en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

丁毅,男,1957年生,教授,40多年一直主要从事金伯利岩、火山岩、陨石坑等研究;E-mail: chinakimberlite@126.com。

参考文献
鲍佩声, 苏犁, 翟庆国, 肖序常. 2009. 新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究. 地质学报, 83 (9): 1276~1301.
参考文献
丁毅, 吴文盛, 侯征, 陈雄, 吴云霞. 2020. 寻找金刚石矿的地质经济学. 地质论评, 66(6): 1531~1535.
参考文献
丁毅, 吴文盛, 刘文卓, 侯征, 任小华, 唐宗源. 2022. 内蒙古辉腾锡勒玛珥式火山口群特征与成因. 地质学报, 96(4): 1215~1224. DOI: 10. 19762 / j. cnki. dizhixuebao. 2021250.
参考文献
丁毅, 杨献忠. 2019. 沉积物中重矿物 KIM 的找矿方法和意义. 地质找矿论丛, 34(3): 453~459. DOI: 10. 16509 / j. issn. 1001~1412. 2019. 03. 016.
参考文献
丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65 (5): 1269~1275.
参考文献
侯广顺, 张艳林, 姜江, 闫鑫洁, 齐永安, 向世红, 李英杰. 2023. 河南鹤壁地区地幔捕虏体中铁质小球特征及其成因探讨. 河南理工大学学报(自然科学版), 42(2): 49~54.
参考文献
李曙光, 汪洋, 刘盛遨. 2024. 大地幔楔的两个深部碳循环圈: 差异及宜居效应. 地学前缘: 1~15. DOI: 10. 13745 / j. esf. sf. 2023. 10. 7
参考文献
马广玉、周世文. 2017. 安徽宿州栏杆-褚栏地区金刚石成矿地质特征及成因. 华东地质, 38(增刊): 4~6.
参考文献
向璐, 郑建平, 黄远成, 李永刚. 2019. 贵州镇远马坪金伯利岩及其捕虏晶对金刚石成矿条件的指示意义. 地质通报, 38(1): 177~188.
参考文献
肖书阅, 向华, 曾文辉, 罗大富, 李帅. 2018. 湖南省沅水流域金刚石原生矿成矿地质条件及找矿思路探讨. 国土资源导刊, 15 (1): 22~26.
参考文献
杨道政. 2013. 湖北省大洪山重沙金刚石异常源的启示. 资源环境与工程, 27(3): 335~338.
参考文献
杨建民, 秦淑英, 黄蕴慧, 李兴海, 张利秀. 1996. 晋北金伯利岩的地球化学. 矿床地质, 15(S1): 19~23.
参考文献
张宏福, 杨岳衡. 2007. 华北克拉通东部含金刚石金伯利岩的侵位年龄和 Sr-Nd-Hf 同位素地球化学特征. 岩石学报. 23 (2): 285~294.
参考文献
张琪, 周琦忠, 王博, 王国强, 冯学知, 罗跃. 2022. 苏北原生金刚石找矿现存问题探讨. 中国地质调查, 9(5): 79~88. DOI: 10. 19388 / j. zgdzdc. 2022. 05. 09.
参考文献
郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48(4): 436~456.
参考文献
郑建平, 夏冰, 戴宏坤, 马强. 2021. 地球物理观察和岩石包体约束华北岩石圈地幔结构、性质及过程. 中国科学: 地球科学, 51 (2): 201~217.
参考文献
朱日祥. 2020. 华北克拉通破坏: 藏于大地深处的故事. 科学世界, (9): 82~85.
参考文献
Ashchepkov I V, Vladykin N V, Ivanov A, Babushkina S, Vavilov M and Medvedev N. 2021. Problems of Mantle Structure and Compositions of Various Terranes of Siberian Craton. In: Vladykin N. ed. Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences, Switzerland AG: 5~48.
参考文献
Ault A K, Flowers R M, Bowring, S A. 2015. Synchronicity of cratonic burial phases and gaps in the kimberlite record: episodic magmatism or preservational bias? Earth and Planetary Science Letters, 410: 97~104.
参考文献
Barnett W P. 2008. The rock mechanics of kimberlite volcanic pipe excavation. Journal of Volcanology and Geothermal Research, 174: 29~39.
参考文献
Besl J. 2023. Continental breakup shot pink diamonds to Earth ' s surface. EOS, 104. DOI: 10. 1029 / 2023EO230401
参考文献
Brown R J, Manya S, Buisman I, Fontana G, Field M, MacNiocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: Physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth ( the Upper Pleistocene / Holocene Igwisi Hills volcanoes, Tanzania ). Bulletin of Volcanology, 74 (1621): 1643.
参考文献
Chalapathi Rao N V, Lehmann B, Belyatsky B, Warnsloh J M. 2017. The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne ( FALC) field, Saskatchewan Craton, Canada: Petrology, geochemistry, and genesis. Gondwana Research, 44: 236~257. DOI: 10. 1016 / j. gr. 2016. 12. 013
参考文献
Cookenboo H O, Grütter H. 2007. Mantle-Derived Indicator Mineral Compositions as Applied to Diamond Exploration[C]. In: Milkereit B. ed. Proceedings of Exploration: Fifth Decennial International Conference on Mineral Exploration: 183~200.
参考文献
Ding Yi, Wu Wensheng, Liu Wenzhuo, Hou Zheng, Ren Xiaohua, Tang Zongyuan. 2022&. Characteristics and genesis of Maar craters in Huitengxile, Inner Mongolia. Acta Geologica Sinica, 96(4): 1215~1224.
参考文献
Ding Yi, Wu Wensheng, Hou Zheng, Chen Xiong, Wu Yunxia. 2020&. Geo-economics of prospecting diamondiferous kimberlites. Geological Review, 66(6): 1531~1535.
参考文献
Ding Yi, Yang Xianzhong. 2019&. KIM methods of heavy minerals in sediments and the significances to mineral resource prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459.
参考文献
Ding Yi. 2019&. The understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65 (5): 1269~1275.
参考文献
Fipke C E, Gurney J J, Moore R O. 1995. Diamond exploration techniques emphasizing indicator mineral geochemistry and Canadian examples. Geological Survey of Canada, Bulletin, 423: 86.
参考文献
Garber J M, Maurya S, Hernandez J A, Duncan M S, Zeng Li, Zhang Hongluo, Faul U, McCammon C, Montagner J, Moresi L, Romanowicz B A, Rudnick R L, Stixrude L. 2018. Multidisciplinary constraints on the abundance of diamond and eclogitic in the cratonic lithosphere. Geochemistry, Geophysics, Geosystems, 19(7): 2062~2086.
参考文献
Giuliani A, Schmidt M W, Torsvik T H, Fedortchouk Y. 2023. Genesis and evolution of kimberlites. Nature Reviews Earth & Environment, (4): 738~753.
参考文献
Grutter H S, Fitzgerald C, Pell J. 2017. Tracing kimberlitic indicators to their kimberlite source at Chidliak, Nunavut, Canada: The unexpected accuracy of a simplified Mahalanobis - distance approach. Extended Abstract, in the 11th International Kimberlite Conference. Gaborone, Botswanna.
参考文献
Hamblin A P. 2015. An Eocene Post-kimberlite Maar Lake: Lacustrine Oil - shale Crater-fill Deposits, Lacde gras area, Northwest Territories, Canada. Geological Survey of Canada, Open File Report 7809.
参考文献
Heaman L M, Pell J, Grütter H S, Creaser R A. 2015. U-Pb geochronology and Sr/ Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth and Planetary Science Letters, 415: 183~199.
参考文献
Hou Guangshun, Zhang Yanlin, Jiang Jiang, Yan Xinjie, Qi Yongan, Xiang Shihong, Li Yingjie. 2023&. Characters and genesis discussion on ferric small-balls in mantle xenoliths from Hebi kimberlite. Journal of Henan Polytechnic University ( Natural Science), 42(2): 49~54.
参考文献
Kjarsgaard B A, Januszczak N, Stiefenhofer J. 2019. Diamond Exploration and Resource Evaluation of Kimberlites. Elements, 15 (6): 411~416.
参考文献
Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 101~122.
参考文献
Lefebvre N S, Kurszlaukis S. 2008. Contrasting eruption styles of the 147 kimberlites, Fort a la Corne, Saskatchewan, Canada. Journal of Volcanology and Geothermal Research, 174(1~3): 171~185.
参考文献
Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.
参考文献
Li Shuguang, Wang Yang, Liu Shenao. 2024&. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability. Earth Science Frontiers, 31(1): 15~27
参考文献
Lorenz V, Suhr R, Suhr S. 2017. Phreatomagmatic maar-diatreme volcanoes and their incremental growth: A model. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 29~59.
参考文献
Mallik A. 2022. Diamonds as windows to deep Earth. Nat. Geosci. , 15: 866. DOI: 10. 1038 / s41561-022-01064-4
参考文献
McClenaghan M B. 2005. Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5 (3): 233~245. DOI: 10. 1144 / 1467-7873 / 03-066
参考文献
Mitchell R H. 2020. Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: A review of their nomenclature, characterization and origins. Geoscience Canada: Journal of the Geological Association of Canada, 47: 119~142. DOI: 10. 12789 / geocanj.
参考文献
Olierook H K, Fougerouse D, Doucet L S, Liu Y, Rayner M J, Danik M, Condon D J, McInnes B I, Jaques A L, Evans N J, McDonald B J, Li Z, Kirkland C L, Mayers C, Wingate M T. 2023. Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup. Nature Communications, 14 (1): 1~10. DOI: 10. 1038 / s41467-023-40904-8
参考文献
Phani R. 2019. Restoring the past glory of diamond mining in south India- -A plausible case of diamondiferous Wajrakarur kimberlite pipe clusters with geochemical evidences. International Journal of Mining and Geological Engineering, 53(2): 11.
参考文献
Pell J, Holmes P K, Grenon H, Sell M V, Tam L. 2007. Exploration and discovery of a new kimberlite cluster on the Nanuq Property, Western Churchill Province, Kivalliq area, Nunavut. Extended Abstracts in the 9th International Kimberlite Conference, Frankfurt, Germany.
参考文献
Sablukov S M, Sublukova L I, Belov A V, Ermakov N S and Leshukov S I. 2021. Ustyansky Diamondiferous Region in the Central Part of the Russian Platform. In: Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences: 231~262.
参考文献
Smit K V and Shirey S B. 2019. Diamonds from the deep: How old are diamonds? Are they forever? Gems & Gemology, 55 (1): 102~109.
参考文献
Smith E M, Shirey S B, Richardson S H. Nestola F, Bullock E S, Wang Jianhua, Wang Wuyi. 2018. Blue boron-bearing diamonds from Earth's lower mantle. Nature, 560: 84~87. DOI: 10. 1038 / s41586-018-0334-5
参考文献
Soltys A, Giuliani A, Phillips D. 2018. Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineralogy and Petrology, 112(1): 503~518. DOI: 10. 1007 / s00710-018-0588-5
参考文献
Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44(10): 799~802. DOI: 10. 1130 / g38024. 1
参考文献
Tom E N, Moore R O, Gurney JJ, Baumgartner M C. 2007. Diamonds and Associated Heavy Minerals in Kimberlite: A Review of Key Concepts and Applications, Developments in Sedimentology [ C], 58: 1235~1267.
参考文献
Tuppert R, Tuppert M C. 2011. Diamonds in Nature. A Guide to Rough Diamonds. Heidelberg: Springer.
参考文献
Ustinov V, Feijo A, Zagainy A, Mityukhin S, Tunga F, Mikoev I, Stegnitskyi Y, Lobkova L, Nikolaeva E. 2017. Kimberlite fields of Angola: Structural control and diamond presence. The 11th International Kimberlite Conference Extended Abstract: 4593.
参考文献
Valentine G A, Graettinge R A E, Sonder I. 2014. Explosion depths for phreatomagmatic eruptions. Geophysical Research Letters, 41: 3045~3051. DOI: 10. 1002 / 2014GL060096
参考文献
Willcox A, Buisman I, Sparks R S J, Brown R J, Manya S, Schumacher J C, Tuffen H. 2015. Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the kimberlitic Igwisi Hills volcanoes, Tanzania. Chemical Geology, 405: 82~101.
参考文献
Wu Fuyuan, Yang Jinhui, Xu Yigang, Wilde S, Walker R J. 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173~195.
参考文献
Xiao Shuyue, Xiang Hua, Zeng Wenhui, Luo Dafu, Li Shuai. 2018&. Discussion on metallogenic geological conditions and prospecting ideas of primary diamond deposits in the Yuanshui Drainage Basin of Hunan. Land & Resources Herald, 15(1): 22~26.
参考文献
Xiang Lu, Zheng Jianping, Huang Yuancheng, Li Yonggang. 2019: The Mapping kimberlites and its xenocrysts as indicators of diamond minerogenetic condition in Zhenyuan area, Guizhou Province. Geological Bulletin of China, 38(1): 177~188.
参考文献
Yang Daozheng. 2013&. Enlightment of the source of diamond anomly of Dahongshan region, Hubie Provice. Resources Environment & Engineering, 27(3): 335~338.
参考文献
Yang Jianming, Qin Shuying, Huang Yunhui, Li Xinghai, Zhang Lixiu. 1996 #. Geochemistry of kimberlite in northern Shanxi. Mineral Deposits, 15(supp. ): 19~23.
参考文献
Zhang Hongfu, Yang Yueheng. 2007&. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica, 23(2): 285~294.
参考文献
Zhang Qi, Zhou Qizhong, Wang Bo. 2022&. The discussion of primary diamonds exploration in northern Jiangsu Provices. Geological Survey of China, 9(5): 79~88.
参考文献
Zheng Jianping, Dai Hongkun. 2018&. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China (Earth Sciences), 61: 406~424. DOI: 10. 1007 / s11430- 017-9166-8
参考文献
Zheng Jianping, Xia Bing, Dai Hongkun, Ma Qiang. 2021&. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Science China (Earth Sciences), 64(2): 205~219. DOI: 10. 1007 / s11430 - 020-9682-5
参考文献
Zhu Rixiang. 2020 #. Destruction of the North China Craton: A story hidden deep in the Earth. Science World, (9): 82~85
目录contents

