en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赖锦,男,1988年生,博士,教授,博士生导师,从事沉积储层和测井地质学教学与研究;E-mail: laijin@cup.edu.cn。

通讯作者:

王贵文,男,1966年生,教授,博士生导师,主要从事沉积储层与测井地质学方面的教学与科研;E-mail: wanggw@cup.edu.cn。

参考文献
蔡志东. 2021. 井中地震技术: 连接多种油气勘探方法的桥梁. 石油地球物理勘探, 56(4): 922~934.
参考文献
曹园, 邓金根, 蔚宝华. 2013. WZ12-1 油田流沙港组一段异常高压预测. 特种油气藏, 20(6): 99~102.
参考文献
陈必孝, 张筠. 2002. 声波全波列测井资料分析处理技术及应用. 测井技术, 26(5): 369~372.
参考文献
陈更生, 石学文, 刘勇, 吴伟, 杨雨然, 朱逸青, 陈丽清, 徐亮, 钟可塑, 殷樱子. 2024. 四川盆地南部地区五峰组—龙马溪组深层页岩气富集控制因素新认识. 天然气工业, 44(1): 58~71.
参考文献
崔云江, 吕洪志. 2008. 锦州 25-1 南油气田裂缝性潜山储层测井评价. 中国海上油气, 20(2): 92~95.
参考文献
邓攀, 陈孟晋, 高哲荣, 孙爱. 2002. 火山岩储层构造裂缝的测井识别及解释. 石油学报, 23(6): 32~37.
参考文献
丁世村. 2010. 偶极横波资料在低孔低渗储层改造中的应用. 工程地球物理学报, 7(6): 704~709.
参考文献
董经利. 2009. 多极子阵列声波测井资料处理及应用. 测井技术, 33(2): 115~119.
参考文献
董震, 潘和平. 2007. 声波测井资料与地震属性关系研究综述. 工程地球物理学报, 4(5): 488~494.
参考文献
高坤, 陶果, 马勇. 2006. 多极子阵列声波测井资料在塔河油田酸压设计施工中的应用. 地球物理学进展, 21(4): 1227~1231.
参考文献
官波, 薛桂玉, 赵彦军, 白静, 王悦欣, 高洪忠. 2002. 用声波全波列测井资料定量评价固井质量的方法. 测井技术, 26(5): 383~386.
参考文献
郭桂生, 蔺敬旗, 张仲华, 吴丛文, 侯庆宇. 2011. 利用测井资料预测孔隙压力、破裂压力和坍塌压力. 新疆石油地质, 32(2): 187~189.
参考文献
郭京哲, 郭小军, 赵明, 贾昱昕, 吕奇奇, 尹帅. 2023. 基于多矿物模型的致密砂岩脆性指数常规测井评价方法———以鄂尔多斯盆地桐川地区长 7 段为例. 地球物理学进展, 38 (4): 1590~1602.
参考文献
贺顺义, 师永民, 谢楠, 张志翔, 李翠萍. 2008. 根据常规测井资料求取岩石力学参数的方法. 新疆石油地质, 29(5): 662~664.
参考文献
胡松, 王敏, 刘伟男, 王兵. 2022. 页岩水平井声波时差各向异性校正方法及其应用. 石油学报, 43(1): 58~66.
参考文献
黄小冬, 胡纪兰, 郭玉岩, 崔红珠, 赵红星, 顾定娜. 2005. XMAC 测井在吐哈盆地气层识别中的应用. 石油天然气学报, 27(3): 479~481.
参考文献
姬铜芝, 刘正锋, 王子荣, 吴海忠孙春明. 2002. 固井声幅-变密度测井的影响因素分析. 测井技术, 26(6): 486~489.
参考文献
贾承造. 2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题. 中国石油大学学报(自然科学版), 47(5): 1~12.
参考文献
江灿, 庄春喜, 李盛清, 苏远大, 唐晓明. 2019. 多极子阵列声波测井数据的纵横波慢度联合反演方法. 地球物理学报, 62(6): 2294~2302.
参考文献
姜修道, 朱光明, 孙渊. 2006. 地球物理方法在中国油气资源战略选区中应用的可能性———以藏北羌塘盆地为例. 地质通报, 25 (9-10): 1196~1200.
参考文献
孔庆丰. 2024. 补偿声波测井扩径校正方法. 石油地球物理勘探, 59(3): 543~547.
参考文献
靳玲, 苏桂芝, 刘桂兰, 朱不跃, 李磊, 胡艳萍. 2004. 合成地震记录制作的影响因素及对策. 石油物探, 43(3): 267~272.
参考文献
赖锦, 王贵文, 孙思勉, 蒋晨, 周磊, 郑新华, 吴庆宽, 韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712~1724.
参考文献
赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 1(3): 330~341.
参考文献
赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021. 测井地质学前世、今生与未来———写在 《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804~1828.
参考文献
赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022. 测井地质学研究典型误区与科学思维. 天然气工业, 42 (7): 31~44.
参考文献
赖锦, 李红斌, 张梅, 白梅梅, 赵仪迪, 范旗轩, 庞小娇, 王贵文. 2023a. 非常规油气时代测井地质学研究进展. 古地理学报, 25 (5): 1118~1138.
参考文献
赖锦, 白天宇, 肖露, 赵飞, 李栋, 李红斌, 王贵文, 张荣虎. 2023b. 地应力测井评价方法及其地质与工程意义. 石油与天然气地质, 44(4): 1033~1043.
参考文献
赖锦, 肖露, 赵鑫, 赵飞, 黎雨航, 朱世发, 王贵文, 刘宏坤. 2023c. 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例. 石油学报, 44 (4): 612~625 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例.
参考文献
赖锦, 肖露, 白天宇, 范旗轩, 黄玉越, 李红斌, 赵飞, 王贵文. 2024a. 成像测井解释评价方法及其地质应用. 地质科技通报, 43(3): 323~340.
参考文献
赖锦, 白天宇, 苏洋, 赵飞, 李玲, 黎雨航, 李红斌, 王贵文, 肖承文. 2024b. 烃源岩测井识别与评价方法研究进展. 地质论评, 70(2): 721~741.
参考文献
李国发, 廖前进, 王尚旭, 袁淑琴, 王守东. 2008. 合成地震记录层位标定若干问题的探讨. 石油物探, 47(2): 145~149.
参考文献
李剑浩. 2007. 用混合物电导率公式改进双水模型的公式. 测井技术, 31(1): 1~3.
参考文献
李军, 王贵文, 欧阳健. 2001. 利用测井信息定量研究库车坳陷山前地区地应力. 石油勘探与开发, 28(5): 93~97.
参考文献
李凯军, 杨玉卿, 苏华. 2003. 正交偶极声波测井技术在碎屑岩储层评价中的应用初探. 中国海上油气(地质), 17(6): 416~420.
参考文献
李宁, 刘鹏, 范华军, 胡江涛, 武宏亮. 2024. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术, 52(1): 1~7.
参考文献
李鹏举, 宋延杰, 付多辰, 仲从存, 田宏娟. 2006. XMAC 纵波时差高分辨率处理方法. 天然气工业, 26(6): 55~56.
参考文献
李卿卿, 符力耘, 杜启振, 冉亚楠, 胡勇. 2024. 基于声波测井资料的波动方程走时层析反演速度建模. 地球物理学报, 67(2): 641~653.
参考文献
李同华, 段庆庆, 杨雷, 吴金龙. 2009. 基于偶极横波资料的火山岩裂缝及油气识别. 西南石油大学学报(自然科学版), 31(6): 45~51.
参考文献
李玉霞, 李亚敏. 2008. MPAL 多极子阵列声波测井仪. 测井技术, 32(5): 439~442.
参考文献
李长文, 余春吴, 赵旭东, 朱振升. 2003. 反射波信息在裂缝储层评价中的应用. 测井技术, 27(3): 198~202.
参考文献
李长文, 强毓明, 李国利, 余春昊. 2006. 现代声波测井技术发展的若干特点. 测井技术, 30(2): 101~105.
参考文献
李兆阳. 2005. 正交偶极阵列声波测井技术及应用. 勘探地球物理进展, 28(4): 300~303.
参考文献
刘国强, 谭廷栋. 1993. 孔隙度和含气饱和度的弹性模量计算方法. 石油勘探与开发, 20(5): 33~41.
参考文献
刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发, 48(5): 891~902.
参考文献
刘航, 吴煜宇, 贺洪举, 谢冰, 赖强, 韩红林. 2023. 阵列声波测井处理新技术在碳酸盐岩储层评价方面的应用. 地球物理学进展, 38(1): 0220~0228.
参考文献
刘欢, 徐锦绣, 陈红兵, 张雪芳, 齐奕. 2023. 基于核磁共振测井校正的泥质砂岩气层孔隙度计算方法. 中国海上油气, 35(3): 89~95.
参考文献
刘景彦, 林畅松, 喻岳钰, 武法东, 姜亮, 陈志勇. 2000. 用声波测井资料计算剥蚀量的方法改进. 石油实验地质, 22(4): 302~306.
参考文献
刘鹏, 乔文孝, 车小花, 王瑞甲, 鞠晓东, 卢俊强. 2014. 多极子阵列声波测井技术在煤层气储层评价中的应用. 测井技术, 38 (3): 292~296.
参考文献
刘晓虹, 刘俊, 熊孝云, 李欢. 2009. 多极子阵列声波成像测井系统. 中国矿业, 18(11): 92~96.
参考文献
刘之的, 戴诗华, 王宏亮, 李桂秋, 徐静. 2007. 利用 DSI 评价火成岩裂缝的有效性. 测井技术, 31(2): 156~158.
参考文献
卢红杰, 朱辉明, 王春利, 沈彬彬, 马玉鹏, 李雨龙. 2011. 基于 XMAC 资料的火山岩压裂储层应力分析技术. 钻采工艺, 34 (1): 45~47+51+115.
参考文献
陆云龙, 崔云江, 关叶钦, 熊镭. 2022. 基于阵列声波测井的裂缝有效性定量评价方法. 测井技术, 46(1): 64~70.
参考文献
罗伟平, 李洪奇, 朱丽萍, 乔悦东, 石宁, 俞飞. 2014. 地震与测井资料自动匹配的研究. 石油地球物理勘探, 49(1): 205~212.
参考文献
聂昕, 邹长春, 杨玉卿, 肖昆, 黄兆辉. 2012. 测井技术在页岩气储层力学性质评价中的应用. 工程地球物理学报, 9(4): 433~439.
参考文献
祁斌, 夏宏泉, 房国庆, 白新国. 2008. 基于偶极横波测井的地层各向异性研究. 测井技术, 32(5): 412~416.
参考文献
祁文莉, 吴惠梅, 楼一珊, 翟晓鹏, 刘宏. 2023. 基于声波测井的地层孔隙压力预测及应用. 测井技术, 47(4): 415~420.
参考文献
祁晓, 张璋, 李东, 尹璐, 于洋. 2023. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法. 石油钻探技术, 51(6): 128~134.
参考文献
乔文孝, 鞠晓东, 车小花, 卢俊强. 2011. 声波测井技术研究进展. 测井技术, 35(1): 14~19.
参考文献
乔文孝, 阎树汶. 1997. 用声波测井资料识别油气水层. 测井技术, 21(3): 215~220.
参考文献
秦建强, 付德亮, 钱亚芳, 杨甫, 田涛. 2018. 烃源岩有机质丰度预测的地球物理研究进展. 石油物探, 57(6): 803~812.
参考文献
秦绪英, 宋波涛. 2002. 测井技术现状与展望. 勘探地球物理进展, 25(1): 26~34.
参考文献
苏华, 田洪. 2002. 利用斯通利波估算地层渗透率. 测井技术, 26 (4): 298~301.
参考文献
苏洋, 赖锦, 别康, 李栋, 赵飞, 陈康军, 李红斌, 王贵文. 2024. 深层超深层钻井地质信息测井拾取与评价. 古地理学报, 27(1): 225~239.
参考文献
孙越, 谢佩宇, 张凤奇, 陈树光, 李永新, 关铭, 周然然, 张洁. 2024. 河套盆地临河坳陷兴隆构造带临河组超压成因及演化特征. 天然气地球科学, 35(4): 661~675.
参考文献
谭礼洪, 张国强, 谭忠健, 张贵斌, 章成广, 蔡明. 2022. 利用阵列声波测井资料评价变质岩储层有效性. 石油地球物理勘探, 57 (6): 1464~1472.
参考文献
谭廷栋. 2000. 测井解释发现油气层. 天然气工业, 20(6): 47~50.
参考文献
唐军, 章成广, 张碧星, 师芳芳. 2016. 基于声波-变密度测井的固井质量评价方法. 石油勘探与开发, 43(3): 469~475.
参考文献
唐军, 章成广, 信毅. 2017. 油基钻井液条件下裂缝声波测井评价方法: 以塔里木盆地库车坳陷克深地区致密砂岩储集层为例. 石油勘探与开发, 44(3): 389~397+406.
参考文献
唐晓明, 魏周拓, 苏远大, 庄春喜. 2012. 利用井中偶极声源远场辐射特性的远探测测井. 测井技术, 55(8): 2798~2807.
参考文献
童凯军, 赵春明, 吕坐彬, 张迎春, 郑浩, 许赛男, 王建立, 潘玲黎. 2012. 渤海变质岩潜山油藏储集层综合评价与裂缝表征. 石油勘探与开发, 39(1): 56~63.
参考文献
王建华. 2006. 声波测井技术综述. 工程地球物理学报, 3(5): 395~400.
参考文献
王培春, 熊镭, 李盛清, 谈笑宇, 张任风, 苏远大. 2023. 裂缝性储层的声波测井评价方法及其在渤中 19-6 凝析气田的应用. 测井技术, 47(1): 7~15.
参考文献
王平. 2008. 固井质量评价测井影响因素分析. 测井技术, 32(5): 463~467.
参考文献
翁望飞, 王建强, 张蓉蓉, 陈洪, 桂小军. 2011. 利用声波测井技术计算地层剥蚀厚度———以鄂尔多斯盆地为例. 新疆石油地质, 32(2): 143~146.
参考文献
吴晓光, 季凤玲, 李德才. 2016. 偶极声波测井技术应用现状及研究进展. 地球物理学进展, 31(1): 0380~0389.
参考文献
夏宏泉, 胡慧, 杨林, 赵静. 2017. 基于声波变密度测井信息识别水平井压裂裂缝的方法. 石油钻探技术, 45(5): 113~117.
参考文献
夏宏泉, 郭倩男. 2018. 基于 DSI 测井横波分裂的水平井压裂缝检测研究. 西南石油大学学报(自然科学版), 40(3): 87~96.
参考文献
徐陈杰. 2022. 东海西湖凹陷天然气资源分级分布机理及模式. 中国地质大学, 武汉.
参考文献
徐珂, 杨海军, 张辉, 王海应, 袁芳, 王朝辉, 李超. 2021. 克拉苏构造带博孜 1 气藏现今地应力场和高效开发. 新疆石油地质, 42(6): 726~734.
参考文献
徐星, 赵万优. 2001. Star-Ⅱ成像测井在碳酸盐岩储层评价中的应用. 测井技术, 25(5): 358~364.
参考文献
许松, 唐晓明, 苏远大, 庄春喜. 2018. 斯通利波和弯曲波联合反演地层 VTI 各向异性的阵列声波处理方法. 地球物理学报, 61 (12): 5105~5114.
参考文献
许玉强, 何保伦, 王舒, 韩超, 肖凡, 管志川, 刘宽. 2023. 深度学习与 Eaton 法联合驱动的地层孔隙压力预测方法. 中国石油大学学报(自然科学版), 47(6): 50~59.
参考文献
薛罗, 马轮, 史忠生, 赵艳军, 陈彬滔, 史江龙, 王磊. 2022. 南苏丹 Melut 盆地 Ruman 潜山构造演化及其对油气成藏的控制作用. 油气地质与采收率, 29(2): 53~60.
参考文献
薛梅, 楚泽涵, 姜皓. 2000. 声波测井仪器发展评述. 石油仪器, 14 (5): 6~10.
参考文献
颜惠兰. 2004. 多极子阵列声波(MAC)在油田生产中的应用. 特种油气藏, 11(5): 60~63.
参考文献
杨雷, 高秋涛, 王国斌, 李桂秋, 李淑云, 张军. 2002. 利用 XMAC 测井资料识别油气层段. 新疆石油地质, 23(5): 402~404.
参考文献
杨小兵, 姚梦麟, 王思静, 周昊, 佟恺林, 陈维铭, 马韶光. 2022. 页岩气测井地质工程技术新需求及解决方案. 天然气工业, 42 (2): 20~27.
参考文献
杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 2024. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因. 石油与天然气地质, 45(1): 96~112.
参考文献
杨雪冰, 李庆峰, 李文志, 何丽. 2014. 声波测井技术在非常规致密油藏储层评价中的应用. 应用声学, 33(1): 16~22.
参考文献
尹帅, 刘翰林, 何建华, 王瑞飞, 李香雪, 黄郑, 周永强, 贺子潇. 2023. 动静态地质力学方法约束的致密油砂岩地应力综合评估. 地球科学进展, 38(12): 1285~1296.
参考文献
印兴耀, 马妮, 马正乾, 宗兆云. 2018. 地应力预测技术的研究现状与进展. 石油物探, 57(4): 488~504.
参考文献
于景才, 原福堂, 邱辉丽, 张铁轩. 2005. 测井新技术在复杂岩性地层中的地质应用. 石油天然气学报, 27(2): 345~348.
参考文献
余春昊, 李长文. 1998. 利用斯通利波信息进行裂缝评价. 测井技术, 22(4): 273~277.
参考文献
喻著成, 许期聪, 邱儒义, 雷鸣, 周箩鱼. 2023. 随钻声波井下全景成像技术现状及展望. 钻采工艺, 46(3): 171~175.
参考文献
原宏壮, 陆大卫, 张辛耘, 孙建孟. 2005. 测井技术新进展综述. 地球物理学进展, 20(3): 786~795.
参考文献
岳文正, 田斌. 2022. 高分辨率井周储层深探测反射声波测井成像方法. 石油物探, 61(6): 1077~1089.
参考文献
曾联波, 田崇鲁. 1998. 构造应力场与低渗透油田开发. 石油勘探与开发, 25(3): 91~93.
参考文献
曾联波, 王贵文. 2005. 塔里木盆地库车山前构造带地应力分布特征. 石油勘探与开发, 32(3): 59~60.
参考文献
曾文冲, 邱细斌, 刘学锋. 2014. 识别复杂储层流体性质的新途径. 测井技术, 38(1): 11~21.
参考文献
张碧星, 王克协. 1998. 各向异性介质地层中多极源声波测井的现状与发展. 地球物理学进展, 13(2): 1~14.
参考文献
张承森, 肖承文, 刘兴礼, 郭洪波, 朱登朝, 王贵清. 2011. 远探测声波测井在缝洞型碳酸盐岩储集层评价中的应用. 新疆石油地质, 32(3): 325~328.
参考文献
张聪慧, 祁晓, 张广栋, 张璋, 尹璐. 2021. 利用阵列声波进行固井质量定量评价的方法及其应用. 地球物理学进展, 36(5): 2128~2135.
参考文献
张海涛, 石玉江, 张鹏, 范宜仁, 杨小明, 李虎. 2015. 基于偶极横波测井的低渗透砂岩气层识别方法. 测井技术, 39(5): 591~595.
参考文献
张恒荣, 肖立志, 曾少军, 汤翟, 袁伟, 杨冬. 2023. 基于裂缝柔度和地应力模型的声电测井正、反演方法及应用. 石油地球物理勘探, 58(2): 431~442.
参考文献
张辉, 尹国庆, 王志民, 王海应. 2019. 库车坳陷深层裂缝性砂岩气藏可压裂性评价. 新疆石油地质, 40(1): 108~115.
参考文献
张蕾, 成志刚, 冯春珍, 罗少成, 席辉, 杨智新. 2013. 致密砂岩气层识别方法研究及应用效果分析. 测井技术, 37(6): 648~652.
参考文献
张小莉, 沈英, 陈文学. 2000. 利用测井资料分析成岩作用对储集层的影响. 沉积学报, 18(3): 127~131.
参考文献
张永华, 陈萍, 赵雨晴, 朱军, 刘景颜. 2004. 基于合成记录的综合层位标定技术. 石油地球物理勘探, 39(1): 92~96.
参考文献
张永军, 顾定娜, 马肃滨, 陈向阳, 陈光辉, 万永清. 2012. 阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用. 测井技术, 36(2): 175~178.
参考文献
张元中, 肖立志. 2004. 新世纪第一个五年测井技术的若干进展. 地球物理学进展, 19(4): 828~836.
参考文献
张振城, 孙建孟, 施振飞, 蔡晓明, 苏远大, 廖东良. 2005. 测井资料评价次生孔隙的方法、原理及实例. 沉积学报, 23(4): 613~619.
参考文献
赵继勇, 周新桂, 雷启鸿, 赵国玺, 何右安, 时建超, 张林炎. 2017. 鄂尔多斯盆地马岭油田长 7 致密储层古今构造应力研究. 地质力学学报, 23(6): 810~820.
参考文献
赵靖舟, 李军, 徐泽阳. 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973~998.
参考文献
赵军, 张莉, 王贵文, 李军. 2005. 一种基于测井信息的山前挤压构造区地应力分析新方法. 地质科学, 40(2): 284~290.
参考文献
支东明, 李建忠, 杨帆, 陈旋, 肖冬生, 王波, 武超, 于海跃. 2024. 吐哈盆地丘东洼陷侏罗系致密砂岩气勘探突破及意义. 石油学报, 45(2): 348~357.
参考文献
周立宏, 刘国芳. 1996. 利用泥岩声波时差估算地层压力. 石油实验地质, 18(2): 195~199.
参考文献
周文, 戴建文. 2008. 四川盆地西部坳陷须家河组储层裂缝特征及分布评价. 石油实验地质, 30(1): 20~25.
参考文献
朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, 27(2): 104~109.
参考文献
朱建伟, 赵刚, 刘博, 郭巍, 成俊. 2012. 油页岩测井识别技术及应用. 吉林大学学报(地球科学版), 42(2): 289~295.
参考文献
朱留方. 2003. 交叉偶极子阵列声波测井资料在裂缝性储层评价中的应用. 测井技术, 27(3): 225~227.
参考文献
朱怡翔, 田昌炳, 于兴河, 何东博, 贾爱林. 2004. 鄂尔多斯盆地苏里格气田相对高渗砂体的成因及其岩石物理测井识别方法. 石油实验地质, 26(4): 389~394.
参考文献
Akimbekova A, Trippetta F, Carboni F, Pauselli C, Maletti G M, Casero A, Miranda F, Barchi M R. 2024. Deriving Vp velocity and density properties of complex litho-structural units from the analysis of geophysical log data: A study from the Southern Apennines of Italy. Marine and Petroleum Geology, 160: 106634.
参考文献
Athy L F. 1930. Density porosity and compaction of sedimentary rocks. AAPG Bulletin, 14: 1~24.
参考文献
Barbosa D N, Greenwood A, Caspari E, Dutler N, Holliger K. 2021. Estimates of individual fracture compliances along boreholes from full -waveform sonic log data. Journal of Geophysical Research: Solid Earth, 126(5): e2021JB022015~ e2021JB022015.
参考文献
Benaïssa Z, Benaïssa A, Zaouia F S, Aïfa T, Boudella A, Chami N, Youcefi D, Ouadah M S. 2010. Using sonic log data to investigate a multiple problem in the Hassi R ' mel field, Algeria. Journal of Petroleum Science and Engineering, 71(3): 121~125.
参考文献
Bowers G L. 1995. Pore pressure estimation from velocity date: accounting for overpressure mechanisms besides under compaction. International Journal of Rock Mechanics and Mining Sciences, 10 (2): 89~95.
参考文献
Bulant P, Klimeš L. 2008. Comparison of VSP and sonic-log data in nonvertical wells in a heterogeneous structure. Geophysics, 73(4): U19~U25.
参考文献
Cai Zhidong. 2021&. Borehole seismic: A bridge connecting multiple oil and gas exploration methods. Oil Geophysical Prospecting, 56(4): 922~934.
参考文献
Cao Yuan, Deng Jingen, Yu Baohua. 2013&. Prediction and analysis of abnormal high pressure reservoir in the first member of Liushagang formation in south WZ12 - 1 oilfield. Special Oil and Gas Reservoirs, 20(6): 99~102.
参考文献
Chen Bixiao, Zhang Yun. 2002&. Full wave sonic logging data processing technique and its applications. Well Logging Technology, 26(5): 369~372.
参考文献
Chen Gengsheng, Shi Xuewen, Liu Yong, Wu Wei, Yang Yuran, Zu Yiqing, Chen Liqing, Xu Liang, Zhong Kesu, Yin Yingzi. 2024&. New understandings of the factors controlling of deep shale gas enrichment in the Wufeng Formation - Longmaxi Formation of the southern Sichuan Basin. Natural Gas Industry, 44(1): 58~71.
参考文献
Cui Yunjiang, Lyu Hongzhi. 2008&. A logging evaluation of fractured buried-hill reservoir in JZ25-1S field. China Offshore Oil and Gas, 20(2): 92~95.
参考文献
Deng Pan, Chen Mengjin, Gao Zhelong, Sun Ai. 2002&. Log response and explanation of structural fractures in volcanic rock reservoir. Acta Petrolei Sinica, 23(6): 32~37.
参考文献
Ding Shicun. 2010&. The application of DSI data to the reform of low porosity and low permeability reservoir. Chinese Journal of Engineering Geophysics, 7(6): 704~709.
参考文献
Dong Jingli. 2009&. Processing of multipole array acoustic log data and its application. Well Logging Technology, 33(2): 115~119.
参考文献
Dong Zhen, Pan Heping. 2007&. A review of study on relationships between sonic logging data and seismic attributes. Chinese Journal of Engineering Geophysics, 4(5): 488~494.
参考文献
Eaton B A. 1975. The equation for geopressure prediction from well logs. Society of Petroleum Engineers of AIME, Paper SPE 5544.
参考文献
Gao Kun, Tao Guo, Ma Yong. 2006&. Application of multi pole array sonic logging to acid hydralic fracturing. Progress in Geophysics, 21 (4): 1227~1231.
参考文献
Guan Bo, Xue Guiyu, Zhao Yanjun, Bai Jing, Wang Yuexin, Gao Hongzhong. 2002&. A method for cementing quality evaluation with Fullwave acousti log data. Well Logging Technology, 26(5): 383~386.
参考文献
Guo Guisheng, Lin Jing - qi, Zhang Zhonghua, Wu Congwen, Hou Qingyu. 2011&. Prediction of Pore Pressure, Fracture Pressure and Collapse Pressure with Well Logging Data. Xinjiang Petroleum Geology, 32(2): 187~189.
参考文献
Guo JingZhe, Guo XiaoJun, Zhao Ming, Jia YuXin, Lyu QiQi, Yin Shuai. 2023&. Conventional logging evaluation method of brittleness index of tight sandstone based on multimineral model: a case study of Chang 7 member in Tongchuan area, Ordos basin. Progress in Geophysics, 38(4): 1590~1602.
参考文献
He Shunyi, Shi Yongmin, Xie Nan, Zhang Zhixiang, Li Cuiping. 2008&. The Method for Acquirement of Conventional Logging Response- Based Lithomechanical Parameters. Xinjiang Petroleum Geology, 29(5): 662~664.
参考文献
Henry P H. 1996. Analysis of sonic well logs applied to erosion estimates in the Bighorn basin, Wyoming. AAPG Bulletin, 80: 630~647.
参考文献
Hornby B E. 1989. Imaging of near - borehole structure using fullwaveform sonic data. Geophysics, 54(6): 747~757.
参考文献
Hornby B E, Howie J M, Ince D W. 2003. Anisotropy correction for deviated - well sonic logs: application to seismic well tie. Geophysics, 68(2): 464~471.
参考文献
Hu Song, Wang Min, Liu Weinan, Wang Bing. 2022&. Anisotropy correction method for acoustic time difference in horizontal shale wells and its application. Acta Petrolei Sinica, 43(1): 58~66.
参考文献
Huang Xiaodong, Hu Jilan, Guo Yuyan, Cui Hongzhu, Zhao Hongxing, Gu Dingna. 2005&. Application of XMAC well logging tool in gas reservoir recognition of Tuha Basin. Journal of Oil and Gas Technology, 27(3): 479~481.
参考文献
Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34~58.
参考文献
Ji Tongzhi, Liu Zhengfeng, Wang Zirong, Wu haizhong, Sun chunming. 2002&. Analysis of influencing factors of cement evaluation based on the CBL-VDL logging data. Well Logging Technology, 26(6): 486~489.
参考文献
Jia chengzhao. 2023&. Key scientific and technological problems of petroleum exploration and development in deep and ultra - deep formation. Journal of China University of Petroleum ( Edition of Natural Science), 47(5): 1~12.
参考文献
Jiang Can, Zhuang Chunxi, Li Shengqing, Su Yuanda, Tang Xiaoming. 2019&. Joint inversion for compressional and shear wave slowness using multipole acoustic array logging data. Chinese Journal of Geophysics, 62(6): 2294~2302.
参考文献
Jiang Xiudao, Zhu Guangming, Sun Yuan. 2006&. Possibility of applying geophysical methods in strategic petroleum target area selection in China: A case study of the Qiangtang basin. Geological Bulletin of China, 25(9): 1196~1200.
参考文献
Jin Ling, Su Guizhi, Liu Guilan, Zhu Piyue, Li lei, Hu Yanping. 2004&. Influencing factors in making synthetic seismogram and counter measures. Geophysical Prospecting for Petroleum, 43(3): 267~272.
参考文献
Kong Qingfeng. 2024&. Borehole expanding correction method for compensated acoustic logging. Oil Geophysical Prospecting, 59 (3): 543~547.
参考文献
Ktenas D, Henriksen E, Meisingset I, Nielsen J K, Andreassen K. 2017. Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic velocities and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88: 826~844.
参考文献
Lai Jin, Wang Guiwen, Sun Simian, Jiang Chen, Zhou Lei, Zhen Xinhua, Wu QingKuan, Han Chuang. 2015&. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs. Progress in Geophysics, 30(4): 1712~1724.
参考文献
Lai Jin, Wang Guiwen, Fan Zhuoying, Chen Jing, Wang Shuchen, Zhou Zhenglong, Fan Xuqiang. 2016&. Research progress in brittleness index evaluation methods with logging data in unconventional oil and reservoirs. Petroleum Science Bulletin, 3: 330~341.
参考文献
Lai Jin, Wang Guiwen, Fan Zhuoying. , Wang Ziyuan, Chen Jing, Zhou Zhenglong, Wang Shuchen, Xiao Chengwen. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195 – 214.
参考文献
Lai Jin, Wang Guiwen, Wang Song, Cao Juntao, Li Mei, Pang Xiaojiao, Han Chuang, Fan Xuqiang, Yang Liu, He Zhibo, Qin Ziqiang. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139~166.
参考文献
Lai Jin, Li Dong, Wang Guiwen, Xiao Chengwen, Hao Xiaolong, Luo Qingyong, Lai Lingbin, Qin Ziqiang. 2019. Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43~54.
参考文献
Lai Jin, Wang Guiwen, Pang Xiaojiao, Han Zongyan, Li Dong, Zhao Yidi, Wang Song, Jiang Chengzhou, Li Hongbin, Li Yuhang. 2021&. The past, present and future of well logging geology: To celebrate the publication of second edition of “ Well Logging Geology”. Geological Review, 67(6): 1804~1828.
参考文献
Lai Jin, Chen Kangjun, Xin Yi, Wu Xingneng, Chen Xu, Yang Kefu, Song Qiuqiang, Wang Guiwen, Ding Xiujian. 2021. Fracture characterization and detection in the deep Cambrian dolostones in the Tarim Basin, China: Insights from borehole image and sonic logs. Journal of Petroleum Science and Engineering, 196: 107659.
参考文献
Lai Jin, Pang Xiaojiao, Zhao Xin, Zhao Yidi, Wang Guiwen, Huang Yuyue, Li Hongbin, Li Yuhang. 2022&. Typical misunderstandings and scientific ideas in well logging geology research. Natural Gas Industry, 2(7): 31~44.
参考文献
Lai Jin, Wang Guiwen, Fan Qixuan, Pang Xiaojiao, Li Hongbin, Zhao Fei, Li Yuhang, Zhao Xin, Zhao Yidi, Huang Yuyue, Bao Meng, Qin Ziqiang, Wang Qiqi. 2022. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects. Surveys in Geophysics, 43: 913~957.
参考文献
Lai Jin, Li Hongbin, Zhang Mei, Bai Meimei, Zhao Yidi, Fan Qixuan, Pang Xiaojiao, Wang Guiwen. 2023a&. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography (Chinese Edition), 25(5): 1118~1138.
参考文献
Lai Jin, Bai Tianyu, Xiao Lu, Zhao Fei, Li Dong, Li Hongbin, Wang Guiwen, Zhang Ronghu. 2023b&. Well-logging evaluation of insitu stress fields and its geological and engineering significances. Oil & Gas Geology, 44(4): 1033~1043.
参考文献
Lai Jin, Xiao Lu, Zhao Xin, Zhao Fei, Li Yuhang, Zhu Shifa, Wang Guiwen, Liu Hongkun. 2023c&. Genesis and logging evaluation of deep to ultra-deep high-quality clastic reservoirs: a case study of the Cretaceous Bashijiqike Formation in Kuqa depression. Acta Petrolei Sinica, 44(4): 612~625.
参考文献
Lai Jin, Wang Guiwen, Fan Qixuan, Zhao Fei, Zhao Xin, Li Yuhang, Zhao Yidi, Pang Xiaojiao. 2023. Toward the scientific interpretation of geophysical well logs: Typical misunderstandings and countermeasures. Surveys in Geophysics, 44(2): 463~494.
参考文献
Lai Jin, Xiao Lu, Bai Tianyu, Fan Qixuan, Huang Yuyue, Li Hongbin, Zhao Fei, Wang Guiwen. 2024a&. Interpretation and evaluation methods of image logs and their geological applications. Bulletin of Geological Science and Technology, 43(3): 323~340.
参考文献
Lai Jin, Bai Tianyu, Su Yang, Zhao Fei, Li Ling, Li Yuhang, Li Hongbin, Wang Guiwen, Xiao Chengwen. 2024b&. Researches progress in well log recognition and evaluation of source rocks. Geological Review, 70(2): 721~741.
参考文献
Lai Jin, Su Yang, Xiao Lu, Zhao Fei, Bai Tianyu, Li Yuhang, Li Hongbin, Huang Yuyue, Wang Guiwen, Qin Ziqiang. 2024. Application of geophysical well logs in solving geologic issues: Past, present and future prospect. Geoscience Frontiers, 15: 101779.
参考文献
Laubach S E, Lander R H, Criscenti L J, Anovitz L M, Urai J L, Pollyea R M, Hooker J N, Narr W, Evans M A, Kerisit S N, Olson J E, Dewers T, Fisher D, Bodnar R, Evans B, Dove P, Bonnell L M, Marder M P, Pyrak-Nolte L. 2019. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57 (3): 1065~1111.
参考文献
Laubach S E, Zeng L, Hooker J N, Wang Q, Zhang R, Wang J, Ren B. 2023. Deep and ultra-deep basin brittle deformation with focus on China. Journal of Structural Geology, 175: 104938.
参考文献
Li Changwen, Qiang Yuming, Li Guoli, Yu Chunhao. 2006&. Characteristics of Modern Acoustic Logging Technology Development. Well Logging Technology, 30(2): 101~105.
参考文献
Li Changwen, Yu Chunhao, Zhao Xudong, Zhu Zhensheng. 2003&. Application of Acoustic Reflective Waves in Evaluation of fractured reservoirs. Well Logging Technology, 27(3): 198~202.
参考文献
Li Guofa, Liao Qianjin, Wang Shangxu, Yuan Shuqin, Wang Shoudong. 2008&. Discussions about horizon calibration based on well - log synthetic seismogram. Geophysical Prospecting for Petroleum, 47 (2): 145~149.
参考文献
Li Jianhao. 2007&. An improvement in conductivity formula of dual water model with conductivity formula of mixture. Well Logging Technology, 31(1): 1~3.
参考文献
Li Jun, Wang Guiwen, Ouyang Jian. 2001&. Using Logging Data to Quantitatively Study Terrestrial - Stress of Kuqa Field. Petroleum Exploration and Development, 28(5): 93~97.
参考文献
Li Kaijun, Yang Yuqing, Su Hua. 2003&. A preliminary application of XMAC to clastic reservoir assessment. China Offshore Oil and Gas (Geology), 17(6): 416~420.
参考文献
Li Ning, Liu Peng, Fan Huajun, Hu Jiangtao, Wu Hongliang. 2024&. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging. Petroleum Drilling Techniques, 52(1): 1~7.
参考文献
Li Pengju, Song Yanjie Fu Duochen, Zhong Congcun, Tian Hongjuan. 2006&. High resolution processing of p - wave slowness - time of XMAC. Natural Gas Industry, 26(6): 55~56.
参考文献
Li Qingqing, Fu Liyun, Du Qizhen, Ran Yanan, Hu Yong. 2024&. Velocity modeling through full wave equation traveltime tomography inversion based on sonic logging data. Chinese Journal of Geophysics, 67(2): 641~653.
参考文献
Li Tonghua, Duan Qingqing, Yang Lei, Wu Jinlong. 2009&. Igneous rock fractures and hydrocarbon identification based on DSI data. Journal of Southwest Petroleum University ( Science & Technology Edition), 31(6): 45~51.
参考文献
