en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

闫涵,女,2000年生,硕士研究生,地质学专业;E-mail: yanhan4094@stu.ouc.edu.cn。

通讯作者:

李玺瑶,男,1987年生,博士,副教授,主要从事火成岩岩石学和岩浆动力学研究;E-mail: lixiyao@ouc.edu.cn。

参考文献
丁毅, 孙继明, 吴云霞. 2022. 破火山口研究述评. 地质论评, 68 (5): 1969~1979.
参考文献
樊祺诚, 隋建立, 李霓, 孙谦, 徐义刚. 2007. 长白山天池火山双岩浆房岩浆作用与互动式喷发. 矿物岩石地球化学通报, (4): 315~318.
参考文献
戈红星, Martin P A J, Bruno C V. 2003. 破火山口塌陷构造的物理模拟研究. 南京大学学报(自然科学版), 39(3): 309~318.
参考文献
郭可欣, 刘永顺, 聂保锋, 郭磊, 张辉, 黄志聪, 侯鹏, 李耀. 2024. 镜泊湖地区杏山火山群的火山岩特征及其岩浆演化. 地质论评. 70(1): 137~154.
参考文献
郭正府, 李晓惠, 张茂亮. 2010. 火山活动与深部碳循环的关系. 第四纪研究, 30(3): 497~505.
参考文献
郭正府, 孙玉涛, 赵文斌. 2019. 玛珥湖温室气体释放: 以长白山火山区为例. 中国矿物岩石地球化学学会, 中国矿物岩石地球化学学会第 17 届学术年会论文摘要集: 1181~1182.
参考文献
郭磊, 刘永顺, 聂保锋, 黄志聪, 侯鹏, 李耀, 郭可欣. 2022. 黑龙江镜泊湖地区蛤蟆塘火山空落堆积物形成机制研究. 地质论评, 68(5): 1980~1995.
参考文献
李海丰, 刘欢, 许建华, 龚鹏宇, 管亚伦, 陈新, 周晨光, 潘俊尧, 郑国利, 崔青雯, 刘佳琪. 2021. 塔里木盆地马纳力克破火山口地质特征、演化及其石油地质意义. 2021 油气田勘探与开发国际会议论文集(下册): 749~756.
参考文献
李坤白, 吕海涛, 蒲仁海, 曹自成, 徐鹏晔. 2017. 塔里木盆地顺南地区火山口地震勘探方法及其与油气关系. 地质科技情报, 36 (5): 249~255.
参考文献
李晓敏, 田伟, 弓明月, 王磊, 刘平平, 何衍鑫. 2022. 塔里木东河塘二叠纪破火山口的三维地震解释与形成机制研究. 矿物岩石地球化学通报, 41(4): 747~758+693~694.
参考文献
李忠海, 杨舒婷, 刘明启, 皇甫鹏鹏. 2019. 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44(12): 3984~3992.
参考文献
刘嘉麒, Negendank J. F. W. , 王文远, 储国强, Mingram J. , 郭正府, 骆祥君, 陈锐, 刘东生. 2000. 中国玛珥湖的时空分布与地质特征. 第四纪研究, 20(1): 78~86.
参考文献
刘嘉麒, 陈双双, 郭文峰, 孙春青, 张茂亮, 郭正府. 2015. 长白山火山研究进展. 矿物岩石地球化学通报, 34(4): 710~723.
参考文献
刘嘉麒, 吴成桥, 张斌, 孙智浩, 朱泽阳, 许立青, 张蕾, 叶张煌, 郭正府. 2024. 新疆“木吉火山群”的属性与特征. 地质学报, 98(6): 1637~1648.
参考文献
刘若新, 樊祺诚, 魏海泉, 李霓. 1999. 中国活火山研究. 地质论评, 45(S1): 3~15.
参考文献
刘永顺, 聂保锋, 孙善平, 穆大卫, 史延升. 2007. 长白山天池火山气象站期晚期碱流质熔岩的岩石学研究. 现代地质. 21(2): 296~306.
参考文献
刘永顺, 聂保锋, 彭年. 2011. 中国物理火山学研究进展评述. 矿物岩石地球化学通报, 30(4): 375~381.
参考文献
潘波, 樊祺诚, 许建东, 武成智, 陈正全, 郭峰. 2017. 长白山天池火山千年大喷发的岩浆过程. 岩石学报, 33(1): 163~172.
