sun Weidong. 2009. Natural and experimental constraints on formation of the continental crust based on niobium—tantalum fractionation. International Geology Review, 51(6): 473~501

    • Dyar M D. 2002. Optical and Mossbauer Spectroscopy of Iron in Micas. Reviews in Mineralogy and Geochemistry, 46(1): 313~349.

    • Fan Xinjun, Liu Yang, Ding Peixun, Zhong Chunrong, Chen Li, Yu Chengtao. 2024&. The magmatic differentiation mechanism and metallogenic model of the Yichun granite-type rare metal deposit in Jiangxi Province. Acta Petrologica Sinica, 40(9): 2803~2818.

    • Farges F O, Linnen R L, Brown G E, Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W. The Canadian Mineralogist, 44(3): 795~810.

    • Fiege A, Simon A, Linsler S A, Bartels A, Linnen R L. 2018. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation. Ore Geology Reviews, 94: 383~395.

    • Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837~840.

    • Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489~518.

    • Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilization of Ti—Nb—Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974~4996.

    • Gao Mingdi, Xiong Xiaolin, Huang Fangfang, Wang Jintuan, Wei Chunxia. 2023. Key Factors Controlling Biotite—Silicate Melt Nb and Ta Partitioning: Implications for Nb—Ta Enrichment and Fractionation in Granites. Journal of Geophysical Research——Solid Earth, 128(7).

    • Gao Xu, Michaud J A S, Zhou Zhenhua, Horn I, Almeev R R, Weyer S, Holtz F. 2024. Trace element (Be, Zn, Ga, Rb, Nb, Cs, Ta, W) partitioning between mica and Li-rich granitic melt: Experimental approach and implications for W mineralization. Geochimica et Cosmochimica Acta, 375: 1~18.

    • Goldmann S, Michaud J A S, Krummacker T, Zhang Chao, Holtz F, Khudeir A A, Hamid S, Mohamed A E R. 2024. Nb—Ta—Sn oxides as markers of magmatic fractionation and magmatic—hydrothermal evolution: The example of the Nuweibi granite intrusion, Eastern Desert, Egypt. Geochemistry, 126215.

    • Goss A R, Kay S M. 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, ~68°W). Earth and Planetary Science Letters, 279(1~2): 97~109.

    • Green T H, Adam J. 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3. 0 GPa, 650~700 ℃. European Journal of Mineralogy, 15(5): 815~830.

    • Green T H, Pearson N J. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 51(1): 55~62.

    • Guidotti C V, Cheney J T, Guggenheim S. 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. American Mineralogist, 62(5~6): 438~448.

    • Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1: Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: art. no. 2029. Journal of Geophysical Research: Solid Earth, 108(B1).

    • Henry D J, Guidotti C V. 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal—chemical controls, and petrologic applications. 87(4): 375~382.

    • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421~436.

    • Hoffmann J E, Münker C, Næraa T, Rosing M T, Herwartz D, Garbe-Schönberg D, Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157~4178.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hollings P, Kerrich R. 1999. Trace element systematics of ultramafic and mafic volcanic rocks from the 3Ga North Caribou greenstone belt, northwestern Superior Province. Precambrian Research, . 93(4): p. 257~279.

    • Holycross M E, Watson E B. 2018. Trace element diffusion and kinetic fractionation in wet rhyolitic melt. Geochimica et Cosmochimica Acta, 232: 14~29.

    • Huang Guangyu, Chen Yi, Guo Jinghui, Palin R, Zhao Lei. 2022. Nb and Ta intracrustal differentiation during granulite-facies metamorphism: Evidence from geochemical data of natural rocks and thermodynamic modeling. American Mineralogist, 107(11): 2020~2033

    • Huang J, Xiao Y, Gao Y, Hou Z, Wu W. 2012. Nb—Ta fractionation induced by fluid—rock interaction in subduction-zones: Constraints from UHP eclogite- and vein-hosted rutile from the Dabie orogen, Central—Eastern China. Journal of Metamorphic Geology, 30(8): 821~842.

    • Jochum K P, Seufert H M, Spettel B, Palme H. 1986. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta, 50(6): 1173~1183.

    • Kamber B S, Greig A, Schoenberg R, Collerson K D. 2003. A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation. Precambrian Research, 126(3): 289~308.

    • Kerr A C, La Isla de Gorgona. 2005. Colombia: A petrological enigma? Lithos, 84(1): 77~101.

    • Kerrich R, Wyman D, Fan J, Bleeker W. 1998. Boninite series: low Ti-tholeiite associations from the 2. 7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1): 303~316

    • Laurie A, Stevens G. 2012. Water-present eclogite melting to produce Earth’s early felsic crust. Chemical Geology, 314~317: 83~95.

    • Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta—Nb bearing granites. Ore Geology Reviews 65, 793~810.

    • Li Jianwei, Deng Xiaodong, Zhou Meifu, Lin Yongsheng, Zhao Xinfu, Guo Jingliang. 2010. Laser ablation ICP-MS titanite U—Th—Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu—Fe—Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1~4): 56~67.