Li Yuxia, Li Yamin. 2008&. Multipole acoustic array logging tool. Well Logging Technology, 32(5): 439~442.
参考文献
Li Zhaoyang. 2005&. Application of crossed dipole array acoustic logging. Progress in Exploration Geophysics, 28(4): 300~303.
参考文献
Liu Guogiang, Tan Tingdong. 1993&. Porosity and gas - saturation determination using elastic moduli. Petroleum Exploration and Development, 20(5): 33~41.
参考文献
Liu Guoqiang. 2021&. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891~902.
参考文献
Liu Hang, Wu Yuyu, He Hongju, Xi Bing, Lai Qiang, Han Honglin. 2023&. Application of new processing technology of array acoustic logging in carbonate reservoir evaluation. Progress in Geophysics, 38(1): 0220~0228.
参考文献
Liu Huan, Xu Jinxiu, Chen Hongbing, Zhang Xuefang, Qi Yi. 2023&. A method for calculating porosity of shale sandstone gas reservoir based on nuclear magnetic resonance logging calibrated. China Offshore Oil and Gas, 35(3): 89~95.
参考文献
Liu Jingyan, Lin Changsong, Yu Yueyu, Wu Fadong, Jiang Liang, Chen Zhiyong. 2000&. An improved method to calculate denuded amount by sonic well logs. Experimental Petroleum Geology, 22(4): 302~306.
参考文献
Liu Peng, Qiao Wenxiao, Che Xiaohua, Wang Ruijia, Ju Xiaodong, Lu Junqiang. 2014&. Application of multipole acoustic logging to the evaluation of coalbed methane reservoirs. Well Logging Technology, 38(3): 292~296.
参考文献
Liu Xiaohong, Liu Jun, Xiong Xiaoyun, Li Huan. 2009&. Multipole array acoustic imaging logging system. China Mining Magazine, 18 (11): 92~96.
参考文献
Liu Zhidi, Dai Shihua, Wang Hongliang, Li Guiqiu, Xu Jing. 2007&. Fracture Effectivity Evaluati on of Igneous Rock with Sonic Logging. Well Logging Technology, 31(2): 156~158.
参考文献
Lu Hongjie, Zhu Huiming, Wang Chunli, Shen Binbin, Ma Yupeng, Li Yulong. 2011&. Stress analysis of volcanic fracturing reservoir based on XMAC data. Drilling & Production Technology, 34(1): 45~47+51.
参考文献
Lu Yunlong, Cui Yunjiang, Guan Yeqin, Xiong Lei. 2022&. Quantitative evaluation method of fracture effectiveness based on array acoustic logging. Well Logging Technology, 46(1): 64~70.
参考文献
Lubanzadio M, Goulty N R, Swarbrick R E. 2006. Dependence of sonic velocity on effective stress in North Sea Mesozoic mudstones. Marine and Petroleum Geology, 23(6): 647~653.
参考文献
Luo Weiping, Li Hongqi, Zhu Liping, Qiao Yuedong, Shi Ning, Yu Fei. 2014&. Automatic matching of seismic and logging data. Oil Geophysical Prospecting, 49(1): 205~212.
参考文献
Magara K. 1976. Thickness of removed sediments, paleopore-pressure, and paleotemperature, southwestern part of western Canada basin. AAPG Bulletin, 60: 554~565.
参考文献
Markova I, Jarillo G R, Markov M, Gurevich B. 2014. Squirt flow influence on sonic log parameters. Geophysical Journal International, 196: 1082~1091
参考文献
Markova I, Markov M. 2023. Secondary porosity classification in heterogeneous carbonate reservoirs based on the sonic log data. Journal of Applied Geophysics, 218: 105215.
参考文献
Narr W, Currie J B. 1982. Origin of fracture porosity—example from Altamont field, Utah. The American Association of Petroleum Geologists Bulletin, 65(9): 1231~1247.
参考文献
Ni Xin, Zhou Changchun, Yang Yuqin, Xiao Kun, Huang Zhaohui. 2012&. Application of well logging to the evaluation of the rock mechanical properties of the shale gas reservoirs. Oil Geophysical Prospecting, 9(4): 433~439.
参考文献
Nian Tao, Wang Guiwen, Xiao Chengwen, Zhou Lei, Deng Li, Li Ruijie. 2016. The in situ stress determination from borehole image logs in the Kuqa Depression. Journal of Natural Gas Science and Engineering, 34: 1077~1084.
参考文献
Onalo D, Adedigba S, Khan F, James L A, Butt S. 2018. Data driven model for sonic well log prediction. Journal of Petroleum Science and Engineering, 170: 1022~1037.
参考文献
Oyler D C, Mark C, Molinda G M. 2010. In situ estimation of roof rock strength using sonic logging. International Journal of Coal Geology, 83: 484~490.
参考文献
Passey Q, Creaney S, Kulla J, Moretti F, Stroud J. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74: 1777~1794.
参考文献
Prioul R, Donald A, Koepsell R, Marzouki Z E, Bratton T. 2007. Forward modeling of fracture - induced sonic anisotropy using a combination of borehole image and sonic logs. Geophysics, 72(4): 135~147.
参考文献
Qi Bin, Xia Hongquan, Fang Guoqing, Bai Xinguo. 2008&. On stratum anisotropy based on DSI log information. Well Logging Technology, 32(5): 412~416.
参考文献
Qi Qiaomu, Cheng Arthur C H, Li Yunyue Elita. 2019. Determination of formation shear attenuation from dipole sonic log data. Geophysics, 84(3): D73~D79.
参考文献
Qi Wenli, Wu Huimei, Lou Yishan, Zhai Xiaopeng, Liu Hong. 2023&. Formation pore pressure prediction and application based on acoustic logging. Well Logging Technology, 47(4): 415~420.
参考文献
Qi Xiao, Zhang Zhang, Li Dong, Yin Lu, Yu Yang. 2023&. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology. Petroleum Drilling Techniques, 51 (6): 128~134.
参考文献
Qiao Wenxiao, Ju Xiaodong, Che Xiaohua, Lu Junqiang. 2011&. Progress in Acoustic Well Logging Technology. Well Logging Technology, 35(1): 14~19.
参考文献
Qiao Wenxiao, Yan Shuwen. 1997&. Evaluation of the Characteristics of Pore Fluids in Permeable Formations Using Acoustic Logging Data. Well Logging Technology, 21(3): 215~220.
参考文献
Qin Jianqiang, Fu Deliang, Qian Yafang, Yang Fu, Tian Tao. 2018&. Progress of geophysical methods for the evaluation of TOC of source rock. Geophysical Prospecting for Petroleum, 57(6): 803~812.
参考文献
Qin Xuying, Song Botao. 2002&. Current situation and prospect of logging technology. Petroleum Reservoir Evaluation and Development, 25(1): 26~34.
参考文献
Radwan A A, Nabawy B S, Abdelmaksoud A, Lashin A. 2021. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand. Journal of Natural Gas Science and Engineering, 88: 103797.
参考文献
Raymer L L, Hunt E R, Gardner J S. 1980. An improved sonic transit time- to - porosity transform [ C] ∥SPWLA 21st Annual Logging Symposium. Richardson, Texas, USA: OnePetro, SPWLA-1980- P.
参考文献
Rickman R, Mullen M J, Petre J E, Grieser B, Kundert D. 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
参考文献
Riskallah A, David B, Bob O, et al. 1990. The MAXIS system: Imaging for reservoir characterization. Oilfield Review, 2(2): 31~42.
参考文献
Roshan H, Li Danqi, Canbulat I, Regenauer-Lieb K. 2023. Borehole deformation based in situ stress estimation using televiewer data. Journal of Rock Mechanics and Geotechnical Engineering 15: 2475~2481.
参考文献
Salih M, El - Husseiny A, Reijmer J J G, Eltom H, Abdelkarim A. 2023. Factors controlling sonic velocity in dolostones. Marine and Petroleum Geology, 147: 105954.
参考文献
Sondergeld C H, Newsham K E, Comisky J T, Rice M C. 2010. Petrophysical considerations in evaluating and producing shale gas resources. In: SPE Unconventional Gas Conference. Society of Petroleum Engineers.
参考文献
Su Hua, Tian Hong. 2002&. Estimation of Formation Permeability Using Stoneley Wave. Well Logging Technology, 26(4): 298~301.
参考文献
Su Yang, Lai Jin, Bie Kang, Li Dong, Zhao Fei, Chen Kangjun, Li Hongbin, Wang Guiwen. 2024&. Well logging evaluation and characterization of geological information for deep and ultra - deep drilling wells. Journal of Palaeogeography ( Chinese Edition), 27 (1): 225~239.
参考文献
Sun Yue, Xie Peiyu, Zhang Fengqi, Chen Shuguang, Li Yongxin, Guan Ming, Zhou Ranran, Zhang Jie. 2024&. Mechanism and evolution of overpressure in the Linhe Formation of the Xinglong structural belt in the Linhe Depression of the Hetao Basin. Natural Gas Geoscience, 35(4): 661~675.
参考文献
Tan Lihong, Zhang Guoqiang, Tan Zhongjian, Zhang Guibin, Zhang Chengguang, Cai Ming. 2022&. Evaluation of metamorphic reservoir effectiveness by array acoustic logging data. Oil Geophysical Prospecting, 57(6): 1464~1472.
参考文献
Tan Tingdong. 2000&. Oil and gas reservoirs discovered by log interpretation. Natural Gas Industry, 20(6): 47~50.
参考文献
Tang Jun, Zhang Chengguang, Xin Yi. 2017&. A fracture evaluation by acoustic logging technology in oil - based mud: A case from tight sandstone reservoirs in Keshen area of Kuqa depression, Tarim Basin, NW China. Petroleum Exploration and Development, 44 (3): 389~397+406.
参考文献
Tang Jun, Zhang Chengguang, Zhang Bixing, Shi Fangfang. 2016&. Cement bond quality evaluation based on acoustic variable density logging. Petroleum Exploration and Development, 43 (3): 469~475.
参考文献
Tang Xiaoming, Wei Zhoutuo, Su Yuanda, Zhuang Chunxi. 2012&. A Review on the Progress and Application of Dipole Acoustic Reflection lmaging Technology. Well Logging Technology, 55(8): 2798~2807.
参考文献
Tong Kaijun, Zhao Cunming, Lyu Zuobin, Zhang Yingchun, Zheng Hao, Xu Sainan, Wang Jianli, Pan Lingli. 2012&. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay. Petroleum Exploration and Development, 39(1): 56~63.
参考文献
Wang Guiwen, Lai Jin, Liu Bingchang, Fan Zhuoying, Liu Shichen, Shi Yujiang, Zhang Haitao, Chen Jing. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica (English Edition), 94(3): 831~846.
参考文献
Wang Jianhua. 2006&. A summary of sonic logging techniques. Chinese Journal of Engineering Geophysics, 3(5): 395~400.
参考文献
Wang Peichun, Xiong Lei, Li Shengqing, Tan Xiaoyu, Zhang Renfeng, Su Yuanda. 2023&. Acoustic Log Evaluation Method for Fractured Reservoir and Its Application in BZ19 - 6Condensate Gas Field. Well Logging Technology, 47(1): 7~15.
参考文献
Wang Ping. 2008&. Analysis of logging factors which affect cement bonding evaluation. Well Logging Technology, 32(5): 463~467.
参考文献
Weng Wangfei, Wang Jianqiang, Zhang Rongrong, Chen Hong, Gui Xiaojun. 2011&. Denudation thickness estimation of sedimentary formation in Ordos basin by acoustic logging information. Xinjiang Petroleum Geology, 32(2): 143~146.
参考文献
Wu Xiaoguang, Ji Fengling, Li Decai. 2016&. Application status and research progress of dipole acoustic well logging. Progress in Geophysics, 31(1): 0380~0389.
参考文献
Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1): 41~70.
参考文献
Xia Hongquan, Guo Qiannan. 2018&. Detection of hydraulic fractures in horizonal wells based on shear wave spiltting of DSI logging. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 87~96.
参考文献
Xia Hongquan, Hu Hui, Yang Lin, Zhao Jing. 2017&. Method about improving accuracy of fracture fluid friction pressure. Petroleum Drilling Techniques, 45(5): 113~117.
参考文献
Xu Chenjie. 2022&. Mechanism and Pattern of the Classification and Distribution of Natural Gas Resources in Xihu Sag, East China Sea Shelf Basin. China University of Geosciences, Wuhan.
参考文献
Xu Ke, Yang Haijun, Zhang Hui, Wang Haiying, Yuan Fang, Wang Zhaohui, Li Chao. 2021&. Current In - Situ Stress Field and Efficient Development of Bozi-1 Gas Reservoir in Kelasu Structural Belt. Xinjiang Petroleum Geology, 42(6): 726~734.
参考文献
Xu Ke, Yang Haijun, Zhang Hui, Ju Wei, Li Chao, Fang Lu, Wang Zhimin, Wang Haiying, Yuan Fang, Zhao Bin, Zhang Wei, Liang Jingrui. 2022. Fracture effectiveness evaluation in ultra - deep reservoirs based on geomechanical method, Kuqa Depression, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 215: 110604.
参考文献
Xu Song, Tang Xiaoming, Su Yuanda, Zhuang Chunxi. 2018&. Determining formation shear wave transverse isotropy jointly from borehole Stoneley and flexural - wave data. Chinese Journal of Geophysics, 61(12): 5105~5114.
参考文献
Xu Xing, Zhao Wanyou. 2001&. Application of Star - Ⅱ Imaging Logging in Carbonate Reservoir Evaluation. Well Logging Technology, 25(5): 358~364.
参考文献
Xu Yugiang, He Baolun, Wang Yanshu, Han Chao, Xiao Fan, Guan Zhichuan, Liu Kuan. 2023&. A novel prediction method of formation pore pressure driven by deep learning and Eaton method. Journal of China University of Petroleum ( Edition of Natural Science), 47(6): 50~59.
参考文献
Xue Luo, Ma Lun, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Shi Jianglong, Wang Lei. 2022&. Tectonic evolution and its influence on hydrocarbon accumulation of Ruman buried hill in Melut Basin, South Sudan. Petroleum Geology and Recovery Efficiency, 29(2): 53~60.
参考文献
Xue Mei, Chu Zehan, Jiang Hao. 2000&. Development and evaluation of the acoustic well logging tools. Petroleum instrument, 14(5): 6~10.
参考文献
Yan Huilan. 2004&. Application of multipole sub - array acoustic (MAC) log in oilfield production. Special Oi and Gas Reservoirs, 11(5): 60~63.
参考文献
Yang Lei, Gao Qiutao, Wang Guobin, Li Guigiu, Li Shuyun, Zhang Jun. 2002&. Application of XMAC Well Log Data in Recognition of Oil and Gas Intervals. Xinjiang Petroleum Geology, 23(5): 402~403.
参考文献
Yang Xiaobing, Yao Menglin, Wang SiJing, Zhou Hao, Tong Kailin, Chen Weiming, Ma Shaoguang. 2022&. Shale gas logging, geology and engineering technologies: New requirements and solutions. Natural Gas Industry, 42(2): 20~27.
参考文献
Yang Xiaoyi, Liu Chenglin, Wang Feilong, Li Guoxiong, Feng Dehao, Yang Taozheng, He Zhibin, Su Jiajia. 2024&. Distribution and origin of overpressure in the Paleogene Dongying Formation in thesouthwestern sub-sag, Bozhong Sag, Bohai Bay Basin. Oil & Gas Geology, 45(1): 96~112.
参考文献
Yang Xuebing, Li Qingfeng, Li Wenzhi, He Li. 2014&. The application of acoustic logging technologies in the unconventional dense reservoir. Journal of Applied Acoustics, 33(1): 16~22.
参考文献
Yin Shuai, Liu Hanlin, He Jianhua, Wang Ruifei, Li Xiangxue, Huang Zheng, Zhou Yongqiang, He Zixiao. 2023&. Comprehensive evaluation of geo - stress in tight oil sandstone under constraints of dynamic-static geomechanical methods. Advances in Earth Science, 38(12): 1285~1296.
参考文献
Yin Xingyao, Ma Ni, Ma Zhengqian, Zong Zhaoyun. 2018&. Review of In- situ Stress Prediction Technology. Geophysical Prospecting for Petroleum, 57(4): 488~504.
参考文献
Yu Chunhao, Li Changwen. 1998&. Application of Stonley Waves to Fracture Evaluation. Well Logging Technology, 22(4): 273~277.
参考文献
Yu Jingfu, Yuan Futang, QiuHuili, Zhang Tiexuan. 2005&. Geological application of new logging technology in complex lithologic formation. Journal of Oil and Gas Technology, 27(2): 345~348.
参考文献
Yu Zhucheng, Xu Qicong, Qiu Ruyi, Lei Ming, Zhou Luoyu. 2023&. Status and Prospect of Borehole Panoramic Imaging While Drilling Based on Acoustic Wave. Drilling & Production Technology, 46 (3): 171~175.
参考文献
Yuan Hongzhuang, Lu Dawei, Zhang Xinyun, Sun Jianmeng. 2005&. An overview of recent advances in well logging technology. Progress in Geophysics, 20(3): 786~795.
参考文献
Yue Wenzheng, Tian Bin. 2022&. High - resolution reflection acoustic logging imaging method for deep reservoir around a well. Geophysical Prospecting for Petroleum, 61(6): 1077~1089.
参考文献
Zeng Lianbo, Tian Chonglu. 1998&. Tectonic stress field and the development of low permeability. Petroleum Exploration and Development, 25(3): 91~93.
参考文献
Zeng Lianbo, Wang Guiwen. 2005&. Distribution of Earth Stress in Kuche Thrust Belt, Tarim Basin. Petroleum Exploration and Development, 32(3): 59~60.
参考文献
Zeng Lianbo, Su Hui. , Tang Xiaomei, Peng Yongmin, and Gong Lei. 2013. Fractured tight sandstone oil and gas reservoirs: A new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363~377.
参考文献
Zeng Wenchong, Qiu Xibin, Liu Xuefeng. 2014&. A new method to identify fluid properties in complex reservoir. Well Logging Technology, 38(1): 11~21.
参考文献
Zhang Bixing, Wang Kexie. 1998&. Status quo and development of the acoustic multipole logging in anisotropic formation. Progress in Geophysics, 13(2): 1~14.
参考文献
Zhang Chengsen, Xiao Chengwen, Liu Xingli, Guo Hongbo, Zhu Dengchao, Wang Guiqing. 2011&. Application of remote detection acoustic reflection logging to fractured - vuggy carbonate reservoir evaluation. Xinjiang Petroleum Geology, 32(3): 325~328.
参考文献
Zhang Conghui, Qi Xiao, Zhang Guangdong, Zhang Zhang, Yin Lu. 2021&. Processing technique for quantitative evaluation of cementing quality by using array acoustic waveform and applications. Progress in Geophysics, 36(5): 2128~2135.
参考文献
Zhang Haitao, Shi Yujiang, Zhang Peng, Fan Yiren, Yang Xiaoming, Li Hu. 2015&. Identification of low permeability sandstone gas reservoir based on the DSI. Well Logging Technology, 39(5): 591~595.
参考文献
Zhang Hengrong, Xiao Lizhi, Zeng Shaojun, Tang Di, Yuan Wei, Yang Dong. 2022&. Forward and inversion methods and application of acousto- eleetrie logging based on fracture compliance and crustal stress model. Oil Geophysical Prospecting, 58(2): 431~442.
参考文献
Zhang Hui, Yin Guoqing, Wang Zhimin, Wang Haiying. 2019&. Fracability evaluation of deep-burial fractured sandstone gas reservoir in Kuqa Depression. Xinjiang Petroleum Geology, 40(1): 108~115.
参考文献
Zhang Jincai. 2011. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth - Science Reviews, 108 (1): 50~63.
参考文献
Zhang Lei, Cheng Zhigang, Feng Chunzhen, Luo Shaocheng, Xi Hui, Yang Zhixin. 2013&. On identification methods of tight sand gas layer and their application effect analysis. Well Logging Technology, 37(6): 648~652.
参考文献
Zhang Xiaoli, Shen Ying, Chen Wenxue. 2000&. Application of well logging information to analysis on the effect of diagenesis in reservoirs. Acta Sedimentologica Sinica, 18(3): 127~131.
参考文献
Zhang Yonghua, Chen Ping, Zhao Yuqing, Zhu Jun and Liu Jingyan. 2004&. Integrative layer - labeling technique based on synthetic seismogram. Oil Geophysical Prospecting, 39(1): 92~96.
参考文献
Zhang Yongjun, Gu Dingna, Ma Subin, Chen Xiangyang, Chen Guanghui, Wan Yongqing. 2012&. The Application of Array Acoustic Wave Data to Tight Sandstone Gas Reservoir in Tuha Oilfield. Well Logging Technology, 36(2): 175~178.
参考文献
Zhang Yuanzhong, Xiao Lizhi. 2004&. Some progress of well logging techniques during the first five years of the new millennium. Progress in Geophysics, 19(4): 828~836.
参考文献
Zhang Zhenchen, Sun Jianmeng, Shi Zhenfei, Cai Xiaoming, Su Yuanda, Liao Dongliang. 2005&. Application of Well Logging Information to Secondary Porosity Analysis. Application of Well Logging Information to Secondary Porosity Analysis, 23(4): 613~619.
参考文献
Zhao Jingzhou, Li Jun, Xu Zeyang. 2017&. Advances in the origin of overpressures in sedimentary basins. Acta Petrolei Sinica, 38(9): 973~998.
参考文献
Zhao Jiyong, Zhou Xingui, Lei Qihong, Zhao Guoxi, He You’An, Shi Jianchao, Zhang Linyan. 2017&. Study on paleo - tectonic and present tectonic stress in Chang 7 tight reservoir of Maling oilfield, Ordos basin. Journal of Geomechanics, 23(6): 810~820.
参考文献
Zhao Jun, Zhang Li, Wang Guiwen, Li Jun. 2005&. A new method for analyzing crustal stress in foreland structural compressive area based on logging data. Chinese Journal of Geology, 40(2): 284~290.
参考文献
Zhao Luanxiao, Liu Jingyu, Xu Minghui, Zhu Zhenyu, Chen Yuanyuan, and Geng Jianhua. 2024. Rock-physics-guided machine learning for shear sonic log prediction. Geophysics, 89 (1): D75~D87.
参考文献
Zhi Dongming, Li Jianzhong, Yang Fan, Chen Xuan, Xiao Dongsheng, Wang Bo, Wu Chao, Yu Haiyue. 2024&. Exploration breakthrough and significance of Jurassic tight sandstone gas in Qiudong subsag of Tuha Basin. Acta Petrolei Sinica, 45(2): 348~357.
参考文献
Zhou Lihong, Liu Guofang. 1996&. Formation pressure estimated by interval transit time of mudstones. Experimental Petroleum Geology, 18(2): 195~199.
参考文献
Zhou Wen, Dai Jianwen. 2008&. The characteristics and evaluation of fractures distribution in xujahe formation in the western depression of the sichuan basin. Petroleum Geology & Experiment, 30(1): 20~25.
参考文献
Zhu Guangyou, Jin Qiang, Zhang Linye. 2003&. Using log information to analyze the geochemical characteristics of source rocks in Jiyang Depression. Well Logging Technology, 27(2): 104~109.
参考文献
Zhu Jianwei, Zhao Gang, Liu Bo, Guo Wei, Cheng Jun. 2012&. Identification technology and its application of well-logging about oil shale. Journal of Jilin University (Earth Science Edition), 42(2): 289~295.
参考文献
Zhu Liufang. 2003&. Application of Novel Cross - dipole Acoustic Logging Data in Fractured Reservoir Evaluation. Well Logging Technology, 27(3): 225~227.
参考文献
Zhu Yixiang, Tian Changbing, Yu Xinhe, He Dongbo, Jia Ailin. 2004&. Genesis and petrophysical identification of relative high permeability of sandbody in Sulige Gas Field Ordos Basin. Petroleum Geology & Experiment, 26(4): 389~394.
参考文献
Zoback M, Barton C, Brudy M, Castillo D, Finkbeiner T, Grollimund B, Moos D, Peska P, Ward C, Wiprut D. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049~1076.
目录contents

    摘要

    为了系统梳理声波测井解释评价流程并拓展其应用领域与范围,笔者等回顾了声波测井仪器采集系列的发展历程,并总结了不同仪器探测的不同声波属性的差异。声波测井可用于孔隙度测井计算、渗透率评价以及油气层测井判识。通过计算动态泊松比、杨氏模量等参数,声波测井还可用于非常规油气脆性指数测井评价。根据声波时差曲线相对正常压实趋势线的异常响应,声波测井可进行异常地层压力成因判别,并定量计算地层压力大小。声波测井可与地震资料相结合,用于合成地震记录,同时声波时差可进行地层剥蚀厚度恢复。声波测井快、慢横波方位可用于现今地应力方向判别,并根据快、慢横波速度变化可定量计算地层各向异性系数。裂缝在声波测井上表现为声波时差增大、声波能量衰减、变密度图像上“V”字形干涉条纹以及斯通利波反射系数增大。烃源岩具有较高的声波时差,结合电阻率测井等可定量计算 TOC 含量。声波测井通过计算地层压力、破裂压力和坍塌压力,可为钻井安全设计提供支撑,此外声波测井还可用于评价压裂效果,并根据套管波与地层波能量的相对高低进行固井质量检查。研究成果对于扩展声波测井应用领域具有一定的指导意义。

    Abstract

    In order to systematically sort out the process of acoustic logging interpretation and evaluation and expand its application field and scope, this paper reviews the development history of acoustic logging instrument acquisition series, and summarizes the differences of acoustic properties detected by different instruments. Acoustic logging can be used for calculating porosity logging calculation, evaluating permeability and identifying the layers with abundant hydrocarbon. Acoustic logging can also be used to evaluate the brittleness index of unconventional reservoir by calculating dynamic Poisson’ s ratio, Young’ s modulus and other parameters. According to the acoustic logging’ s abnormal response to the normal compaction trend line, acoustic logging can distinguish the mechanisms of abnormal formation pressure and calculate the formation pressure quantitatively. Acoustic logging can be combined with seismic data to synthesize seismic records, and the interval transit time can be used to restore the thickness of formation denudation. The fast and slow shear wave azimuths of acoustic logging can be used to distinguish the current stress direction. The formation anisotropy coefficients can be calculated quantitatively according to the fast and slow shear wave velocity. The presence of the fracture shows the increase of interval transit time, the attenuation of acoustic energy, the appearance of “V” interference fringe in the variable density and the increase of Stoneley wave reflection coefficient in acoustic logging. The source rock has a high interval transit time, and the TOC content can be calculated quantitatively by combining with resistivity logging. Acoustic logging supports safe drilling design by calculating formation pressure, rupture pressure and collapse pressure. It can also be used to evaluate fracturing performance and the check of cementing quality based on the relative strength of the casing wave and the formation wave. The research has certain guiding significance for expanding the application field of acoustic logging.