参考文献
钱知之, 杨文采. 2024. 东非大裂谷的地壳和上地幔密度结构. 地质论评, 70(1): 1~8.
参考文献
汪相. 2023a. 暗色微粒包体是壳幔岩浆混合作用的证据吗? 地质论评, 69(1): 76~87.
参考文献
汪相. 2023b. 关于南岭花岗岩及其成矿作用问题的思考———与吴福元教授等商榷. 地质论评, 69(6): 2023~2031.
参考文献
魏海泉, Melnik O, 刘永顺, Barmin A, Sparks R S J. 2006. 火山通道岩浆流动动力学模型在天池火山喷发过程中的应用. 岩石学报, 22(12): 3007~3013.
参考文献
魏海泉, 白志达, 刘永顺. 2022. 火山碎屑岩的百年研究. 地质论评, 68(5): 1918~1941.
参考文献
魏海泉, 陈正全, 刘永顺, 白志达. 2024. 几种特殊火山碎屑岩的形成机制及研究意义. 地震地质, 46(2): 297~311.
参考文献
徐义刚, 郭正府, 刘嘉麒. 2020. 中国火山学和地球内部化学研究进展与展望(2011~2020 年). 矿物岩石地球化学通报, 39(4): 681~696.
参考文献
杨红芳, 刘嘉麒, 孙智浩, 王沛, 安彦明, 王倩. 2023. 长白山火山的构造制约. 河北地质大学学报, 46(2): 12~21.
参考文献
张长建, 刘少杰, 罗少辉, 王明. 2016. 塔里木盆地皮山破火山口构造及其油气地质意义. 新疆石油地质, 37(3): 281~285.
参考文献
张旗, 原杰. 2024. 地球化学研究的危机与机遇. 地质论评, 70(5): 1907~1926.
参考文献
Acocella V, Cifelli F, Funiciello R. 2001. Formation of nonintersecting nested calderas: Insights from analogue models. Terra Nova, 13 (1): 58~63.
参考文献
Acocella V, Mulugeta G. 2002. Experiments simulating surface deformation induced by pluton emplacement. Tectonophysics, 352 (3~4): 275~293.
参考文献
Acocella V. 2007. Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth-Science Reviews, 85(3~4): 125~160.
参考文献
Acocella V, Palladino D M, Cioni R, Russo P, Simei S. 2012. Caldera structure, amount of collapse, and erupted volumes: The case of Bolsena caldera, Italy. Geological Society of America Bulletin, 124 (9~10): 1562~1576.
参考文献
Acocella V, Di Lorenzo R, Newhall C, Scandone R. 2015. An overview of recent ( 1988 to 2014 ) caldera unrest: Knowledge and perspectives. Reviews of Geophysics, 53(3): 896~955.
参考文献
Anderson K R, Johanson I A, Patrick M R, Gu M, Segall P, Poland M P, Montgomery-Brown E K, Miklius A. 2019. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science, 366(6470): 1214.
参考文献
Angarita M, Grapenthin R, Henderson S, Christoffersen M, Anderson K R. 2024. Versatile modeling of deformation ( VMOD) inversion framework: Application to 20 years of observations at Westdahl Volcano and Fisher Caldera, Alaska, US. Geochemistry, Geophysics, Geosystems, 25(4): 1~19.
参考文献
Aoki Y, Segall P, Kato T, Cervelli P, Shimada S. 1999. Imaging magma transport during the 1997 seismic swarm off the Izu Peninsula, Japan. Science, 286(5441): 927~930.
参考文献
Aramaki S. 1984. Formation of the Aira Caldera, southern Kyushu, ~ 22, 000 years ago. Journal of Geophysical Research: Solid Earth, 89 (B10): 8485~8501.
参考文献
Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G. 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Research Letters, 33(1): 1~4.
参考文献
Blake S. 1984. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. Journal of Geophysical Research: Solid Earth, 89(B10): 8237~8244.
参考文献
Bonini M, Maestrelli D, Corti G, Del Ventisette C, Moratti G, CarrascoNúñez G, Giordano G, Lucci F, Norini G, Piccardi L, Urbani S, Montanari D. 2021. Modeling intra-caldera resurgence settings: Laboratory experiments with application to the Los Humeros Volcanic Complex (Mexico). Journal of Geophysical Research: Solid Earth, 126(3): 1~32.
参考文献
Bosworth W, Burke K, Strecker M. 2003. Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics, 22(4): 1~21.