    摘要

    除了地质体的经济性,地质科学工作者可以通过含金刚石的金伯利岩(Diamondiferous Kimberlites, DK)和含金刚石的钾镁煌斑岩(Diamondiferous Lamproites, DL)研究深部地质,全球在这方面有了许多的进展。通过金刚石所含包裹体和流体发现了地表元素循环、地幔深部的地质事件,通过 DKL 地幔捕虏体和捕虏晶限定地幔岩浆起源位置的 C—P—T 条件等。 DKL 在科学上的研究价值和在经济上的价值也推动了安哥拉、俄国、印度、加拿大中部等多个矿田的发现与开采,从而促进了深部地质研究。笔者等概述全球在这方面的研究成果。

    Abstract

    Besides their economics, geoscientists can study geology in deep mantle through diamondiferous kimberlites or diamondiferous Lamproites, and there have been many advances in this area worldwide. Surface element cycling and geological events in the mantle were discovered through inclusions and fluids contained in diamonds. The C—P—T conditions for determining the origin of mantle magma were determined through DKL mantle xenoliths and xenolith crystals. The scientific research value and economic value of DKL have also driven the discovery of multiple DKL fields in Angola, Russia, India, central Canada, and other regions, thereby promoting deep geological research. This article provides a brief overview of global research achievements in this area.