    • Li Jing, Sun Zaibo, Huang Liang, Xu Guixiang, Tian Sumei, Deng Rrenhong, Zhou Kun. 2017&. P—T—t path and geological significance of retrograded eclogites from Mengku area in western Yunnnan Province, China. Acta Petrologica Sinica, 33(7): 2285~2301

    • Li L, Xiong X L, Liu X C. 2017. Nb/Ta fractionation by amphibole in hydrous basaltic systems: Implications for arc magma evolution and continental crust formation. Journal of Petrology, 58(1): 3~28.

    • Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1): 27~40.

    • Linnen R L. 1998. The solubility of Nb—Ta—Zr—Hf—W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013~1025.

    • Ling Hongfei. 2011&. Origin of Hydrothermal Fluids of Granite type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193~206.

    • Liu Qiang, Jin Zhenmin, Zhang Junfeng. 2009. An experimental study of dehydration melting of phengite-bearing eclogite at 1. 5~3. 0 GPa. Chinese Science Bulletin, 54(12): 2090~2100.

    • Liu Tao, Jiang Shaoyong, Su Huimin, Cao Mingyu. 2022. Petrogenesis of Ta—Nb mineralization related Early Cretaceous Lingshan granite complex, Jiangxi Province, southeast China: Constraints from geochronology, whole—rock and in-situ mineral geochemistry, and Nd—Hf isotopic compositions. Ore Geology Reviews, 143: 104788

    • Liu Wendi, Yang Yan, Busigny V, Xia Qunke. 2019. Intimate link between ammonium loss of phengite and the deep Earth’s water cycle. Earth and Planetary Science Letters, 513: 95~102.

    • London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(3): 403~420.

    • Marschall H R, Dohmen R, Ludwig T. 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth and Planetary Science Letters, 375: 361~371.

    • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overviewof adakite, tonalite—trondhjemite—granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1~24.

    • McDonough W F, Sun S. 1995. The composition of the Earth. Chemical Geology, 120(3~4): 223~253.

    • McNeil A G, Linnen R L, Flemming R L. 2020. Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700° and 850 ℃ and 200 MPa. Lithos, 352~353, 105239.

    • Münker C, Pfänder J A, Weyer S, Büchl A, Kleine T, Mezger K. 2003. Evolution of Planetary Cores and the Earth—Moon System from Nb/Ta Systematics. Science, 301(5629): 84~87.

    • Mysen B O. 2007. The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochimica et Cosmochimica Acta, 71(7): 1820~1834.

    • Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309~2322.

    • Nebel O, van Westrenen W, Vroon P Z. Wille M, Raith M M. 2010. Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean. Geochimica et Cosmochimica Acta, 74(15): 4392~4404.

    • Onuma N, Higuchi H, Wakita H, Nagasawa H. 1968. Trace element partition between two pyroxenes and the host lava. Earth and Planetary Science Letters, 5: 47~51.

    • Palin R M, White R W, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic—trondhjemitic—granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Research, 287: 73~90.

    • Piilonen P C, Farges F, Linnen R L, Brown G E, Pawlak M, Pratt A. 2006. Structural environment of Nb5+ in dry and fluid-rich (H2O, F) silicate glasses: : A combined XANES and EXAFS study. The Canadian Mineralogist, 44: 775~794.

    • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3): 325~394.

    • Polat A, Kerrich R, Wyman D A. 1999. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 94(3): p. 139~173.

    • Porter K A, White W M. 2009. Deep mantle subduction flux. Geochemistry, Geophysics, Geosystems, 10(12).

    • Puchtel I S, Haase K M, Hofmann A W, Chauvel C, Kulikov V S, Garbe-Schönberg C D, Nemchin A A. 1997. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta, 61(6): 1205~1222

    • Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schönberg C D, Samsonov A V, Shchipansky A A. 1999. Combined mantle plume—island arc model for the formation of the 2. 9 Ga Sumozero—Kenozero greenstone belt, Baltic Shield: Isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595

    • Rudnick R, Holland H, Turekian K J T O G. 2003. Treatise on Geochemistry, Volume 3. 3: 659.

    • Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing Refractory Eclogites: Missing Link Between Continents and Depleted Mantle. 287(5451): 278~281.

    • Schmidt M W, Connolly J A D, Günther D, Bogaerts M. 2006. Element partitioning: : The role of melt structure and composition. SCIENCE, 312(5780): 1646~1650.

    • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1): 361~379.

    • Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K. eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier: 669~701.

    • Scordari F, Dyar M D, Schingaro E, Lacalamita M, Ottolini L. 2010. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy). 95(11~12): 1657~1670.

    • Shannon R. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Shi Jinhua, Zeng Gang, Chen Lihui, Hanyu Takeshi, Wang Xiaojun, Zhong Yuan, Xie Liewen, Xie Wenli. 2022. An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica et Cosmochimica Acta, 318: 415~427.

    • Stepanov A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167.

    • Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox". Geology, 41(3): 303~306.

    • Sun SaiJun, Liao Renqiang, Cong Yanan, Sui Qinglin, Li Ai. 2020&. Geochemistry and mineralization of titanium. Acta Petrologica Sinica, 36(1): 68~76

    • Tan Dongbo, Xiao Yilin, Li Dongyong, Dai Liqun, Li Wangye, Hou Zhenhui. 2022. Nb—Ta fractionation by amphibole and biotite during magmatic evolution: Implications for the low Nb/Ta ratios of continental crust. Lithos, 434~435: 106941.