参考文献
Browning J, Gudmundsson A. 2015. Caldera faults capture and deflect inclined sheets: An alternative mechanism of ring dike formation. Bulletin of Volcanology, 77(4): 1~13.
参考文献
Cesca S, Heimann S, Hensch M, Hjörleifsdóttir V, Holohan E, Dahm T. 2015. Complex rupture processes at the Bárðarbunga caldera, Iceland. In: EGU General Assembly Conference Abstracts, 17: EGU2015-8883.
参考文献
Chadwick W W, Howard K A. 1991. The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bulletin of Volcanology, 53: 259~275.
参考文献
Chesner C A. 2012. The Toba Caldera Complex. Quaternary International, 258: 5~18.
参考文献
Cole J, Milner D, Spinks K. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.
参考文献
Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D. 2016. Birth of a lava lake: Nyamulagira volcano 2011~2015. Bulletin of Volcanology, 78(3): 1~13.
参考文献
Coppola D, Ripepe M, Laiolo M, Cigolini C. 2017. Modelling satellitederived magma discharge to explain caldera collapse. Geology, 45 (6): 523~526.
参考文献
Dahm T, Hainzl S, Heimann S, Simone C, Martin H, Eleonora R, Eoghan H. 2016. The collapse mechanics at the Bardabunga caldera during the 2014 / 2015 volcanic eruption. In: EGU General Assembly Conference Abstracts, 18: EGU2016-8962.
参考文献
Dai Liming, Wang Liangliang, Lou Da, Li Zhonghai, Dong Hao, Ma Fangfang, Li Fakun, Li Sanzhong, Yu, Shengyao. 2020. Slab rollback versus delamination: Contrasting fates of flat-slab subduction and implications for South China evolution in the Mesozoic. Journal of Geophysical Research: Solid Earth, 125(4): 1~18.
参考文献
Druitt T H, Costa F, Deloule E, Dungan M, Scaillet B. 2012. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature, 482(7383): 77~80.
参考文献
Fan Qicheng, Sui Jianli, Li Ni, Sun Qian, Xu Yigang. 2007&. The magmatism and interactive eruption of the two magma chambers in the Tianchi volcano, Changbaishan. Bulletin of Mineralogy, Petrology and Geochemistry, (4): 315~318.
参考文献
Fan Xingli, Guo Zhen, Zhao Yang, Chen Qifu. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China / North Korea, revealed by ambient noise adjoint tomography. Geophysical Research Letters, 49(12): 1~10.
参考文献
Gao Ji, Zhang Haijiang, Zhang Senqi, Xin Hailiang, Li Zhiwei, Tian Wei, Bao Feng, Cheng Zhengpu, Jia Xiaofeng, Fu Lei. 2020. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology, 48(9): 913~918.
参考文献
Geshi N, Shimano T, Chiba T, Nakada S. 2002. Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bulletin of Volcanology, 64(1): 55~68.
参考文献
Geshi N, Ruch J, Acocella V. 2014. Evaluating volumes for magma chambers and magma withdrawn for caldera collapse. Earth and Planetary Science Letters, 396: 107~115.
参考文献
Geshi N, Yamasaki T, Miyagi I, Conway C E. 2021. Magma chamber decompression during explosive caldera-forming eruption of Aira caldera. Communications Earth & Environment, 2(1): 200.
参考文献
Geshi N, Miyagi I, Saito G, Conway C E. 2023. Caldera collapse thresholds correlate with magma chamber dimensions. Scientific Reports, 13: 7463.
参考文献
Geyer A, Folch A, Martí J. 2006. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach. Journal of Volcanology and Geothermal Research, 157(4): 375~386.
参考文献
Geyer A, Martí J. 2008. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. Journal of Volcanology and Geothermal Research, 175(3): 334~354.
参考文献
Geyer A, Martí J. 2009. Stress fields controlling the formation of nested and overlapping calderas: Implications for the understanding of caldera unrest. Journal of Volcanology and Geothermal Research, 181(3~4): 185~195.
参考文献
Geyer A, Martí J. 2014. A short review of our current understanding of the development of ring faults during collapse caldera formation. Frontiers in Earth Science, 2(22): 1~13.
参考文献
Ge Hongxing, Martin P A J, Bruno C V. 2003&. Experimental studies of caldera-collapse structures above deflating magma chambers. Journal of Nanjing University (Natural Sciences), (3): 309~318.