    Keywords

    mantlediamondkimberlitelamproitesxenolith

  • 地幔岩石是人类无法用现代任何技术手段能够直接获得的岩石,对于地球科学而言我们又应当知道它们的性质、状态、以及转变过程等,这是研究地表所见岩石、矿物、矿床成因的基础,也是人类将地表有用资源采完后必然要向深部进军的基础。通过地球物理、数学模拟、高温高压模拟地球深部环境等手段研究都是间接的,目前人类想直接来研究地幔岩比登天还难。然而,玄武岩和超基性岩从地幔深处裹挟的捕虏晶和捕虏体、 DKL( Diamondiferous Kimberlites and Lamproites)是科学限定地幔岩的成分、温度、压力、水( C—P—T—H2O)条件、地幔结构、地台演化、地表元素的循环、岩浆动力学过程等多项研究的媒介。因为含有金刚石,形成 DKL 的岩浆的深度要比一般的玄武岩和超基性岩浆起源深度上要深(140~250 km,图1a),因为其岩浆上升速度快受到上地壳岩石的混染小,没有与上地壳岩体进行有效的化学上的反应,因而没有发生对 DKL 的化学改造,它们是目前地球科学研究地幔深部最理想的宝贵的样品。因为 DKL 的科学研究价值和经济价值高[不完全统计,全球已开采的 DKL 所含金刚石的价值折合 100~1250 亿元人民币(Kjarsgaard et al.,2019); 中国蒙阴和复县金刚石矿的价值在 45~50 亿元人民币],因此全球地质学者一直都没有停止研究和寻找它们(Ault et al.,2015; Heaman et al.,2015; Willcox et al.,2015; Stern et al.,2016; Soltys et al.,2018; Giuliani et al.,2023)。 scholar. google. com 的统计显示对 DKL 的文献数量每年都在增长(图2)。笔者等简要综述全球科学家对 DKL 的发现和研究深部地质的最新成果,以推动中国在这方面研究的进展。

  • 1 DKL 形成的年代跨度大

  • 目前在全球所发现的 DKL 从元古宙到新生代的始新世(Hamblin,2015)和全新世(Brown et al.,2012),特别集中在中—新生代(图1d)。以东西伯利亚的 DK 矿田为例,有中元古代(1260 Ma),早古生代(409~344 Ma),早中生代(217 Ma)和中生代(159~149 Ma)(Ashchepkov et al.,2021)。 Garber 等(2018)研究大量的上地幔—下地壳岩层地震波的运行速度,发现在太古代地台下地幔深度有一层位是由榴辉岩和金刚石混合组成的,得出结论:在地幔深度的某一层位可能存在千万吨的金刚石。 DKL的形成年代可能比研究文献中报导的还要年轻,只要岩浆起源或穿过地幔深处的富集金刚石层,都有可能形成 DKL。

  • 图1 金刚石在地幔岩石圈的生长的 T—P 范围图( a)(据 Tuppert et al.,2011); 金刚石中的辉石包裹体( Jagers Fontein Mine)(b); 非洲的库利南矿产出了 530 ct.(ct. 克拉,1 ct. = 200 mg)蓝色金刚石(据 Smith et al.,2018)(c); 全球古老地台固结年代和 DKL 形成年代(据 Tuppert et al.,2011 修改)(d)

  • Fig.1 T—P diagram of diamond growth in the mantle lithosphere (based on Tuppert et al., 2011) (a) ; pyroxene in the diamond ( Jagers Fontein Mine) (b) ; 530 ct. of blue diamond (ct. Carat.1ct = 200 mg, Smith et al., 2018) (c) ; the consolidation age of global ancient cratons and DKL formation age (modified from Tuppert et al., 2011) (d)

  • 图2 Google. com 统计部分学者在 DKL 研究的文章数量,呈现每年都在增长

  • Fig.2 The diagram of the growing number of articles on DKL research by some scholars in the statistical section of google. com

  • 2 通过金刚石的大小、所含包裹体、表面细微结构研究地幔物理化学过程

  • 金刚石的大小、所含包裹体、表面微观结构记录了地幔物理化学条件改变过程的信息和流体事件。大的金刚石可能来自人类很少研究的下地幔(Mallik,2022)。现代显微镜技术使研究金刚石中包裹体(图1b)成为可能。蓝色含硼(B)金刚石(图1c)可能来自下地幔,也揭示了陆地和海洋元素的循环,由海洋板块俯冲到陆地之下后诱发 DKL 岩浆,B 元素是地球表面元素,在聚敛板块边部由俯冲板片带入地下深处,在地幔深处产生的 DKL 岩浆再次带到地表(Smith et al.,2018)。地幔深部发生的地质事件在金刚石的表面留下的微观结构、所含包裹体是金刚石形成初始阶段的记录。金刚石的耐磨性(即:从地幔深处上升到地表过程中不易被破坏)使得这些微观记录得以保存,科学工作者有机会通过现代技术设备来观察和分析它们,并探讨地幔深处的地质事件。金刚石包裹体中的有机成分是地表元素循环的证据(图3)。

  • 3 含金刚石的金伯利岩和含金刚石的钾镁煌斑岩都是火山岩

  • 20 世纪末,由于学术成果交流的局限,也由于中国东部被第四纪沉积物覆盖严重,许多中国学者没有在地表发现它们而只是通过岩芯才知道它们的存在,因此多数学者认为 DKL 是潜火山岩,而这类岩石在地表容易风化消失,残留的管道相和玢岩相(丁毅,2019)后又被第四纪沉积物覆盖,通过岩芯判断却又支持了这种认识。

  • 近些年的研究基本上达成统一的认识:它们都是来源深的喷出地表的火山岩,其中大多数金刚石矿的成矿母岩是金伯利岩,只有少部分的金刚石矿是钾镁煌斑岩。 DKL 在到达地表时的环境被突然释放成为减压爆发状态、冲击力强,所形成的岩体都是放大的胡萝卜(以岩脉形式出现的都是其分支),因此它们最初一定是具有火山喷发相的火山管道体。它们在地貌形态上与玛珥式火山口的形状相同(Barnett,2008; Kurszlaukis and Lorenz,2017),从岩体的剖面来看,多数 DK 为胡萝卜形状,少数的 DL 为古代酒杯形状。一些这样的火山口内外并不存在火山碎屑沉积(Lefebvre et al.,2013),负地形火山口的形成是地下的水汽向上运移受阻增压后导致地下爆炸而塌陷的结果(Valentine et al.,2014; 丁毅等,2022)。坦桑尼亚发现了保存完好的全新世金伯利岩火山口(Brown et al.,2012),加拿大的萨斯喀切温省金伯利质火山口地貌既有负地形也有正地形(Lefebvre and Kurszlaukis,2008)。 DKL 火山口在地貌上的表现差异是因为岩浆上侵时遇到地下水的量不同从而产生的喷发结果:以射汽(phreatic)为主还是以 “ 射汽—岩浆”( phreatomagmatic)为主(Lorenz et al.,2017)。

  • 图3 拉曼技术分析金刚石中包裹体的成分:(a)(b)有机成分和 H2;(c)—(f)矿物包裹体)(Smith et al.,2018

  • Fig.3 Raman spectroscopy analysis of the composition of inclusions in diamond: (a) (b) organic components and H2; (c) — (f) mineral inclusions) (Smith et al., 2018)

  • 4 全球更多 DKL 矿田的发现推动了深部地质科学的研究

  • 近 10 年全球地质学者在寻找 DKL 方面取得了许多进展:非洲安哥拉发现了多于 1000 个(Ustinov et al.,2017); 印度东南部发现了 21 个( Phani,2019); 加拿大萨斯喀切温省中部发现了 79 个金伯利岩管(Chalapathi et al.,2017); 加拿大 Nunavut 地区也发现了金伯利岩群( Grutter et al.,2017; Pell et al.,2007); 西伯利亚东部的 DKL 矿田群进一步扩大(Ashchepkov et al.,2021)和俄国(欧洲部分)的 DKL 异常区的寻找范围进一步缩小(Sablukov et al.,2021)。这些进展使得科学工作者有更多的机会和通过不一样的地幔岩石进行地幔深部更全面的研究。尤其是矿田群的发现使得科学研究的机会增多、进而数据库的分析数据增多[高达 6,500 个以上(Ashchepkov et al.,2021)],使得研究古老地台之下地幔岩石剖面成为可能。