  • 声波测井是探测声波在地层中传播时速度、频率的变化以及幅度的衰减等声学特性的测井方法(王建华,2006)。声波测井在地质与工程领域的应用由来已久,自 20 世纪 50 年代出现以来,声波测井与核测井、电测井构成了地球物理测井的重要领域(陈必孝和张筠,2002; 乔文孝等,2011; 江灿等,2019; 喻著成等,2023; 孔庆丰,2024; Lai Jin et al.,2024)。声波测井是地球物理测井的重要分支,是近年来发展最快和应用领域最为广泛的测井技术之一(王建华,2006; 吴晓光等,2016)。声波测井以岩石的声学物理特征为理论基础,通过不同的仪器组合可以探测岩石的纵波、横波、斯通利波和伪瑞利波全波列信息,因而被广泛运用于岩性识别、储层参数计算、地层各向异性分析、裂缝识别、地震记录合成等地质与地球物理领域( 张碧星和王克协,1998; Benaïssa et al.,2010; 吴晓光等,2016; Iqbal et al.,2018; Barbosa et al.,2021; 胡松等,2022; Akimbekova et al.,2024)。声波测井资料蕴含了丰富的地质与工程信息,近年来不同类型仪器的研发,使得声波测井对地层地质信息的反映能力逐渐加强,且受油气勘探开发实践需求的推动,阵列化和集成化声波测井仪器涌现,为油气勘探开发实践工作提供了重要支撑(张振城等,2005; 原宏壮等,2005; Markova et al.,2014; 赖锦等,2021; Lai Jin et al.,2024)。

  • 声波测井问世以来,通过 70 多年的发展历程,以及长期的理论和实验研究,研发出了具有不同探测特性与应用范围的声波测井仪器( 李同华等,2009)。声波测井目前已经成为将现代声学理论、最新电子技术、计算机技术和信息处理技术等融合一体的现代测井技术,在地质与工程等领域发挥着越来越重要的作用(Oyler et al.,2010; 乔文孝等,2011; Ktenas et al.,2017; Zhao Luanxiao et al.,2024)。声波测井作为现今测井采集序列中必不可少的项目,包括声波速度、声波幅度、阵列声波测井、声波成像测井、声波全波列测井、远探测声波测井及随钻声波测井等(薛梅等,2000; 王建华,2006)。不同的声波测井系列探测的声波的类型与属性各具差异,限制了声波测井序列在地质与工程领域的推广应用。此外,由于测井采集的不完善、处理解释方法的不配套以及适用条件的不对应,导致声波测井在地质领域的应用存在或出现过不少问题。近年来,“深海、深地”(陆上深层、海上深水)、非常规油气以及老油田剩余油开发成为油气勘探开发的重点与热点领域(贾承造,2023; 苏洋等,2025)。声波测井以其原位测量、分辨率高、蕴含丰富地质信息等优势,成为国家油气等战略需求的重要支撑技术(张元中和肖立志,2004; Lai Jin et al.,2024; 苏洋等,2025)。

  • 为拓展声波测井在地质与工程领域的应用范围,笔者等首先总结了声波测井仪器类型及其探测声学属性差异。论述了声波测井在孔隙度计算、孔隙类型组合、渗透率评价以及气层识别等方面的应用。归纳总结了声波测井在岩石力学参数计算、脆性指数评价当中的应用。分别展示了基于声波时差变化的伊顿法、Bowers 法以及等效深度法等在地层压力测井评价中的应用。并结合泥岩正常压实曲线,根据声波时差测井实现地层剥蚀厚度恢复,同时井震结合,声波测井还可用于合成地震记录。阐述了声波测井快慢横波方位可以判断现今地应力场方位,并进一步定量计算地层各向异性系数。总结了裂缝在声波测井中的综合响应,并分析烃源岩发育时声波响应特征及烃源岩定量评价技术。最后论述了声波测井在钻井设计、压裂效果分析以及固井质量检查中的应用。研究成果以期系统归纳声波测井资料应用领域和范围,为挖掘声波测井中的地质与工程信息提供指导,让声波测井资料为更多的地质与工程人员所用。

  • 1 声波测井仪器发展

  • 20 世纪 50 年代,声波测井技术开始出现,经过数十年的发展,目前已经成为测井采集序列中必不可少的项目之一(薛梅等,2000; 王建华,2006)。目前,常用的声波测井方法包括声波速度测井、声波幅度测井、阵列声波测井(偶极和多极子)、声波成像测井(井下声波电视、井周声波成像)、声波全波列测井、远探测声波测井及随钻声波测井等(薛梅等,2000; 王建华,2006)。可以看到,不同的声波测井仪器结构上有差异,采集声波的种类和属性不同,因而具有不同的探测特性,地质应用领域侧重也不一样,同时具备不同的优缺点(王建华,2006; 李同华等,2009)。目前,声波测井技术也不断向阵列化和集成化发展(李长文等,2006)。阵列化表现为增加接收器数目、连续可调的发射频率、多样化记录波形、数字化信号采集等,而集成化则指多种探测模式(单极、偶极、四极源组合)的综合化、地质与工程应用的一体化等(李长文等,2006)。

  • 1.1 声波速度测井、声波幅度测井

  • 声波速度测井,即声速测井,用于测量滑行纵波在地层(井壁)传播速度,是最早发展也是使用最普遍的一种测井方法。通常地层纵波快于横波,而横波又快于导波,因此在井中接收到的波列中,纵波最先到达,其次横波,导波最后到达,因而纵波相对容易地被探测到(张碧星和王克协,1998)。声速测井采集仪器包括单发双收声系、双发双收井眼补偿声速测井(朱怡翔等,2004; 黄小冬等,2005)。其中单发双收声系易受井眼扩大以及仪器不居中的影响,而双发双收声系可消除井眼扩大对单发双收声系时差的影响,并可消除或减小深度误差,但缺点在于会降低分辨率,同时对低速地层会出现“盲区”。

  • 除了声波速度测井外,用于评价固井质量的声波幅度测井主要记录的是在套管中沿井轴方向传播的套管波幅度,也包括套管波后续波的幅度。 20 世纪 50 年代单发单收声幅测井仪启用,然而 20 世纪 60~70 年代发展了单发双收声系的水泥胶结、变密度(CBL / VDL)测井仪,可快速、简单评价固井质量等(薛梅等,2000)。

  • 1.2 阵列声波、声波全波列测井

  • 在硬地层(地层横波速度大于井中流体波速度)中,经过一些信号技术方面的处理,可以从全波列中提取横波信息,在软地层(地层横波速度小于井中流体波速度)中,由于地层横波首波与井中泥浆波一起传播,则无法获得横波首波(于景才等,2005; 黄小冬等,2005; 乔文孝等,2011)。然而除了纵波时差与幅度外,声波全波列、包括横波、斯通利波(Stoneley)和伪瑞利波(Rayleigh)也携带了较多的地层岩石物理信息,因此探测声波全波列波形、幅度和时差的测井序列势在必行(乔文孝等,2011)。由于地层横波波速是地层评价和石油工程研究的关键参数,从 20 世纪 80 年代开始,逐渐研发出多极子声波测井仪器(偶极子和四极子声源等)获得地层的横波波速,如 1984 年美国美孚石油(Mobil)公司推出的偶极子横波测井仪可以直接测量而不是估算横波波速(乔文孝等,2011)。

  • 20 世纪 90 年代以来,为了获得地层横波波速以及进一步采集斯通利波和伪瑞利波,不同测井公司陆续推出了阵列声波测井仪器,如斯伦贝谢(Schlumberger)公司 1990 年研发的偶极声波成像仪 Dipole Shear Imager(DSI)(Riskallah et al.,1990),2005 年推出了声波全波列扫描仪 Sonic Scanner。阿特拉斯(Atlas)公司 1992 年研发了多极子阵列声波测井仪 Multipole Array Acoustic log(MAC),并于 20 世纪 90 年代末推出正交偶极子阵列声波测井仪 Cross-Multipole Array Acoustic log(XMAC)。哈里伯顿公司(Halliburton)1994 年推出低频偶极横波测井仪 Low-frequency Dipole Sonic( LFD),并于 2001 年研发正交偶极子阵列声波测井仪 Wave Sonic(李凯军等,2003; 高坤等,2006; 吴晓光等,2016; 乔文孝等,2011)。不同公司测井仪虽然在仪器结构上略有差异,但测量原理基本类似(李同华等,2009)。此外,不同的测井仪器可以采用单极子、偶极子和交叉偶极等不同的工作模式( 黄小冬等,2005; 李兆阳,2005)。

  • 21 世纪初,中国石油大学(北京)与中国石油天然气集团公司合作研发了多极子阵列声波测井仪 Multi-Pole Array Acoustic Logging(MPAL)具有完全知识产权的新一代声波测井仪器,可在任意井孔中测量纵、横波时差、地层的各向异性等信息(李玉霞和李亚敏,2008; 刘晓虹等,2009; 乔文孝等,2011)。偶极声波测井仪器声源类似一个活塞,可使井壁的一侧压力增加,而另一侧压力减小,促使井壁产生扰动,形成轻微的挠曲,并产生挠曲波,由此在地层中直接激发出纵波和横波(于景才等,2005)。

  • 阵列声波测井由于能够采集得到地层全波列速度、幅度、频率、波形包络特征等信息,因此被广泛应用于储层品质分析、裂缝识别、流体信息判别、地层各向异性评价以及钻完井设计等工作中,大大拓宽了声波测井资料的应用领域与范围( 黄小冬等,2005; 李兆阳,2005; 李玉霞和李亚敏,2008; 谭礼洪等,2022; 刘航等,2023; Lai Jin et al.,2024)。

  • 1.3 声波成像测井

  • 20 世纪 60 年代井下声波电视的成功研制将声波测井资料带入“可视化”阶段,随后进一步得到快速发展(王建华,2006)。 1969 年,Mobil 公司即研发出世界上第一款声波电视成像 BHTV( Borehole Televiewer),即采集到了声学方法获得的井壁二维图像(喻著成等,2023; Roshan et al.,2023)。 20 世纪 90 年代,斯伦贝谢公司和哈里伯顿公司分别在市场上推出超声成像测井仪 Ultrasonic Borehole Imager(UBI),以及井周扫描测井仪 Circumferential Acoustic Scanning Tool(CAST)、Atlas 公司也研发出井壁声波成像测井 Circumferential Borehole Imager Log(CBIL)(薛梅等,2000; Nian Tao et al.,2016; Lai Jin et al.,2018; 赖锦等,2024a)。

  • 声波成像测井如 CBIL 仪器以每秒 6 周、每周 250 个采样点通过向地层发射高频声波脉冲波,经过井眼流体后达到井壁,绝大部分脉冲声波反射回来后被换能器探测到,接收探头可以记录下反射声波幅度和传播时间。数据经过处理后根据声阻抗的高低可获得环井壁 360°一周的高质量彩色图像,与电成像测井资料相比,虽在识别沉积层理方面效果较差,但声波成像测井资料井周覆盖率 100%,且可同时在水基和油基泥浆中使用,因此被广泛运用于地质特性(裂缝、孔洞)分析及井壁稳定性评价(徐星和赵万优,2001; 秦绪英和宋波涛,2002; 于景才等,2005; Lai Jin et al.,20182023)。

  • 1.4 远探测声波测井

  • 常规声速测井探测深度较浅,仅仅达到冲洗带,阵列声波探测深度相对较深,但也仅仅 1~3 m(Lai Jin et al.,2024)。远探测声波测井则是为了探测径向一定深度范围内地质特征与工程信息。 Hornby(1989)通过将反射波从全波列数据中提取出来并实现了井周声波成像,声波远探测技术由此诞生。 1998 年,斯伦贝谢公司在 DSI 偶极横波测井仪基础上研发出反射波成像测井仪(BARS),推进了声波远探测技术的市场应用(岳文正和田斌,2022)。远探测声波测井测量的是纵波反射波或模式转换波,对反射波进行提取及反射波偏移成像,可以得到井旁裂缝或地质构造的图像( 张承森等,2011; 刘航等,2023)。

  • 远探测声波测井技术可探测井眼数十米范围内声阻抗异常,从而判别地质体(断裂、裂缝和孔洞等)特征变化,远探测声波测井突破了测井技术“一孔之见”的局限,其探测深度可达到数十米,是目前横向探测深度最深的测井方法,远远超过常规测井技术的井周数米范围(唐晓明和魏周拓,2012; 唐晓明等,2012; 赖锦等,2022; 陆云龙等,2022; 刘航等,2023)。

  • 1.5 随钻声波测井

  • 与电缆测井一样,随钻测井是获取井下岩石物理信息的重要手段(喻著成等,2023)。随钻声波测井是随钻测井中的关键技术,可在钻进过程中进行实时监测异常压力、分析流体性质等工作,由此缩短钻完井周期,节约成本(吴晓光等,2016)。目前的随钻声波测井仪包括斯伦贝谢的多极子随钻声波测井仪 Multipole Sonic-While-Drilling Service、哈里伯顿的交叉偶极声波成像仪器 Crossed Dipole Azimuthal Sonic,均可在钻井过程中获取连续稳定的纵、横波等信息,从而用于地质导向评价、裂缝评价分析以及完井设计优化等工作(吴晓光等,2016; 喻著成等,2023)。

  • 2 孔隙度计算及气层识别

  • 物性分析、流体性质识别和量化计算一直都是地球物理测井评价的重点关注目标(谭廷栋,2000; 李剑浩,2007; 岳文正和田斌,2022; 赖锦等,2022)。不同的声波测井序列在岩性识别( 吴晓光等,2016)、孔隙度计算(刘国强和谭廷栋,1993)、渗透率评价(刘鹏等,2014)以及气层识别(张海涛等,2015)方面也得到广泛应用。

  • 2.1 孔隙度计算与次生孔隙评价

  • 2.1.1 岩性识别

  • 不同岩性具有不同的纵横波速度比(Vp/Vs),从声波传播机制来看,纵波速度 Vp、横波速度 Vs 主要由岩石体积压缩模量 K 和剪切模量 G、岩石密度 ρ 决定(式 1 和式 2)。因此利用声波测井资料获得的纵、横波时差可以区分不同的岩性类型,通常纯砂岩Vp/Vs为 1.58~1.78,纯灰岩约 1.90,纯白云岩大概 1.80,泥岩则差异较大约 2. 0~5. 0(李同华等,2009; 吴晓光等,2016)。当然实际Vp/Vs值除受岩性控制外,还与岩石孔隙度高低、含气性以及井眼条件等因素有关,如砂岩含气则Vp/Vs将明显降低(李同华等,2009; 吴晓光等,2016; Wang Guiwen et al.,2020)。

  • Vp=K+43Gρ
    (1)
  • Vs=Gρ
    (2)
  • 式中,Vp—纵波速度,km / s; Vs—横波速度,km / s; K—岩石体积模量,GPa; G—剪切模量,GPa; ρ —岩石体积密度,g / cm3

  • 2.1.2 孔隙度计算与次生孔隙分析

  • Wyllie(1956)提出了利用声波时差测井资料计算孔隙度的公式,即 Wyllie 公式(式 3)。 Wyllie 公式适用于骨架岩性单一、孔隙度均匀分布的地层,如果是疏松未固结的砂岩,则要进行压实校正(式 3)(刘国强和谭廷栋,1993)。 此外,对于泥质砂岩储层,还需要进行泥质校正(式 4)。

  • φs=Δt-ΔtmaΔtf-Δtma1Cp
    (3)
  • φs=Δt-ΔtmaΔtf-Δtma1Cp-VshΔtsh-ΔtmaΔtf-Δtma
    (4)
  • 式中,φs 为声波时差测井计算的孔隙度,小数; Δt 为测井测量声波时差,μs/ ft(注:1ft = 30.48 cm); Cp 为压实校正系数,可利用岩芯分析孔隙度与声波计算孔隙度统计求出,也可利用密度孔隙度与声波孔隙度统计求出,对于固结的砂岩,其取值为 1. 0; Δtma 为岩石骨架的声波时差,μs/ ft,一般情况下分别取 55.5 μs/ ft(石英砂岩); Δtf 为地层流体的声波时差,μs/ ft,一般情况下为 189 μs/ ft; Δtsh 为泥岩声波时差,μs/ ft; Vsh 为泥质含量,小数。

  • 由于 Wyllie 公式在骨架矿物以及储集空间复杂的特殊储层(如致密油气等非常规油气)适用性较差,Raymer(1980) 基于大量岩芯分析实验,利用纵波时差测井非线性计算提出了适用于泥质砂岩储层的孔隙度的经验公式。

  • 1Δt=1-φs2Δtma+φsΔtf
    (5)
  • Raymer 公式建立了地层孔隙度与纵波时差之间的非线性关系,在致密储层领域应用较广,适用于孔隙度不超过 37%的地层(刘欢等,2023)。

  • 除了计算孔隙度数值外,声波时差测井还可以与中子、密度测井相结合,实现次生孔隙评价(张振城等,2005; Markova and Markov,2023)。通常基于岩石体积模型的密度与中子测井往往反映的是三维空间中地层总孔隙度大小,而声波时差测井仅仅反映储层原生孔隙度(基质孔隙),对次生孔隙(粒内溶蚀孔隙等)难以响应,因而中子-密度测井计算孔隙度与声波时差计算孔隙度之差,往往可以作为次生孔隙(张小莉等,2000; 朱怡翔等,2004; 张振城等,2005)。

  • 2.2 渗透率评价

  • 渗透率、孔隙度、饱和度作为主要的储层表征参数,历来受到地质分析与测井解释人员的重视( Lai Jin et al.,2024)。三孔隙度测井(密度测井、声波测井和中子测井)可以提供单井连续的孔隙度数值,饱和度则可以通过阿尔奇公式或者核磁共振测井计算,但就渗透率而言,目前一直缺乏直接探测地层渗透率的仪器。核磁共振测井虽可处理得到渗透率数值,但也是根据地区经验公式进行估算获得(吴晓光等,2016)。声波测井序列中,斯通利波衰减对岩石渗透率响应灵敏,低频斯通利波在渗透性地层中,将出现传播速度越慢,能量衰减越严重(苏华和田洪,2002),因而可利用斯通利波波速的减小、波幅减小和波形的衰减求取地层渗透率(颜惠兰,2004; 李鹏举等,2006; 刘鹏等,2014; 吴晓光等,2016)。 2024 年 3 月 3 日,中国石油李宁院士团队研制的渗透率测井仪在华北任 91 标准井深度 3925 m、148℃ 裸眼井段获得了渗透率资料,标志着渗透率测井迈出了从 0 到 1 的关键一步,其测量的为斯通利波。

  • 2.3 气层识别

  • 测井的初心和重要使命之一就是发现油气层(谭廷栋,2000; 赖锦等,2021)。通常核测井(伽马测井、密度测井和中子测井)与电测井(电阻率)相结合可以识别储层段并找到油气层( 谭廷栋,2000)。与电测井相比,声波测井获得的声学信息对储层含气性有较好的敏感性,在气层识别方面效果较好,目前可以通过纵横波速度比值法、岩石力学参数法(泊松比)和双横波时差法等来识别气层,开辟了非电法识别流体性质的途径(乔文孝和阎树汶,1997; 谭廷栋,2000; 陈必孝和张筠,2002; 刘晓虹等,2009; 张海涛等,2015)。

  • 声波时差测井的周波跳跃可用于判断裂缝或气层的存在,但目前声波测井仪器补偿已经做的较为完善,因此在气层段,不一定能观察到声波的周波跳跃现象。当然如储层含气且具有渗透性时,会造成纵、横波列以及斯通利波能量衰减,因此也可根据波列能量出现衰减来指示储层的含气性及渗透性(裂缝发育)(吴晓光等,2016)。

  • 声波测井识别气层的优势在于避开了地层放射性和电阻率大小的影响,通过丰富声学信息在低阻气层、致密储层流体性质判别方面具有明显优势(刘晓虹等,2009; 张海涛等,2015; Wang Guiwen et al.,2020)。

  • 2.3.1 声波测井识别气层方法

  • 2.3.1.1 Vp/Vs 比值法

  • 横波传播速度仅受骨架胶结情况影响,是岩石切变模量和密度的函数,而与孔隙流体无关(流体没有切变模量),横波只通过岩石骨架传播,而不通过孔隙流体传播(杨雷等,2002)。而纵波速度则同时受骨架和流体影响,为密度、体积模量及切变模量的函数(式 1 和式 2),因此地层含气,将导致纵波时差增大,横波时差则不变(杨雷等,2002; 李同华等,2009; 曾文冲等,2014)。在气层发育段,由于天然气比液体更容易压缩,纵波速度将明显降低,横波时差则无明显变化,因此纵横波速度比Vp/Vs在气层段将显著降低,利用Vp/Vs的降低可以识别气层,并可以避免因岩性和物性变化的影响(Wang Guiwen et al.,2020)。利用声波测井可以获得不含气砂岩(水层)的 Vp/Vs值,实际测井获得的Vp/Vs值与水层段的Vp/Vs值的差值可直观指示气层(张蕾等,2013; 吴晓光等,2016)。

  • 2.3.1.2 弹性力学参数法

  • 当岩石孔隙度中含天然气时,弹性力学参数将发生明显变化,除了纵波能量衰减及时差增大外,泊松比降低,纵波阻抗降低,而体积压缩系数升高(张永军等,2012; 张海涛等,2015)。通常随着含气饱和度增加,密度降低,纵波速度显著降低,横波速度几乎保持不变,导致泊松比减小,体积压缩系数升高(体积模量减小),其次拉梅系数也就减小(曾文冲等,2014; 吴晓光等,2016)。因此除了Vp/Vs参数外,根据声波测井获取的声学信息,结合常规测井密度信息,可以进一步计算地层的泊松比、体积压缩系数、拉梅系数等岩石力学参数从而实现气层有效识别( 张永军等,2012; 张海涛等,2015; 吴晓光等,2016; Wang Guiwen et al.,2020)。

  • (1)泊松比:泊松比( ν)与压缩系数有关,反映了岩石的压缩性,描述岩石横向压缩与纵向伸长之间的关系,反映岩石横向形变的弹性常数,天然气的存在将使得泊松比明显变小,气层的泊松比明显小于水层或致密层( 黄小冬等,2005; 曾文冲等,2014)。可以利用测井资料计算岩石泊松比(式 6),根据泊松比的变化判断储层含气性( 曾文冲等,2014; 张海涛等,2015)。

  • ν=Vs2-2Vp22Vs2-Vp2
    (6)
  • (2)岩石体积压缩系数:岩石体积压缩系数与体积模量二者互为倒数。岩石体积压缩系数(CB)反映了地层压实情况,该系数对储层含气饱和度的变化最敏感,随着天然气含量增加,岩石体积压缩系数将增大,因此利用纵、横波时差及密度曲线可以计算得到动态体积压缩系数,根据体积压缩系数增大识别气层(张蕾等,2013; 曾文冲等,2014)。天然气、油与水的体积压缩系数分别为 18. 05、0.837 和 0.444,可以看出,油与水的差异也近 2 倍,而天然气与水的差异可达 40 倍(曾文冲等,2014)。

  • CB=a3Δts2Δtp2ρ3Δts2-4Δtp2
    (7)
  • 式中,a 为单位换算系数; Δtp 为纵波时差,μs/ ft; Δts 为横波时差,μs/ ft。

  • (3)纵波阻抗:天然气的存在会引起纵波速度减小,同时造成密度测井值偏小,相应的纵波阻抗也会减小(式 8)(张海涛等,2015; Wang Guiwen et al.,2020)。

  • Zp=ρ×Vp
    (8)
  • 式中,Zp 为纵波阻抗,(g / cm3)·(m / s)。

  • (4)拉梅系数:拉梅系数( λ)综合反映了岩石的弹性性质,通常描述线性弹性体的角度形变,其动态计算公式如下(曾文冲等,2014)。

  • λ=k×ρ1Δtp2-2Δts2
    (9)
  • 式中,k 为单位换算系数。

  • 2.3.1.3 双横波时差法

  • 双横波时差法即对比测井实测横波时差与合成横波时差(一般通过纵横波时差转换关系合成),根据二者差异判断流体性质,一般在水层或干层处两者基本相等,而当合成横波时差明显大于实测横波时差时,则为气层( 黄小冬等,2005; 吴晓光等,2016)。

  • 2.3.2 应用实例

  • 利用弹性力学参数法判断地层含气性时,可利用声波测井资料结合密度曲线,实现泊松比、纵波阻抗、体积压缩系数等弹性力学参数测井评价。然后可将Vp/Vs正向刻度,纵波阻抗、泊松比以及体积压缩系数反向刻度,调整曲线使其在干层或者水层段重叠显示,而在气层段,曲线将出现明显的镜像包络体,且通常含气饱和度越大,包络面积越大(张海涛等,2015; 吴晓光等,2016; Wang Guiwen et al.,2020)。图1 中的 6735~6755 m 深度段,深浅电阻率存在差异,体积模量和纵波阻抗降低,纵横波速度比以及泊松比也具明显降低趋势,为典型含气层段响应特征,试气获得 209536 m3 / d 高产气流。

  • 当然依托岩石声学信息判断地层含气性的方法前提在岩石具有一定的孔隙度( Lai Jin et al.,2023)。如果地层孔隙度较低时,如吐哈盆地丘东洼陷侏罗系三工河组致密砂岩储层,其孔隙度基本在 10%以下(支东明等,2024),流体性质差异对电测响应复杂,同样含气性的差异在岩石声学性质上响应也不灵敏,从而导致声波测井判断含气性的效果变差。

  • 3 岩石力学参数与脆性评价

  • 实验室岩石静态测试的条件下,可以测量得到杨氏模量、泊松比、拉梅系数、体积模量及剪切模量等静态弹性参数,当然由于岩芯样品数量有限,难以连续表征,因此可利用地球物理测井资料计算单井连续的岩石力学参数,通常动态弹性参数值将大于静态弹性参数,因此需要进行动静态转换(高坤等,2006; 聂昕等,2012; Lai Jin et al.,2022)。

  • 3.1 岩石力学参数计算

  • 在有密度测井资料的前提下,结合声波测井得到的纵波、横波速度或时差,即可计算出动态的岩石力学参数。

  • (1)泊松比和杨氏模量:上述式 6 阐述了动态泊松比的测井计算公式,而动态杨氏模量则可以通过以下式 10 计算。

  • E=ρΔts23Δts2-4Δtp2Δts2-Δtp2×106
    (10)
  • 式中,E 为杨氏模量,GPa; ρ 为体积密度,g / cm3,Δtp 为纵波时差,μs/ m,Δts为横波时差,μs/ m。

  • (2)体积模量和剪切模量:体积模量 K 以及剪切模量 G 定义及其的测井计算公式分别如下式 11 和式 12。体积模量指压力变化与体积相对变化的比值,指示岩石抗压能力,体积模量与体积压缩系数互为倒数。而剪切模量则为剪切应力与剪切位移相对变化量的比值,指示岩石的抗剪切能力(高坤等,2006; 张永军等,2012; 吴晓光等,2016)。

  • K=E3(1-2ν)=ρVp2-43Vs2
    (11)
  • G=E2(1+ν)=ρVs2
    (12)
  • 式中,K 为体积模量,GPa; G 为剪切模量,GPa。

  • (3)Biot 系数:Biot 系数,也称岩石孔隙弹性系数,通常与应力、孔隙压力密切相关,为衡量孔隙压力对有效应力作用程度的一个重要参数,其计算公式为式 13(卢红杰等,2011)。

  • 图1 基于声波测井岩石力学参数计算的库车坳陷白垩系储层流体性质判别

  • Fig.1 Fluid property evaluation using rock mechanics parameter in the Cretaceous Formation in Kuqa Depression

  • α=1-CmaCb=1-ρ3Vp2-4Vs2ρma3Vpma2-4Vsma2
    (13)
  • 式中,α 为 Biot 系数,ρma 为岩石骨架密度,g / cm3; Vs ma 为岩石骨架横波速度,m / s; Vp ma 为岩石骨架纵波速度,m / s。