参考文献
Gregg P M, de Silva S L, Grosfils E B, Parmiginai J P. 2012. Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. Journal of Volcanology and Geothermal Research, 241~242: 1~12.
参考文献
Gudmundsson A. 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bulletin of Volcanology, 60(3): 160~170.
参考文献
Gudmundsson A, Nilsen K. 2006. Ring-faults in composite volcanoes: Structures, models and stress fields associated with their formation. Geological Society, London, Special Publications, 269 (1): 83~108.
参考文献
Gudmundsson A. 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164 (3): 142~160.
参考文献
Gudmundsson M T, Jónsdóttir K, Hooper A, Holohan E P, Halldórsson S A, Ófeigsson B G, Cesca S, Vogfjörd K S, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, ··· Aiuppa A. 2016. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 353(6296): 262.
参考文献
Guo Kexin, Liu Yongshun, Nie Baofeng, Guo Lei, Zhang Hui, Huang Zhicong, Hou Peng, Li Yao. 2024&. The volcanic rock characteristics and magmatic evolution of the Xingshan Volcano Group in the Jingpo Lake area. Geological Review, 70(1): 137~154.
参考文献
Guo Lei, Liu Yongshun, Nie Baofeng, Huang Zhicong, Hou Peng, Li Yao, Guo Kexin. 2022&. Study on formation mechanism of fallout deposits in Hamatang volcano, Jingpo Lake area, Heilongjiang. Geological Review, 68(5): 1980~1995.
参考文献
Guo Zhengfu, Li Xiaohui, Zhang Maoliang. 2010&. Volcanic Activities and Deep Carbon Cycle. Quaternary Sciences. 30(3): 497~505.
参考文献
Guo Zhengfu, Sun Yutao, Zhao Wenbin. 2019#. Release ofgreenhouse gases from Maar Lakes: a case study of Changbaishan volcanic area. Chinese Society for Mineralogy, Petrology and Geochemistry, Proceedings of the 17th Annual Meeting of the Chinese Society for Mineralogy, Petrology and Geochemistry: 1181~1182.
参考文献
Hallinan S. 1993. Nonchaotic collapse at funnel calderas: Gravity study of the ring fractures at Guayabo caldera, Costa Rica. Geology, 21 (4): 367~370.
参考文献
Holohan E P, Vries B V W D, Troll V R, Walter T R, Walsh J J. 2008. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas. IOP Conference Series: Earth and Environmental Science, 3: 012018.
参考文献
Holohan E P, Walter T R, Schöpfer M P J, Walsh J J, van Wyk de Vries B, Troll V R. 2013. Origins of oblique-slip faulting during caldera subsidence. Journal of Geophysical Research: Solid Earth, 118(4): 1778~1794.
参考文献
Kennedy B, Stix J, Vallance J W, Lavallée Y, Longpré M A. 2004. Controls on caldera structure: Results from analogue sandbox modeling. Geological Society of America Bulletin, 116(5~6): 515~524.
参考文献
Kennedy B, Mark Jellinek A, Stix J. 2008. Coupled caldera subsidence and stirring inferred from analogue models. Nature Geoscience, 1: 385~389.
参考文献
Kim K, Lee S K, Oh S, Kwon H-S. 2024. Implication of Nari Caldera structure of Ulleung Island from a 3-D resistivity model using magnetotellurics. Geosciences Journal, 28(5): 747~760.
参考文献
Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J. 2001. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science, 293 (5530): 687~690.
参考文献
Liang Xuran, Zhao Dapeng, Xu Yigang, Hua Yuanyuan. 2022. Anisotropic tomography and dynamics of the big mantle wedge. Geophysical Research Letters, 49(5): 1~10.
参考文献
Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.
参考文献
Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59 (3): 198~218.
参考文献
Li Haifeng, Liu Huan, Xu Jianhua, Gong Pengyu, Guan Yalun, Chen Xin, Zhou Chenguang, Pan Junyao, Zheng Guoli, Cui Qingwen, Liu jiaqi. 2021&. Geological characteristics, evolution and petroleum geological significance of Manalik Caldera in Tarim Basin. Proceedings of the 2021 International Conference on Oil and Gas Field Exploration and Development (Volume 2): 749~756.
参考文献
Li Kunbai, Lü Haitao, Pu Renhai, Cao Zicheng, Xu Pengye. 2017&. Seismic exploration of volcanic craters in Shunnan Area, Tarim Basin and its relationship with oil and gas. Geological Science and Technology Information, 36(5): 249~255.