  • 5 含金刚石的钾镁煌斑岩

  • 煌斑岩(Lamprophyre)基本不含金刚石,多数钾镁煌斑岩(Lamproite)含有金刚石,可开采的仅有少数。钾镁煌斑岩是一种罕见的中基性(~50%~60% SiO2)、MgO 相对偏低(3%~12%)、钾含量高(8%~12% K2O)的碱性岩石,起源于交代地幔岩石 [ metasomatized lithospheric mantle( Mitchell,2020)],具有研究深部地质和金刚石母岩的双重意义。每一个处于克拉通或造山带的煌斑岩省在构造环境和 Sr-Nd-Pb-Hf 同位素组成方面都有显著差异。微量元素比和同位素比指表明其来源于富集地幔,具有低 Sm / Nd、高 Rb / Sr 值、 Ba / Th 值高、 n 87Sr)/ n86Sr)值变化大、n143Nd)/ n144Nd)值较低的特点。由于每一个钾镁煌斑岩省在矿物学、地球化学演化和构造环境各不相同,因此其成因无法简单或通用的岩石成因模型来描述(Mitchell,2020)。位于澳大利亚西北部的 Argyle 钾镁煌斑岩为母岩的金刚石矿在 1983 年至 2020 年(2021 年关闭)的 37 年中产出了 8.65 亿克拉(1 克拉 = 200 mg; 8.65 亿克拉≈173 t)的金刚石,以产出彩色金刚石为特征。研究人员发现,这些有特点的金刚石在 1.3 Ga 前就已经形成,有色金刚石可能在地台不断经过置换的过程中形成的,之后是在地台裂开后由富含水的地幔衍生的钾镁煌斑岩浆带到地表的。而世界上大多数的金刚石矿都是由富含 CO2 的金伯利岩浆形成的,它们位于古老的地台内部(Olierook et al.,2023; Besl,2023)。

  • 6 DKL 中地慢捕掳体、捕掳晶(和“晶体对”)的成分

  • 限定地幔岩浆起源位置的 C—P—TPH2O 条件。 Sablukov 等( 2021) 详细研究了俄国 Nyurbinskaya,Botuobinskaya,Mayskaya Nakyn DK 矿田中 1100 多个深源捕掳体中的橄榄石、石榴子石、铬尖晶石、钛铁矿、辉石等矿物,描述了东西伯利亚金伯利质岩浆来源的地幔 C—P—TPH2O 特征。通过 DKL 研究其形成过程、地幔条件和构造作用: 钛铁矿、石榴子石族和闪石族矿物较大变化的成分代表了它们形成过程的差异性和复杂性,包括完全不同的 DK 岩浆起源深度、上侵过程的地壳岩层混染、岩浆上升速度、深大断裂性质等(Willcox et al.,2015; Stern et al.,2016; Soltys et al.,2018; Olierook et al.,2023)。通过多个 DKL 矿田的研究描述地台下地幔剖面的特征: Ashchepkov 等(2021) 研究了东西伯利亚地台中 65 个金伯利岩管(跨度大于 1000 km)中的金刚石伴生矿物后发现:西伯利亚 Craton 东部变化复杂,可以区划出不同的陆块。地壳厚度从晚泥盆纪的 250~270 km、早三叠世的 250~220 km、晚侏罗世的 130~180 km,随年代变新逐渐减薄。

  • 7 中国寻找 DKL 的现状和深部地质研究

  • 中国地质学者于 1965 年在山东的蒙阴和 1974 年在辽宁的复县发现了含金刚石的金伯利岩,取得阶段性的成果。然而在之后的 50 年中,中国在寻找 DKL 上始终没有突破,这使得中国地质学者在通过 DKL 这样的“超深钻岩芯”研究地幔深部的岩石缺少条件,进而在对华北地台的其他研究中都缺失 “根基”,对世界在这方面的研究没有更多的中国贡献。中国学者通过汉诺坝、昌乐等地区火山岩中所含的大颗粒晶体和鹤壁金伯利岩地幔捕掳体,对华北地台下的壳—慢结构、华北地台演化、岩石置换等课题进行有意义的探讨( 郑建平等,2021; Wu Fuyuan et al.,2019; 郑建平等,2018)。张宏福等(2007)利用 Ar-Ar 法确定了蒙阴和瓦房店金伯利岩体的年龄都为 O2,通过 Sr—Nd—Hf 同位素对岩浆起源深度和过程进行了研究。李曙光等(2024) 研究了深部碳循环,这项开创性的研究为世界做出了中国贡献。笔者等调查太行山岩石分布发现太古代的混合岩化岩石全部暴露在地表,鲁东南郯城县在第四纪覆盖之下的 10 m 就发现了太古代的岩石,冀东北平泉县也有大量的混合岩化岩石出露。这些深部的太古代岩石被地幔岩浆的躁动推到地表或接近地表暗示华北地台早就失去了稳定的条件。朱日祥(2020)做了长达十年的研究,认为:200 Ma 以来,华北克拉通东部岩石圈地幔的组成和性质都发生了重大改变,岩石圈的厚度由原来的 200 km 变为 60~80 km。

  • 8 发现 DKL 是深部地质研究的前提,郯城县是最有希望的地区

  • 中国研究学者在没有较好的深部研究条件下,已经做出了深部地质研究,然而我们有必要发现含金刚石的金伯利岩和含金刚石的钾镁煌斑岩从而有更好的条件,才能开展岩浆起源动力学、华北地台演化等多项研究。笔者等野外调查了几乎中国所有的 DKL 异常点和分析了有关地区的科研成果,包括河南的鹤壁(侯广顺等,2023)、新疆的巴楚(鲍佩声等,2009)、山西的应县(杨建民等,1996)、河北的涉县和平泉县、安徽的栏杆(马广玉等,2017)、江苏的新沂( 张琪等,2022)、湖北的大洪山( 杨道政,2013)、湖南的怀化和石门县(肖书阅等,2018)和贵州的施秉和镇远(向璐等,2019)等地,认为山东省临沂市的郯城县是中国寻找 DKL 最有可能突破的地区。华北地台虽然遭到减薄破坏失去了金刚石的生长条件,然而金刚石的生长期较长( Smit and Shirey,2019),研究表明西伯利亚东部地台遭到破坏和减薄分成多个陆块,但是西伯利亚东部多个 DKL 矿田的发现证明这一地区是全球最富集 DKL 的地区。西伯利亚东部的多个金刚石矿体的开采和大量的研究虽然该地台遭到破坏,但是多个含金刚石的金伯利岩矿田的存在暗示着金刚石在地台遭到破坏之前就已经形成,中国的郯城县出土的多颗大颗粒金刚石有可能是在华北地台遭到减薄之前就已经形成了,华北地台中的郯城县是在中国寻找 DKL 最有可能突破的地区(丁毅等,2020)。郯城县出土的多颗大颗粒金刚石的边缘没有任何第四纪磨蚀的痕迹,判断他们不可能来自 100 km 之外的蒙阴金刚石矿体,有极大可能是原地火山爆发冲到地表的。

  • 9 沿搬运媒介追踪 KIM 仍然是寻找 DKL 的主要手段

  • 沿溪流等媒介追踪 DK 的指示矿物 KIM [Kimberlite Indicating Mineral,KIM(丁毅等,2019)和 DL 中所含的闪石类矿物 Mitchell(2020)] 是全球寻找 DKL 的主要方法。 KIM 与金刚石共生、种类多、量大,火山喷发时(图4a、b)它们要比金刚石扩散广。我们需要从发现一颗 KIM 追踪到数颗 KIM,直至追踪到某一地点获取的重沙样中,发现量大且种类全的 KIM(图4(c、d)),那么这最终的地点就基本上锁定了隐伏 DKL 的位置(Fipke et al.,1995; Cookenboo et al.,2007; Tom et al.,2007; McClenaghan et al.,2005)。

  • 冰川是一种搬运的媒介,冰碛是冰川搬运和沉积过程的产物,它是一种未经分选的沉积混合物,KIM 混杂在其中(如在加拿大山区和北极冻土地区)。其他搬运媒介还有:河流、溪流、紊流汇集到湖泊等。