    • Tang Ming, Lee C T A, Chen Kang, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10.

    • Tang Yong, Zhang Hui, Lu Zhenghang. 2015#. Experimental study of phosphorus-rich magmatic system and niobium—tantalum mineralization. Mineralogical Journal, 35 ( S1 ): 341.

    • Tian Xiangyu, Wang Rui, Liu Siyu, Sun Haiwei, Chen Shoubo, Xi Binbin. 2024&. Indication of mica minerals for the genesis andexploration of critical metal pegmatite deposits: A case study of the jingerquan Li—Be—Nb—Ta pegmatite ore-field, EasteriTanshan, Xinjiang. Acta Peirologica Sinica, 40(9): 2944~2962.

    • Tiepolo M, Oberti R, Vannucci R. 2002. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191(1~3): 105~119.

    • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal—chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176(2): 185~201.

    • Timofeev A, Migdisov A A, Williams-Jones A E. 2017. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 197: 294~304.

    • Tomlinson K Y, Hughes D J, Thurston P C, Hall R P. 1999. Plume magmatism and crustal growth at 2. 9 to 3. 0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos, 46(1): 103~136

    • Wade J, Wood B J. 2001. The Earth’s ‘missing’ niobium may be in the core. Nature, 409(6816): 75~78.

    • Wang Qiang, Li Wufu, Wang Bingzhang, Wang Tao, Zhou Jinsheng, Malin, Li Yulong, Yuan Bowu, Wang Chuntao, Wang Jun. 2024#. Niobium—rare earth mineralization associated with alkaline rock—carbonatite complex——On the genesis of alkaline rock—carbonatite complex in the Dagele niobium—rare earth deposit in East Kunlun. Geotectonics and Metallogeny, 48 (1): 1~37.

    • Wang Xiang, Lou Fasheng. 2022. On the metallogenic period of magmatic hydrothermaldeposits——Taking Yanshanian tungsten deposits in Nanling area as an example. Geological Review, 68 (02): 507~530.

    • Wang Xiaojun, Liu Jianqiang, Chen Lihui. 2014&. Geochemical Characteristics of HIMU-Type Oceanic Island Basalts, Geological Journal of China Universities, 20(03): 353~367.

    • Wang Xiaojun, Chen Lihui, Hofmann A W, Hanyu T, Kawabata H, Zhong Yuan, Xie Liewen, Shi Jinhua, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Qing, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682~8687

    • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537 (7622): 666~670.

    • Wu Huanhuan, Huang He, Zhang Zhaochong, Wang Tao, Guo Lei, Zhang Yinhui, Wang Wei. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb—Ta deposit in the northern margin of the North China Craton, China. Ore Geology Reviews, 125: 103692

    • Xiao Yilin, Sun Weidong, Hoefs J, Simon K, Zhang Zeming, Li Shuguang, Hofmann A W. 2006. Making continental crust through slab melting: Constraints from niobium—tantalum fractionation in UHP metamorphic rutile. Geochimica Et Cosmochimica Acta, 70(18): 4770~4782.

    • Xiong Xiaolin, Keppler H, Audétat A, Ni H, Sun Weidong, Li Yuan. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673~1692.

    • Xiong Xiaolin, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3): 339~359.

    • Xu Zhe, Wang Diwen, Wu Zhengchang. 2018&. Geological characteristics and genesis of the Yashan niobium—tantalum depos it at Yichun, Jiangxi province. Journal of East China University of Technology ( Natural Science), 41(4): 364~378.

    • Yang Fei, Wu Guang, Chen Zhengyi, Zhang Tong, Li Yinglei, Li Shihui, Shi Jiangpeng. 2023. Compositional and textural variations of columbite group minerals from Weilasituo rare metal—tin polymetallic deposit: Implications for tracing magmatic—hydrothermal evolution. Mineral deposit, 42 (03): 463~480.

    • Yang Zhaoyu, Wang Rucheng, Che Xudong, Harlov D. 2023. Restrictions on Niobium enrichment by alteration of Niobium-rich biotite in pure water, acid, alkaline and fluoride-bearing solutions at 200 MPa and 300~600 ℃. Geochimica et Cosmochimica Acta, 343: 115~132.

    • Zack T, John T, 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239(3~4): 199~216.

    • Zack T, Kronz A, Foley S F, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1~2): 97~122.

    • Zhang Chao, Holtz F, Koepke J, Wolff P E, Ma C, Bédard J H. 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Research, 231: 206~217.

    • Zhang Jingbo, Wang Rui, Hong Jun, Tang Ming, Zhu Dicheng. 2021. Nb—Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 133: 104131.

    • Zhang Xiaowei, Zhang Huafeng, Tong Ying. 2023. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science, 34(3): 658~673.

    • Zhao Guochun, Zhang Guowei. 2021&. The Origin of the Continent. Acta Geologica Sinica, 95 (01): 1~19.

    • Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200~3228.

    • Zheng Yi, Yang Shijie. 2014. Topological bands in one-dimensional periodic potentials. Physica B: Condensed Matter, 454: 93~97.