参考文献
Li Xiaomin, Tian Wei, Gong Mingyue, Wang Lei, Liu Pingping, He Yanxin. 2022&. Three-D seismic interpretation and formation mechanism of Permian calderas in the Donghetang area of the Tarim Basin, Xinjiang, China, Bulletin of Mineralogy. Petrology and Geochemistry, 41(4): 747~758+693~694.
参考文献
Li Zhonghai, Yang Shuting, Liu Mingqi, Huangfu Pengpeng. 2019&. Aqueous fluid activity and its effects in the subduction zones: A systematic numerical modeling study. Earth Science, 44(12): 3984~3992.
参考文献
Liu Jiaqi, Negendank J F W, Wang Wenyuan, Chu Guoqiang, Mingram J, Guo Zhengfu, Luo Xiangjun, Chen Rui, Liu Tuangsheng. 2000. The Distribution and Geological Characteristics of Maar Lakes in China. Quaternary Sciences. 20(1): 78~86.
参考文献
Liu Jiaqi, Chen Shuangshuang, Guo Wenfeng, Sun Chunqing, Zhang Maoliang, Guo Zhengfu. 2015&. Research advances in the Mt. Changbai Volcano. Bulletin of Mineralogy. Petrology and Geochemistry, 34(4): 710~723.
参考文献
Liu Jiaqi, Wu Chengqiao, Zhang Bin, Sun Zhihao, Zhu Zeyang, Xu Liqing, Zhang Lei, Ye Zhanghuang, Guo Zhengfu. 2024&. The atributes and characteristics of “ Muji volcano group” in Xinjiang. Acta Geologica Sinica, 98(6): 1637~1648.
参考文献
Liu Ruoxin, Fan Qicheng, Wei Haiquan, Li Ni. 1999&. Study on active volcanoes of China. Geological Review, 45(S1): 3~15.
参考文献
Liu Yongshun, Niu Baofeng, Sun Shanping, Mu Dawei, Shi Yansheng. 2007&. Petrology of Comenditic Lava from the Eruption at Late Qixiangzhan Stage in Tianchi Volcano Changbaishan Area. Geoscience, 21(2): 296~306.
参考文献
Liu Yongshun, Niu Baofeng, Prng Nian. 2011&. An Overview of Physical Volcanology Progresses in China. Bulletin of Mineralogy, Petrology and Geochemistry. 30(4): 375~381.
参考文献
Lowenstern J B, Smith R B, Hill D P. 2006. Monitoring supervolcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (1845): 2055~2072.
参考文献
Maestrelli D, Bonini M, Corti G, Del Ventisette C, Montanari D. 2021. Exploring fault propagation and the role of inherited structures during caldera collapse through laboratory experiments. Journal of Volcanology and Geothermal Research, 414: 107232.
参考文献
Michon L, Massin F, Famin V, Ferrazzini V, Roult G. 2011. Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal. Journal of Geophysical Research, 116 ( B3): B03209.
参考文献
Mucek A E, Danišík M, de Silva S L, Schmitt A K, Pratomo I, Coble M A. 2017. Post-supereruption recovery at Toba Caldera. Nature Communications, 8(1): 1~9.
参考文献
Pan Bo, Fan Qicheng, Xu Jiandong, Wu Chengzhi, Chen Zhengquan, Guo Feng. 2017&. Magmatic processes of the Millennium eruption at Changbaishan Tianchi volcano, China / North Korea. Acta Petrologica Sinica, 33(1): 163~172.
参考文献
Pinel V, Jaupart C. 2005. Caldera formation by magma withdrawal from a reservoir beneath a volcanic edifice. Earth and Planetary Science Letters, 230(3~4): 273~287.
参考文献
Qian Zhizhi, Yang Wencai. 2024&. The 3- D density structure of the great East- Africa Rift from the asthenosphere to crust. Geological Review, 70(1): 1~8.
参考文献
Reutz E H, Galland O. 2023. The effect of weak Mohr—Coulomb layers on the onset of caldera collapse: A limit analysis modelling approach. Journal of Volcanology and Geothermal Research, 433: 107727.
参考文献
Riel B, Milillo P, Simons M, Lundgren P, Kanamori H, Samsonov S. 2015. The collapse of Bárðarbunga caldera, Iceland. Geophysical Journal International, 202(1): 446~453.