  • 中国的地势西高东低,形成了中国东部普遍被第四纪沉积物覆盖(图4b)给寻找 DKL 增加了难度。有些地区没有溪流和其它搬运 KIM 的媒介,无法用传统的办法追踪隐伏 DKL 体。在全国各个 DKL 异常点进行野外调查后认为:湖南和湖北多地有金刚石出土,水系发达适合指示矿物的追踪,但是第四纪覆盖厚度超过 120 m,20 世纪湖南 413 队发现的 26 个含有 KIM 的层位都是白垩纪地层,这就意味着可能的 DKL 全都被第四纪沉积物覆盖了。目前来讲,在湖北和湖南寻找 DKL 难度非常大。笔者等调查了河北省平泉县,发现这里的溪流丰富最适合于追踪 KIM,但是该地区缺少指示矿物和金刚石发现的线索。内蒙古中部的第四纪覆盖薄,但是 DKL 的综合指标不强(综合指标是一个地区 DKL 存在的多种必要条件的总和:太古宙地台内+深大断裂穿过+有明确的 KIM 发现+有火山活动)。郯城县缺失溪流无法用传统的追踪方法进行 KIM 的追踪,但是该地区是中国 DKL 的综合指标最强的地区(华北地台内+郯庐断裂穿过地区+有大颗粒金刚石出土+有火山活动),这一地区是在中国寻找 DKL 最有可能突破的地区。但是,这一地区缺少丰富的水系,如何设计一个针对这一地区地质条件有效率的追踪方法是笔者等近 4 年在郯城地区工作中始终思索的问题。实际上这是一个对 DKL 是玛珥式小型火山爆发形成理论的理解、转化为寻找 DKL 实践的难点和关键问题。

  • 10 结束语

  • 2024 年 7 月在加拿大黄刀镇举办了第 12 届全球金伯利岩大会,参加会议的 252 位科学家来自全球 21 个国家,39%论文是通过 DKL[含金刚石的金伯利岩(Diamondiferous Kimberlites,DK)和含金刚石的钾镁煌斑岩(Diamondiferous Lamproites,DL)] 所发现的矿物(金刚石)中的包裹体来研究地幔所经历的热流过程。在加拿大的 6 个省、非洲的安哥拉、俄国的东西伯利亚和印度的东南部都发现了新的 DKL 矿田。中国近 50 年在发现 DKL 始终没有大的突破,更无法谈及通过所含深部结晶的矿物中的包裹体来研究深部地质过程,这对我们许多地表所见岩石成因与分布、矿床成因、地貌、构造等缺少比较深刻的认识。科学认识是一代又一代人不断积累的,作者期待中国科学工作者在未来有所突破。

  • 图4 (a)(b)DKL 火山在 123 Ma 前爆发示意图,DKL 现在被第四纪沉积物覆盖成了隐伏岩体;( c)追踪加拿大 Chilliak DKL 隐伏岩体地形图(Grutter et al.,2017);(d)追踪 Kayuu DKL 隐伏岩体地形图(Pell et al.,2007)。其中圆圈的大小代表 KIM 的数量、圆圈内不同颜色代表 KIM 的种类、箭头表示追踪路线

  • Fig.4 (a) (b) DKL volcano erupted 123 Ma ago, and now covered by Quaternary sediments as a hidden igneous rock; (c) the topographic map, tracing KIM of the Chilliak DKL hidden igneous rock in Canada (Grutter et al., 2017) ; ( d) the topographic map (Pell et al., 2007) , tracing KIM of Kayuu DKL hidden igneous rock, in which the size of the circle represents the number of KIMs, the different colors inside the circle represent the types of KIMs, and the arrows represent the tracking route

  • 致谢:感谢编辑认真和细致的修改、补充意见。本文第一作者在 20 世纪 80 年代在中国地质科学院地质研究所火山岩室工作,在此表示对导师李兆鼐先生的怀念,及对其他同事的思念。

  • 参考文献

    • 鲍佩声, 苏犁, 翟庆国, 肖序常. 2009. 新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究. 地质学报, 83 (9): 1276~1301.

    • 丁毅, 吴文盛, 侯征, 陈雄, 吴云霞. 2020. 寻找金刚石矿的地质经济学. 地质论评, 66(6): 1531~1535.

    • 丁毅, 吴文盛, 刘文卓, 侯征, 任小华, 唐宗源. 2022. 内蒙古辉腾锡勒玛珥式火山口群特征与成因. 地质学报, 96(4): 1215~1224. DOI: 10. 19762 / j. cnki. dizhixuebao. 2021250.

    • 丁毅, 杨献忠. 2019. 沉积物中重矿物 KIM 的找矿方法和意义. 地质找矿论丛, 34(3): 453~459. DOI: 10. 16509 / j. issn. 1001~1412. 2019. 03. 016.

    • 丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65 (5): 1269~1275.

    • 侯广顺, 张艳林, 姜江, 闫鑫洁, 齐永安, 向世红, 李英杰. 2023. 河南鹤壁地区地幔捕虏体中铁质小球特征及其成因探讨. 河南理工大学学报(自然科学版), 42(2): 49~54.

    • 李曙光, 汪洋, 刘盛遨. 2024. 大地幔楔的两个深部碳循环圈: 差异及宜居效应. 地学前缘: 1~15. DOI: 10. 13745 / j. esf. sf. 2023. 10. 7

    • 马广玉、周世文. 2017. 安徽宿州栏杆-褚栏地区金刚石成矿地质特征及成因. 华东地质, 38(增刊): 4~6.

    • 向璐, 郑建平, 黄远成, 李永刚. 2019. 贵州镇远马坪金伯利岩及其捕虏晶对金刚石成矿条件的指示意义. 地质通报, 38(1): 177~188.

    • 肖书阅, 向华, 曾文辉, 罗大富, 李帅. 2018. 湖南省沅水流域金刚石原生矿成矿地质条件及找矿思路探讨. 国土资源导刊, 15 (1): 22~26.

    • 杨道政. 2013. 湖北省大洪山重沙金刚石异常源的启示. 资源环境与工程, 27(3): 335~338.

    • 杨建民, 秦淑英, 黄蕴慧, 李兴海, 张利秀. 1996. 晋北金伯利岩的地球化学. 矿床地质, 15(S1): 19~23.

    • 张宏福, 杨岳衡. 2007. 华北克拉通东部含金刚石金伯利岩的侵位年龄和 Sr-Nd-Hf 同位素地球化学特征. 岩石学报. 23 (2): 285~294.

    • 张琪, 周琦忠, 王博, 王国强, 冯学知, 罗跃. 2022. 苏北原生金刚石找矿现存问题探讨. 中国地质调查, 9(5): 79~88. DOI: 10. 19388 / j. zgdzdc. 2022. 05. 09.

    • 郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48(4): 436~456.

    • 郑建平, 夏冰, 戴宏坤, 马强. 2021. 地球物理观察和岩石包体约束华北岩石圈地幔结构、性质及过程. 中国科学: 地球科学, 51 (2): 201~217.

    • 朱日祥. 2020. 华北克拉通破坏: 藏于大地深处的故事. 科学世界, (9): 82~85.

    • Ashchepkov I V, Vladykin N V, Ivanov A, Babushkina S, Vavilov M and Medvedev N. 2021. Problems of Mantle Structure and Compositions of Various Terranes of Siberian Craton. In: Vladykin N. ed. Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences, Switzerland AG: 5~48.

    • Ault A K, Flowers R M, Bowring, S A. 2015. Synchronicity of cratonic burial phases and gaps in the kimberlite record: episodic magmatism or preservational bias? Earth and Planetary Science Letters, 410: 97~104.

    • Barnett W P. 2008. The rock mechanics of kimberlite volcanic pipe excavation. Journal of Volcanology and Geothermal Research, 174: 29~39.

    • Besl J. 2023. Continental breakup shot pink diamonds to Earth ' s surface. EOS, 104. DOI: 10. 1029 / 2023EO230401

    • Brown R J, Manya S, Buisman I, Fontana G, Field M, MacNiocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: Physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth ( the Upper Pleistocene / Holocene Igwisi Hills volcanoes, Tanzania ). Bulletin of Volcanology, 74 (1621): 1643.