    • Zheng Y F, Gao Teng, Wu Y B, Gong B, Liu X. 2007. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267~283.

    • Zhu Zeying, Wang Ruchen, Marignac C, Cuney M, Mercadier J, Che Xudong, Lespinasse M Y. 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. American Mineralogist 103, 1530~1544.

  • 参考文献

    • 曹振辉, 崔恒星, 崔继强, 刘孟合, 张若曦, 杨水源. 2019. 江西黄山铌(钽)矿床中铌钽矿物的矿物学特征及地质意义. 地质科技情报, 38(3): 52~62.

    • 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459~473.

    • 范宏瑞, 谢奕汉, 王凯怡, 杨学明. 2001. 碳酸岩流体及其稀土成矿作用. 地学前缘, 8(4): 289~295.

    • 凡秀君, 刘杨, 丁沛勋, 钟春荣, 陈莉, 于成涛. 2024. 江西宜春花岗岩型稀有金属矿床的岩浆分异机制及成矿模型. 岩石学报, 40(9): 2803~2818.

    • 李静, 孙载波, 黄亮, 徐桂香, 田素梅, 邓仁宏, 周坤. 2017. 滇西勐库退变质榴辉岩的P—T—t轨迹及地质意义. 岩石学报, 33(7): 2285~2301.

    • 刘淑春, 章雨旭, 郝梓国, 彭阳. 1999. 白云鄂博赋矿白云岩成因研究历史、问题及新进展. 地质论评, 45(5): 477~486.

    • 凌洪飞. 2011. 论花岗岩型铀矿床热液来源——来自氧逸度条件的制约. 地质论评, 57(2): 193~206.

    • 王强, 李五福, 王秉璋, 王涛, 周金胜, 马林, 李玉龙, 袁博武, 王春涛, 王军. 2024. 与碱性岩—碳酸岩杂岩共生的铌—稀土成矿作用——兼论东昆仑大格勒铌—稀土矿床中的碱性岩—碳酸岩杂岩成因. 大地构造与成矿学, 48(1): 1~37.

    • 汪相, 楼法生. 2022. 论岩浆热液矿床的成矿期——以南岭地区燕山期钨矿为例. 地质论评, 68(02): 507~530.

    • 王小均, 刘建强, 陈立辉. 2014. HIMU型洋岛玄武岩的地球化学特征. 高校地质学报, 20(3): 353~367.

    • 孙赛军, 廖仁强, 丛亚楠, 隋清霖, 李爱. 2020. 钛的地球化学性质与成矿. 岩石学报, 36(1): 68~76.

    • 唐勇, 张辉, 吕正航. 2015. 富磷岩浆体系与铌、钽成矿作用的实验研究. 矿物学报, 35(S1): 341.

    • 田祥雨, 王瑞, 刘思宇, 孙海微, 陈寿波, 席斌斌. 2024. 云母对伟晶岩型关键金属矿床的成因和勘查指示: 以东天山镜儿泉伟晶岩型Li—Be—Nb—Ta矿床为例. 岩石学报, 40(9): 2944~2962.

    • 徐喆, 王迪文, 吴正昌, 符海明, 刘庆宏, 刘杨, 黄新曙. 2018. 江西宜春雅山地区铌钽矿床地质特征及成因探讨. 东华理工大学学报(自然科学版), 41(04): 364~378.

    • 杨飞, 武广, 陈公正, 张彤, 李英雷, 李士辉, 师江朋. 2023. 维拉斯托稀有金属—锡多金属矿床铌铁矿族矿物特征及其对岩浆—热液演化的指示. 矿床地质, 42(03): 463~480.

    • 章雨旭, 江少卿, 张绮玲, 赖晓东, 彭阳, 杨晓勇. 2008. 中国地质, 35(6): 1129~1137.

    • 章雨旭, 吕洪波, 张绮玲, 乔秀夫. 2005. 微晶丘成因新认识. 地球科学进展, 20(6): 693~700.

    • 赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1~19.

    • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan G B V I. 2010. Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic Enclaves and Host Dacite, SE Spain. Journal of Petrology, 51(4): 785~821.

    • Ballouard C, Poujol P, Boulvais Y, Branquet R, Tartèse J L, Vigneresse. 2016. Nb—Ta fractionation in peraluminous granites: A marker of the magmatic—hydrothermal transition. Geology, 44(3): 231~234.

    • Ballouard C, Massuyeau M, Elburg M A, Tappe S, Viljoen F, Brandenburg J T. 2020. The magmatic and magmatic—hydrothermal evolution of felsic igneous rocks as seen through Nb—Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations. Earth-Science Reviews, 203: 103115.

    • Barker F, Arth J G. 1976. Generation of trondhjemitic—tonalitic liquids and Archean bimodal trondhjemite—basalt suites. Geology, 4(10): 596~600.

    • Barley M E. 2000. Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in Western Australia. 47(5): 873~883.

    • Barnes S, Arndt N. 2019. Distribution and Geochemistry of Komatiites and Basalts Through the Archean. 103~132.

    • Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3~4): 197~213.

    • Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta 70, 1188~1214.

    • Blundy J, Wood B. 1994. Prediction of crystal—melt partition coefficients from elastic moduli. Nature, 372(6505): 452~454.