  • 因此,根据弹性波动理论,可通过声波全波列信息,提取地层纵波、横波时差,结合密度资料可以计算岩石弹性参数,后续岩石脆性评价、地应力分析以及破裂压力计算均依托于以上弹性力学参数计算,为声波测井资料的地质与工程领域的应用奠定基础(陈必孝和张筠,2002; 颜惠兰,2004; 高坤等,2006; 贺顺义等,2008; 聂昕等,2012)。

  • 3.2 脆性指数评价

  • 非常规油气往往需要压裂才能开采,因而脆性以及可压裂层段测井优选工作至关重要(刘国强,2021; 杨小兵等,2022; 赖锦等,2023a)。目前脆性指数测井评价常用的方法包括①泊松比—杨氏模量法; ②脆性矿物含量比值法(赖锦等,2023a; 郭京哲等,2023)。声波测井可以计算得到泊松比和杨氏模量等弹性力学参数,因而被广泛用于脆性指数评价,声波测井是非常规油气关键测井采集序列(杨雪冰等,2014; 赖锦等,2023a)。

  • 一般通过泊松比—杨氏模量法计算脆性指数是将归一化的杨氏模量与泊松比的函数作为脆性指数,如将杨氏模量与泊松比的相对大小分别取 50% 的权值进行计算(Rickman et al.,2008; Sondergeld et al.,2010; 赖锦等,2016; Lai Jin et al.,2022; 郭京哲等,2023)。其中,泊松比( ν)反映了岩石在压裂过程中形成水力压裂缝的能力,而杨氏模量(E)则反映了岩石压裂后裂缝保持开启或支撑能力(赖锦等,2016; Iqbal et al.2018; Lai Jin et al.,2022)。因此杨氏模量越高、泊松比越低,代表岩石可压性越好,在压裂过程中越容易形成复杂的网状裂缝(赖锦等,2023a)。计算公式如下所示:

  • BI=BIE+BIv2×100%
    (14)
  • BIE=E-EminEmax-Emin
    (15)
  • BIν=ν-νmaxνmin-νmax
    (16)
  • 式中,BI 为脆性指数,%; BIEBIν 分别为通过杨氏模量和泊松比所计算的脆性指数,%; EminEmax 分别为杨氏模量最小值和最大值,GPa; νminνmax 为泊松比最小值和最大值,无量纲。

  • 在脆性指数测井评价中,一般可以根据测井资料计算得到动态杨氏模量和动态泊松比,进一步与实验室分析的静态杨氏模量和泊松比进行相互刻度标定,从而实现脆性指数测井评价(图2)。图2 中通过测井曲线实现了岩石力学参数以及脆性指数测井评价,由此可进行页岩工程甜点段优选(图2)。

  • 4 地层压力计算

  • 地层压力是孔隙、裂缝等储集空间中的流体所施加的压力,因此也称为孔隙流体压力(祁文莉等,2023)。地层压力是影响钻井安全以及井壁稳定性的重要因素,一般地层压力可以通过模块化电缆地层动态测试器( modular dynamics formation tester,MDT)、钻杆测试(drill stem test,DST)和重复地层测试( RFT)等实际测量获得,但往往数据不连续(Radwan et al.,2021; 孙越等 2024; Lai Jin et al.,2024)。因此利用地球物理测井资料连续评价单井地层压力具有重要的地质与工程意义,可识别流体超压特征并分析成因,可避免井喷等安全事故,科学设计井身、配置泥浆,提高钻井效率甚至进行产能评价(周立宏和刘国芳,1996; Lubanzadio et al.,2006; 祁文莉等,2023; 许玉强等,2023)。

  • 通常地层压力等于地层所处深度的静液柱压力,但受到泥岩欠压实作用、生烃增压、黏土矿物脱水和压力传递等因素影响,通常会导致地层压力出现大于静液柱压力的情况,即流体超压(许玉强等,2023)。异常流体压力的成因判识及其定量预测一直是油气地质与地球物理研究的热点和难点(赵靖舟等,2017),通常针对不同成因的流体超压类型,应优选不同的地层压力测井预测方法(赵靖舟等,2017)。目前常用的进行地层压力测井判识与定量评价的主要方法包括 Eaton 法、有效应力法(Bowers 法)和等效深度法。(周立宏和刘国芳,1996; 赵靖舟等,2017; 祁文莉等,2023)。

  • 声波测井在地层压力计算方面最具有代表性和普遍性,一方面声波测井受井眼条件影响不如密度测井大,另一方面孔隙流体在声波时差曲线上响应灵敏,因而可通过声波时差曲线尤其是泥岩声波时差来计算地层压力(周立宏和刘国芳,1996)。此外,通过测井曲线组合还可以分析超压成因,即通过密度识别孔隙度变化,电阻率判别流体性质(油气或水),声波确定超压段的分布(赵靖舟等,2017)。

  • 4.1 伊顿(Eaton)法

  • 随着井深增加,压实作用将导致泥岩孔隙度逐渐减小,其声波时差由此逐渐降低。因此正常压实情况下,泥岩声波时差随深度增加呈指数减小(式 17),因此可以统计得到地层正常压实趋势线(式 18)(赵靖舟等,2017; 祁文莉等,2023; 许玉强等,2023)。

  • Δt=Δt0e-cH
    (17)
  • lnΔtn=-cH+lnΔt0
    (18)
  • 式中,Δtn 为地表声波时差,μs/ ft; c 为压实系数; H 为地层深度,m; Δt0 为模拟埋藏深度为 0 时的声波时差,μs/ ft(祁文莉等,2023)。

  • Eaton(1975)通过大量的地层压力实测数据与声波测井值分析,建立了依赖正常压实趋势线的地层压力计算模型(式 19)。

  • Pp=P0-P0-PwΔtn/Δtc
    (19)
  • 式中,Pp 为地层压力,MPa; P0 为上覆地层应力,MPa; 主要由上覆地层重力产生,一般可以通过积分法或者三点反推法进行计算(式 20); Pw 为地层静液柱压力,一般可以简单写为 9.8 MPa / km; Δtn 为正常压实趋势线上的某深度对应的声波时差值,μs/ ft; Δt 为某深度实测的声波时差值,μs/ ft; c 为伊顿指数,一般可以通过实测地层压力资料反算(Eaton,1975; Zhang Jincai,2011)。

  • 图2 阵列声波测井脆性计算与各向异性评价(桂中坳陷石炭系鹿寨组页岩)

  • Fig.2 Brittleness index evaluation and anistropy determination using array sonic logs (the Cretaceous Luzhai Formation in Guizhong Depression)

  • (20)
  • 式中,P0 为垂向应力值,MPa; H 为埋藏深度,m; ρ 为岩石密度(密度测井曲线获得),kg / m3; g 为重力加速度。

  • 通过实测的地层压力数据与声波时差数据反算得到的伊顿指数可用于判别异常地层压力成因,如不均衡压实所致的流体超压其伊顿系数为 3.0,而流体膨胀或压力传递所致的流体超压其伊顿系数为 6.5(赵靖舟等,2017)。

  • 因此 Eaton 法用来预测地层压力的关键在于建立正常压实趋势线,并优选 Eaton 指数。通常正常压实趋势线建立可以选取正常压实区间,以厚层泥岩、页岩为主,取已钻井的平均值建立该区块的正常压实趋势线(许玉强等,2023)。

  • 4.2 等效深度法

  • Narr 和 Currie(1982) 指出岩石骨架承受的应力,通常也称有效应力,往往等于垂向应力与孔隙流体压力之差(式 21)。

  • σ=P0-Pp
    (21)
  • 等效深度法即平衡深度法,该方法的原理在于,假设有深度不同的 A 点和 B 点,其中 B 点位于正常压实趋势线,A 点位于超压段,二者声波时差相同,由于在不同深度处,具有相同孔隙度的岩石骨架所受的有效应力 σ 相等(式 22)。由此可以确定异常高压处的 A 点孔隙压力为上覆岩层压力与有效应力 σ 之差( 式 23)( 祁文莉等,2023; 杨小艺等,2024)。

  • σA=PA-PfA=σB=PB-PfB
    (22)
  • PfA=PA-PB+PfB=gρAhA-gρB-ρAhB
    (23)
  • 等效深度法方法可以通过 3 个步骤预测地层压力(杨小艺等,2024)。

  • (1)获得正常压实段声波时差-深度交会图,拟合二者的指数关系建立正常压实曲线(式 17),同时可进一步求取点的等效深度 hB(式 24):

  • hB=lnΔt0-lnΔtc
    (24)
  • (2)拟合得出该单井泥岩段密度测井与深度的线性关系,从而得出泥岩密度趋势线,然后求取 ρAρB

  • (3)联立公式(23)和公式(24),由此可以得到 A 点地层压力 PfA 计算公式为:

  • PfA=ρAghA-gρB-ρAlnΔt0-lnΔtc
    (25)
  • 平衡深度法适合于不均衡压实成因的孔隙流体压力计算,因此一般适用于埋深较浅的地层(赵靖舟等,2017)。

  • 4.3 鲍尔斯(Bowers)法

  • 与等效深度法类似,鲍尔斯(Bowers)法需要综合分析上覆岩层重力,以及岩石骨架所受的有效应力,因此该方法有时也称有效应力法(祁文莉等,2023)。

  • Bowers(1995) 同时考虑到沉积与卸载两种情况,提出了基于有效应力和声波速度关系的地层压力预测模型,该预测方法能有效地区分欠压实、生烃增压等造成的异常压力,由此分别建立了 Bowers 压力加载和卸载模型(式 26-式 29)。

  • 其中,式 26 和 27 为泥岩的原始加载曲线(正常压实和欠压实),式 28 和 29 为孔隙流体膨胀引起的卸载曲线。该方法的前提在于分析岩石加载和卸载过程,如果有效应力随埋深以及压实程度的增加而增大,同时压实后有效应力也保持最大值,此时应按照加载曲线来计算有效应力; 而当岩石在埋藏压实过程中因某些原因导致有效应力降低,此时压实后的有效应力小于压实过程中的有效应力最大值,则此时要按照卸载曲线来进行评价( 祁文莉等,2023)。该方法不受制于地层压力成因是否为欠压实,同时对生烃作用、烃类裂解等引起的压力异常也较为适用。

  • 符合加载曲线地层:

  • V=C+A×σB
    (26)
  • σ=V-CAB
    (27)
  • 符合卸载曲线地层:

  • V=C+A×σmax×σσmax1UB
    (28)
  • σ=Vmax-CA1/BV-CVmax-CU/B
    (29)
  • 式中,V 为声波速度,m / s; σ 为垂直有效应力,MPa; σmax 为卸载开始时最大垂直有效应力,MPa; U 为泥岩弹性系数,常量; C 为常数; AB 为正常压实声波速度与有效应力拟合系数(曹园等,2013; 徐陈杰,2022)。

  • 图3 中通过声波时差等测井曲线,通过 3 种方法实现了吉木萨尔凹陷芦草沟组细粒沉积岩地层压力测井计算,结果表明等效深度法相对吻合度较差,而 Bowers 方法以及伊顿法均提供了较为精确的地层压力测井计算结果。

  • 5 井震结合

  • 声波测井记录了声波传播速度、幅度,并可反映地层波阻抗等信息,与地震资料反映的地层属性有较好的一致性(董震和潘和平,2007)。因此,声波测井资料以其纵向分辨率高、连续性好的特点,可与横向延展性好但纵向分辨率低的地震资料形成优势互补,进行井震标定、合成地震记录,从而为地震储层预测、烃类检查等油气勘探开发服务(董震和潘和平,2007; 吴晓光等,2016; Qi Qiaomu et al.,2019; Salih et al.,2023)。

  • 图3 声波测井伊顿法、平衡深度法、Bowers 法地层压力测井计算与评价(吉木萨尔凹陷芦草沟组)

  • Fig.3 Formation pressure calculation and evaluation using Eaton’s method, balance depth method and Bowers method from sonic logs (Lucaogou Formation in Jimusar Sag)

  • 5.1 剥蚀厚度与古地貌恢复

  • 地层剥蚀过程和剥蚀厚度恢复对研究沉积盆地埋藏史、构造演化史和热史等研究具有重要的意义,且不整合面往往还与油气运移、聚集密切相关( 刘景彦等,2000)。泥岩的压实过程不可逆转,且与时间因素无关,同时泥岩孔隙度与埋深之间存在指数关系(式 17,式 30),而声波时差又可反映泥岩孔隙度,因此声波时差测井资料可以用于地层剥蚀量计算( Athy,1930; Magara,1976; 翁望飞等,2011)。

  • ϕ=ϕ0e-kH
    (30)
  • 式中,ϕ 为岩石孔隙度,小数; ϕ0 为地表岩石孔隙度,小数; k 为系数常数。

  • 在有地层剥蚀的地区,发生剥蚀以后,将形成不整合面,不整合面之上将发生新的沉积物沉积。实际操作过程中,纵坐标为埋深( m),横坐标为声波时差的对数值,首先通过测井与地震结合确定现今不整合面位置为 701 m 深度(图4)。然后获得泥岩正常压实曲线,并可以写出二者关系式,如图4 中的式 18 可以写作成: lnΔtn =-601.79H + 4436.5。如果将该地区泥岩地表声波时差定义为 650 μs/ m,那么图4 中的不整合面以下的地层压实曲线与 650 μs/ m 的交线(取自然对数后为 6.47 μs/ m)大概位于 544 m 深度段,那么可以确定出来剥蚀的厚度为 157m(701-544)(翁望飞等,2011; 薛罗等,2022)。该模型适用于新沉积地层的厚度须小于被剥蚀地层厚度的情况(刘景彦等,2000; 翁望飞等,2011),且为消除不同岩性的影响,应选取厚度 5 m 以上的泥岩段声波时差进行拟合声波时差压实趋势(陈更生等,2024)。

  • 针对埋深较大的地层,Henry(1996) 考虑到声波在完全压实的岩石中传播时间不一定为 0,由此提出了改进的声波时差与深度之间的指数模型,即:

  • ϕt=ϕt0e-cH+t
    (31)
  • 该模型适合深部地层的剥蚀厚度恢复,但在浅部往往出现较大的偏差,即当 H= 0 时,Δtt0 +t,这与事实不相符合(翁望飞等,2011)。

  • 图4 基于泥岩声波时差法的地层剥蚀厚度恢复(薛罗等,2022

  • Fig.4 Recovery of stratum erosion thickness by mudstone acoustic transit time method (Xue Luo et al., 2022)

  • 刘景彦(2000) 由此为满足声波在不同深度段之间传播的实况,提出了改进的指数模型,该模型在浅部和深部都能较好地反映孔隙度(声波)与深度的关系。

  • Δt=Δt0-te-cH+t
    (32)
  • 在埋深无穷大时,即 H →∞,Δt = t,即埋深无穷大且岩石不可再压实,岩石孔隙度为 0,声波传播时间等于声波在基质中的传播时间; 而在地表 H = 0 处,Δt = t0,即声波在地表的传播时间,相当于在水中的传播时间(刘景彦,2000)。

  • 5.2 合成地震记录

  • 合成地震记录是将地震、地质、测井工作连接起来的桥梁(李国发等,2008)。虽然地震和声波测井都采集地层地震波、声波传播速度、时间或波阻抗信息,但毕竟二者采集机制不同( 董震和潘和平,2007; 罗伟平等,2014)。声波测井属于井中激发,井中接收,是对地层的“原位”测量,而地震波采集采取了地面激发、地面接收,测量的是地震波在地层的传播时间(董震和潘和平,2007)。声波测井可看作是深度域的速度或时差测量,地震数据是建立时间域的走时计算,因此地震波旅行时间需要与测井深度之间进行转换(董震和潘和平,2007; 罗伟平等,2014; Akimbekova et al.,2024)。

  • 利用声波测井资料合成地震记录,从而进行层位标定,是联系钻测井资料和地震资料的桥梁,是构造解释和岩性、储层地震预测的基础( 靳玲等,2004; 董震和潘和平,2007; 李卿卿等,2024)。将地震、地质、测井等学科综合可提高解释成果的精度与可靠性(张永华等,2004)。合成地震记录通常是利用声波测井、垂直地震剖面(VSP)经过人工合成转换成地震记录(地震道),将深度域的测井资料转换为时间域,包括:①利用声波和密度测井资料计算反射系数并形成声阻抗曲线; ②提取合适的地震子波; ③将反射系数同地震子波做褶积运算,并合成地震记录道; ④最后做深度与尺度匹配校正(靳玲等,2004; 董震和潘和平,2007; 李国发等,2008; 罗伟平等,2014)。

  • 5.3 井中地震

  • 井中地震,即依托井孔进行地震波采集的方法,以垂直地震剖面法(Vertical Seismic Profile,VSP)为主,结合微地震压裂监测等( Bulant and Klimeš,2008; 蔡志东,2021)。井中地震数据由于信噪比高、频带宽、波场丰富,可与地面地震资料的优势互补,被广泛用于薄储层识别等油藏地质与工程问题(姜修道等,2006; 蔡志东,2021)。

  • 6 地应力评价与地层各向异性分析

  • 6.1 地应力方向判识与地应力大小评价

  • 地应力场同时包括古应力场和现今应力场,其中古应力场为地质历史时期的构造应力场,可反映在岩石当中形成的褶皱、断裂、节理中; 而现今应力场泛指第四纪中更新世以来的地应力场,是古应力场延伸或继承( 曾联波和田崇鲁,1998; 赖锦等,2023b; Lai Jin et al.,2024)。地应力场既包括方向,又有大小,岩层所受到的应力场可以分解为垂向应力( Sv)、现今水平最大( SHmax)和最小主应力(Shmin),三者耦合可形成任意方向总地应力(Narr and Currie,1982; Zoback et al.,2003; 赖锦等,2023b; 尹帅等,2023; Lai Jin et al.,2024)。其中,垂向应力主要由上覆岩层重力产生,而水平方向应力既包括上覆岩层重力在水平方向的分解,也包括侧向构造挤压应力。地应力场研究(现今应力方向判别以及古今应力测井评价)对地质与工程研究均有重要的意义( Zoback et al.,2003; 赵军等,2005; Oyler et al.,2010; 卢红杰等,2011; 赵继勇等,2017; 印兴耀等,2018; Iqbal et al.,2018; Lai Jin et al.,2022; 尹帅等,2023)。

  • 6.1.1 现今地应力方向判别

  • 成像测井通过拾取井壁崩落和诱导缝可以判断现今水平最大主应力(SHmax)和最小主应力( Shmin)方向,往往诱导缝指示 SHmax,而井壁崩落指示 Shmin 方位(聂昕等,2012; Lai Jin et al.,2018; 赖锦等,2023b)。除了成像测井外,声波测井在现今地应力方向判别上同样应用广泛。在三轴应力不均衡或者发育裂缝的各向异性地层中,由于质点垂直于水平最大地应力方向振动比沿井轴向上传播的横波速度快,当声波入射到各向异性地层中时,横波传播时将分裂成快、慢横波,即横波分裂(横波双折射)现象(赵军等,2005; Lai Jin et al.,2019; 赖锦等,2023b),且快横波平行于 SHmax 方向( Iqbal et al.,2018; 印兴耀等,2018; Lai Jin et al.,2021)。一般可从阵列声波测井数据中提取快、慢横波方位和速度,由此确定最大主应力方位( 印兴耀等,2018; 赖锦等,2021)。

  • 6.1.2 现今地应力大小评价

  • 地应力的大小与泊松比、杨氏模量等岩石力学参数密切相关,同时受控于孔隙流体压力,此外还受到构造应力附加作用的影响,尤其是山前前陆盆地,垂向应力、侧向构造挤压共同控制了现今地应力的大小(赖锦等,2023c)。前已述及,声波测井与密度测井结合可用于泊松比、杨氏模量等岩石力学参数测井评价,同时还可以用来计算孔隙流体压力,因此,声波测井也被广泛用于地应力测井评价(图5)。三轴应力中,垂向应力可根据式 20 计算,而水平方向 SHmaxShmin 则可以通过以下式 33 和 34 计算,一般称之为弹簧模型( 印兴耀等,2018; 张辉等,2019; 徐珂等,2021; Xu Ke et al.,2022)。

  • SHmax=ν1-νP0-αPp+αPp+E1-ν2εH+Eν1-ν2εh
    (33)
  • SHmin=ν1-νP0-αPp+αPp+E1-ν2εh+Eν1-ν2εH
    (34)
  • 式中,SHmaxShmin 分别为现今最大和最小水平主应力,εHεh 分别为最大和最小应力校正系数,为岩石在最小、最大水平应力方向的应变,可以通过实验数据和井场地应力测试分析刻度所获得(印兴耀等,2018; 张辉等,2019; 徐珂等,2021; Xu Ke et al.,2022)。

  • 6.1.3 最大古构造应力恢复

  • 最大古构造应力(σmax)可以根据岩芯声发射实验获得,并建立测井曲线与 σmax 对应关系,从而获得测井计算模型,并用来计算地应力。当埋藏较浅、地应力相对较弱时,即地应力疏松地区或层段,岩石将保持较高孔隙度,此时电阻率难以反映地应力变化,但声波时差则对地应力响应灵敏。而强挤压应力区(电阻率很高、声波时差值很低),声波时差对地应力响应不灵敏,此时电阻率对地应力响应灵敏,可通过电阻率计算地应力(李军等,2001; 赵军等,2005; 曾联波和王贵文,2005)(图6)。因此在稳定构造地区,即构造挤压应力较弱的地区选取厚层泥岩段(泥岩沉积相对稳定,对地应力响应灵敏,且不受流体和岩石骨架太多影响); 然后统计该泥岩段的测井信息(主要对地应力反映灵敏的 RtAC 等曲线)与地应力之间的耦合关系,实现地应力测井计算,并与实验结果刻度,提供解释精度(图6)(赵军等,2005)。

  • 6.2 地层各向异性分析

  • 地层各向异性是测量方向上岩石物理属性(电阻率、渗透率、波速等)变化(祁斌等,2008)。地层各向异性是其固有属性,地层介质通常都不是各向同性的弹性介质,而不同程度地存在各向异性(张碧星和王克协,1998; Hornby et al.,2003)。受不均衡分布的地应力以及天然裂缝发育的影响,地层通常表现为方位各向异性(印兴耀等,2018),地层各向异性分析是地球物理领域关注的重点,声波测井可以通过探测地层中传播的快、慢横波的方位和速度判断地层各向异性(图5)(许松等,2018; 张恒荣等,2023)。通常由不均衡地应力引起的各向异性地层,快、慢横波频散曲线在特定的频率会发生交叉,而由层理、裂缝等引起的各向异性地层中快、慢横波频散曲线不会发生交叉(吴晓光等,2016)。因此如果当快、慢横波分离且呈平行状,可以判断存在开启有效缝(张恒荣等,2023)。

  • 图5 声波测井地应力方向判别与地应力测井计算(桂中坳陷石炭系鹿寨组页岩)

  • Fig.5 In-situ stress direction and magnitude determination using sonic logs (the Cretaceous Luzhai Formation in Guizhong Depression)

  • 图6 不同应力条件下电阻率和声波时差交会特征(赵军等,2005

  • Fig.6 Responses of sonic transit time and resistivity of various in situ stress conditions (Zhao Jun et al., 2005)

  • 声波测井通过探测地层块、慢横波的方位及其频散现象,可以区分引起地层各向异性的原因(印兴耀等,2018)。此外,还可以求取纵波和快、慢横波传播速度,计算地层各向异性系数(夏宏泉和郭倩男,2018)。一般可以计算快慢横波速度( 或能量)之差与速度(或能量)之和的百分数来反映地层各向异性的强烈程度,即可用时差各向异性以及能量各向异性参数来表征(式 35,式 36)(刘之的等,2007; 李同华等,2009; 唐军等,2017)。

  • Pe=2Efast -Eslow Efast +Eslow ×100%
    (35)
  • Pt=2Tslow -Tfast Tfast +Tslow ×100%
    (36)
  • 式中,Pe 为能量的各向异性百分比,无量纲; Pt 为时差的各向异性百分比,无量纲; Efast 为快横波的能量,J; Eslow 为慢横波的能量,J; Tfast 为快横波时差,μs/ ft; Tslow 为慢横波时差,μs/ ft(李同华等,2009)。

  • 7 裂缝识别与有效性评价

  • 裂缝是重要的油气储集空间与渗流通道,因此裂缝的精细描述与定量表征对油气勘探开发至关重要(Zeng Lianbo et al.,2013; 赖锦等,2015; Laubach et al.,2019)。岩芯观察与描述可以提供裂缝发育特征的第一手资料,但部分井、井段由于经济与技术原因,导致取芯困难,因此通过纵向分辨率高、连续性较好的地球物理测井资料来识别与评价裂缝具有重要的实践意义( Prioul et al.,2007; Laubach et al.,2023; Lai Jin et al.,2024)。声波测井系列在裂缝的识别与探测中应用广泛,不仅可以根据声波时差、幅度等识别与探测裂缝发育带,甚至还可以根据远探测声波、斯通利波反射系数综合评价裂缝的径向延伸性和有效性(崔云江和吕洪志,2008; Lai Jin et al.,2018; Barbosa et al.,2021; 陆云龙等,2022)。

  • 一般当地层发育裂缝时,声波时差测井将明显增大,且不同角度裂缝对声波时差响应灵敏程度也各异,一般滑行纵波难以反映高角度裂缝和垂直裂缝,而对低角度裂缝响应灵敏(赖锦等,2015)。因此,裂缝发育带的探测需求声波全波列资料的综合应用,如 76°~90°倾角的高角度裂缝及垂直裂缝对纵波幅度衰减程度小,但对横波幅度衰减明显,此外,裂缝发育带将在全波列波形和变密度显示为纵、横波能量衰减的“V”字型干涉条纹(图7)(邓攀等,2002; 周文和戴建文,2008; 刘晓虹等,2009; 李同华等,2009; 赖锦等,2015; Lai Jin et al.,2017)。

  • 同时在在有效缝(开启)发育段,斯通利波遇到穿过井眼的裂缝时,其部分能量被反射,其反射系数将明显增大,因此也可以依据斯通利波能量衰减以及反射系数增大判断裂缝发育带,同时判断裂缝的宽度和连通性(图7)(李长文等,2003; 童凯军等,2012; 唐军等,2017; 王培春等,2023)。

  • 另外,声波成像测井由于具有较高的纵向分辨率,因而在裂缝识别与探测方面应用效果也较为明显(张恒荣等,2023),尤其是声成像测井基本不受泥浆类型影响,与电成像相比,在油基泥浆背景裂缝识别与探测中效果显著(唐军等,2017; Lai Jin et al.,2023)(图8)。

  • 因此裂缝在声波测井上的响应特征可以总结为:①纵波、横波和斯通利波等声波时差增大; ②声波能量不同程度衰减; ③变密度图像上“V”字形干涉条纹; ④斯通利波反射系数增大(图7,图8)(余春昊和李长文,1998; 陈必孝和张筠,2002; 朱留方,2003; 刘之的等,2007; 李同华等,2009; 王培春等,2023; Lai Jin et al.,2024)。

  • 图7 常规、阵列声波与成像相结合的裂缝测井判别(大北104井)

  • Fig.7 Fracture detection using an integration of conventional well logs, sonic logs and image logs (Dabei 104 well)

  • 图8 油基泥浆钻井裂缝声、电成像测井响应对比(博孜 1201)

  • Fig.8 Comparisons of fracture responses on electrical and sonic image logs in oil based drilling muds

  • 8 烃源岩测井识别与评价

  • 富含有机质的烃源岩,其声波测井值将明显增大,有机质的声波时差约为 600 μs/ m,其一般总有机碳含量(TOC)越高,声波时差值越大(朱建伟等,2012; 秦建强等,2018)。 Passey(1990) 在识别烃源岩的基础上,充分考虑了声波时差测井与 TOC 含量之间的相关关系,提出了一种 ΔlgR 技术来定量计算 TOC 含量(式 37 和式 38)(Passey,1990; 朱光有等,2003; Lai Jin et al.,2022; 赖锦等,2024b)。

  • ΔlgR=lgRRBaseline +0.02Δt-ΔtBaseline
    (37)
  • TOC=ΔlgR×10(2.297-0.1688 LOM )
    (38)
  • 式中,ΔlgR 为实测曲线间距在对数电阻率坐标上的读数; R 为测井仪实测的电阻率,Ω·m; Δt 为实测的传播时间,μs/ ft; RBaseline 为非生油的黏土岩中基线对应于基线值的电阻率; 0. 02 为依赖于每一个电阻率刻度的-50 μs/ ft 比值。 LOM(level of maturity)为成熟度评价指标,与镜质体反射率 Ro 密切相关(Passey,1990; 赖锦等,2024b)。

  • 9 工程地质应用

  • 9.1 钻井安全

  • 声波测井获得的纵、横波信息与密度测井等结合,可以计算岩石力学参数,同时实现地应力测井评价,同时为了指导其他井的钻井工程设计,测井资料还可以用于评价地层压力、破裂压力和坍塌压力(“三压力”),以指导套管程序设计、泥浆密度设计等( 董经利,2009; 郭桂生等,2011; Onalo et al.,2018)。新井钻前的“三压力”预测可以在钻井过程中避免井眼垮塌以及泥浆漏失,而钻井过程中根据地层压力等合理选择泥浆比重和窗口(钻井液密度需稍大于地层压力梯度)可以做到“活而不喷,压而不死”,同时有助于完井方案决策(周立宏和刘国芳,1996; 董经利,2009; 郭桂生等,2011; 吴晓光等,2016)。

  • 图9 基于声波测井的固井质量检测

  • Fig.9 Evaluation of borehole casing quality using sonic logs

  • 9.2 压裂效果分析

  • 非常规油气无自然产能,一般需要压裂才能建产,声波测井可以识别与探测裂缝,因此声波测井可以分别探测压裂前后(裸眼井、套管井、压裂完井阶段)的裂缝组合特征,对压裂效果进行分析(刘晓虹等,2009; 夏宏泉等,2017; 岳文正和田斌,2022; 李宁等,2024)。压裂过程中形成的压裂缝,主要为张性破裂,因此受水平最小主应力直接影响,此外压裂裂缝形成的平面总是垂直于最小主应力,即压裂缝易沿着 SHmax 方向拓展(高坤等,2006; 尹帅等,2023)。此外,泊松比反映岩石被压开的容易程度,杨氏模量则反映压裂后裂缝保持开启性的能力( Lai Jin et al.,2022)。通过对比压裂前后的声波时差、能量以及斯通利波反射系数、地层速度各向异性方向和大小等变化,可以分析压裂后的裂缝组合特征,从而评价压裂效果,包括压裂缝高度和密度等,甚至井眼外数十米范围内压裂缝发育情况(董经利,2009; 刘晓虹等,2009; 丁世村,2010; 祁晓等,2023; 李宁等,2024)。如当套管井阶段与裸眼井阶段相比,横波各向异性由无到有或者明显增强,表示成功压裂产生裂缝(吴晓光等,2016)。

  • 9.3 固井质量检查

  • 固井质量评价是油气生产重要环节,利用水泥充填套管与地层间的空隙,即水泥胶结固井时,一般套管与水泥胶结界面为第一界面,水泥与地层胶结界面为第二界面(官波等,2002; 唐军等,2016; 张聪慧等,2021)。声幅/ 变密度( CBL / VDL)测井可以根据测量套管井中声波滑行波的方法检验水泥胶结质量(固井质量)(姬铜芝等,2002)。仪器可采用单发双收,源距分别为 3 ft 和 5 ft 的接收器记录套管波幅度( 姬铜芝等,2002; 王平,2008; 唐军等,2016)。

  • 一般套管波可用于第一界面固井质量评价,地层波信息可用于第二界面评价(唐军等,2016)。声波变密度测井图像上,一般常采用调辉方式记录,即通过线条颜色的深浅变化来表示声波能量的变化,波幅显示为黑白相间的条纹,颜色越深表明声波能量越强,而颜色越亮,声波能量越弱( 夏宏泉等,2017)。且声波变密度图像上,左边条纹一般代表套管波,中间为地层波,右边一般泥浆波(图9)。

  • 当有良好的水泥环,且第一,第二界面胶结良好,一般左端模糊不清,即套管波能量较弱,右端为竖直黑白的明显条纹,即地层波能量较强。而在自由套管中,即套管外无水泥,且第一、第二界面均未胶结,则会表现为套管波很强(黑白分明的曲线条带),地层波很弱或没有。因此图9 中可以看到 6125~6138 m 深度段,套管波能量较强,地层波较弱,因而固井质量较差,而 6138~6150 m 深度段,左侧套管波能量较弱,而地层波较强,因此固井质量较好(图9)。

  • 10 结束语

  • 声波测井通过探测地层滑行纵波、横波、斯通利波以及伪瑞利波等信息,经过精细处理与解释,声波测井可用于储层参数计算以及储层含气性判别,可用于杨氏模量、泊松比等岩石力学参数计算,同时用于评价非常规油气储层脆性等特征。声波时差测井可分析地层压力异常成因,并可通过伊顿法等实现地层压力测井评价。声波时差测井可用于地层剥蚀厚度恢复并可进行井震标定。现今地应力的方向可通过快、慢横波方位进行拾取,而现今地应力大小则可通过声波与密度测井相结合进行计算,同时阵列声波测井还可用于地层各向异性特征分析。在工程领域,声波测井可用于钻井安全评价、压裂效果分析以及固井质量检查。

  • 裂缝发育段在声波测井上表现为声波时差增大、声波能量衰减、变密度图像上“V”字形干涉条纹以及斯通利波反射系数增大。烃源岩表现为高声波时差特征,通过 ΔlgR 技术可定量计算 TOC 含量。声波测井可以用于计算地层压力、破裂压力和坍塌压力(“三压力”),从而为钻井安全设计提供支撑,此外声波还可用于分析压裂效果,并根据套管波与地层波能量的相对高低进行固井质量检查。

  • 声波测井蕴含丰富地质与工程信息,声波测井资料的精细处理与挖掘将拓展声波测井应用领域。同时随着石油工业等生产实践需求的提升又将促进声波测井采集与解释评价技术的进步,因此未来声波测井序列将不断发展完善自身基础理论与技术体系,并随着声波测井技术的逐渐成熟,将不断加强其在地质与工程领域的应用。

  • 参考文献

    • 蔡志东. 2021. 井中地震技术: 连接多种油气勘探方法的桥梁. 石油地球物理勘探, 56(4): 922~934.