    • Chalapathi Rao N V, Lehmann B, Belyatsky B, Warnsloh J M. 2017. The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne ( FALC) field, Saskatchewan Craton, Canada: Petrology, geochemistry, and genesis. Gondwana Research, 44: 236~257. DOI: 10. 1016 / j. gr. 2016. 12. 013

    • Cookenboo H O, Grütter H. 2007. Mantle-Derived Indicator Mineral Compositions as Applied to Diamond Exploration[C]. In: Milkereit B. ed. Proceedings of Exploration: Fifth Decennial International Conference on Mineral Exploration: 183~200.

    • Ding Yi, Wu Wensheng, Liu Wenzhuo, Hou Zheng, Ren Xiaohua, Tang Zongyuan. 2022&. Characteristics and genesis of Maar craters in Huitengxile, Inner Mongolia. Acta Geologica Sinica, 96(4): 1215~1224.

    • Ding Yi, Wu Wensheng, Hou Zheng, Chen Xiong, Wu Yunxia. 2020&. Geo-economics of prospecting diamondiferous kimberlites. Geological Review, 66(6): 1531~1535.

    • Ding Yi, Yang Xianzhong. 2019&. KIM methods of heavy minerals in sediments and the significances to mineral resource prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459.

    • Ding Yi. 2019&. The understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65 (5): 1269~1275.

    • Fipke C E, Gurney J J, Moore R O. 1995. Diamond exploration techniques emphasizing indicator mineral geochemistry and Canadian examples. Geological Survey of Canada, Bulletin, 423: 86.

    • Garber J M, Maurya S, Hernandez J A, Duncan M S, Zeng Li, Zhang Hongluo, Faul U, McCammon C, Montagner J, Moresi L, Romanowicz B A, Rudnick R L, Stixrude L. 2018. Multidisciplinary constraints on the abundance of diamond and eclogitic in the cratonic lithosphere. Geochemistry, Geophysics, Geosystems, 19(7): 2062~2086.

    • Giuliani A, Schmidt M W, Torsvik T H, Fedortchouk Y. 2023. Genesis and evolution of kimberlites. Nature Reviews Earth & Environment, (4): 738~753.

    • Grutter H S, Fitzgerald C, Pell J. 2017. Tracing kimberlitic indicators to their kimberlite source at Chidliak, Nunavut, Canada: The unexpected accuracy of a simplified Mahalanobis - distance approach. Extended Abstract, in the 11th International Kimberlite Conference. Gaborone, Botswanna.

    • Hamblin A P. 2015. An Eocene Post-kimberlite Maar Lake: Lacustrine Oil - shale Crater-fill Deposits, Lacde gras area, Northwest Territories, Canada. Geological Survey of Canada, Open File Report 7809.

    • Heaman L M, Pell J, Grütter H S, Creaser R A. 2015. U-Pb geochronology and Sr/ Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth and Planetary Science Letters, 415: 183~199.

    • Hou Guangshun, Zhang Yanlin, Jiang Jiang, Yan Xinjie, Qi Yongan, Xiang Shihong, Li Yingjie. 2023&. Characters and genesis discussion on ferric small-balls in mantle xenoliths from Hebi kimberlite. Journal of Henan Polytechnic University ( Natural Science), 42(2): 49~54.

    • Kjarsgaard B A, Januszczak N, Stiefenhofer J. 2019. Diamond Exploration and Resource Evaluation of Kimberlites. Elements, 15 (6): 411~416.

    • Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 101~122.

    • Lefebvre N S, Kurszlaukis S. 2008. Contrasting eruption styles of the 147 kimberlites, Fort a la Corne, Saskatchewan, Canada. Journal of Volcanology and Geothermal Research, 174(1~3): 171~185.

    • Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.

    • Li Shuguang, Wang Yang, Liu Shenao. 2024&. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability. Earth Science Frontiers, 31(1): 15~27

    • Lorenz V, Suhr R, Suhr S. 2017. Phreatomagmatic maar-diatreme volcanoes and their incremental growth: A model. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 29~59.

    • Mallik A. 2022. Diamonds as windows to deep Earth. Nat. Geosci. , 15: 866. DOI: 10. 1038 / s41561-022-01064-4

    • McClenaghan M B. 2005. Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5 (3): 233~245. DOI: 10. 1144 / 1467-7873 / 03-066

    • Mitchell R H. 2020. Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: A review of their nomenclature, characterization and origins. Geoscience Canada: Journal of the Geological Association of Canada, 47: 119~142. DOI: 10. 12789 / geocanj.

    • Olierook H K, Fougerouse D, Doucet L S, Liu Y, Rayner M J, Danik M, Condon D J, McInnes B I, Jaques A L, Evans N J, McDonald B J, Li Z, Kirkland C L, Mayers C, Wingate M T. 2023. Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup. Nature Communications, 14 (1): 1~10. DOI: 10. 1038 / s41467-023-40904-8

    • Phani R. 2019. Restoring the past glory of diamond mining in south India- -A plausible case of diamondiferous Wajrakarur kimberlite pipe clusters with geochemical evidences. International Journal of Mining and Geological Engineering, 53(2): 11.

    • Pell J, Holmes P K, Grenon H, Sell M V, Tam L. 2007. Exploration and discovery of a new kimberlite cluster on the Nanuq Property, Western Churchill Province, Kivalliq area, Nunavut. Extended Abstracts in the 9th International Kimberlite Conference, Frankfurt, Germany.

    • Sablukov S M, Sublukova L I, Belov A V, Ermakov N S and Leshukov S I. 2021. Ustyansky Diamondiferous Region in the Central Part of the Russian Platform. In: Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences: 231~262.

    • Smit K V and Shirey S B. 2019. Diamonds from the deep: How old are diamonds? Are they forever? Gems & Gemology, 55 (1): 102~109.

    • Smith E M, Shirey S B, Richardson S H. Nestola F, Bullock E S, Wang Jianhua, Wang Wuyi. 2018. Blue boron-bearing diamonds from Earth's lower mantle. Nature, 560: 84~87. DOI: 10. 1038 / s41586-018-0334-5

    • Soltys A, Giuliani A, Phillips D. 2018. Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineralogy and Petrology, 112(1): 503~518. DOI: 10. 1007 / s00710-018-0588-5

    • Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44(10): 799~802. DOI: 10. 1130 / g38024. 1

    • Tom E N, Moore R O, Gurney JJ, Baumgartner M C. 2007. Diamonds and Associated Heavy Minerals in Kimberlite: A Review of Key Concepts and Applications, Developments in Sedimentology [ C], 58: 1235~1267.

    • Tuppert R, Tuppert M C. 2011. Diamonds in Nature. A Guide to Rough Diamonds. Heidelberg: Springer.

    • Ustinov V, Feijo A, Zagainy A, Mityukhin S, Tunga F, Mikoev I, Stegnitskyi Y, Lobkova L, Nikolaeva E. 2017. Kimberlite fields of Angola: Structural control and diamond presence. The 11th International Kimberlite Conference Extended Abstract: 4593.

    • Valentine G A, Graettinge R A E, Sonder I. 2014. Explosion depths for phreatomagmatic eruptions. Geophysical Research Letters, 41: 3045~3051. DOI: 10. 1002 / 2014GL060096

    • Willcox A, Buisman I, Sparks R S J, Brown R J, Manya S, Schumacher J C, Tuffen H. 2015. Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the kimberlitic Igwisi Hills volcanoes, Tanzania. Chemical Geology, 405: 82~101.

    • Wu Fuyuan, Yang Jinhui, Xu Yigang, Wilde S, Walker R J. 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173~195.

    • Xiao Shuyue, Xiang Hua, Zeng Wenhui, Luo Dafu, Li Shuai. 2018&. Discussion on metallogenic geological conditions and prospecting ideas of primary diamond deposits in the Yuanshui Drainage Basin of Hunan. Land & Resources Herald, 15(1): 22~26.

    • Xiang Lu, Zheng Jianping, Huang Yuancheng, Li Yonggang. 2019: The Mapping kimberlites and its xenocrysts as indicators of diamond minerogenetic condition in Zhenyuan area, Guizhou Province. Geological Bulletin of China, 38(1): 177~188.