    • Blundy J, Wood B. 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3~4): 383~397.

    • Brigatti M, Malferrari D, Laurora A, Elmi C. 2011. Structure and mineralogy of layer silicates: recent perspectives and new trends, Layered mineral structures and their application in advanced technologies (M. F. Brigatti and A. Mottana, editors), 1~71.

    • Brigatti M F, Guggenheim S. 2002. Mica Crystal Chemistry and the Influence of Pressure, Temperature, and Solid Solution on Atomistic Models. Reviews in Mineralogy and Geochemistry, 46(1): 1~97.

    • Burnham A D, Berry A J, Wood BJ, Cibin G. 2012. The oxidation states of niobium and tantalum in mantle melts. Chemical Geology, 330~331: 228~232.

    • Campbell I H, O’Neill St C H. 2012. Evidence against a chondritic Earth. Nature, 483(7391): 553~558.

    • Cao Zhenhui, Cui Hengxing, Cui Jiqiang, Liu Menghe, Zhang Ruoxi, Yang Shuiyuan. 2019&. Mineralogy and Geological significance of Niobium and Tantalum minerals in the Huangshan Niobium Deposit, Jiangxi Province, South China. Geological Science and Technology Information, 38(03): 52~62.

    • Cerny P, Chapman R, Simmons W B, Chackowsky L E. 1999. Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: Solid solution, exsolution, and oxidation. 84(5~6): 754~763.

    • Chen Tienan, Chen Renxu, Zheng Yongfei, Zhou Kun, Yin Zhuangzhuang, Wang Zhimin, Gong Bing, Zha Xiangping. 2022. The effect of supercritical fluids on Nb—Ta fractionation in subduction zones: Geochemical insights from a coesite-bearing eclogite-vein system. Geochimica et Cosmochimica Acta, 335: 23~55.

    • Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Jijunfeng. 2008&. W—Sn—Nb—Ta-bearing Granites in the Nanling Range and Their Relationship to Metallogengesis. Geological Journal of China Universities, 14(04): 459~473.

    • Chen Wei, Xiong Xiaolin, Wang Jintuan, Xue Shuo, Li Li, Liu Xingcheng, Ding Xing, Song Maoshuang. 2018. TiO2 Solubility and Nb and Ta Partitioning in Rutile—Silica-Rich Supercritical Fluid Systems: Implications for Subduction Zone Processes. Journal of Geophysical Research: Solid Earth, 123(6): 4765~4782.

    • Chen Wei, Zhang Guoliang, Ruan Mengfei, Wang Shuai, Xiong Xiaolin. 2021. Genesis of Intermediate and Silicic Arc Magmas Constrained by Nb/Ta Fractionation. Journal of Geophysical Research——Solid Earth, 126(3)

    • Chen Yixiang, Zheng Yongfei. 2015. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite. Geochimica Et Cosmochimica Acta, 150: 53~73

    • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A. 2007. Amphibole“sponge” in arc crust? Geology, 35(9): 787~790

    • Ding Xing, Hu Yuanhua, Zhang Hong, Li Congying, Ling Mingxing, Sun Weidong. 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. Journal of Geology, 121(3): 255~274.

    • Ding Xing, Lundstrom C, Huang Fang, Li Jie, Zhang Zeming, Sun Xiaoming, Liang Jinlong, Sun Weidong. 2009. Natural and experimental constraints on formation of the continental crust based on niobium—tantalum fractionation. International Geology Review, 51(6): 473~501

    • Dyar M D. 2002. Optical and Mossbauer Spectroscopy of Iron in Micas. Reviews in Mineralogy and Geochemistry, 46(1): 313~349.

    • Fan Xinjun, Liu Yang, Ding Peixun, Zhong Chunrong, Chen Li, Yu Chengtao. 2024&. The magmatic differentiation mechanism and metallogenic model of the Yichun granite-type rare metal deposit in Jiangxi Province. Acta Petrologica Sinica, 40(9): 2803~2818.

    • Farges F O, Linnen R L, Brown G E, Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W. The Canadian Mineralogist, 44(3): 795~810.

    • Fiege A, Simon A, Linsler S A, Bartels A, Linnen R L. 2018. Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation. Ore Geology Reviews, 94: 383~395.

    • Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 837~840.

    • Gale A, Dalton C A, Langmuir C H, Su Y J, Schilling J G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489~518.

    • Gao Jun, John T, Klemd R, Xiong Xianming. 2007. Mobilization of Ti—Nb—Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974~4996.

    • Gao Mingdi, Xiong Xiaolin, Huang Fangfang, Wang Jintuan, Wei Chunxia. 2023. Key Factors Controlling Biotite—Silicate Melt Nb and Ta Partitioning: Implications for Nb—Ta Enrichment and Fractionation in Granites. Journal of Geophysical Research——Solid Earth, 128(7).

    • Gao Xu, Michaud J A S, Zhou Zhenhua, Horn I, Almeev R R, Weyer S, Holtz F. 2024. Trace element (Be, Zn, Ga, Rb, Nb, Cs, Ta, W) partitioning between mica and Li-rich granitic melt: Experimental approach and implications for W mineralization. Geochimica et Cosmochimica Acta, 375: 1~18.