    • 曹园, 邓金根, 蔚宝华. 2013. WZ12-1 油田流沙港组一段异常高压预测. 特种油气藏, 20(6): 99~102.

    • 陈必孝, 张筠. 2002. 声波全波列测井资料分析处理技术及应用. 测井技术, 26(5): 369~372.

    • 陈更生, 石学文, 刘勇, 吴伟, 杨雨然, 朱逸青, 陈丽清, 徐亮, 钟可塑, 殷樱子. 2024. 四川盆地南部地区五峰组—龙马溪组深层页岩气富集控制因素新认识. 天然气工业, 44(1): 58~71.

    • 崔云江, 吕洪志. 2008. 锦州 25-1 南油气田裂缝性潜山储层测井评价. 中国海上油气, 20(2): 92~95.

    • 邓攀, 陈孟晋, 高哲荣, 孙爱. 2002. 火山岩储层构造裂缝的测井识别及解释. 石油学报, 23(6): 32~37.

    • 丁世村. 2010. 偶极横波资料在低孔低渗储层改造中的应用. 工程地球物理学报, 7(6): 704~709.

    • 董经利. 2009. 多极子阵列声波测井资料处理及应用. 测井技术, 33(2): 115~119.

    • 董震, 潘和平. 2007. 声波测井资料与地震属性关系研究综述. 工程地球物理学报, 4(5): 488~494.

    • 高坤, 陶果, 马勇. 2006. 多极子阵列声波测井资料在塔河油田酸压设计施工中的应用. 地球物理学进展, 21(4): 1227~1231.

    • 官波, 薛桂玉, 赵彦军, 白静, 王悦欣, 高洪忠. 2002. 用声波全波列测井资料定量评价固井质量的方法. 测井技术, 26(5): 383~386.

    • 郭桂生, 蔺敬旗, 张仲华, 吴丛文, 侯庆宇. 2011. 利用测井资料预测孔隙压力、破裂压力和坍塌压力. 新疆石油地质, 32(2): 187~189.

    • 郭京哲, 郭小军, 赵明, 贾昱昕, 吕奇奇, 尹帅. 2023. 基于多矿物模型的致密砂岩脆性指数常规测井评价方法———以鄂尔多斯盆地桐川地区长 7 段为例. 地球物理学进展, 38 (4): 1590~1602.

    • 贺顺义, 师永民, 谢楠, 张志翔, 李翠萍. 2008. 根据常规测井资料求取岩石力学参数的方法. 新疆石油地质, 29(5): 662~664.

    • 胡松, 王敏, 刘伟男, 王兵. 2022. 页岩水平井声波时差各向异性校正方法及其应用. 石油学报, 43(1): 58~66.

    • 黄小冬, 胡纪兰, 郭玉岩, 崔红珠, 赵红星, 顾定娜. 2005. XMAC 测井在吐哈盆地气层识别中的应用. 石油天然气学报, 27(3): 479~481.

    • 姬铜芝, 刘正锋, 王子荣, 吴海忠孙春明. 2002. 固井声幅-变密度测井的影响因素分析. 测井技术, 26(6): 486~489.

    • 贾承造. 2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题. 中国石油大学学报(自然科学版), 47(5): 1~12.

    • 江灿, 庄春喜, 李盛清, 苏远大, 唐晓明. 2019. 多极子阵列声波测井数据的纵横波慢度联合反演方法. 地球物理学报, 62(6): 2294~2302.

    • 姜修道, 朱光明, 孙渊. 2006. 地球物理方法在中国油气资源战略选区中应用的可能性———以藏北羌塘盆地为例. 地质通报, 25 (9-10): 1196~1200.

    • 孔庆丰. 2024. 补偿声波测井扩径校正方法. 石油地球物理勘探, 59(3): 543~547.

    • 靳玲, 苏桂芝, 刘桂兰, 朱不跃, 李磊, 胡艳萍. 2004. 合成地震记录制作的影响因素及对策. 石油物探, 43(3): 267~272.

    • 赖锦, 王贵文, 孙思勉, 蒋晨, 周磊, 郑新华, 吴庆宽, 韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712~1724.

    • 赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 1(3): 330~341.

    • 赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021. 测井地质学前世、今生与未来———写在 《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804~1828.

    • 赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022. 测井地质学研究典型误区与科学思维. 天然气工业, 42 (7): 31~44.

    • 赖锦, 李红斌, 张梅, 白梅梅, 赵仪迪, 范旗轩, 庞小娇, 王贵文. 2023a. 非常规油气时代测井地质学研究进展. 古地理学报, 25 (5): 1118~1138.

    • 赖锦, 白天宇, 肖露, 赵飞, 李栋, 李红斌, 王贵文, 张荣虎. 2023b. 地应力测井评价方法及其地质与工程意义. 石油与天然气地质, 44(4): 1033~1043.

    • 赖锦, 肖露, 赵鑫, 赵飞, 黎雨航, 朱世发, 王贵文, 刘宏坤. 2023c. 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例. 石油学报, 44 (4): 612~625 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例.

    • 赖锦, 肖露, 白天宇, 范旗轩, 黄玉越, 李红斌, 赵飞, 王贵文. 2024a. 成像测井解释评价方法及其地质应用. 地质科技通报, 43(3): 323~340.

    • 赖锦, 白天宇, 苏洋, 赵飞, 李玲, 黎雨航, 李红斌, 王贵文, 肖承文. 2024b. 烃源岩测井识别与评价方法研究进展. 地质论评, 70(2): 721~741.

    • 李国发, 廖前进, 王尚旭, 袁淑琴, 王守东. 2008. 合成地震记录层位标定若干问题的探讨. 石油物探, 47(2): 145~149.

    • 李剑浩. 2007. 用混合物电导率公式改进双水模型的公式. 测井技术, 31(1): 1~3.

    • 李军, 王贵文, 欧阳健. 2001. 利用测井信息定量研究库车坳陷山前地区地应力. 石油勘探与开发, 28(5): 93~97.

    • 李凯军, 杨玉卿, 苏华. 2003. 正交偶极声波测井技术在碎屑岩储层评价中的应用初探. 中国海上油气(地质), 17(6): 416~420.

    • 李宁, 刘鹏, 范华军, 胡江涛, 武宏亮. 2024. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术, 52(1): 1~7.

    • 李鹏举, 宋延杰, 付多辰, 仲从存, 田宏娟. 2006. XMAC 纵波时差高分辨率处理方法. 天然气工业, 26(6): 55~56.

    • 李卿卿, 符力耘, 杜启振, 冉亚楠, 胡勇. 2024. 基于声波测井资料的波动方程走时层析反演速度建模. 地球物理学报, 67(2): 641~653.

    • 李同华, 段庆庆, 杨雷, 吴金龙. 2009. 基于偶极横波资料的火山岩裂缝及油气识别. 西南石油大学学报(自然科学版), 31(6): 45~51.

    • 李玉霞, 李亚敏. 2008. MPAL 多极子阵列声波测井仪. 测井技术, 32(5): 439~442.

    • 李长文, 余春吴, 赵旭东, 朱振升. 2003. 反射波信息在裂缝储层评价中的应用. 测井技术, 27(3): 198~202.

    • 李长文, 强毓明, 李国利, 余春昊. 2006. 现代声波测井技术发展的若干特点. 测井技术, 30(2): 101~105.

    • 李兆阳. 2005. 正交偶极阵列声波测井技术及应用. 勘探地球物理进展, 28(4): 300~303.

    • 刘国强, 谭廷栋. 1993. 孔隙度和含气饱和度的弹性模量计算方法. 石油勘探与开发, 20(5): 33~41.

    • 刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发, 48(5): 891~902.

    • 刘航, 吴煜宇, 贺洪举, 谢冰, 赖强, 韩红林. 2023. 阵列声波测井处理新技术在碳酸盐岩储层评价方面的应用. 地球物理学进展, 38(1): 0220~0228.

    • 刘欢, 徐锦绣, 陈红兵, 张雪芳, 齐奕. 2023. 基于核磁共振测井校正的泥质砂岩气层孔隙度计算方法. 中国海上油气, 35(3): 89~95.

    • 刘景彦, 林畅松, 喻岳钰, 武法东, 姜亮, 陈志勇. 2000. 用声波测井资料计算剥蚀量的方法改进. 石油实验地质, 22(4): 302~306.

    • 刘鹏, 乔文孝, 车小花, 王瑞甲, 鞠晓东, 卢俊强. 2014. 多极子阵列声波测井技术在煤层气储层评价中的应用. 测井技术, 38 (3): 292~296.

    • 刘晓虹, 刘俊, 熊孝云, 李欢. 2009. 多极子阵列声波成像测井系统. 中国矿业, 18(11): 92~96.

    • 刘之的, 戴诗华, 王宏亮, 李桂秋, 徐静. 2007. 利用 DSI 评价火成岩裂缝的有效性. 测井技术, 31(2): 156~158.

    • 卢红杰, 朱辉明, 王春利, 沈彬彬, 马玉鹏, 李雨龙. 2011. 基于 XMAC 资料的火山岩压裂储层应力分析技术. 钻采工艺, 34 (1): 45~47+51+115.

    • 陆云龙, 崔云江, 关叶钦, 熊镭. 2022. 基于阵列声波测井的裂缝有效性定量评价方法. 测井技术, 46(1): 64~70.

    • 罗伟平, 李洪奇, 朱丽萍, 乔悦东, 石宁, 俞飞. 2014. 地震与测井资料自动匹配的研究. 石油地球物理勘探, 49(1): 205~212.

    • 聂昕, 邹长春, 杨玉卿, 肖昆, 黄兆辉. 2012. 测井技术在页岩气储层力学性质评价中的应用. 工程地球物理学报, 9(4): 433~439.

    • 祁斌, 夏宏泉, 房国庆, 白新国. 2008. 基于偶极横波测井的地层各向异性研究. 测井技术, 32(5): 412~416.

    • 祁文莉, 吴惠梅, 楼一珊, 翟晓鹏, 刘宏. 2023. 基于声波测井的地层孔隙压力预测及应用. 测井技术, 47(4): 415~420.

    • 祁晓, 张璋, 李东, 尹璐, 于洋. 2023. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法. 石油钻探技术, 51(6): 128~134.

    • 乔文孝, 鞠晓东, 车小花, 卢俊强. 2011. 声波测井技术研究进展. 测井技术, 35(1): 14~19.

    • 乔文孝, 阎树汶. 1997. 用声波测井资料识别油气水层. 测井技术, 21(3): 215~220.

    • 秦建强, 付德亮, 钱亚芳, 杨甫, 田涛. 2018. 烃源岩有机质丰度预测的地球物理研究进展. 石油物探, 57(6): 803~812.

    • 秦绪英, 宋波涛. 2002. 测井技术现状与展望. 勘探地球物理进展, 25(1): 26~34.

    • 苏华, 田洪. 2002. 利用斯通利波估算地层渗透率. 测井技术, 26 (4): 298~301.

    • 苏洋, 赖锦, 别康, 李栋, 赵飞, 陈康军, 李红斌, 王贵文. 2024. 深层超深层钻井地质信息测井拾取与评价. 古地理学报, 27(1): 225~239.

    • 孙越, 谢佩宇, 张凤奇, 陈树光, 李永新, 关铭, 周然然, 张洁. 2024. 河套盆地临河坳陷兴隆构造带临河组超压成因及演化特征. 天然气地球科学, 35(4): 661~675.

    • 谭礼洪, 张国强, 谭忠健, 张贵斌, 章成广, 蔡明. 2022. 利用阵列声波测井资料评价变质岩储层有效性. 石油地球物理勘探, 57 (6): 1464~1472.

    • 谭廷栋. 2000. 测井解释发现油气层. 天然气工业, 20(6): 47~50.

    • 唐军, 章成广, 张碧星, 师芳芳. 2016. 基于声波-变密度测井的固井质量评价方法. 石油勘探与开发, 43(3): 469~475.

    • 唐军, 章成广, 信毅. 2017. 油基钻井液条件下裂缝声波测井评价方法: 以塔里木盆地库车坳陷克深地区致密砂岩储集层为例. 石油勘探与开发, 44(3): 389~397+406.

    • 唐晓明, 魏周拓, 苏远大, 庄春喜. 2012. 利用井中偶极声源远场辐射特性的远探测测井. 测井技术, 55(8): 2798~2807.

    • 童凯军, 赵春明, 吕坐彬, 张迎春, 郑浩, 许赛男, 王建立, 潘玲黎. 2012. 渤海变质岩潜山油藏储集层综合评价与裂缝表征. 石油勘探与开发, 39(1): 56~63.

    • 王建华. 2006. 声波测井技术综述. 工程地球物理学报, 3(5): 395~400.

    • 王培春, 熊镭, 李盛清, 谈笑宇, 张任风, 苏远大. 2023. 裂缝性储层的声波测井评价方法及其在渤中 19-6 凝析气田的应用. 测井技术, 47(1): 7~15.

    • 王平. 2008. 固井质量评价测井影响因素分析. 测井技术, 32(5): 463~467.

    • 翁望飞, 王建强, 张蓉蓉, 陈洪, 桂小军. 2011. 利用声波测井技术计算地层剥蚀厚度———以鄂尔多斯盆地为例. 新疆石油地质, 32(2): 143~146.

    • 吴晓光, 季凤玲, 李德才. 2016. 偶极声波测井技术应用现状及研究进展. 地球物理学进展, 31(1): 0380~0389.

    • 夏宏泉, 胡慧, 杨林, 赵静. 2017. 基于声波变密度测井信息识别水平井压裂裂缝的方法. 石油钻探技术, 45(5): 113~117.

    • 夏宏泉, 郭倩男. 2018. 基于 DSI 测井横波分裂的水平井压裂缝检测研究. 西南石油大学学报(自然科学版), 40(3): 87~96.

    • 徐陈杰. 2022. 东海西湖凹陷天然气资源分级分布机理及模式. 中国地质大学, 武汉.

    • 徐珂, 杨海军, 张辉, 王海应, 袁芳, 王朝辉, 李超. 2021. 克拉苏构造带博孜 1 气藏现今地应力场和高效开发. 新疆石油地质, 42(6): 726~734.

    • 徐星, 赵万优. 2001. Star-Ⅱ成像测井在碳酸盐岩储层评价中的应用. 测井技术, 25(5): 358~364.

    • 许松, 唐晓明, 苏远大, 庄春喜. 2018. 斯通利波和弯曲波联合反演地层 VTI 各向异性的阵列声波处理方法. 地球物理学报, 61 (12): 5105~5114.

    • 许玉强, 何保伦, 王舒, 韩超, 肖凡, 管志川, 刘宽. 2023. 深度学习与 Eaton 法联合驱动的地层孔隙压力预测方法. 中国石油大学学报(自然科学版), 47(6): 50~59.

    • 薛罗, 马轮, 史忠生, 赵艳军, 陈彬滔, 史江龙, 王磊. 2022. 南苏丹 Melut 盆地 Ruman 潜山构造演化及其对油气成藏的控制作用. 油气地质与采收率, 29(2): 53~60.

    • 薛梅, 楚泽涵, 姜皓. 2000. 声波测井仪器发展评述. 石油仪器, 14 (5): 6~10.

    • 颜惠兰. 2004. 多极子阵列声波(MAC)在油田生产中的应用. 特种油气藏, 11(5): 60~63.

    • 杨雷, 高秋涛, 王国斌, 李桂秋, 李淑云, 张军. 2002. 利用 XMAC 测井资料识别油气层段. 新疆石油地质, 23(5): 402~404.

    • 杨小兵, 姚梦麟, 王思静, 周昊, 佟恺林, 陈维铭, 马韶光. 2022. 页岩气测井地质工程技术新需求及解决方案. 天然气工业, 42 (2): 20~27.

    • 杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 2024. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因. 石油与天然气地质, 45(1): 96~112.

    • 杨雪冰, 李庆峰, 李文志, 何丽. 2014. 声波测井技术在非常规致密油藏储层评价中的应用. 应用声学, 33(1): 16~22.

    • 尹帅, 刘翰林, 何建华, 王瑞飞, 李香雪, 黄郑, 周永强, 贺子潇. 2023. 动静态地质力学方法约束的致密油砂岩地应力综合评估. 地球科学进展, 38(12): 1285~1296.

    • 印兴耀, 马妮, 马正乾, 宗兆云. 2018. 地应力预测技术的研究现状与进展. 石油物探, 57(4): 488~504.

    • 于景才, 原福堂, 邱辉丽, 张铁轩. 2005. 测井新技术在复杂岩性地层中的地质应用. 石油天然气学报, 27(2): 345~348.

    • 余春昊, 李长文. 1998. 利用斯通利波信息进行裂缝评价. 测井技术, 22(4): 273~277.

    • 喻著成, 许期聪, 邱儒义, 雷鸣, 周箩鱼. 2023. 随钻声波井下全景成像技术现状及展望. 钻采工艺, 46(3): 171~175.

    • 原宏壮, 陆大卫, 张辛耘, 孙建孟. 2005. 测井技术新进展综述. 地球物理学进展, 20(3): 786~795.

    • 岳文正, 田斌. 2022. 高分辨率井周储层深探测反射声波测井成像方法. 石油物探, 61(6): 1077~1089.

    • 曾联波, 田崇鲁. 1998. 构造应力场与低渗透油田开发. 石油勘探与开发, 25(3): 91~93.

    • 曾联波, 王贵文. 2005. 塔里木盆地库车山前构造带地应力分布特征. 石油勘探与开发, 32(3): 59~60.

    • 曾文冲, 邱细斌, 刘学锋. 2014. 识别复杂储层流体性质的新途径. 测井技术, 38(1): 11~21.

    • 张碧星, 王克协. 1998. 各向异性介质地层中多极源声波测井的现状与发展. 地球物理学进展, 13(2): 1~14.

    • 张承森, 肖承文, 刘兴礼, 郭洪波, 朱登朝, 王贵清. 2011. 远探测声波测井在缝洞型碳酸盐岩储集层评价中的应用. 新疆石油地质, 32(3): 325~328.

    • 张聪慧, 祁晓, 张广栋, 张璋, 尹璐. 2021. 利用阵列声波进行固井质量定量评价的方法及其应用. 地球物理学进展, 36(5): 2128~2135.

    • 张海涛, 石玉江, 张鹏, 范宜仁, 杨小明, 李虎. 2015. 基于偶极横波测井的低渗透砂岩气层识别方法. 测井技术, 39(5): 591~595.

    • 张恒荣, 肖立志, 曾少军, 汤翟, 袁伟, 杨冬. 2023. 基于裂缝柔度和地应力模型的声电测井正、反演方法及应用. 石油地球物理勘探, 58(2): 431~442.

    • 张辉, 尹国庆, 王志民, 王海应. 2019. 库车坳陷深层裂缝性砂岩气藏可压裂性评价. 新疆石油地质, 40(1): 108~115.

    • 张蕾, 成志刚, 冯春珍, 罗少成, 席辉, 杨智新. 2013. 致密砂岩气层识别方法研究及应用效果分析. 测井技术, 37(6): 648~652.

    • 张小莉, 沈英, 陈文学. 2000. 利用测井资料分析成岩作用对储集层的影响. 沉积学报, 18(3): 127~131.

    • 张永华, 陈萍, 赵雨晴, 朱军, 刘景颜. 2004. 基于合成记录的综合层位标定技术. 石油地球物理勘探, 39(1): 92~96.

    • 张永军, 顾定娜, 马肃滨, 陈向阳, 陈光辉, 万永清. 2012. 阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用. 测井技术, 36(2): 175~178.

    • 张元中, 肖立志. 2004. 新世纪第一个五年测井技术的若干进展. 地球物理学进展, 19(4): 828~836.

    • 张振城, 孙建孟, 施振飞, 蔡晓明, 苏远大, 廖东良. 2005. 测井资料评价次生孔隙的方法、原理及实例. 沉积学报, 23(4): 613~619.

    • 赵继勇, 周新桂, 雷启鸿, 赵国玺, 何右安, 时建超, 张林炎. 2017. 鄂尔多斯盆地马岭油田长 7 致密储层古今构造应力研究. 地质力学学报, 23(6): 810~820.

    • 赵靖舟, 李军, 徐泽阳. 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973~998.

    • 赵军, 张莉, 王贵文, 李军. 2005. 一种基于测井信息的山前挤压构造区地应力分析新方法. 地质科学, 40(2): 284~290.

    • 支东明, 李建忠, 杨帆, 陈旋, 肖冬生, 王波, 武超, 于海跃. 2024. 吐哈盆地丘东洼陷侏罗系致密砂岩气勘探突破及意义. 石油学报, 45(2): 348~357.

    • 周立宏, 刘国芳. 1996. 利用泥岩声波时差估算地层压力. 石油实验地质, 18(2): 195~199.

    • 周文, 戴建文. 2008. 四川盆地西部坳陷须家河组储层裂缝特征及分布评价. 石油实验地质, 30(1): 20~25.

    • 朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, 27(2): 104~109.

    • 朱建伟, 赵刚, 刘博, 郭巍, 成俊. 2012. 油页岩测井识别技术及应用. 吉林大学学报(地球科学版), 42(2): 289~295.

    • 朱留方. 2003. 交叉偶极子阵列声波测井资料在裂缝性储层评价中的应用. 测井技术, 27(3): 225~227.

    • 朱怡翔, 田昌炳, 于兴河, 何东博, 贾爱林. 2004. 鄂尔多斯盆地苏里格气田相对高渗砂体的成因及其岩石物理测井识别方法. 石油实验地质, 26(4): 389~394.

    • Akimbekova A, Trippetta F, Carboni F, Pauselli C, Maletti G M, Casero A, Miranda F, Barchi M R. 2024. Deriving Vp velocity and density properties of complex litho-structural units from the analysis of geophysical log data: A study from the Southern Apennines of Italy. Marine and Petroleum Geology, 160: 106634.

    • Athy L F. 1930. Density porosity and compaction of sedimentary rocks. AAPG Bulletin, 14: 1~24.

    • Barbosa D N, Greenwood A, Caspari E, Dutler N, Holliger K. 2021. Estimates of individual fracture compliances along boreholes from full -waveform sonic log data. Journal of Geophysical Research: Solid Earth, 126(5): e2021JB022015~ e2021JB022015.

    • Benaïssa Z, Benaïssa A, Zaouia F S, Aïfa T, Boudella A, Chami N, Youcefi D, Ouadah M S. 2010. Using sonic log data to investigate a multiple problem in the Hassi R ' mel field, Algeria. Journal of Petroleum Science and Engineering, 71(3): 121~125.

    • Bowers G L. 1995. Pore pressure estimation from velocity date: accounting for overpressure mechanisms besides under compaction. International Journal of Rock Mechanics and Mining Sciences, 10 (2): 89~95.

    • Bulant P, Klimeš L. 2008. Comparison of VSP and sonic-log data in nonvertical wells in a heterogeneous structure. Geophysics, 73(4): U19~U25.

    • Cai Zhidong. 2021&. Borehole seismic: A bridge connecting multiple oil and gas exploration methods. Oil Geophysical Prospecting, 56(4): 922~934.

    • Cao Yuan, Deng Jingen, Yu Baohua. 2013&. Prediction and analysis of abnormal high pressure reservoir in the first member of Liushagang formation in south WZ12 - 1 oilfield. Special Oil and Gas Reservoirs, 20(6): 99~102.

    • Chen Bixiao, Zhang Yun. 2002&. Full wave sonic logging data processing technique and its applications. Well Logging Technology, 26(5): 369~372.

    • Chen Gengsheng, Shi Xuewen, Liu Yong, Wu Wei, Yang Yuran, Zu Yiqing, Chen Liqing, Xu Liang, Zhong Kesu, Yin Yingzi. 2024&. New understandings of the factors controlling of deep shale gas enrichment in the Wufeng Formation - Longmaxi Formation of the southern Sichuan Basin. Natural Gas Industry, 44(1): 58~71.

    • Cui Yunjiang, Lyu Hongzhi. 2008&. A logging evaluation of fractured buried-hill reservoir in JZ25-1S field. China Offshore Oil and Gas, 20(2): 92~95.

    • Deng Pan, Chen Mengjin, Gao Zhelong, Sun Ai. 2002&. Log response and explanation of structural fractures in volcanic rock reservoir. Acta Petrolei Sinica, 23(6): 32~37.

    • Ding Shicun. 2010&. The application of DSI data to the reform of low porosity and low permeability reservoir. Chinese Journal of Engineering Geophysics, 7(6): 704~709.

    • Dong Jingli. 2009&. Processing of multipole array acoustic log data and its application. Well Logging Technology, 33(2): 115~119.

    • Dong Zhen, Pan Heping. 2007&. A review of study on relationships between sonic logging data and seismic attributes. Chinese Journal of Engineering Geophysics, 4(5): 488~494.

    • Eaton B A. 1975. The equation for geopressure prediction from well logs. Society of Petroleum Engineers of AIME, Paper SPE 5544.

    • Gao Kun, Tao Guo, Ma Yong. 2006&. Application of multi pole array sonic logging to acid hydralic fracturing. Progress in Geophysics, 21 (4): 1227~1231.

    • Guan Bo, Xue Guiyu, Zhao Yanjun, Bai Jing, Wang Yuexin, Gao Hongzhong. 2002&. A method for cementing quality evaluation with Fullwave acousti log data. Well Logging Technology, 26(5): 383~386.

    • Guo Guisheng, Lin Jing - qi, Zhang Zhonghua, Wu Congwen, Hou Qingyu. 2011&. Prediction of Pore Pressure, Fracture Pressure and Collapse Pressure with Well Logging Data. Xinjiang Petroleum Geology, 32(2): 187~189.

    • Guo JingZhe, Guo XiaoJun, Zhao Ming, Jia YuXin, Lyu QiQi, Yin Shuai. 2023&. Conventional logging evaluation method of brittleness index of tight sandstone based on multimineral model: a case study of Chang 7 member in Tongchuan area, Ordos basin. Progress in Geophysics, 38(4): 1590~1602.

    • He Shunyi, Shi Yongmin, Xie Nan, Zhang Zhixiang, Li Cuiping. 2008&. The Method for Acquirement of Conventional Logging Response- Based Lithomechanical Parameters. Xinjiang Petroleum Geology, 29(5): 662~664.

    • Henry P H. 1996. Analysis of sonic well logs applied to erosion estimates in the Bighorn basin, Wyoming. AAPG Bulletin, 80: 630~647.

    • Hornby B E. 1989. Imaging of near - borehole structure using fullwaveform sonic data. Geophysics, 54(6): 747~757.

    • Hornby B E, Howie J M, Ince D W. 2003. Anisotropy correction for deviated - well sonic logs: application to seismic well tie. Geophysics, 68(2): 464~471.

    • Hu Song, Wang Min, Liu Weinan, Wang Bing. 2022&. Anisotropy correction method for acoustic time difference in horizontal shale wells and its application. Acta Petrolei Sinica, 43(1): 58~66.

    • Huang Xiaodong, Hu Jilan, Guo Yuyan, Cui Hongzhu, Zhao Hongxing, Gu Dingna. 2005&. Application of XMAC well logging tool in gas reservoir recognition of Tuha Basin. Journal of Oil and Gas Technology, 27(3): 479~481.

    • Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34~58.

    • Ji Tongzhi, Liu Zhengfeng, Wang Zirong, Wu haizhong, Sun chunming. 2002&. Analysis of influencing factors of cement evaluation based on the CBL-VDL logging data. Well Logging Technology, 26(6): 486~489.