    • Yang Daozheng. 2013&. Enlightment of the source of diamond anomly of Dahongshan region, Hubie Provice. Resources Environment & Engineering, 27(3): 335~338.

    • Yang Jianming, Qin Shuying, Huang Yunhui, Li Xinghai, Zhang Lixiu. 1996 #. Geochemistry of kimberlite in northern Shanxi. Mineral Deposits, 15(supp. ): 19~23.

    • Zhang Hongfu, Yang Yueheng. 2007&. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica, 23(2): 285~294.

    • Zhang Qi, Zhou Qizhong, Wang Bo. 2022&. The discussion of primary diamonds exploration in northern Jiangsu Provices. Geological Survey of China, 9(5): 79~88.

    • Zheng Jianping, Dai Hongkun. 2018&. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China (Earth Sciences), 61: 406~424. DOI: 10. 1007 / s11430- 017-9166-8

    • Zheng Jianping, Xia Bing, Dai Hongkun, Ma Qiang. 2021&. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Science China (Earth Sciences), 64(2): 205~219. DOI: 10. 1007 / s11430 - 020-9682-5

    • Zhu Rixiang. 2020 #. Destruction of the North China Craton: A story hidden deep in the Earth. Science World, (9): 82~85

  • 参考文献

    • 鲍佩声, 苏犁, 翟庆国, 肖序常. 2009. 新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究. 地质学报, 83 (9): 1276~1301.

    • 丁毅, 吴文盛, 侯征, 陈雄, 吴云霞. 2020. 寻找金刚石矿的地质经济学. 地质论评, 66(6): 1531~1535.

    • 丁毅, 吴文盛, 刘文卓, 侯征, 任小华, 唐宗源. 2022. 内蒙古辉腾锡勒玛珥式火山口群特征与成因. 地质学报, 96(4): 1215~1224. DOI: 10. 19762 / j. cnki. dizhixuebao. 2021250.

    • 丁毅, 杨献忠. 2019. 沉积物中重矿物 KIM 的找矿方法和意义. 地质找矿论丛, 34(3): 453~459. DOI: 10. 16509 / j. issn. 1001~1412. 2019. 03. 016.

    • 丁毅. 2019. 金伯利质岩管的认识及其找矿意义. 地质论评, 65 (5): 1269~1275.

    • 侯广顺, 张艳林, 姜江, 闫鑫洁, 齐永安, 向世红, 李英杰. 2023. 河南鹤壁地区地幔捕虏体中铁质小球特征及其成因探讨. 河南理工大学学报(自然科学版), 42(2): 49~54.

    • 李曙光, 汪洋, 刘盛遨. 2024. 大地幔楔的两个深部碳循环圈: 差异及宜居效应. 地学前缘: 1~15. DOI: 10. 13745 / j. esf. sf. 2023. 10. 7

    • 马广玉、周世文. 2017. 安徽宿州栏杆-褚栏地区金刚石成矿地质特征及成因. 华东地质, 38(增刊): 4~6.

    • 向璐, 郑建平, 黄远成, 李永刚. 2019. 贵州镇远马坪金伯利岩及其捕虏晶对金刚石成矿条件的指示意义. 地质通报, 38(1): 177~188.

    • 肖书阅, 向华, 曾文辉, 罗大富, 李帅. 2018. 湖南省沅水流域金刚石原生矿成矿地质条件及找矿思路探讨. 国土资源导刊, 15 (1): 22~26.

    • 杨道政. 2013. 湖北省大洪山重沙金刚石异常源的启示. 资源环境与工程, 27(3): 335~338.

    • 杨建民, 秦淑英, 黄蕴慧, 李兴海, 张利秀. 1996. 晋北金伯利岩的地球化学. 矿床地质, 15(S1): 19~23.

    • 张宏福, 杨岳衡. 2007. 华北克拉通东部含金刚石金伯利岩的侵位年龄和 Sr-Nd-Hf 同位素地球化学特征. 岩石学报. 23 (2): 285~294.

    • 张琪, 周琦忠, 王博, 王国强, 冯学知, 罗跃. 2022. 苏北原生金刚石找矿现存问题探讨. 中国地质调查, 9(5): 79~88. DOI: 10. 19388 / j. zgdzdc. 2022. 05. 09.

    • 郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合. 中国科学: 地球科学, 48(4): 436~456.

    • 郑建平, 夏冰, 戴宏坤, 马强. 2021. 地球物理观察和岩石包体约束华北岩石圈地幔结构、性质及过程. 中国科学: 地球科学, 51 (2): 201~217.

    • 朱日祥. 2020. 华北克拉通破坏: 藏于大地深处的故事. 科学世界, (9): 82~85.

    • Ashchepkov I V, Vladykin N V, Ivanov A, Babushkina S, Vavilov M and Medvedev N. 2021. Problems of Mantle Structure and Compositions of Various Terranes of Siberian Craton. In: Vladykin N. ed. Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences, Switzerland AG: 5~48.

    • Ault A K, Flowers R M, Bowring, S A. 2015. Synchronicity of cratonic burial phases and gaps in the kimberlite record: episodic magmatism or preservational bias? Earth and Planetary Science Letters, 410: 97~104.

    • Barnett W P. 2008. The rock mechanics of kimberlite volcanic pipe excavation. Journal of Volcanology and Geothermal Research, 174: 29~39.

    • Besl J. 2023. Continental breakup shot pink diamonds to Earth ' s surface. EOS, 104. DOI: 10. 1029 / 2023EO230401

    • Brown R J, Manya S, Buisman I, Fontana G, Field M, MacNiocaill C, Sparks R S J, Stuart F M. 2012. Eruption of kimberlite magmas: Physical volcanology, geomorphology and age of the youngest kimberlitic volcanoes known on earth ( the Upper Pleistocene / Holocene Igwisi Hills volcanoes, Tanzania ). Bulletin of Volcanology, 74 (1621): 1643.

    • Chalapathi Rao N V, Lehmann B, Belyatsky B, Warnsloh J M. 2017. The Late Cretaceous diamondiferous pyroclastic kimberlites from the Fort à la Corne ( FALC) field, Saskatchewan Craton, Canada: Petrology, geochemistry, and genesis. Gondwana Research, 44: 236~257. DOI: 10. 1016 / j. gr. 2016. 12. 013

    • Cookenboo H O, Grütter H. 2007. Mantle-Derived Indicator Mineral Compositions as Applied to Diamond Exploration[C]. In: Milkereit B. ed. Proceedings of Exploration: Fifth Decennial International Conference on Mineral Exploration: 183~200.

    • Ding Yi, Wu Wensheng, Liu Wenzhuo, Hou Zheng, Ren Xiaohua, Tang Zongyuan. 2022&. Characteristics and genesis of Maar craters in Huitengxile, Inner Mongolia. Acta Geologica Sinica, 96(4): 1215~1224.

    • Ding Yi, Wu Wensheng, Hou Zheng, Chen Xiong, Wu Yunxia. 2020&. Geo-economics of prospecting diamondiferous kimberlites. Geological Review, 66(6): 1531~1535.

    • Ding Yi, Yang Xianzhong. 2019&. KIM methods of heavy minerals in sediments and the significances to mineral resource prospecting. Contributions to Geology and Mineral Resources Research, 34(3): 453~459.

    • Ding Yi. 2019&. The understanding of kimberlite pipes and its significance in prospecting. Geological Review, 65 (5): 1269~1275.

    • Fipke C E, Gurney J J, Moore R O. 1995. Diamond exploration techniques emphasizing indicator mineral geochemistry and Canadian examples. Geological Survey of Canada, Bulletin, 423: 86.

    • Garber J M, Maurya S, Hernandez J A, Duncan M S, Zeng Li, Zhang Hongluo, Faul U, McCammon C, Montagner J, Moresi L, Romanowicz B A, Rudnick R L, Stixrude L. 2018. Multidisciplinary constraints on the abundance of diamond and eclogitic in the cratonic lithosphere. Geochemistry, Geophysics, Geosystems, 19(7): 2062~2086.