    • Goldmann S, Michaud J A S, Krummacker T, Zhang Chao, Holtz F, Khudeir A A, Hamid S, Mohamed A E R. 2024. Nb—Ta—Sn oxides as markers of magmatic fractionation and magmatic—hydrothermal evolution: The example of the Nuweibi granite intrusion, Eastern Desert, Egypt. Geochemistry, 126215.

    • Goss A R, Kay S M. 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, ~68°W). Earth and Planetary Science Letters, 279(1~2): 97~109.

    • Green T H, Adam J. 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3. 0 GPa, 650~700 ℃. European Journal of Mineralogy, 15(5): 815~830.

    • Green T H, Pearson N J. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochimica et Cosmochimica Acta, 51(1): 55~62.

    • Guidotti C V, Cheney J T, Guggenheim S. 1977. Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine. American Mineralogist, 62(5~6): 438~448.

    • Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1: Theoretical mineralogy, densities, seismic wave speeds, and H2O contents: art. no. 2029. Journal of Geophysical Research: Solid Earth, 108(B1).

    • Henry D J, Guidotti C V. 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal—chemical controls, and petrologic applications. 87(4): 375~382.

    • Hofmann A W, White W M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421~436.

    • Hoffmann J E, Münker C, Næraa T, Rosing M T, Herwartz D, Garbe-Schönberg D, Svahnberg H. 2011. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta, 75(15): 4157~4178.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hollings P, Kerrich R. 1999. Trace element systematics of ultramafic and mafic volcanic rocks from the 3Ga North Caribou greenstone belt, northwestern Superior Province. Precambrian Research, . 93(4): p. 257~279.

    • Holycross M E, Watson E B. 2018. Trace element diffusion and kinetic fractionation in wet rhyolitic melt. Geochimica et Cosmochimica Acta, 232: 14~29.

    • Huang Guangyu, Chen Yi, Guo Jinghui, Palin R, Zhao Lei. 2022. Nb and Ta intracrustal differentiation during granulite-facies metamorphism: Evidence from geochemical data of natural rocks and thermodynamic modeling. American Mineralogist, 107(11): 2020~2033

    • Huang J, Xiao Y, Gao Y, Hou Z, Wu W. 2012. Nb—Ta fractionation induced by fluid—rock interaction in subduction-zones: Constraints from UHP eclogite- and vein-hosted rutile from the Dabie orogen, Central—Eastern China. Journal of Metamorphic Geology, 30(8): 821~842.

    • Jochum K P, Seufert H M, Spettel B, Palme H. 1986. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta, 50(6): 1173~1183.

    • Kamber B S, Greig A, Schoenberg R, Collerson K D. 2003. A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation. Precambrian Research, 126(3): 289~308.

    • Kerr A C, La Isla de Gorgona. 2005. Colombia: A petrological enigma? Lithos, 84(1): 77~101.

    • Kerrich R, Wyman D, Fan J, Bleeker W. 1998. Boninite series: low Ti-tholeiite associations from the 2. 7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1): 303~316

    • Laurie A, Stevens G. 2012. Water-present eclogite melting to produce Earth’s early felsic crust. Chemical Geology, 314~317: 83~95.

    • Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta—Nb bearing granites. Ore Geology Reviews 65, 793~810.

    • Li Jianwei, Deng Xiaodong, Zhou Meifu, Lin Yongsheng, Zhao Xinfu, Guo Jingliang. 2010. Laser ablation ICP-MS titanite U—Th—Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu—Fe—Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1~4): 56~67.

    • Li Jing, Sun Zaibo, Huang Liang, Xu Guixiang, Tian Sumei, Deng Rrenhong, Zhou Kun. 2017&. P—T—t path and geological significance of retrograded eclogites from Mengku area in western Yunnnan Province, China. Acta Petrologica Sinica, 33(7): 2285~2301

    • Li L, Xiong X L, Liu X C. 2017. Nb/Ta fractionation by amphibole in hydrous basaltic systems: Implications for arc magma evolution and continental crust formation. Journal of Petrology, 58(1): 3~28.

    • Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268(1): 27~40.

    • Linnen R L. 1998. The solubility of Nb—Ta—Zr—Hf—W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013~1025.

    • Ling Hongfei. 2011&. Origin of Hydrothermal Fluids of Granite type Uranium Deposits: Constraints from Redox Conditions. Geological Review, 57(2): 193~206.

    • Liu Qiang, Jin Zhenmin, Zhang Junfeng. 2009. An experimental study of dehydration melting of phengite-bearing eclogite at 1. 5~3. 0 GPa. Chinese Science Bulletin, 54(12): 2090~2100.

    • Liu Tao, Jiang Shaoyong, Su Huimin, Cao Mingyu. 2022. Petrogenesis of Ta—Nb mineralization related Early Cretaceous Lingshan granite complex, Jiangxi Province, southeast China: Constraints from geochronology, whole—rock and in-situ mineral geochemistry, and Nd—Hf isotopic compositions. Ore Geology Reviews, 143: 104788

    • Liu Wendi, Yang Yan, Busigny V, Xia Qunke. 2019. Intimate link between ammonium loss of phengite and the deep Earth’s water cycle. Earth and Planetary Science Letters, 513: 95~102.