    • Jia chengzhao. 2023&. Key scientific and technological problems of petroleum exploration and development in deep and ultra - deep formation. Journal of China University of Petroleum ( Edition of Natural Science), 47(5): 1~12.

    • Jiang Can, Zhuang Chunxi, Li Shengqing, Su Yuanda, Tang Xiaoming. 2019&. Joint inversion for compressional and shear wave slowness using multipole acoustic array logging data. Chinese Journal of Geophysics, 62(6): 2294~2302.

    • Jiang Xiudao, Zhu Guangming, Sun Yuan. 2006&. Possibility of applying geophysical methods in strategic petroleum target area selection in China: A case study of the Qiangtang basin. Geological Bulletin of China, 25(9): 1196~1200.

    • Jin Ling, Su Guizhi, Liu Guilan, Zhu Piyue, Li lei, Hu Yanping. 2004&. Influencing factors in making synthetic seismogram and counter measures. Geophysical Prospecting for Petroleum, 43(3): 267~272.

    • Kong Qingfeng. 2024&. Borehole expanding correction method for compensated acoustic logging. Oil Geophysical Prospecting, 59 (3): 543~547.

    • Ktenas D, Henriksen E, Meisingset I, Nielsen J K, Andreassen K. 2017. Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic velocities and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88: 826~844.

    • Lai Jin, Wang Guiwen, Sun Simian, Jiang Chen, Zhou Lei, Zhen Xinhua, Wu QingKuan, Han Chuang. 2015&. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs. Progress in Geophysics, 30(4): 1712~1724.

    • Lai Jin, Wang Guiwen, Fan Zhuoying, Chen Jing, Wang Shuchen, Zhou Zhenglong, Fan Xuqiang. 2016&. Research progress in brittleness index evaluation methods with logging data in unconventional oil and reservoirs. Petroleum Science Bulletin, 3: 330~341.

    • Lai Jin, Wang Guiwen, Fan Zhuoying. , Wang Ziyuan, Chen Jing, Zhou Zhenglong, Wang Shuchen, Xiao Chengwen. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195 – 214.

    • Lai Jin, Wang Guiwen, Wang Song, Cao Juntao, Li Mei, Pang Xiaojiao, Han Chuang, Fan Xuqiang, Yang Liu, He Zhibo, Qin Ziqiang. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139~166.

    • Lai Jin, Li Dong, Wang Guiwen, Xiao Chengwen, Hao Xiaolong, Luo Qingyong, Lai Lingbin, Qin Ziqiang. 2019. Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43~54.

    • Lai Jin, Wang Guiwen, Pang Xiaojiao, Han Zongyan, Li Dong, Zhao Yidi, Wang Song, Jiang Chengzhou, Li Hongbin, Li Yuhang. 2021&. The past, present and future of well logging geology: To celebrate the publication of second edition of “ Well Logging Geology”. Geological Review, 67(6): 1804~1828.

    • Lai Jin, Chen Kangjun, Xin Yi, Wu Xingneng, Chen Xu, Yang Kefu, Song Qiuqiang, Wang Guiwen, Ding Xiujian. 2021. Fracture characterization and detection in the deep Cambrian dolostones in the Tarim Basin, China: Insights from borehole image and sonic logs. Journal of Petroleum Science and Engineering, 196: 107659.

    • Lai Jin, Pang Xiaojiao, Zhao Xin, Zhao Yidi, Wang Guiwen, Huang Yuyue, Li Hongbin, Li Yuhang. 2022&. Typical misunderstandings and scientific ideas in well logging geology research. Natural Gas Industry, 2(7): 31~44.

    • Lai Jin, Wang Guiwen, Fan Qixuan, Pang Xiaojiao, Li Hongbin, Zhao Fei, Li Yuhang, Zhao Xin, Zhao Yidi, Huang Yuyue, Bao Meng, Qin Ziqiang, Wang Qiqi. 2022. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects. Surveys in Geophysics, 43: 913~957.

    • Lai Jin, Li Hongbin, Zhang Mei, Bai Meimei, Zhao Yidi, Fan Qixuan, Pang Xiaojiao, Wang Guiwen. 2023a&. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography (Chinese Edition), 25(5): 1118~1138.

    • Lai Jin, Bai Tianyu, Xiao Lu, Zhao Fei, Li Dong, Li Hongbin, Wang Guiwen, Zhang Ronghu. 2023b&. Well-logging evaluation of insitu stress fields and its geological and engineering significances. Oil & Gas Geology, 44(4): 1033~1043.

    • Lai Jin, Xiao Lu, Zhao Xin, Zhao Fei, Li Yuhang, Zhu Shifa, Wang Guiwen, Liu Hongkun. 2023c&. Genesis and logging evaluation of deep to ultra-deep high-quality clastic reservoirs: a case study of the Cretaceous Bashijiqike Formation in Kuqa depression. Acta Petrolei Sinica, 44(4): 612~625.

    • Lai Jin, Wang Guiwen, Fan Qixuan, Zhao Fei, Zhao Xin, Li Yuhang, Zhao Yidi, Pang Xiaojiao. 2023. Toward the scientific interpretation of geophysical well logs: Typical misunderstandings and countermeasures. Surveys in Geophysics, 44(2): 463~494.

    • Lai Jin, Xiao Lu, Bai Tianyu, Fan Qixuan, Huang Yuyue, Li Hongbin, Zhao Fei, Wang Guiwen. 2024a&. Interpretation and evaluation methods of image logs and their geological applications. Bulletin of Geological Science and Technology, 43(3): 323~340.

    • Lai Jin, Bai Tianyu, Su Yang, Zhao Fei, Li Ling, Li Yuhang, Li Hongbin, Wang Guiwen, Xiao Chengwen. 2024b&. Researches progress in well log recognition and evaluation of source rocks. Geological Review, 70(2): 721~741.

    • Lai Jin, Su Yang, Xiao Lu, Zhao Fei, Bai Tianyu, Li Yuhang, Li Hongbin, Huang Yuyue, Wang Guiwen, Qin Ziqiang. 2024. Application of geophysical well logs in solving geologic issues: Past, present and future prospect. Geoscience Frontiers, 15: 101779.

    • Laubach S E, Lander R H, Criscenti L J, Anovitz L M, Urai J L, Pollyea R M, Hooker J N, Narr W, Evans M A, Kerisit S N, Olson J E, Dewers T, Fisher D, Bodnar R, Evans B, Dove P, Bonnell L M, Marder M P, Pyrak-Nolte L. 2019. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57 (3): 1065~1111.

    • Laubach S E, Zeng L, Hooker J N, Wang Q, Zhang R, Wang J, Ren B. 2023. Deep and ultra-deep basin brittle deformation with focus on China. Journal of Structural Geology, 175: 104938.

    • Li Changwen, Qiang Yuming, Li Guoli, Yu Chunhao. 2006&. Characteristics of Modern Acoustic Logging Technology Development. Well Logging Technology, 30(2): 101~105.

    • Li Changwen, Yu Chunhao, Zhao Xudong, Zhu Zhensheng. 2003&. Application of Acoustic Reflective Waves in Evaluation of fractured reservoirs. Well Logging Technology, 27(3): 198~202.

    • Li Guofa, Liao Qianjin, Wang Shangxu, Yuan Shuqin, Wang Shoudong. 2008&. Discussions about horizon calibration based on well - log synthetic seismogram. Geophysical Prospecting for Petroleum, 47 (2): 145~149.

    • Li Jianhao. 2007&. An improvement in conductivity formula of dual water model with conductivity formula of mixture. Well Logging Technology, 31(1): 1~3.

    • Li Jun, Wang Guiwen, Ouyang Jian. 2001&. Using Logging Data to Quantitatively Study Terrestrial - Stress of Kuqa Field. Petroleum Exploration and Development, 28(5): 93~97.

    • Li Kaijun, Yang Yuqing, Su Hua. 2003&. A preliminary application of XMAC to clastic reservoir assessment. China Offshore Oil and Gas (Geology), 17(6): 416~420.

    • Li Ning, Liu Peng, Fan Huajun, Hu Jiangtao, Wu Hongliang. 2024&. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging. Petroleum Drilling Techniques, 52(1): 1~7.

    • Li Pengju, Song Yanjie Fu Duochen, Zhong Congcun, Tian Hongjuan. 2006&. High resolution processing of p - wave slowness - time of XMAC. Natural Gas Industry, 26(6): 55~56.

    • Li Qingqing, Fu Liyun, Du Qizhen, Ran Yanan, Hu Yong. 2024&. Velocity modeling through full wave equation traveltime tomography inversion based on sonic logging data. Chinese Journal of Geophysics, 67(2): 641~653.

    • Li Tonghua, Duan Qingqing, Yang Lei, Wu Jinlong. 2009&. Igneous rock fractures and hydrocarbon identification based on DSI data. Journal of Southwest Petroleum University ( Science & Technology Edition), 31(6): 45~51.

    • Li Yuxia, Li Yamin. 2008&. Multipole acoustic array logging tool. Well Logging Technology, 32(5): 439~442.

    • Li Zhaoyang. 2005&. Application of crossed dipole array acoustic logging. Progress in Exploration Geophysics, 28(4): 300~303.

    • Liu Guogiang, Tan Tingdong. 1993&. Porosity and gas - saturation determination using elastic moduli. Petroleum Exploration and Development, 20(5): 33~41.

    • Liu Guoqiang. 2021&. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891~902.

    • Liu Hang, Wu Yuyu, He Hongju, Xi Bing, Lai Qiang, Han Honglin. 2023&. Application of new processing technology of array acoustic logging in carbonate reservoir evaluation. Progress in Geophysics, 38(1): 0220~0228.

    • Liu Huan, Xu Jinxiu, Chen Hongbing, Zhang Xuefang, Qi Yi. 2023&. A method for calculating porosity of shale sandstone gas reservoir based on nuclear magnetic resonance logging calibrated. China Offshore Oil and Gas, 35(3): 89~95.

    • Liu Jingyan, Lin Changsong, Yu Yueyu, Wu Fadong, Jiang Liang, Chen Zhiyong. 2000&. An improved method to calculate denuded amount by sonic well logs. Experimental Petroleum Geology, 22(4): 302~306.

    • Liu Peng, Qiao Wenxiao, Che Xiaohua, Wang Ruijia, Ju Xiaodong, Lu Junqiang. 2014&. Application of multipole acoustic logging to the evaluation of coalbed methane reservoirs. Well Logging Technology, 38(3): 292~296.

    • Liu Xiaohong, Liu Jun, Xiong Xiaoyun, Li Huan. 2009&. Multipole array acoustic imaging logging system. China Mining Magazine, 18 (11): 92~96.

    • Liu Zhidi, Dai Shihua, Wang Hongliang, Li Guiqiu, Xu Jing. 2007&. Fracture Effectivity Evaluati on of Igneous Rock with Sonic Logging. Well Logging Technology, 31(2): 156~158.

    • Lu Hongjie, Zhu Huiming, Wang Chunli, Shen Binbin, Ma Yupeng, Li Yulong. 2011&. Stress analysis of volcanic fracturing reservoir based on XMAC data. Drilling & Production Technology, 34(1): 45~47+51.

    • Lu Yunlong, Cui Yunjiang, Guan Yeqin, Xiong Lei. 2022&. Quantitative evaluation method of fracture effectiveness based on array acoustic logging. Well Logging Technology, 46(1): 64~70.

    • Lubanzadio M, Goulty N R, Swarbrick R E. 2006. Dependence of sonic velocity on effective stress in North Sea Mesozoic mudstones. Marine and Petroleum Geology, 23(6): 647~653.

    • Luo Weiping, Li Hongqi, Zhu Liping, Qiao Yuedong, Shi Ning, Yu Fei. 2014&. Automatic matching of seismic and logging data. Oil Geophysical Prospecting, 49(1): 205~212.

    • Magara K. 1976. Thickness of removed sediments, paleopore-pressure, and paleotemperature, southwestern part of western Canada basin. AAPG Bulletin, 60: 554~565.

    • Markova I, Jarillo G R, Markov M, Gurevich B. 2014. Squirt flow influence on sonic log parameters. Geophysical Journal International, 196: 1082~1091

    • Markova I, Markov M. 2023. Secondary porosity classification in heterogeneous carbonate reservoirs based on the sonic log data. Journal of Applied Geophysics, 218: 105215.

    • Narr W, Currie J B. 1982. Origin of fracture porosity—example from Altamont field, Utah. The American Association of Petroleum Geologists Bulletin, 65(9): 1231~1247.

    • Ni Xin, Zhou Changchun, Yang Yuqin, Xiao Kun, Huang Zhaohui. 2012&. Application of well logging to the evaluation of the rock mechanical properties of the shale gas reservoirs. Oil Geophysical Prospecting, 9(4): 433~439.

    • Nian Tao, Wang Guiwen, Xiao Chengwen, Zhou Lei, Deng Li, Li Ruijie. 2016. The in situ stress determination from borehole image logs in the Kuqa Depression. Journal of Natural Gas Science and Engineering, 34: 1077~1084.

    • Onalo D, Adedigba S, Khan F, James L A, Butt S. 2018. Data driven model for sonic well log prediction. Journal of Petroleum Science and Engineering, 170: 1022~1037.

    • Oyler D C, Mark C, Molinda G M. 2010. In situ estimation of roof rock strength using sonic logging. International Journal of Coal Geology, 83: 484~490.

    • Passey Q, Creaney S, Kulla J, Moretti F, Stroud J. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74: 1777~1794.

    • Prioul R, Donald A, Koepsell R, Marzouki Z E, Bratton T. 2007. Forward modeling of fracture - induced sonic anisotropy using a combination of borehole image and sonic logs. Geophysics, 72(4): 135~147.

    • Qi Bin, Xia Hongquan, Fang Guoqing, Bai Xinguo. 2008&. On stratum anisotropy based on DSI log information. Well Logging Technology, 32(5): 412~416.

    • Qi Qiaomu, Cheng Arthur C H, Li Yunyue Elita. 2019. Determination of formation shear attenuation from dipole sonic log data. Geophysics, 84(3): D73~D79.

    • Qi Wenli, Wu Huimei, Lou Yishan, Zhai Xiaopeng, Liu Hong. 2023&. Formation pore pressure prediction and application based on acoustic logging. Well Logging Technology, 47(4): 415~420.

    • Qi Xiao, Zhang Zhang, Li Dong, Yin Lu, Yu Yang. 2023&. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology. Petroleum Drilling Techniques, 51 (6): 128~134.

    • Qiao Wenxiao, Ju Xiaodong, Che Xiaohua, Lu Junqiang. 2011&. Progress in Acoustic Well Logging Technology. Well Logging Technology, 35(1): 14~19.

    • Qiao Wenxiao, Yan Shuwen. 1997&. Evaluation of the Characteristics of Pore Fluids in Permeable Formations Using Acoustic Logging Data. Well Logging Technology, 21(3): 215~220.

    • Qin Jianqiang, Fu Deliang, Qian Yafang, Yang Fu, Tian Tao. 2018&. Progress of geophysical methods for the evaluation of TOC of source rock. Geophysical Prospecting for Petroleum, 57(6): 803~812.

    • Qin Xuying, Song Botao. 2002&. Current situation and prospect of logging technology. Petroleum Reservoir Evaluation and Development, 25(1): 26~34.

    • Radwan A A, Nabawy B S, Abdelmaksoud A, Lashin A. 2021. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand. Journal of Natural Gas Science and Engineering, 88: 103797.

    • Raymer L L, Hunt E R, Gardner J S. 1980. An improved sonic transit time- to - porosity transform [ C] ∥SPWLA 21st Annual Logging Symposium. Richardson, Texas, USA: OnePetro, SPWLA-1980- P.

    • Rickman R, Mullen M J, Petre J E, Grieser B, Kundert D. 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    • Riskallah A, David B, Bob O, et al. 1990. The MAXIS system: Imaging for reservoir characterization. Oilfield Review, 2(2): 31~42.

    • Roshan H, Li Danqi, Canbulat I, Regenauer-Lieb K. 2023. Borehole deformation based in situ stress estimation using televiewer data. Journal of Rock Mechanics and Geotechnical Engineering 15: 2475~2481.

    • Salih M, El - Husseiny A, Reijmer J J G, Eltom H, Abdelkarim A. 2023. Factors controlling sonic velocity in dolostones. Marine and Petroleum Geology, 147: 105954.

    • Sondergeld C H, Newsham K E, Comisky J T, Rice M C. 2010. Petrophysical considerations in evaluating and producing shale gas resources. In: SPE Unconventional Gas Conference. Society of Petroleum Engineers.

    • Su Hua, Tian Hong. 2002&. Estimation of Formation Permeability Using Stoneley Wave. Well Logging Technology, 26(4): 298~301.

    • Su Yang, Lai Jin, Bie Kang, Li Dong, Zhao Fei, Chen Kangjun, Li Hongbin, Wang Guiwen. 2024&. Well logging evaluation and characterization of geological information for deep and ultra - deep drilling wells. Journal of Palaeogeography ( Chinese Edition), 27 (1): 225~239.

    • Sun Yue, Xie Peiyu, Zhang Fengqi, Chen Shuguang, Li Yongxin, Guan Ming, Zhou Ranran, Zhang Jie. 2024&. Mechanism and evolution of overpressure in the Linhe Formation of the Xinglong structural belt in the Linhe Depression of the Hetao Basin. Natural Gas Geoscience, 35(4): 661~675.

    • Tan Lihong, Zhang Guoqiang, Tan Zhongjian, Zhang Guibin, Zhang Chengguang, Cai Ming. 2022&. Evaluation of metamorphic reservoir effectiveness by array acoustic logging data. Oil Geophysical Prospecting, 57(6): 1464~1472.

    • Tan Tingdong. 2000&. Oil and gas reservoirs discovered by log interpretation. Natural Gas Industry, 20(6): 47~50.

    • Tang Jun, Zhang Chengguang, Xin Yi. 2017&. A fracture evaluation by acoustic logging technology in oil - based mud: A case from tight sandstone reservoirs in Keshen area of Kuqa depression, Tarim Basin, NW China. Petroleum Exploration and Development, 44 (3): 389~397+406.

    • Tang Jun, Zhang Chengguang, Zhang Bixing, Shi Fangfang. 2016&. Cement bond quality evaluation based on acoustic variable density logging. Petroleum Exploration and Development, 43 (3): 469~475.

    • Tang Xiaoming, Wei Zhoutuo, Su Yuanda, Zhuang Chunxi. 2012&. A Review on the Progress and Application of Dipole Acoustic Reflection lmaging Technology. Well Logging Technology, 55(8): 2798~2807.

    • Tong Kaijun, Zhao Cunming, Lyu Zuobin, Zhang Yingchun, Zheng Hao, Xu Sainan, Wang Jianli, Pan Lingli. 2012&. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay. Petroleum Exploration and Development, 39(1): 56~63.

    • Wang Guiwen, Lai Jin, Liu Bingchang, Fan Zhuoying, Liu Shichen, Shi Yujiang, Zhang Haitao, Chen Jing. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica (English Edition), 94(3): 831~846.

    • Wang Jianhua. 2006&. A summary of sonic logging techniques. Chinese Journal of Engineering Geophysics, 3(5): 395~400.

    • Wang Peichun, Xiong Lei, Li Shengqing, Tan Xiaoyu, Zhang Renfeng, Su Yuanda. 2023&. Acoustic Log Evaluation Method for Fractured Reservoir and Its Application in BZ19 - 6Condensate Gas Field. Well Logging Technology, 47(1): 7~15.

    • Wang Ping. 2008&. Analysis of logging factors which affect cement bonding evaluation. Well Logging Technology, 32(5): 463~467.

    • Weng Wangfei, Wang Jianqiang, Zhang Rongrong, Chen Hong, Gui Xiaojun. 2011&. Denudation thickness estimation of sedimentary formation in Ordos basin by acoustic logging information. Xinjiang Petroleum Geology, 32(2): 143~146.

    • Wu Xiaoguang, Ji Fengling, Li Decai. 2016&. Application status and research progress of dipole acoustic well logging. Progress in Geophysics, 31(1): 0380~0389.

    • Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1): 41~70.

    • Xia Hongquan, Guo Qiannan. 2018&. Detection of hydraulic fractures in horizonal wells based on shear wave spiltting of DSI logging. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 87~96.

    • Xia Hongquan, Hu Hui, Yang Lin, Zhao Jing. 2017&. Method about improving accuracy of fracture fluid friction pressure. Petroleum Drilling Techniques, 45(5): 113~117.

    • Xu Chenjie. 2022&. Mechanism and Pattern of the Classification and Distribution of Natural Gas Resources in Xihu Sag, East China Sea Shelf Basin. China University of Geosciences, Wuhan.

    • Xu Ke, Yang Haijun, Zhang Hui, Wang Haiying, Yuan Fang, Wang Zhaohui, Li Chao. 2021&. Current In - Situ Stress Field and Efficient Development of Bozi-1 Gas Reservoir in Kelasu Structural Belt. Xinjiang Petroleum Geology, 42(6): 726~734.

    • Xu Ke, Yang Haijun, Zhang Hui, Ju Wei, Li Chao, Fang Lu, Wang Zhimin, Wang Haiying, Yuan Fang, Zhao Bin, Zhang Wei, Liang Jingrui. 2022. Fracture effectiveness evaluation in ultra - deep reservoirs based on geomechanical method, Kuqa Depression, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 215: 110604.

    • Xu Song, Tang Xiaoming, Su Yuanda, Zhuang Chunxi. 2018&. Determining formation shear wave transverse isotropy jointly from borehole Stoneley and flexural - wave data. Chinese Journal of Geophysics, 61(12): 5105~5114.

    • Xu Xing, Zhao Wanyou. 2001&. Application of Star - Ⅱ Imaging Logging in Carbonate Reservoir Evaluation. Well Logging Technology, 25(5): 358~364.

    • Xu Yugiang, He Baolun, Wang Yanshu, Han Chao, Xiao Fan, Guan Zhichuan, Liu Kuan. 2023&. A novel prediction method of formation pore pressure driven by deep learning and Eaton method. Journal of China University of Petroleum ( Edition of Natural Science), 47(6): 50~59.

    • Xue Luo, Ma Lun, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Shi Jianglong, Wang Lei. 2022&. Tectonic evolution and its influence on hydrocarbon accumulation of Ruman buried hill in Melut Basin, South Sudan. Petroleum Geology and Recovery Efficiency, 29(2): 53~60.

    • Xue Mei, Chu Zehan, Jiang Hao. 2000&. Development and evaluation of the acoustic well logging tools. Petroleum instrument, 14(5): 6~10.

    • Yan Huilan. 2004&. Application of multipole sub - array acoustic (MAC) log in oilfield production. Special Oi and Gas Reservoirs, 11(5): 60~63.

    • Yang Lei, Gao Qiutao, Wang Guobin, Li Guigiu, Li Shuyun, Zhang Jun. 2002&. Application of XMAC Well Log Data in Recognition of Oil and Gas Intervals. Xinjiang Petroleum Geology, 23(5): 402~403.

    • Yang Xiaobing, Yao Menglin, Wang SiJing, Zhou Hao, Tong Kailin, Chen Weiming, Ma Shaoguang. 2022&. Shale gas logging, geology and engineering technologies: New requirements and solutions. Natural Gas Industry, 42(2): 20~27.

    • Yang Xiaoyi, Liu Chenglin, Wang Feilong, Li Guoxiong, Feng Dehao, Yang Taozheng, He Zhibin, Su Jiajia. 2024&. Distribution and origin of overpressure in the Paleogene Dongying Formation in thesouthwestern sub-sag, Bozhong Sag, Bohai Bay Basin. Oil & Gas Geology, 45(1): 96~112.

    • Yang Xuebing, Li Qingfeng, Li Wenzhi, He Li. 2014&. The application of acoustic logging technologies in the unconventional dense reservoir. Journal of Applied Acoustics, 33(1): 16~22.

    • Yin Shuai, Liu Hanlin, He Jianhua, Wang Ruifei, Li Xiangxue, Huang Zheng, Zhou Yongqiang, He Zixiao. 2023&. Comprehensive evaluation of geo - stress in tight oil sandstone under constraints of dynamic-static geomechanical methods. Advances in Earth Science, 38(12): 1285~1296.

    • Yin Xingyao, Ma Ni, Ma Zhengqian, Zong Zhaoyun. 2018&. Review of In- situ Stress Prediction Technology. Geophysical Prospecting for Petroleum, 57(4): 488~504.

    • Yu Chunhao, Li Changwen. 1998&. Application of Stonley Waves to Fracture Evaluation. Well Logging Technology, 22(4): 273~277.

    • Yu Jingfu, Yuan Futang, QiuHuili, Zhang Tiexuan. 2005&. Geological application of new logging technology in complex lithologic formation. Journal of Oil and Gas Technology, 27(2): 345~348.

    • Yu Zhucheng, Xu Qicong, Qiu Ruyi, Lei Ming, Zhou Luoyu. 2023&. Status and Prospect of Borehole Panoramic Imaging While Drilling Based on Acoustic Wave. Drilling & Production Technology, 46 (3): 171~175.

    • Yuan Hongzhuang, Lu Dawei, Zhang Xinyun, Sun Jianmeng. 2005&. An overview of recent advances in well logging technology. Progress in Geophysics, 20(3): 786~795.

    • Yue Wenzheng, Tian Bin. 2022&. High - resolution reflection acoustic logging imaging method for deep reservoir around a well. Geophysical Prospecting for Petroleum, 61(6): 1077~1089.

    • Zeng Lianbo, Tian Chonglu. 1998&. Tectonic stress field and the development of low permeability. Petroleum Exploration and Development, 25(3): 91~93.

    • Zeng Lianbo, Wang Guiwen. 2005&. Distribution of Earth Stress in Kuche Thrust Belt, Tarim Basin. Petroleum Exploration and Development, 32(3): 59~60.

    • Zeng Lianbo, Su Hui. , Tang Xiaomei, Peng Yongmin, and Gong Lei. 2013. Fractured tight sandstone oil and gas reservoirs: A new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363~377.

    • Zeng Wenchong, Qiu Xibin, Liu Xuefeng. 2014&. A new method to identify fluid properties in complex reservoir. Well Logging Technology, 38(1): 11~21.

    • Zhang Bixing, Wang Kexie. 1998&. Status quo and development of the acoustic multipole logging in anisotropic formation. Progress in Geophysics, 13(2): 1~14.

    • Zhang Chengsen, Xiao Chengwen, Liu Xingli, Guo Hongbo, Zhu Dengchao, Wang Guiqing. 2011&. Application of remote detection acoustic reflection logging to fractured - vuggy carbonate reservoir evaluation. Xinjiang Petroleum Geology, 32(3): 325~328.

    • Zhang Conghui, Qi Xiao, Zhang Guangdong, Zhang Zhang, Yin Lu. 2021&. Processing technique for quantitative evaluation of cementing quality by using array acoustic waveform and applications. Progress in Geophysics, 36(5): 2128~2135.

    • Zhang Haitao, Shi Yujiang, Zhang Peng, Fan Yiren, Yang Xiaoming, Li Hu. 2015&. Identification of low permeability sandstone gas reservoir based on the DSI. Well Logging Technology, 39(5): 591~595.

    • Zhang Hengrong, Xiao Lizhi, Zeng Shaojun, Tang Di, Yuan Wei, Yang Dong. 2022&. Forward and inversion methods and application of acousto- eleetrie logging based on fracture compliance and crustal stress model. Oil Geophysical Prospecting, 58(2): 431~442.

    • Zhang Hui, Yin Guoqing, Wang Zhimin, Wang Haiying. 2019&. Fracability evaluation of deep-burial fractured sandstone gas reservoir in Kuqa Depression. Xinjiang Petroleum Geology, 40(1): 108~115.

    • Zhang Jincai. 2011. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth - Science Reviews, 108 (1): 50~63.

    • Zhang Lei, Cheng Zhigang, Feng Chunzhen, Luo Shaocheng, Xi Hui, Yang Zhixin. 2013&. On identification methods of tight sand gas layer and their application effect analysis. Well Logging Technology, 37(6): 648~652.

    • Zhang Xiaoli, Shen Ying, Chen Wenxue. 2000&. Application of well logging information to analysis on the effect of diagenesis in reservoirs. Acta Sedimentologica Sinica, 18(3): 127~131.

    • Zhang Yonghua, Chen Ping, Zhao Yuqing, Zhu Jun and Liu Jingyan. 2004&. Integrative layer - labeling technique based on synthetic seismogram. Oil Geophysical Prospecting, 39(1): 92~96.

    • Zhang Yongjun, Gu Dingna, Ma Subin, Chen Xiangyang, Chen Guanghui, Wan Yongqing. 2012&. The Application of Array Acoustic Wave Data to Tight Sandstone Gas Reservoir in Tuha Oilfield. Well Logging Technology, 36(2): 175~178.

    • Zhang Yuanzhong, Xiao Lizhi. 2004&. Some progress of well logging techniques during the first five years of the new millennium. Progress in Geophysics, 19(4): 828~836.

    • Zhang Zhenchen, Sun Jianmeng, Shi Zhenfei, Cai Xiaoming, Su Yuanda, Liao Dongliang. 2005&. Application of Well Logging Information to Secondary Porosity Analysis. Application of Well Logging Information to Secondary Porosity Analysis, 23(4): 613~619.

    • Zhao Jingzhou, Li Jun, Xu Zeyang. 2017&. Advances in the origin of overpressures in sedimentary basins. Acta Petrolei Sinica, 38(9): 973~998.

    • Zhao Jiyong, Zhou Xingui, Lei Qihong, Zhao Guoxi, He You’An, Shi Jianchao, Zhang Linyan. 2017&. Study on paleo - tectonic and present tectonic stress in Chang 7 tight reservoir of Maling oilfield, Ordos basin. Journal of Geomechanics, 23(6): 810~820.

    • Zhao Jun, Zhang Li, Wang Guiwen, Li Jun. 2005&. A new method for analyzing crustal stress in foreland structural compressive area based on logging data. Chinese Journal of Geology, 40(2): 284~290.

    • Zhao Luanxiao, Liu Jingyu, Xu Minghui, Zhu Zhenyu, Chen Yuanyuan, and Geng Jianhua. 2024. Rock-physics-guided machine learning for shear sonic log prediction. Geophysics, 89 (1): D75~D87.

    • Zhi Dongming, Li Jianzhong, Yang Fan, Chen Xuan, Xiao Dongsheng, Wang Bo, Wu Chao, Yu Haiyue. 2024&. Exploration breakthrough and significance of Jurassic tight sandstone gas in Qiudong subsag of Tuha Basin. Acta Petrolei Sinica, 45(2): 348~357.

    • Zhou Lihong, Liu Guofang. 1996&. Formation pressure estimated by interval transit time of mudstones. Experimental Petroleum Geology, 18(2): 195~199.