    • Giuliani A, Schmidt M W, Torsvik T H, Fedortchouk Y. 2023. Genesis and evolution of kimberlites. Nature Reviews Earth & Environment, (4): 738~753.

    • Grutter H S, Fitzgerald C, Pell J. 2017. Tracing kimberlitic indicators to their kimberlite source at Chidliak, Nunavut, Canada: The unexpected accuracy of a simplified Mahalanobis - distance approach. Extended Abstract, in the 11th International Kimberlite Conference. Gaborone, Botswanna.

    • Hamblin A P. 2015. An Eocene Post-kimberlite Maar Lake: Lacustrine Oil - shale Crater-fill Deposits, Lacde gras area, Northwest Territories, Canada. Geological Survey of Canada, Open File Report 7809.

    • Heaman L M, Pell J, Grütter H S, Creaser R A. 2015. U-Pb geochronology and Sr/ Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth and Planetary Science Letters, 415: 183~199.

    • Hou Guangshun, Zhang Yanlin, Jiang Jiang, Yan Xinjie, Qi Yongan, Xiang Shihong, Li Yingjie. 2023&. Characters and genesis discussion on ferric small-balls in mantle xenoliths from Hebi kimberlite. Journal of Henan Polytechnic University ( Natural Science), 42(2): 49~54.

    • Kjarsgaard B A, Januszczak N, Stiefenhofer J. 2019. Diamond Exploration and Resource Evaluation of Kimberlites. Elements, 15 (6): 411~416.

    • Kurszlaukis S, Lorenz V. 2017. Differences and similarities between emplacement models of kimberlite and basaltic maar-diatreme volcanoes. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 101~122.

    • Lefebvre N S, Kurszlaukis S. 2008. Contrasting eruption styles of the 147 kimberlites, Fort a la Corne, Saskatchewan, Canada. Journal of Volcanology and Geothermal Research, 174(1~3): 171~185.

    • Lefebvre N S, White J D L, Kjarsgaard B A. 2013. Unbedded diatreme deposits reveal maar diatreme-forming eruptive processes standing rocks, West, Hopi Buttes, Navajo Nation, USA. Bulletin of Volcanology, 75: 1~17.

    • Li Shuguang, Wang Yang, Liu Shenao. 2024&. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability. Earth Science Frontiers, 31(1): 15~27

    • Lorenz V, Suhr R, Suhr S. 2017. Phreatomagmatic maar-diatreme volcanoes and their incremental growth: A model. In: Németh K, Carrasco-Nunez G, Aranda-Gomez J J et al. eds. Monogenetic Volcanism, Geological Society, London, Special Publication, 446: 29~59.

    • Mallik A. 2022. Diamonds as windows to deep Earth. Nat. Geosci. , 15: 866. DOI: 10. 1038 / s41561-022-01064-4

    • McClenaghan M B. 2005. Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, 5 (3): 233~245. DOI: 10. 1144 / 1467-7873 / 03-066

    • Mitchell R H. 2020. Igneous rock associations 26. Lamproites, exotic potassic alkaline rocks: A review of their nomenclature, characterization and origins. Geoscience Canada: Journal of the Geological Association of Canada, 47: 119~142. DOI: 10. 12789 / geocanj.

    • Olierook H K, Fougerouse D, Doucet L S, Liu Y, Rayner M J, Danik M, Condon D J, McInnes B I, Jaques A L, Evans N J, McDonald B J, Li Z, Kirkland C L, Mayers C, Wingate M T. 2023. Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup. Nature Communications, 14 (1): 1~10. DOI: 10. 1038 / s41467-023-40904-8

    • Phani R. 2019. Restoring the past glory of diamond mining in south India- -A plausible case of diamondiferous Wajrakarur kimberlite pipe clusters with geochemical evidences. International Journal of Mining and Geological Engineering, 53(2): 11.

    • Pell J, Holmes P K, Grenon H, Sell M V, Tam L. 2007. Exploration and discovery of a new kimberlite cluster on the Nanuq Property, Western Churchill Province, Kivalliq area, Nunavut. Extended Abstracts in the 9th International Kimberlite Conference, Frankfurt, Germany.

    • Sablukov S M, Sublukova L I, Belov A V, Ermakov N S and Leshukov S I. 2021. Ustyansky Diamondiferous Region in the Central Part of the Russian Platform. In: Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences: 231~262.

    • Smit K V and Shirey S B. 2019. Diamonds from the deep: How old are diamonds? Are they forever? Gems & Gemology, 55 (1): 102~109.

    • Smith E M, Shirey S B, Richardson S H. Nestola F, Bullock E S, Wang Jianhua, Wang Wuyi. 2018. Blue boron-bearing diamonds from Earth's lower mantle. Nature, 560: 84~87. DOI: 10. 1038 / s41586-018-0334-5

    • Soltys A, Giuliani A, Phillips D. 2018. Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineralogy and Petrology, 112(1): 503~518. DOI: 10. 1007 / s00710-018-0588-5

    • Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44(10): 799~802. DOI: 10. 1130 / g38024. 1

    • Tom E N, Moore R O, Gurney JJ, Baumgartner M C. 2007. Diamonds and Associated Heavy Minerals in Kimberlite: A Review of Key Concepts and Applications, Developments in Sedimentology [ C], 58: 1235~1267.

    • Tuppert R, Tuppert M C. 2011. Diamonds in Nature. A Guide to Rough Diamonds. Heidelberg: Springer.

    • Ustinov V, Feijo A, Zagainy A, Mityukhin S, Tunga F, Mikoev I, Stegnitskyi Y, Lobkova L, Nikolaeva E. 2017. Kimberlite fields of Angola: Structural control and diamond presence. The 11th International Kimberlite Conference Extended Abstract: 4593.

    • Valentine G A, Graettinge R A E, Sonder I. 2014. Explosion depths for phreatomagmatic eruptions. Geophysical Research Letters, 41: 3045~3051. DOI: 10. 1002 / 2014GL060096

    • Willcox A, Buisman I, Sparks R S J, Brown R J, Manya S, Schumacher J C, Tuffen H. 2015. Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the kimberlitic Igwisi Hills volcanoes, Tanzania. Chemical Geology, 405: 82~101.

    • Wu Fuyuan, Yang Jinhui, Xu Yigang, Wilde S, Walker R J. 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47: 173~195.

    • Xiao Shuyue, Xiang Hua, Zeng Wenhui, Luo Dafu, Li Shuai. 2018&. Discussion on metallogenic geological conditions and prospecting ideas of primary diamond deposits in the Yuanshui Drainage Basin of Hunan. Land & Resources Herald, 15(1): 22~26.

    • Xiang Lu, Zheng Jianping, Huang Yuancheng, Li Yonggang. 2019: The Mapping kimberlites and its xenocrysts as indicators of diamond minerogenetic condition in Zhenyuan area, Guizhou Province. Geological Bulletin of China, 38(1): 177~188.

    • Yang Daozheng. 2013&. Enlightment of the source of diamond anomly of Dahongshan region, Hubie Provice. Resources Environment & Engineering, 27(3): 335~338.

    • Yang Jianming, Qin Shuying, Huang Yunhui, Li Xinghai, Zhang Lixiu. 1996 #. Geochemistry of kimberlite in northern Shanxi. Mineral Deposits, 15(supp. ): 19~23.

    • Zhang Hongfu, Yang Yueheng. 2007&. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica, 23(2): 285~294.

    • Zhang Qi, Zhou Qizhong, Wang Bo. 2022&. The discussion of primary diamonds exploration in northern Jiangsu Provices. Geological Survey of China, 9(5): 79~88.

    • Zheng Jianping, Dai Hongkun. 2018&. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Science China (Earth Sciences), 61: 406~424. DOI: 10. 1007 / s11430- 017-9166-8

    • Zheng Jianping, Xia Bing, Dai Hongkun, Ma Qiang. 2021&. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Science China (Earth Sciences), 64(2): 205~219. DOI: 10. 1007 / s11430 - 020-9682-5

    • Zhu Rixiang. 2020 #. Destruction of the North China Craton: A story hidden deep in the Earth. Science World, (9): 82~85