    • London D. 1987. Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochimica et Cosmochimica Acta, 51(3): 403~420.

    • Marschall H R, Dohmen R, Ludwig T. 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth and Planetary Science Letters, 375: 361~371.

    • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overviewof adakite, tonalite—trondhjemite—granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1~24.

    • McDonough W F, Sun S. 1995. The composition of the Earth. Chemical Geology, 120(3~4): 223~253.

    • McNeil A G, Linnen R L, Flemming R L. 2020. Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700° and 850 ℃ and 200 MPa. Lithos, 352~353, 105239.

    • Münker C, Pfänder J A, Weyer S, Büchl A, Kleine T, Mezger K. 2003. Evolution of Planetary Cores and the Earth—Moon System from Nb/Ta Systematics. Science, 301(5629): 84~87.

    • Mysen B O. 2007. The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochimica et Cosmochimica Acta, 71(7): 1820~1834.

    • Nash W P, Crecraft H R. 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309~2322.

    • Nebel O, van Westrenen W, Vroon P Z. Wille M, Raith M M. 2010. Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean. Geochimica et Cosmochimica Acta, 74(15): 4392~4404.

    • Onuma N, Higuchi H, Wakita H, Nagasawa H. 1968. Trace element partition between two pyroxenes and the host lava. Earth and Planetary Science Letters, 5: 47~51.

    • Palin R M, White R W, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic—trondhjemitic—granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Research, 287: 73~90.

    • Piilonen P C, Farges F, Linnen R L, Brown G E, Pawlak M, Pratt A. 2006. Structural environment of Nb5+ in dry and fluid-rich (H2O, F) silicate glasses: : A combined XANES and EXAFS study. The Canadian Mineralogist, 44: 775~794.

    • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3): 325~394.

    • Polat A, Kerrich R, Wyman D A. 1999. Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 94(3): p. 139~173.

    • Porter K A, White W M. 2009. Deep mantle subduction flux. Geochemistry, Geophysics, Geosystems, 10(12).

    • Puchtel I S, Haase K M, Hofmann A W, Chauvel C, Kulikov V S, Garbe-Schönberg C D, Nemchin A A. 1997. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: Evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochimica et Cosmochimica Acta, 61(6): 1205~1222

    • Puchtel I S, Hofmann A W, Amelin Y V, Garbe-Schönberg C D, Samsonov A V, Shchipansky A A. 1999. Combined mantle plume—island arc model for the formation of the 2. 9 Ga Sumozero—Kenozero greenstone belt, Baltic Shield: Isotope and trace element constraints. Geochimica et Cosmochimica Acta, 63(21): 3579~3595

    • Rudnick R, Holland H, Turekian K J T O G. 2003. Treatise on Geochemistry, Volume 3. 3: 659.

    • Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing Refractory Eclogites: Missing Link Between Continents and Depleted Mantle. 287(5451): 278~281.

    • Schmidt M W, Connolly J A D, Günther D, Bogaerts M. 2006. Element partitioning: : The role of melt structure and composition. SCIENCE, 312(5780): 1646~1650.

    • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth and Planetary Science Letters, 163(1): 361~379.

    • Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K. eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier: 669~701.

    • Scordari F, Dyar M D, Schingaro E, Lacalamita M, Ottolini L. 2010. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy). 95(11~12): 1657~1670.

    • Shannon R. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Shi Jinhua, Zeng Gang, Chen Lihui, Hanyu Takeshi, Wang Xiaojun, Zhong Yuan, Xie Liewen, Xie Wenli. 2022. An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica et Cosmochimica Acta, 318: 415~427.

    • Stepanov A, Mavrogenes J, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 167.

    • Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the "missing Nb paradox". Geology, 41(3): 303~306.

    • Sun SaiJun, Liao Renqiang, Cong Yanan, Sui Qinglin, Li Ai. 2020&. Geochemistry and mineralization of titanium. Acta Petrologica Sinica, 36(1): 68~76

    • Tan Dongbo, Xiao Yilin, Li Dongyong, Dai Liqun, Li Wangye, Hou Zhenhui. 2022. Nb—Ta fractionation by amphibole and biotite during magmatic evolution: Implications for the low Nb/Ta ratios of continental crust. Lithos, 434~435: 106941.

    • Tang Ming, Lee C T A, Chen Kang, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nature Communications, 10.

    • Tang Yong, Zhang Hui, Lu Zhenghang. 2015#. Experimental study of phosphorus-rich magmatic system and niobium—tantalum mineralization. Mineralogical Journal, 35 ( S1 ): 341.

    • Tian Xiangyu, Wang Rui, Liu Siyu, Sun Haiwei, Chen Shoubo, Xi Binbin. 2024&. Indication of mica minerals for the genesis andexploration of critical metal pegmatite deposits: A case study of the jingerquan Li—Be—Nb—Ta pegmatite ore-field, EasteriTanshan, Xinjiang. Acta Peirologica Sinica, 40(9): 2944~2962.

    • Tiepolo M, Oberti R, Vannucci R. 2002. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191(1~3): 105~119.

    • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal—chemical constraints and implications for natural systems. Earth and Planetary Science Letters, 176(2): 185~201.