    • Zhou Wen, Dai Jianwen. 2008&. The characteristics and evaluation of fractures distribution in xujahe formation in the western depression of the sichuan basin. Petroleum Geology & Experiment, 30(1): 20~25.

    • Zhu Guangyou, Jin Qiang, Zhang Linye. 2003&. Using log information to analyze the geochemical characteristics of source rocks in Jiyang Depression. Well Logging Technology, 27(2): 104~109.

    • Zhu Jianwei, Zhao Gang, Liu Bo, Guo Wei, Cheng Jun. 2012&. Identification technology and its application of well-logging about oil shale. Journal of Jilin University (Earth Science Edition), 42(2): 289~295.

    • Zhu Liufang. 2003&. Application of Novel Cross - dipole Acoustic Logging Data in Fractured Reservoir Evaluation. Well Logging Technology, 27(3): 225~227.

    • Zhu Yixiang, Tian Changbing, Yu Xinhe, He Dongbo, Jia Ailin. 2004&. Genesis and petrophysical identification of relative high permeability of sandbody in Sulige Gas Field Ordos Basin. Petroleum Geology & Experiment, 26(4): 389~394.

    • Zoback M, Barton C, Brudy M, Castillo D, Finkbeiner T, Grollimund B, Moos D, Peska P, Ward C, Wiprut D. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049~1076.

  • 参考文献

    • 蔡志东. 2021. 井中地震技术: 连接多种油气勘探方法的桥梁. 石油地球物理勘探, 56(4): 922~934.

    • 曹园, 邓金根, 蔚宝华. 2013. WZ12-1 油田流沙港组一段异常高压预测. 特种油气藏, 20(6): 99~102.

    • 陈必孝, 张筠. 2002. 声波全波列测井资料分析处理技术及应用. 测井技术, 26(5): 369~372.

    • 陈更生, 石学文, 刘勇, 吴伟, 杨雨然, 朱逸青, 陈丽清, 徐亮, 钟可塑, 殷樱子. 2024. 四川盆地南部地区五峰组—龙马溪组深层页岩气富集控制因素新认识. 天然气工业, 44(1): 58~71.

    • 崔云江, 吕洪志. 2008. 锦州 25-1 南油气田裂缝性潜山储层测井评价. 中国海上油气, 20(2): 92~95.

    • 邓攀, 陈孟晋, 高哲荣, 孙爱. 2002. 火山岩储层构造裂缝的测井识别及解释. 石油学报, 23(6): 32~37.

    • 丁世村. 2010. 偶极横波资料在低孔低渗储层改造中的应用. 工程地球物理学报, 7(6): 704~709.

    • 董经利. 2009. 多极子阵列声波测井资料处理及应用. 测井技术, 33(2): 115~119.

    • 董震, 潘和平. 2007. 声波测井资料与地震属性关系研究综述. 工程地球物理学报, 4(5): 488~494.

    • 高坤, 陶果, 马勇. 2006. 多极子阵列声波测井资料在塔河油田酸压设计施工中的应用. 地球物理学进展, 21(4): 1227~1231.

    • 官波, 薛桂玉, 赵彦军, 白静, 王悦欣, 高洪忠. 2002. 用声波全波列测井资料定量评价固井质量的方法. 测井技术, 26(5): 383~386.

    • 郭桂生, 蔺敬旗, 张仲华, 吴丛文, 侯庆宇. 2011. 利用测井资料预测孔隙压力、破裂压力和坍塌压力. 新疆石油地质, 32(2): 187~189.

    • 郭京哲, 郭小军, 赵明, 贾昱昕, 吕奇奇, 尹帅. 2023. 基于多矿物模型的致密砂岩脆性指数常规测井评价方法———以鄂尔多斯盆地桐川地区长 7 段为例. 地球物理学进展, 38 (4): 1590~1602.

    • 贺顺义, 师永民, 谢楠, 张志翔, 李翠萍. 2008. 根据常规测井资料求取岩石力学参数的方法. 新疆石油地质, 29(5): 662~664.

    • 胡松, 王敏, 刘伟男, 王兵. 2022. 页岩水平井声波时差各向异性校正方法及其应用. 石油学报, 43(1): 58~66.

    • 黄小冬, 胡纪兰, 郭玉岩, 崔红珠, 赵红星, 顾定娜. 2005. XMAC 测井在吐哈盆地气层识别中的应用. 石油天然气学报, 27(3): 479~481.

    • 姬铜芝, 刘正锋, 王子荣, 吴海忠孙春明. 2002. 固井声幅-变密度测井的影响因素分析. 测井技术, 26(6): 486~489.

    • 贾承造. 2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题. 中国石油大学学报(自然科学版), 47(5): 1~12.

    • 江灿, 庄春喜, 李盛清, 苏远大, 唐晓明. 2019. 多极子阵列声波测井数据的纵横波慢度联合反演方法. 地球物理学报, 62(6): 2294~2302.

    • 姜修道, 朱光明, 孙渊. 2006. 地球物理方法在中国油气资源战略选区中应用的可能性———以藏北羌塘盆地为例. 地质通报, 25 (9-10): 1196~1200.

    • 孔庆丰. 2024. 补偿声波测井扩径校正方法. 石油地球物理勘探, 59(3): 543~547.

    • 靳玲, 苏桂芝, 刘桂兰, 朱不跃, 李磊, 胡艳萍. 2004. 合成地震记录制作的影响因素及对策. 石油物探, 43(3): 267~272.

    • 赖锦, 王贵文, 孙思勉, 蒋晨, 周磊, 郑新华, 吴庆宽, 韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712~1724.

    • 赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 1(3): 330~341.

    • 赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021. 测井地质学前世、今生与未来———写在 《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804~1828.

    • 赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022. 测井地质学研究典型误区与科学思维. 天然气工业, 42 (7): 31~44.

    • 赖锦, 李红斌, 张梅, 白梅梅, 赵仪迪, 范旗轩, 庞小娇, 王贵文. 2023a. 非常规油气时代测井地质学研究进展. 古地理学报, 25 (5): 1118~1138.

    • 赖锦, 白天宇, 肖露, 赵飞, 李栋, 李红斌, 王贵文, 张荣虎. 2023b. 地应力测井评价方法及其地质与工程意义. 石油与天然气地质, 44(4): 1033~1043.

    • 赖锦, 肖露, 赵鑫, 赵飞, 黎雨航, 朱世发, 王贵文, 刘宏坤. 2023c. 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例. 石油学报, 44 (4): 612~625 深层—超深层优质碎屑岩储层成因与测井评价方法———以库车坳陷白垩系巴什基奇克组为例.

    • 赖锦, 肖露, 白天宇, 范旗轩, 黄玉越, 李红斌, 赵飞, 王贵文. 2024a. 成像测井解释评价方法及其地质应用. 地质科技通报, 43(3): 323~340.

    • 赖锦, 白天宇, 苏洋, 赵飞, 李玲, 黎雨航, 李红斌, 王贵文, 肖承文. 2024b. 烃源岩测井识别与评价方法研究进展. 地质论评, 70(2): 721~741.

    • 李国发, 廖前进, 王尚旭, 袁淑琴, 王守东. 2008. 合成地震记录层位标定若干问题的探讨. 石油物探, 47(2): 145~149.

    • 李剑浩. 2007. 用混合物电导率公式改进双水模型的公式. 测井技术, 31(1): 1~3.

    • 李军, 王贵文, 欧阳健. 2001. 利用测井信息定量研究库车坳陷山前地区地应力. 石油勘探与开发, 28(5): 93~97.

    • 李凯军, 杨玉卿, 苏华. 2003. 正交偶极声波测井技术在碎屑岩储层评价中的应用初探. 中国海上油气(地质), 17(6): 416~420.

    • 李宁, 刘鹏, 范华军, 胡江涛, 武宏亮. 2024. 基于阵列声波测井的井下多尺度压裂效果评价方法. 石油钻探技术, 52(1): 1~7.

    • 李鹏举, 宋延杰, 付多辰, 仲从存, 田宏娟. 2006. XMAC 纵波时差高分辨率处理方法. 天然气工业, 26(6): 55~56.

    • 李卿卿, 符力耘, 杜启振, 冉亚楠, 胡勇. 2024. 基于声波测井资料的波动方程走时层析反演速度建模. 地球物理学报, 67(2): 641~653.

    • 李同华, 段庆庆, 杨雷, 吴金龙. 2009. 基于偶极横波资料的火山岩裂缝及油气识别. 西南石油大学学报(自然科学版), 31(6): 45~51.

    • 李玉霞, 李亚敏. 2008. MPAL 多极子阵列声波测井仪. 测井技术, 32(5): 439~442.

    • 李长文, 余春吴, 赵旭东, 朱振升. 2003. 反射波信息在裂缝储层评价中的应用. 测井技术, 27(3): 198~202.

    • 李长文, 强毓明, 李国利, 余春昊. 2006. 现代声波测井技术发展的若干特点. 测井技术, 30(2): 101~105.

    • 李兆阳. 2005. 正交偶极阵列声波测井技术及应用. 勘探地球物理进展, 28(4): 300~303.

    • 刘国强, 谭廷栋. 1993. 孔隙度和含气饱和度的弹性模量计算方法. 石油勘探与开发, 20(5): 33~41.

    • 刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发, 48(5): 891~902.

    • 刘航, 吴煜宇, 贺洪举, 谢冰, 赖强, 韩红林. 2023. 阵列声波测井处理新技术在碳酸盐岩储层评价方面的应用. 地球物理学进展, 38(1): 0220~0228.

    • 刘欢, 徐锦绣, 陈红兵, 张雪芳, 齐奕. 2023. 基于核磁共振测井校正的泥质砂岩气层孔隙度计算方法. 中国海上油气, 35(3): 89~95.

    • 刘景彦, 林畅松, 喻岳钰, 武法东, 姜亮, 陈志勇. 2000. 用声波测井资料计算剥蚀量的方法改进. 石油实验地质, 22(4): 302~306.

    • 刘鹏, 乔文孝, 车小花, 王瑞甲, 鞠晓东, 卢俊强. 2014. 多极子阵列声波测井技术在煤层气储层评价中的应用. 测井技术, 38 (3): 292~296.

    • 刘晓虹, 刘俊, 熊孝云, 李欢. 2009. 多极子阵列声波成像测井系统. 中国矿业, 18(11): 92~96.

    • 刘之的, 戴诗华, 王宏亮, 李桂秋, 徐静. 2007. 利用 DSI 评价火成岩裂缝的有效性. 测井技术, 31(2): 156~158.

    • 卢红杰, 朱辉明, 王春利, 沈彬彬, 马玉鹏, 李雨龙. 2011. 基于 XMAC 资料的火山岩压裂储层应力分析技术. 钻采工艺, 34 (1): 45~47+51+115.

    • 陆云龙, 崔云江, 关叶钦, 熊镭. 2022. 基于阵列声波测井的裂缝有效性定量评价方法. 测井技术, 46(1): 64~70.

    • 罗伟平, 李洪奇, 朱丽萍, 乔悦东, 石宁, 俞飞. 2014. 地震与测井资料自动匹配的研究. 石油地球物理勘探, 49(1): 205~212.

    • 聂昕, 邹长春, 杨玉卿, 肖昆, 黄兆辉. 2012. 测井技术在页岩气储层力学性质评价中的应用. 工程地球物理学报, 9(4): 433~439.

    • 祁斌, 夏宏泉, 房国庆, 白新国. 2008. 基于偶极横波测井的地层各向异性研究. 测井技术, 32(5): 412~416.

    • 祁文莉, 吴惠梅, 楼一珊, 翟晓鹏, 刘宏. 2023. 基于声波测井的地层孔隙压力预测及应用. 测井技术, 47(4): 415~420.

    • 祁晓, 张璋, 李东, 尹璐, 于洋. 2023. 基于阵列声波测井技术的海上砂岩储层压裂效果评价方法. 石油钻探技术, 51(6): 128~134.

    • 乔文孝, 鞠晓东, 车小花, 卢俊强. 2011. 声波测井技术研究进展. 测井技术, 35(1): 14~19.

    • 乔文孝, 阎树汶. 1997. 用声波测井资料识别油气水层. 测井技术, 21(3): 215~220.

    • 秦建强, 付德亮, 钱亚芳, 杨甫, 田涛. 2018. 烃源岩有机质丰度预测的地球物理研究进展. 石油物探, 57(6): 803~812.

    • 秦绪英, 宋波涛. 2002. 测井技术现状与展望. 勘探地球物理进展, 25(1): 26~34.

    • 苏华, 田洪. 2002. 利用斯通利波估算地层渗透率. 测井技术, 26 (4): 298~301.

    • 苏洋, 赖锦, 别康, 李栋, 赵飞, 陈康军, 李红斌, 王贵文. 2024. 深层超深层钻井地质信息测井拾取与评价. 古地理学报, 27(1): 225~239.

    • 孙越, 谢佩宇, 张凤奇, 陈树光, 李永新, 关铭, 周然然, 张洁. 2024. 河套盆地临河坳陷兴隆构造带临河组超压成因及演化特征. 天然气地球科学, 35(4): 661~675.

    • 谭礼洪, 张国强, 谭忠健, 张贵斌, 章成广, 蔡明. 2022. 利用阵列声波测井资料评价变质岩储层有效性. 石油地球物理勘探, 57 (6): 1464~1472.

    • 谭廷栋. 2000. 测井解释发现油气层. 天然气工业, 20(6): 47~50.

    • 唐军, 章成广, 张碧星, 师芳芳. 2016. 基于声波-变密度测井的固井质量评价方法. 石油勘探与开发, 43(3): 469~475.

    • 唐军, 章成广, 信毅. 2017. 油基钻井液条件下裂缝声波测井评价方法: 以塔里木盆地库车坳陷克深地区致密砂岩储集层为例. 石油勘探与开发, 44(3): 389~397+406.

    • 唐晓明, 魏周拓, 苏远大, 庄春喜. 2012. 利用井中偶极声源远场辐射特性的远探测测井. 测井技术, 55(8): 2798~2807.

    • 童凯军, 赵春明, 吕坐彬, 张迎春, 郑浩, 许赛男, 王建立, 潘玲黎. 2012. 渤海变质岩潜山油藏储集层综合评价与裂缝表征. 石油勘探与开发, 39(1): 56~63.

    • 王建华. 2006. 声波测井技术综述. 工程地球物理学报, 3(5): 395~400.

    • 王培春, 熊镭, 李盛清, 谈笑宇, 张任风, 苏远大. 2023. 裂缝性储层的声波测井评价方法及其在渤中 19-6 凝析气田的应用. 测井技术, 47(1): 7~15.

    • 王平. 2008. 固井质量评价测井影响因素分析. 测井技术, 32(5): 463~467.

    • 翁望飞, 王建强, 张蓉蓉, 陈洪, 桂小军. 2011. 利用声波测井技术计算地层剥蚀厚度———以鄂尔多斯盆地为例. 新疆石油地质, 32(2): 143~146.

    • 吴晓光, 季凤玲, 李德才. 2016. 偶极声波测井技术应用现状及研究进展. 地球物理学进展, 31(1): 0380~0389.

    • 夏宏泉, 胡慧, 杨林, 赵静. 2017. 基于声波变密度测井信息识别水平井压裂裂缝的方法. 石油钻探技术, 45(5): 113~117.

    • 夏宏泉, 郭倩男. 2018. 基于 DSI 测井横波分裂的水平井压裂缝检测研究. 西南石油大学学报(自然科学版), 40(3): 87~96.

    • 徐陈杰. 2022. 东海西湖凹陷天然气资源分级分布机理及模式. 中国地质大学, 武汉.

    • 徐珂, 杨海军, 张辉, 王海应, 袁芳, 王朝辉, 李超. 2021. 克拉苏构造带博孜 1 气藏现今地应力场和高效开发. 新疆石油地质, 42(6): 726~734.

    • 徐星, 赵万优. 2001. Star-Ⅱ成像测井在碳酸盐岩储层评价中的应用. 测井技术, 25(5): 358~364.

    • 许松, 唐晓明, 苏远大, 庄春喜. 2018. 斯通利波和弯曲波联合反演地层 VTI 各向异性的阵列声波处理方法. 地球物理学报, 61 (12): 5105~5114.

    • 许玉强, 何保伦, 王舒, 韩超, 肖凡, 管志川, 刘宽. 2023. 深度学习与 Eaton 法联合驱动的地层孔隙压力预测方法. 中国石油大学学报(自然科学版), 47(6): 50~59.

    • 薛罗, 马轮, 史忠生, 赵艳军, 陈彬滔, 史江龙, 王磊. 2022. 南苏丹 Melut 盆地 Ruman 潜山构造演化及其对油气成藏的控制作用. 油气地质与采收率, 29(2): 53~60.

    • 薛梅, 楚泽涵, 姜皓. 2000. 声波测井仪器发展评述. 石油仪器, 14 (5): 6~10.

    • 颜惠兰. 2004. 多极子阵列声波(MAC)在油田生产中的应用. 特种油气藏, 11(5): 60~63.

    • 杨雷, 高秋涛, 王国斌, 李桂秋, 李淑云, 张军. 2002. 利用 XMAC 测井资料识别油气层段. 新疆石油地质, 23(5): 402~404.

    • 杨小兵, 姚梦麟, 王思静, 周昊, 佟恺林, 陈维铭, 马韶光. 2022. 页岩气测井地质工程技术新需求及解决方案. 天然气工业, 42 (2): 20~27.

    • 杨小艺, 刘成林, 王飞龙, 李国雄, 冯德浩, 杨韬政, 何志斌, 苏加佳. 2024. 渤海湾盆地渤中凹陷西南洼古近系东营组超压分布特征及成因. 石油与天然气地质, 45(1): 96~112.

    • 杨雪冰, 李庆峰, 李文志, 何丽. 2014. 声波测井技术在非常规致密油藏储层评价中的应用. 应用声学, 33(1): 16~22.

    • 尹帅, 刘翰林, 何建华, 王瑞飞, 李香雪, 黄郑, 周永强, 贺子潇. 2023. 动静态地质力学方法约束的致密油砂岩地应力综合评估. 地球科学进展, 38(12): 1285~1296.

    • 印兴耀, 马妮, 马正乾, 宗兆云. 2018. 地应力预测技术的研究现状与进展. 石油物探, 57(4): 488~504.

    • 于景才, 原福堂, 邱辉丽, 张铁轩. 2005. 测井新技术在复杂岩性地层中的地质应用. 石油天然气学报, 27(2): 345~348.

    • 余春昊, 李长文. 1998. 利用斯通利波信息进行裂缝评价. 测井技术, 22(4): 273~277.

    • 喻著成, 许期聪, 邱儒义, 雷鸣, 周箩鱼. 2023. 随钻声波井下全景成像技术现状及展望. 钻采工艺, 46(3): 171~175.

    • 原宏壮, 陆大卫, 张辛耘, 孙建孟. 2005. 测井技术新进展综述. 地球物理学进展, 20(3): 786~795.

    • 岳文正, 田斌. 2022. 高分辨率井周储层深探测反射声波测井成像方法. 石油物探, 61(6): 1077~1089.

    • 曾联波, 田崇鲁. 1998. 构造应力场与低渗透油田开发. 石油勘探与开发, 25(3): 91~93.

    • 曾联波, 王贵文. 2005. 塔里木盆地库车山前构造带地应力分布特征. 石油勘探与开发, 32(3): 59~60.

    • 曾文冲, 邱细斌, 刘学锋. 2014. 识别复杂储层流体性质的新途径. 测井技术, 38(1): 11~21.

    • 张碧星, 王克协. 1998. 各向异性介质地层中多极源声波测井的现状与发展. 地球物理学进展, 13(2): 1~14.

    • 张承森, 肖承文, 刘兴礼, 郭洪波, 朱登朝, 王贵清. 2011. 远探测声波测井在缝洞型碳酸盐岩储集层评价中的应用. 新疆石油地质, 32(3): 325~328.

    • 张聪慧, 祁晓, 张广栋, 张璋, 尹璐. 2021. 利用阵列声波进行固井质量定量评价的方法及其应用. 地球物理学进展, 36(5): 2128~2135.

    • 张海涛, 石玉江, 张鹏, 范宜仁, 杨小明, 李虎. 2015. 基于偶极横波测井的低渗透砂岩气层识别方法. 测井技术, 39(5): 591~595.

    • 张恒荣, 肖立志, 曾少军, 汤翟, 袁伟, 杨冬. 2023. 基于裂缝柔度和地应力模型的声电测井正、反演方法及应用. 石油地球物理勘探, 58(2): 431~442.

    • 张辉, 尹国庆, 王志民, 王海应. 2019. 库车坳陷深层裂缝性砂岩气藏可压裂性评价. 新疆石油地质, 40(1): 108~115.

    • 张蕾, 成志刚, 冯春珍, 罗少成, 席辉, 杨智新. 2013. 致密砂岩气层识别方法研究及应用效果分析. 测井技术, 37(6): 648~652.

    • 张小莉, 沈英, 陈文学. 2000. 利用测井资料分析成岩作用对储集层的影响. 沉积学报, 18(3): 127~131.

    • 张永华, 陈萍, 赵雨晴, 朱军, 刘景颜. 2004. 基于合成记录的综合层位标定技术. 石油地球物理勘探, 39(1): 92~96.

    • 张永军, 顾定娜, 马肃滨, 陈向阳, 陈光辉, 万永清. 2012. 阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用. 测井技术, 36(2): 175~178.

    • 张元中, 肖立志. 2004. 新世纪第一个五年测井技术的若干进展. 地球物理学进展, 19(4): 828~836.

    • 张振城, 孙建孟, 施振飞, 蔡晓明, 苏远大, 廖东良. 2005. 测井资料评价次生孔隙的方法、原理及实例. 沉积学报, 23(4): 613~619.

    • 赵继勇, 周新桂, 雷启鸿, 赵国玺, 何右安, 时建超, 张林炎. 2017. 鄂尔多斯盆地马岭油田长 7 致密储层古今构造应力研究. 地质力学学报, 23(6): 810~820.

    • 赵靖舟, 李军, 徐泽阳. 2017. 沉积盆地超压成因研究进展. 石油学报, 38(9): 973~998.

    • 赵军, 张莉, 王贵文, 李军. 2005. 一种基于测井信息的山前挤压构造区地应力分析新方法. 地质科学, 40(2): 284~290.

    • 支东明, 李建忠, 杨帆, 陈旋, 肖冬生, 王波, 武超, 于海跃. 2024. 吐哈盆地丘东洼陷侏罗系致密砂岩气勘探突破及意义. 石油学报, 45(2): 348~357.

    • 周立宏, 刘国芳. 1996. 利用泥岩声波时差估算地层压力. 石油实验地质, 18(2): 195~199.

    • 周文, 戴建文. 2008. 四川盆地西部坳陷须家河组储层裂缝特征及分布评价. 石油实验地质, 30(1): 20~25.

    • 朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, 27(2): 104~109.

    • 朱建伟, 赵刚, 刘博, 郭巍, 成俊. 2012. 油页岩测井识别技术及应用. 吉林大学学报(地球科学版), 42(2): 289~295.

    • 朱留方. 2003. 交叉偶极子阵列声波测井资料在裂缝性储层评价中的应用. 测井技术, 27(3): 225~227.

    • 朱怡翔, 田昌炳, 于兴河, 何东博, 贾爱林. 2004. 鄂尔多斯盆地苏里格气田相对高渗砂体的成因及其岩石物理测井识别方法. 石油实验地质, 26(4): 389~394.

    • Akimbekova A, Trippetta F, Carboni F, Pauselli C, Maletti G M, Casero A, Miranda F, Barchi M R. 2024. Deriving Vp velocity and density properties of complex litho-structural units from the analysis of geophysical log data: A study from the Southern Apennines of Italy. Marine and Petroleum Geology, 160: 106634.

    • Athy L F. 1930. Density porosity and compaction of sedimentary rocks. AAPG Bulletin, 14: 1~24.

    • Barbosa D N, Greenwood A, Caspari E, Dutler N, Holliger K. 2021. Estimates of individual fracture compliances along boreholes from full -waveform sonic log data. Journal of Geophysical Research: Solid Earth, 126(5): e2021JB022015~ e2021JB022015.

    • Benaïssa Z, Benaïssa A, Zaouia F S, Aïfa T, Boudella A, Chami N, Youcefi D, Ouadah M S. 2010. Using sonic log data to investigate a multiple problem in the Hassi R ' mel field, Algeria. Journal of Petroleum Science and Engineering, 71(3): 121~125.

    • Bowers G L. 1995. Pore pressure estimation from velocity date: accounting for overpressure mechanisms besides under compaction. International Journal of Rock Mechanics and Mining Sciences, 10 (2): 89~95.

    • Bulant P, Klimeš L. 2008. Comparison of VSP and sonic-log data in nonvertical wells in a heterogeneous structure. Geophysics, 73(4): U19~U25.

    • Cai Zhidong. 2021&. Borehole seismic: A bridge connecting multiple oil and gas exploration methods. Oil Geophysical Prospecting, 56(4): 922~934.

    • Cao Yuan, Deng Jingen, Yu Baohua. 2013&. Prediction and analysis of abnormal high pressure reservoir in the first member of Liushagang formation in south WZ12 - 1 oilfield. Special Oil and Gas Reservoirs, 20(6): 99~102.

    • Chen Bixiao, Zhang Yun. 2002&. Full wave sonic logging data processing technique and its applications. Well Logging Technology, 26(5): 369~372.

    • Chen Gengsheng, Shi Xuewen, Liu Yong, Wu Wei, Yang Yuran, Zu Yiqing, Chen Liqing, Xu Liang, Zhong Kesu, Yin Yingzi. 2024&. New understandings of the factors controlling of deep shale gas enrichment in the Wufeng Formation - Longmaxi Formation of the southern Sichuan Basin. Natural Gas Industry, 44(1): 58~71.

    • Cui Yunjiang, Lyu Hongzhi. 2008&. A logging evaluation of fractured buried-hill reservoir in JZ25-1S field. China Offshore Oil and Gas, 20(2): 92~95.

    • Deng Pan, Chen Mengjin, Gao Zhelong, Sun Ai. 2002&. Log response and explanation of structural fractures in volcanic rock reservoir. Acta Petrolei Sinica, 23(6): 32~37.

    • Ding Shicun. 2010&. The application of DSI data to the reform of low porosity and low permeability reservoir. Chinese Journal of Engineering Geophysics, 7(6): 704~709.

    • Dong Jingli. 2009&. Processing of multipole array acoustic log data and its application. Well Logging Technology, 33(2): 115~119.

    • Dong Zhen, Pan Heping. 2007&. A review of study on relationships between sonic logging data and seismic attributes. Chinese Journal of Engineering Geophysics, 4(5): 488~494.

    • Eaton B A. 1975. The equation for geopressure prediction from well logs. Society of Petroleum Engineers of AIME, Paper SPE 5544.

    • Gao Kun, Tao Guo, Ma Yong. 2006&. Application of multi pole array sonic logging to acid hydralic fracturing. Progress in Geophysics, 21 (4): 1227~1231.

    • Guan Bo, Xue Guiyu, Zhao Yanjun, Bai Jing, Wang Yuexin, Gao Hongzhong. 2002&. A method for cementing quality evaluation with Fullwave acousti log data. Well Logging Technology, 26(5): 383~386.

    • Guo Guisheng, Lin Jing - qi, Zhang Zhonghua, Wu Congwen, Hou Qingyu. 2011&. Prediction of Pore Pressure, Fracture Pressure and Collapse Pressure with Well Logging Data. Xinjiang Petroleum Geology, 32(2): 187~189.

    • Guo JingZhe, Guo XiaoJun, Zhao Ming, Jia YuXin, Lyu QiQi, Yin Shuai. 2023&. Conventional logging evaluation method of brittleness index of tight sandstone based on multimineral model: a case study of Chang 7 member in Tongchuan area, Ordos basin. Progress in Geophysics, 38(4): 1590~1602.

    • He Shunyi, Shi Yongmin, Xie Nan, Zhang Zhixiang, Li Cuiping. 2008&. The Method for Acquirement of Conventional Logging Response- Based Lithomechanical Parameters. Xinjiang Petroleum Geology, 29(5): 662~664.

    • Henry P H. 1996. Analysis of sonic well logs applied to erosion estimates in the Bighorn basin, Wyoming. AAPG Bulletin, 80: 630~647.

    • Hornby B E. 1989. Imaging of near - borehole structure using fullwaveform sonic data. Geophysics, 54(6): 747~757.

    • Hornby B E, Howie J M, Ince D W. 2003. Anisotropy correction for deviated - well sonic logs: application to seismic well tie. Geophysics, 68(2): 464~471.

    • Hu Song, Wang Min, Liu Weinan, Wang Bing. 2022&. Anisotropy correction method for acoustic time difference in horizontal shale wells and its application. Acta Petrolei Sinica, 43(1): 58~66.

    • Huang Xiaodong, Hu Jilan, Guo Yuyan, Cui Hongzhu, Zhao Hongxing, Gu Dingna. 2005&. Application of XMAC well logging tool in gas reservoir recognition of Tuha Basin. Journal of Oil and Gas Technology, 27(3): 479~481.

    • Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34~58.

    • Ji Tongzhi, Liu Zhengfeng, Wang Zirong, Wu haizhong, Sun chunming. 2002&. Analysis of influencing factors of cement evaluation based on the CBL-VDL logging data. Well Logging Technology, 26(6): 486~489.

    • Jia chengzhao. 2023&. Key scientific and technological problems of petroleum exploration and development in deep and ultra - deep formation. Journal of China University of Petroleum ( Edition of Natural Science), 47(5): 1~12.

    • Jiang Can, Zhuang Chunxi, Li Shengqing, Su Yuanda, Tang Xiaoming. 2019&. Joint inversion for compressional and shear wave slowness using multipole acoustic array logging data. Chinese Journal of Geophysics, 62(6): 2294~2302.

    • Jiang Xiudao, Zhu Guangming, Sun Yuan. 2006&. Possibility of applying geophysical methods in strategic petroleum target area selection in China: A case study of the Qiangtang basin. Geological Bulletin of China, 25(9): 1196~1200.

    • Jin Ling, Su Guizhi, Liu Guilan, Zhu Piyue, Li lei, Hu Yanping. 2004&. Influencing factors in making synthetic seismogram and counter measures. Geophysical Prospecting for Petroleum, 43(3): 267~272.

    • Kong Qingfeng. 2024&. Borehole expanding correction method for compensated acoustic logging. Oil Geophysical Prospecting, 59 (3): 543~547.

    • Ktenas D, Henriksen E, Meisingset I, Nielsen J K, Andreassen K. 2017. Quantification of the magnitude of net erosion in the southwest Barents Sea using sonic velocities and compaction trends in shales and sandstones. Marine and Petroleum Geology, 88: 826~844.

    • Lai Jin, Wang Guiwen, Sun Simian, Jiang Chen, Zhou Lei, Zhen Xinhua, Wu QingKuan, Han Chuang. 2015&. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs. Progress in Geophysics, 30(4): 1712~1724.