    • Timofeev A, Migdisov A A, Williams-Jones A E. 2017. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 197: 294~304.

    • Tomlinson K Y, Hughes D J, Thurston P C, Hall R P. 1999. Plume magmatism and crustal growth at 2. 9 to 3. 0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos, 46(1): 103~136

    • Wade J, Wood B J. 2001. The Earth’s ‘missing’ niobium may be in the core. Nature, 409(6816): 75~78.

    • Wang Qiang, Li Wufu, Wang Bingzhang, Wang Tao, Zhou Jinsheng, Malin, Li Yulong, Yuan Bowu, Wang Chuntao, Wang Jun. 2024#. Niobium—rare earth mineralization associated with alkaline rock—carbonatite complex——On the genesis of alkaline rock—carbonatite complex in the Dagele niobium—rare earth deposit in East Kunlun. Geotectonics and Metallogeny, 48 (1): 1~37.

    • Wang Xiang, Lou Fasheng. 2022. On the metallogenic period of magmatic hydrothermaldeposits——Taking Yanshanian tungsten deposits in Nanling area as an example. Geological Review, 68 (02): 507~530.

    • Wang Xiaojun, Liu Jianqiang, Chen Lihui. 2014&. Geochemical Characteristics of HIMU-Type Oceanic Island Basalts, Geological Journal of China Universities, 20(03): 353~367.

    • Wang Xiaojun, Chen Lihui, Hofmann A W, Hanyu T, Kawabata H, Zhong Yuan, Xie Liewen, Shi Jinhua, Miyazaki T, Hirahara Y, Takahashi T, Senda R, Chang Qing, Vaglarov B S, Kimura J I. 2018. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682~8687

    • Weiss Y, Class C, Goldstein S L, Hanyu T. 2016. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature, 537 (7622): 666~670.

    • Wu Huanhuan, Huang He, Zhang Zhaochong, Wang Tao, Guo Lei, Zhang Yinhui, Wang Wei. 2020. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb—Ta deposit in the northern margin of the North China Craton, China. Ore Geology Reviews, 125: 103692

    • Xiao Yilin, Sun Weidong, Hoefs J, Simon K, Zhang Zeming, Li Shuguang, Hofmann A W. 2006. Making continental crust through slab melting: Constraints from niobium—tantalum fractionation in UHP metamorphic rutile. Geochimica Et Cosmochimica Acta, 70(18): 4770~4782.

    • Xiong Xiaolin, Keppler H, Audétat A, Ni H, Sun Weidong, Li Yuan. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica et Cosmochimica Acta, 75(7): 1673~1692.

    • Xiong Xiaolin, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3): 339~359.

    • Xu Zhe, Wang Diwen, Wu Zhengchang. 2018&. Geological characteristics and genesis of the Yashan niobium—tantalum depos it at Yichun, Jiangxi province. Journal of East China University of Technology ( Natural Science), 41(4): 364~378.

    • Yang Fei, Wu Guang, Chen Zhengyi, Zhang Tong, Li Yinglei, Li Shihui, Shi Jiangpeng. 2023. Compositional and textural variations of columbite group minerals from Weilasituo rare metal—tin polymetallic deposit: Implications for tracing magmatic—hydrothermal evolution. Mineral deposit, 42 (03): 463~480.

    • Yang Zhaoyu, Wang Rucheng, Che Xudong, Harlov D. 2023. Restrictions on Niobium enrichment by alteration of Niobium-rich biotite in pure water, acid, alkaline and fluoride-bearing solutions at 200 MPa and 300~600 ℃. Geochimica et Cosmochimica Acta, 343: 115~132.

    • Zack T, John T, 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology, 239(3~4): 199~216.

    • Zack T, Kronz A, Foley S F, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology, 184(1~2): 97~122.

    • Zhang Chao, Holtz F, Koepke J, Wolff P E, Ma C, Bédard J H. 2013. Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of Early Archean crustal growth. Precambrian Research, 231: 206~217.

    • Zhang Jingbo, Wang Rui, Hong Jun, Tang Ming, Zhu Dicheng. 2021. Nb—Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 133: 104131.

    • Zhang Xiaowei, Zhang Huafeng, Tong Ying. 2023. Multistage Formation of Neoarchean Potassic Meta-Granites and Evidence for Crustal Growth on the North Margin of the North China Craton. Journal of Earth Science, 34(3): 658~673.

    • Zhao Guochun, Zhang Guowei. 2021&. The Origin of the Continent. Acta Geologica Sinica, 95 (01): 1~19.

    • Zhang Zeming, Shen Kun, Sun Weidong, Liu Yongsheng, Liou J G, Shi Cao, Wang Jinli. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200~3228.

    • Zheng Yi, Yang Shijie. 2014. Topological bands in one-dimensional periodic potentials. Physica B: Condensed Matter, 454: 93~97.

    • Zheng Y F, Gao Teng, Wu Y B, Gong B, Liu X. 2007. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267~283.

    • Zhu Zeying, Wang Ruchen, Marignac C, Cuney M, Mercadier J, Che Xudong, Lespinasse M Y. 2018. A new style of rare metal granite with Nb-rich mica: The Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. American Mineralogist 103, 1530~1544.