    • Lai Jin, Wang Guiwen, Fan Zhuoying, Chen Jing, Wang Shuchen, Zhou Zhenglong, Fan Xuqiang. 2016&. Research progress in brittleness index evaluation methods with logging data in unconventional oil and reservoirs. Petroleum Science Bulletin, 3: 330~341.

    • Lai Jin, Wang Guiwen, Fan Zhuoying. , Wang Ziyuan, Chen Jing, Zhou Zhenglong, Wang Shuchen, Xiao Chengwen. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195 – 214.

    • Lai Jin, Wang Guiwen, Wang Song, Cao Juntao, Li Mei, Pang Xiaojiao, Han Chuang, Fan Xuqiang, Yang Liu, He Zhibo, Qin Ziqiang. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139~166.

    • Lai Jin, Li Dong, Wang Guiwen, Xiao Chengwen, Hao Xiaolong, Luo Qingyong, Lai Lingbin, Qin Ziqiang. 2019. Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43~54.

    • Lai Jin, Wang Guiwen, Pang Xiaojiao, Han Zongyan, Li Dong, Zhao Yidi, Wang Song, Jiang Chengzhou, Li Hongbin, Li Yuhang. 2021&. The past, present and future of well logging geology: To celebrate the publication of second edition of “ Well Logging Geology”. Geological Review, 67(6): 1804~1828.

    • Lai Jin, Chen Kangjun, Xin Yi, Wu Xingneng, Chen Xu, Yang Kefu, Song Qiuqiang, Wang Guiwen, Ding Xiujian. 2021. Fracture characterization and detection in the deep Cambrian dolostones in the Tarim Basin, China: Insights from borehole image and sonic logs. Journal of Petroleum Science and Engineering, 196: 107659.

    • Lai Jin, Pang Xiaojiao, Zhao Xin, Zhao Yidi, Wang Guiwen, Huang Yuyue, Li Hongbin, Li Yuhang. 2022&. Typical misunderstandings and scientific ideas in well logging geology research. Natural Gas Industry, 2(7): 31~44.

    • Lai Jin, Wang Guiwen, Fan Qixuan, Pang Xiaojiao, Li Hongbin, Zhao Fei, Li Yuhang, Zhao Xin, Zhao Yidi, Huang Yuyue, Bao Meng, Qin Ziqiang, Wang Qiqi. 2022. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: A review on current status and prospects. Surveys in Geophysics, 43: 913~957.

    • Lai Jin, Li Hongbin, Zhang Mei, Bai Meimei, Zhao Yidi, Fan Qixuan, Pang Xiaojiao, Wang Guiwen. 2023a&. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography (Chinese Edition), 25(5): 1118~1138.

    • Lai Jin, Bai Tianyu, Xiao Lu, Zhao Fei, Li Dong, Li Hongbin, Wang Guiwen, Zhang Ronghu. 2023b&. Well-logging evaluation of insitu stress fields and its geological and engineering significances. Oil & Gas Geology, 44(4): 1033~1043.

    • Lai Jin, Xiao Lu, Zhao Xin, Zhao Fei, Li Yuhang, Zhu Shifa, Wang Guiwen, Liu Hongkun. 2023c&. Genesis and logging evaluation of deep to ultra-deep high-quality clastic reservoirs: a case study of the Cretaceous Bashijiqike Formation in Kuqa depression. Acta Petrolei Sinica, 44(4): 612~625.

    • Lai Jin, Wang Guiwen, Fan Qixuan, Zhao Fei, Zhao Xin, Li Yuhang, Zhao Yidi, Pang Xiaojiao. 2023. Toward the scientific interpretation of geophysical well logs: Typical misunderstandings and countermeasures. Surveys in Geophysics, 44(2): 463~494.

    • Lai Jin, Xiao Lu, Bai Tianyu, Fan Qixuan, Huang Yuyue, Li Hongbin, Zhao Fei, Wang Guiwen. 2024a&. Interpretation and evaluation methods of image logs and their geological applications. Bulletin of Geological Science and Technology, 43(3): 323~340.

    • Lai Jin, Bai Tianyu, Su Yang, Zhao Fei, Li Ling, Li Yuhang, Li Hongbin, Wang Guiwen, Xiao Chengwen. 2024b&. Researches progress in well log recognition and evaluation of source rocks. Geological Review, 70(2): 721~741.

    • Lai Jin, Su Yang, Xiao Lu, Zhao Fei, Bai Tianyu, Li Yuhang, Li Hongbin, Huang Yuyue, Wang Guiwen, Qin Ziqiang. 2024. Application of geophysical well logs in solving geologic issues: Past, present and future prospect. Geoscience Frontiers, 15: 101779.

    • Laubach S E, Lander R H, Criscenti L J, Anovitz L M, Urai J L, Pollyea R M, Hooker J N, Narr W, Evans M A, Kerisit S N, Olson J E, Dewers T, Fisher D, Bodnar R, Evans B, Dove P, Bonnell L M, Marder M P, Pyrak-Nolte L. 2019. The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57 (3): 1065~1111.

    • Laubach S E, Zeng L, Hooker J N, Wang Q, Zhang R, Wang J, Ren B. 2023. Deep and ultra-deep basin brittle deformation with focus on China. Journal of Structural Geology, 175: 104938.

    • Li Changwen, Qiang Yuming, Li Guoli, Yu Chunhao. 2006&. Characteristics of Modern Acoustic Logging Technology Development. Well Logging Technology, 30(2): 101~105.

    • Li Changwen, Yu Chunhao, Zhao Xudong, Zhu Zhensheng. 2003&. Application of Acoustic Reflective Waves in Evaluation of fractured reservoirs. Well Logging Technology, 27(3): 198~202.

    • Li Guofa, Liao Qianjin, Wang Shangxu, Yuan Shuqin, Wang Shoudong. 2008&. Discussions about horizon calibration based on well - log synthetic seismogram. Geophysical Prospecting for Petroleum, 47 (2): 145~149.

    • Li Jianhao. 2007&. An improvement in conductivity formula of dual water model with conductivity formula of mixture. Well Logging Technology, 31(1): 1~3.

    • Li Jun, Wang Guiwen, Ouyang Jian. 2001&. Using Logging Data to Quantitatively Study Terrestrial - Stress of Kuqa Field. Petroleum Exploration and Development, 28(5): 93~97.

    • Li Kaijun, Yang Yuqing, Su Hua. 2003&. A preliminary application of XMAC to clastic reservoir assessment. China Offshore Oil and Gas (Geology), 17(6): 416~420.

    • Li Ning, Liu Peng, Fan Huajun, Hu Jiangtao, Wu Hongliang. 2024&. Evaluation method of downhole multi-scale fracturing effect based on array acoustic logging. Petroleum Drilling Techniques, 52(1): 1~7.

    • Li Pengju, Song Yanjie Fu Duochen, Zhong Congcun, Tian Hongjuan. 2006&. High resolution processing of p - wave slowness - time of XMAC. Natural Gas Industry, 26(6): 55~56.

    • Li Qingqing, Fu Liyun, Du Qizhen, Ran Yanan, Hu Yong. 2024&. Velocity modeling through full wave equation traveltime tomography inversion based on sonic logging data. Chinese Journal of Geophysics, 67(2): 641~653.

    • Li Tonghua, Duan Qingqing, Yang Lei, Wu Jinlong. 2009&. Igneous rock fractures and hydrocarbon identification based on DSI data. Journal of Southwest Petroleum University ( Science & Technology Edition), 31(6): 45~51.

    • Li Yuxia, Li Yamin. 2008&. Multipole acoustic array logging tool. Well Logging Technology, 32(5): 439~442.

    • Li Zhaoyang. 2005&. Application of crossed dipole array acoustic logging. Progress in Exploration Geophysics, 28(4): 300~303.

    • Liu Guogiang, Tan Tingdong. 1993&. Porosity and gas - saturation determination using elastic moduli. Petroleum Exploration and Development, 20(5): 33~41.

    • Liu Guoqiang. 2021&. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891~902.

    • Liu Hang, Wu Yuyu, He Hongju, Xi Bing, Lai Qiang, Han Honglin. 2023&. Application of new processing technology of array acoustic logging in carbonate reservoir evaluation. Progress in Geophysics, 38(1): 0220~0228.

    • Liu Huan, Xu Jinxiu, Chen Hongbing, Zhang Xuefang, Qi Yi. 2023&. A method for calculating porosity of shale sandstone gas reservoir based on nuclear magnetic resonance logging calibrated. China Offshore Oil and Gas, 35(3): 89~95.

    • Liu Jingyan, Lin Changsong, Yu Yueyu, Wu Fadong, Jiang Liang, Chen Zhiyong. 2000&. An improved method to calculate denuded amount by sonic well logs. Experimental Petroleum Geology, 22(4): 302~306.

    • Liu Peng, Qiao Wenxiao, Che Xiaohua, Wang Ruijia, Ju Xiaodong, Lu Junqiang. 2014&. Application of multipole acoustic logging to the evaluation of coalbed methane reservoirs. Well Logging Technology, 38(3): 292~296.

    • Liu Xiaohong, Liu Jun, Xiong Xiaoyun, Li Huan. 2009&. Multipole array acoustic imaging logging system. China Mining Magazine, 18 (11): 92~96.

    • Liu Zhidi, Dai Shihua, Wang Hongliang, Li Guiqiu, Xu Jing. 2007&. Fracture Effectivity Evaluati on of Igneous Rock with Sonic Logging. Well Logging Technology, 31(2): 156~158.

    • Lu Hongjie, Zhu Huiming, Wang Chunli, Shen Binbin, Ma Yupeng, Li Yulong. 2011&. Stress analysis of volcanic fracturing reservoir based on XMAC data. Drilling & Production Technology, 34(1): 45~47+51.

    • Lu Yunlong, Cui Yunjiang, Guan Yeqin, Xiong Lei. 2022&. Quantitative evaluation method of fracture effectiveness based on array acoustic logging. Well Logging Technology, 46(1): 64~70.

    • Lubanzadio M, Goulty N R, Swarbrick R E. 2006. Dependence of sonic velocity on effective stress in North Sea Mesozoic mudstones. Marine and Petroleum Geology, 23(6): 647~653.

    • Luo Weiping, Li Hongqi, Zhu Liping, Qiao Yuedong, Shi Ning, Yu Fei. 2014&. Automatic matching of seismic and logging data. Oil Geophysical Prospecting, 49(1): 205~212.

    • Magara K. 1976. Thickness of removed sediments, paleopore-pressure, and paleotemperature, southwestern part of western Canada basin. AAPG Bulletin, 60: 554~565.

    • Markova I, Jarillo G R, Markov M, Gurevich B. 2014. Squirt flow influence on sonic log parameters. Geophysical Journal International, 196: 1082~1091

    • Markova I, Markov M. 2023. Secondary porosity classification in heterogeneous carbonate reservoirs based on the sonic log data. Journal of Applied Geophysics, 218: 105215.

    • Narr W, Currie J B. 1982. Origin of fracture porosity—example from Altamont field, Utah. The American Association of Petroleum Geologists Bulletin, 65(9): 1231~1247.

    • Ni Xin, Zhou Changchun, Yang Yuqin, Xiao Kun, Huang Zhaohui. 2012&. Application of well logging to the evaluation of the rock mechanical properties of the shale gas reservoirs. Oil Geophysical Prospecting, 9(4): 433~439.

    • Nian Tao, Wang Guiwen, Xiao Chengwen, Zhou Lei, Deng Li, Li Ruijie. 2016. The in situ stress determination from borehole image logs in the Kuqa Depression. Journal of Natural Gas Science and Engineering, 34: 1077~1084.

    • Onalo D, Adedigba S, Khan F, James L A, Butt S. 2018. Data driven model for sonic well log prediction. Journal of Petroleum Science and Engineering, 170: 1022~1037.

    • Oyler D C, Mark C, Molinda G M. 2010. In situ estimation of roof rock strength using sonic logging. International Journal of Coal Geology, 83: 484~490.

    • Passey Q, Creaney S, Kulla J, Moretti F, Stroud J. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74: 1777~1794.

    • Prioul R, Donald A, Koepsell R, Marzouki Z E, Bratton T. 2007. Forward modeling of fracture - induced sonic anisotropy using a combination of borehole image and sonic logs. Geophysics, 72(4): 135~147.

    • Qi Bin, Xia Hongquan, Fang Guoqing, Bai Xinguo. 2008&. On stratum anisotropy based on DSI log information. Well Logging Technology, 32(5): 412~416.

    • Qi Qiaomu, Cheng Arthur C H, Li Yunyue Elita. 2019. Determination of formation shear attenuation from dipole sonic log data. Geophysics, 84(3): D73~D79.

    • Qi Wenli, Wu Huimei, Lou Yishan, Zhai Xiaopeng, Liu Hong. 2023&. Formation pore pressure prediction and application based on acoustic logging. Well Logging Technology, 47(4): 415~420.

    • Qi Xiao, Zhang Zhang, Li Dong, Yin Lu, Yu Yang. 2023&. Evaluation of fracturing effects in offshore sandstone reservoirs based on array acoustic logging technology. Petroleum Drilling Techniques, 51 (6): 128~134.

    • Qiao Wenxiao, Ju Xiaodong, Che Xiaohua, Lu Junqiang. 2011&. Progress in Acoustic Well Logging Technology. Well Logging Technology, 35(1): 14~19.

    • Qiao Wenxiao, Yan Shuwen. 1997&. Evaluation of the Characteristics of Pore Fluids in Permeable Formations Using Acoustic Logging Data. Well Logging Technology, 21(3): 215~220.

    • Qin Jianqiang, Fu Deliang, Qian Yafang, Yang Fu, Tian Tao. 2018&. Progress of geophysical methods for the evaluation of TOC of source rock. Geophysical Prospecting for Petroleum, 57(6): 803~812.

    • Qin Xuying, Song Botao. 2002&. Current situation and prospect of logging technology. Petroleum Reservoir Evaluation and Development, 25(1): 26~34.

    • Radwan A A, Nabawy B S, Abdelmaksoud A, Lashin A. 2021. Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand. Journal of Natural Gas Science and Engineering, 88: 103797.

    • Raymer L L, Hunt E R, Gardner J S. 1980. An improved sonic transit time- to - porosity transform [ C] ∥SPWLA 21st Annual Logging Symposium. Richardson, Texas, USA: OnePetro, SPWLA-1980- P.

    • Rickman R, Mullen M J, Petre J E, Grieser B, Kundert D. 2008. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    • Riskallah A, David B, Bob O, et al. 1990. The MAXIS system: Imaging for reservoir characterization. Oilfield Review, 2(2): 31~42.

    • Roshan H, Li Danqi, Canbulat I, Regenauer-Lieb K. 2023. Borehole deformation based in situ stress estimation using televiewer data. Journal of Rock Mechanics and Geotechnical Engineering 15: 2475~2481.

    • Salih M, El - Husseiny A, Reijmer J J G, Eltom H, Abdelkarim A. 2023. Factors controlling sonic velocity in dolostones. Marine and Petroleum Geology, 147: 105954.

    • Sondergeld C H, Newsham K E, Comisky J T, Rice M C. 2010. Petrophysical considerations in evaluating and producing shale gas resources. In: SPE Unconventional Gas Conference. Society of Petroleum Engineers.

    • Su Hua, Tian Hong. 2002&. Estimation of Formation Permeability Using Stoneley Wave. Well Logging Technology, 26(4): 298~301.

    • Su Yang, Lai Jin, Bie Kang, Li Dong, Zhao Fei, Chen Kangjun, Li Hongbin, Wang Guiwen. 2024&. Well logging evaluation and characterization of geological information for deep and ultra - deep drilling wells. Journal of Palaeogeography ( Chinese Edition), 27 (1): 225~239.

    • Sun Yue, Xie Peiyu, Zhang Fengqi, Chen Shuguang, Li Yongxin, Guan Ming, Zhou Ranran, Zhang Jie. 2024&. Mechanism and evolution of overpressure in the Linhe Formation of the Xinglong structural belt in the Linhe Depression of the Hetao Basin. Natural Gas Geoscience, 35(4): 661~675.

    • Tan Lihong, Zhang Guoqiang, Tan Zhongjian, Zhang Guibin, Zhang Chengguang, Cai Ming. 2022&. Evaluation of metamorphic reservoir effectiveness by array acoustic logging data. Oil Geophysical Prospecting, 57(6): 1464~1472.

    • Tan Tingdong. 2000&. Oil and gas reservoirs discovered by log interpretation. Natural Gas Industry, 20(6): 47~50.

    • Tang Jun, Zhang Chengguang, Xin Yi. 2017&. A fracture evaluation by acoustic logging technology in oil - based mud: A case from tight sandstone reservoirs in Keshen area of Kuqa depression, Tarim Basin, NW China. Petroleum Exploration and Development, 44 (3): 389~397+406.

    • Tang Jun, Zhang Chengguang, Zhang Bixing, Shi Fangfang. 2016&. Cement bond quality evaluation based on acoustic variable density logging. Petroleum Exploration and Development, 43 (3): 469~475.

    • Tang Xiaoming, Wei Zhoutuo, Su Yuanda, Zhuang Chunxi. 2012&. A Review on the Progress and Application of Dipole Acoustic Reflection lmaging Technology. Well Logging Technology, 55(8): 2798~2807.

    • Tong Kaijun, Zhao Cunming, Lyu Zuobin, Zhang Yingchun, Zheng Hao, Xu Sainan, Wang Jianli, Pan Lingli. 2012&. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay. Petroleum Exploration and Development, 39(1): 56~63.

    • Wang Guiwen, Lai Jin, Liu Bingchang, Fan Zhuoying, Liu Shichen, Shi Yujiang, Zhang Haitao, Chen Jing. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica (English Edition), 94(3): 831~846.

    • Wang Jianhua. 2006&. A summary of sonic logging techniques. Chinese Journal of Engineering Geophysics, 3(5): 395~400.

    • Wang Peichun, Xiong Lei, Li Shengqing, Tan Xiaoyu, Zhang Renfeng, Su Yuanda. 2023&. Acoustic Log Evaluation Method for Fractured Reservoir and Its Application in BZ19 - 6Condensate Gas Field. Well Logging Technology, 47(1): 7~15.

    • Wang Ping. 2008&. Analysis of logging factors which affect cement bonding evaluation. Well Logging Technology, 32(5): 463~467.

    • Weng Wangfei, Wang Jianqiang, Zhang Rongrong, Chen Hong, Gui Xiaojun. 2011&. Denudation thickness estimation of sedimentary formation in Ordos basin by acoustic logging information. Xinjiang Petroleum Geology, 32(2): 143~146.

    • Wu Xiaoguang, Ji Fengling, Li Decai. 2016&. Application status and research progress of dipole acoustic well logging. Progress in Geophysics, 31(1): 0380~0389.

    • Wyllie M R J, Gregory A R, Gardner L W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1): 41~70.

    • Xia Hongquan, Guo Qiannan. 2018&. Detection of hydraulic fractures in horizonal wells based on shear wave spiltting of DSI logging. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 87~96.

    • Xia Hongquan, Hu Hui, Yang Lin, Zhao Jing. 2017&. Method about improving accuracy of fracture fluid friction pressure. Petroleum Drilling Techniques, 45(5): 113~117.

    • Xu Chenjie. 2022&. Mechanism and Pattern of the Classification and Distribution of Natural Gas Resources in Xihu Sag, East China Sea Shelf Basin. China University of Geosciences, Wuhan.

    • Xu Ke, Yang Haijun, Zhang Hui, Wang Haiying, Yuan Fang, Wang Zhaohui, Li Chao. 2021&. Current In - Situ Stress Field and Efficient Development of Bozi-1 Gas Reservoir in Kelasu Structural Belt. Xinjiang Petroleum Geology, 42(6): 726~734.

    • Xu Ke, Yang Haijun, Zhang Hui, Ju Wei, Li Chao, Fang Lu, Wang Zhimin, Wang Haiying, Yuan Fang, Zhao Bin, Zhang Wei, Liang Jingrui. 2022. Fracture effectiveness evaluation in ultra - deep reservoirs based on geomechanical method, Kuqa Depression, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 215: 110604.

    • Xu Song, Tang Xiaoming, Su Yuanda, Zhuang Chunxi. 2018&. Determining formation shear wave transverse isotropy jointly from borehole Stoneley and flexural - wave data. Chinese Journal of Geophysics, 61(12): 5105~5114.

    • Xu Xing, Zhao Wanyou. 2001&. Application of Star - Ⅱ Imaging Logging in Carbonate Reservoir Evaluation. Well Logging Technology, 25(5): 358~364.

    • Xu Yugiang, He Baolun, Wang Yanshu, Han Chao, Xiao Fan, Guan Zhichuan, Liu Kuan. 2023&. A novel prediction method of formation pore pressure driven by deep learning and Eaton method. Journal of China University of Petroleum ( Edition of Natural Science), 47(6): 50~59.

    • Xue Luo, Ma Lun, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Shi Jianglong, Wang Lei. 2022&. Tectonic evolution and its influence on hydrocarbon accumulation of Ruman buried hill in Melut Basin, South Sudan. Petroleum Geology and Recovery Efficiency, 29(2): 53~60.

    • Xue Mei, Chu Zehan, Jiang Hao. 2000&. Development and evaluation of the acoustic well logging tools. Petroleum instrument, 14(5): 6~10.

    • Yan Huilan. 2004&. Application of multipole sub - array acoustic (MAC) log in oilfield production. Special Oi and Gas Reservoirs, 11(5): 60~63.

    • Yang Lei, Gao Qiutao, Wang Guobin, Li Guigiu, Li Shuyun, Zhang Jun. 2002&. Application of XMAC Well Log Data in Recognition of Oil and Gas Intervals. Xinjiang Petroleum Geology, 23(5): 402~403.

    • Yang Xiaobing, Yao Menglin, Wang SiJing, Zhou Hao, Tong Kailin, Chen Weiming, Ma Shaoguang. 2022&. Shale gas logging, geology and engineering technologies: New requirements and solutions. Natural Gas Industry, 42(2): 20~27.

    • Yang Xiaoyi, Liu Chenglin, Wang Feilong, Li Guoxiong, Feng Dehao, Yang Taozheng, He Zhibin, Su Jiajia. 2024&. Distribution and origin of overpressure in the Paleogene Dongying Formation in thesouthwestern sub-sag, Bozhong Sag, Bohai Bay Basin. Oil & Gas Geology, 45(1): 96~112.

    • Yang Xuebing, Li Qingfeng, Li Wenzhi, He Li. 2014&. The application of acoustic logging technologies in the unconventional dense reservoir. Journal of Applied Acoustics, 33(1): 16~22.

    • Yin Shuai, Liu Hanlin, He Jianhua, Wang Ruifei, Li Xiangxue, Huang Zheng, Zhou Yongqiang, He Zixiao. 2023&. Comprehensive evaluation of geo - stress in tight oil sandstone under constraints of dynamic-static geomechanical methods. Advances in Earth Science, 38(12): 1285~1296.

    • Yin Xingyao, Ma Ni, Ma Zhengqian, Zong Zhaoyun. 2018&. Review of In- situ Stress Prediction Technology. Geophysical Prospecting for Petroleum, 57(4): 488~504.

    • Yu Chunhao, Li Changwen. 1998&. Application of Stonley Waves to Fracture Evaluation. Well Logging Technology, 22(4): 273~277.

    • Yu Jingfu, Yuan Futang, QiuHuili, Zhang Tiexuan. 2005&. Geological application of new logging technology in complex lithologic formation. Journal of Oil and Gas Technology, 27(2): 345~348.

    • Yu Zhucheng, Xu Qicong, Qiu Ruyi, Lei Ming, Zhou Luoyu. 2023&. Status and Prospect of Borehole Panoramic Imaging While Drilling Based on Acoustic Wave. Drilling & Production Technology, 46 (3): 171~175.

    • Yuan Hongzhuang, Lu Dawei, Zhang Xinyun, Sun Jianmeng. 2005&. An overview of recent advances in well logging technology. Progress in Geophysics, 20(3): 786~795.

    • Yue Wenzheng, Tian Bin. 2022&. High - resolution reflection acoustic logging imaging method for deep reservoir around a well. Geophysical Prospecting for Petroleum, 61(6): 1077~1089.

    • Zeng Lianbo, Tian Chonglu. 1998&. Tectonic stress field and the development of low permeability. Petroleum Exploration and Development, 25(3): 91~93.

    • Zeng Lianbo, Wang Guiwen. 2005&. Distribution of Earth Stress in Kuche Thrust Belt, Tarim Basin. Petroleum Exploration and Development, 32(3): 59~60.

    • Zeng Lianbo, Su Hui. , Tang Xiaomei, Peng Yongmin, and Gong Lei. 2013. Fractured tight sandstone oil and gas reservoirs: A new play type in the Dongpu depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363~377.

    • Zeng Wenchong, Qiu Xibin, Liu Xuefeng. 2014&. A new method to identify fluid properties in complex reservoir. Well Logging Technology, 38(1): 11~21.

    • Zhang Bixing, Wang Kexie. 1998&. Status quo and development of the acoustic multipole logging in anisotropic formation. Progress in Geophysics, 13(2): 1~14.

    • Zhang Chengsen, Xiao Chengwen, Liu Xingli, Guo Hongbo, Zhu Dengchao, Wang Guiqing. 2011&. Application of remote detection acoustic reflection logging to fractured - vuggy carbonate reservoir evaluation. Xinjiang Petroleum Geology, 32(3): 325~328.

    • Zhang Conghui, Qi Xiao, Zhang Guangdong, Zhang Zhang, Yin Lu. 2021&. Processing technique for quantitative evaluation of cementing quality by using array acoustic waveform and applications. Progress in Geophysics, 36(5): 2128~2135.

    • Zhang Haitao, Shi Yujiang, Zhang Peng, Fan Yiren, Yang Xiaoming, Li Hu. 2015&. Identification of low permeability sandstone gas reservoir based on the DSI. Well Logging Technology, 39(5): 591~595.

    • Zhang Hengrong, Xiao Lizhi, Zeng Shaojun, Tang Di, Yuan Wei, Yang Dong. 2022&. Forward and inversion methods and application of acousto- eleetrie logging based on fracture compliance and crustal stress model. Oil Geophysical Prospecting, 58(2): 431~442.

    • Zhang Hui, Yin Guoqing, Wang Zhimin, Wang Haiying. 2019&. Fracability evaluation of deep-burial fractured sandstone gas reservoir in Kuqa Depression. Xinjiang Petroleum Geology, 40(1): 108~115.

    • Zhang Jincai. 2011. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth - Science Reviews, 108 (1): 50~63.

    • Zhang Lei, Cheng Zhigang, Feng Chunzhen, Luo Shaocheng, Xi Hui, Yang Zhixin. 2013&. On identification methods of tight sand gas layer and their application effect analysis. Well Logging Technology, 37(6): 648~652.

    • Zhang Xiaoli, Shen Ying, Chen Wenxue. 2000&. Application of well logging information to analysis on the effect of diagenesis in reservoirs. Acta Sedimentologica Sinica, 18(3): 127~131.

    • Zhang Yonghua, Chen Ping, Zhao Yuqing, Zhu Jun and Liu Jingyan. 2004&. Integrative layer - labeling technique based on synthetic seismogram. Oil Geophysical Prospecting, 39(1): 92~96.

    • Zhang Yongjun, Gu Dingna, Ma Subin, Chen Xiangyang, Chen Guanghui, Wan Yongqing. 2012&. The Application of Array Acoustic Wave Data to Tight Sandstone Gas Reservoir in Tuha Oilfield. Well Logging Technology, 36(2): 175~178.

    • Zhang Yuanzhong, Xiao Lizhi. 2004&. Some progress of well logging techniques during the first five years of the new millennium. Progress in Geophysics, 19(4): 828~836.

    • Zhang Zhenchen, Sun Jianmeng, Shi Zhenfei, Cai Xiaoming, Su Yuanda, Liao Dongliang. 2005&. Application of Well Logging Information to Secondary Porosity Analysis. Application of Well Logging Information to Secondary Porosity Analysis, 23(4): 613~619.

    • Zhao Jingzhou, Li Jun, Xu Zeyang. 2017&. Advances in the origin of overpressures in sedimentary basins. Acta Petrolei Sinica, 38(9): 973~998.

    • Zhao Jiyong, Zhou Xingui, Lei Qihong, Zhao Guoxi, He You’An, Shi Jianchao, Zhang Linyan. 2017&. Study on paleo - tectonic and present tectonic stress in Chang 7 tight reservoir of Maling oilfield, Ordos basin. Journal of Geomechanics, 23(6): 810~820.

    • Zhao Jun, Zhang Li, Wang Guiwen, Li Jun. 2005&. A new method for analyzing crustal stress in foreland structural compressive area based on logging data. Chinese Journal of Geology, 40(2): 284~290.

    • Zhao Luanxiao, Liu Jingyu, Xu Minghui, Zhu Zhenyu, Chen Yuanyuan, and Geng Jianhua. 2024. Rock-physics-guided machine learning for shear sonic log prediction. Geophysics, 89 (1): D75~D87.

    • Zhi Dongming, Li Jianzhong, Yang Fan, Chen Xuan, Xiao Dongsheng, Wang Bo, Wu Chao, Yu Haiyue. 2024&. Exploration breakthrough and significance of Jurassic tight sandstone gas in Qiudong subsag of Tuha Basin. Acta Petrolei Sinica, 45(2): 348~357.

    • Zhou Lihong, Liu Guofang. 1996&. Formation pressure estimated by interval transit time of mudstones. Experimental Petroleum Geology, 18(2): 195~199.

    • Zhou Wen, Dai Jianwen. 2008&. The characteristics and evaluation of fractures distribution in xujahe formation in the western depression of the sichuan basin. Petroleum Geology & Experiment, 30(1): 20~25.

    • Zhu Guangyou, Jin Qiang, Zhang Linye. 2003&. Using log information to analyze the geochemical characteristics of source rocks in Jiyang Depression. Well Logging Technology, 27(2): 104~109.

    • Zhu Jianwei, Zhao Gang, Liu Bo, Guo Wei, Cheng Jun. 2012&. Identification technology and its application of well-logging about oil shale. Journal of Jilin University (Earth Science Edition), 42(2): 289~295.

    • Zhu Liufang. 2003&. Application of Novel Cross - dipole Acoustic Logging Data in Fractured Reservoir Evaluation. Well Logging Technology, 27(3): 225~227.

    • Zhu Yixiang, Tian Changbing, Yu Xinhe, He Dongbo, Jia Ailin. 2004&. Genesis and petrophysical identification of relative high permeability of sandbody in Sulige Gas Field Ordos Basin. Petroleum Geology & Experiment, 26(4): 389~394.

    • Zoback M, Barton C, Brudy M, Castillo D, Finkbeiner T, Grollimund B, Moos D, Peska P, Ward C, Wiprut D. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7): 1049~1076.