参考文献
Ripepe M, Donne D D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P. 2015. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nature Communications, 6: 6998.
参考文献
Roche O, Druitt T H, Merle O. 2000. Experimental study of caldera formation. Journal of Geophysical Research: Solid Earth, 105 (B1): 395~416.
参考文献
Roche O, Druitt T H. 2001. Onset of caldera collapse during ignimbrite eruptions. Earth and Planetary Science Letters, 191(3~4): 191~202.
参考文献
Roman A, Lundgren P. 2021. Dynamics of large effusive eruptions driven by caldera collapse. Nature, 592(7854): 392~396.
参考文献
Rowland S K, Munro D C. 1992. The caldera of Volcan Fernandina: A remote sensing study of its structure and recent activity. Bulletin of Volcanology, 55: 97~109.
参考文献
Sandanbata O, Saito T. 2024. Quantifying magma overpressure beneath a submarine caldera: A mechanical modeling approach to tsunamigenic trapdoor faulting near Kita-Ioto Island, Japan. Journal of Geophysical Research: Solid Earth, 129(1): 1~23.
参考文献
Scandone R. 1990. Chaotic collapse of calderas. Journal of Volcanology and Geothermal Research, 42(3): 285~302.
参考文献
Segall P, Matthews M V, Shelly Y D R, Wang T A, Anderson K R. 2024. Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes. Nature Geoscience, 17 (3): 264~269.
参考文献
Shreve T, Delgado F. 2023. Trapdoor fault activation: A step toward caldera collapse at Sierra Negra, Galápagos, Ecuador. Journal of Geophysical Research: Solid Earth, 128(5): 1~19.
参考文献
Somr M, Žák J, Kabele P, Tomek F. 2023. Analysis of fracturing processes leading to caldera collapse. Earth-Science Reviews, 241: 104413.
参考文献
Spinks K D, Acocella V, Cole J W, Bassett K N. 2005. Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 144(1~4): 7~22.
参考文献
Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W, Franklin J. 2003. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375.
参考文献
Stix J, Kobayashi T. 2008. Magma dynamics and collapse mechanisms during four historic caldera-forming events. Journal of Geophysical Research: Solid Earth, 113(B9): B09205.
参考文献
Tedesco D, Vaselli O, Papale P, Carn S A, Voltaggio M, Sawyer G M, Durieux J, Kasereka M, Tassi F. 2007. January 2002 volcanotectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. Journal of Geophysical Research: Solid Earth, 112: B09202.
参考文献
Tizzani P, Berardino P, Casu F, Euillades P, Manzo M, Ricciardi G, Zeni G, Lanari R. 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBASInSAR approach. Remote Sensing of Environment, 108(3): 277~289.
参考文献
Troll V R, Walter T R, Schmincke H U. 2002. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology, 30(2): 135.
参考文献
Walker G P L. 1984. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. Journal of Geophysical Research: Solid Earth, 89(B10): 8407~8416.
参考文献
Walter T R, Troll V R. 2001. Formation of caldera periphery faults: An experimental study. Bulletin of Volcanology, 63(2~3): 191~203.
参考文献
Wang Nan, Li Sanzhong, Hu Rijun, Xu Yongchen, Wang Xiangdong. 2019. Geomorphology of the underwater caldera of the Changbaishan Tianchi volcano using 3D virtual visualization. Geological Journal, 55(7): 5186~5196.
参考文献
Wang Xiang. 2023a&. Dark-colored microgranular enclaves are not the evidence for magma mixing under crust—mantle interaction. Geological Review, 69(1): 76~87.
参考文献
Wang Xiang. 2023b&. Thoughts on granite and its mineralization in Nanling Range———A discussion with Prof. WU Fuyuan et al. Geological Review, 69(6): 2023~2031.
参考文献
Wei Haiquan, Melnik O, Liu Yongshun, Barmin A, Sparks R S J. 2006&. Conduit modeling of magma flow dynamics: a case study on the eruptive process at the Tianchi volcano. Acta Petrologica Sinica. 22(12): 3007~3013.
参考文献
Wei Haiquan, Bai Zhida, Liu Yongshun. 2022&. Centurial study on pyroclastic rocks. Geological Review, 68(5): 1918~1941.
参考文献
Wei Haiquan, Chen Zhengquan, Liu Yongshun, Bai Zhida. 2024&. Mechanism differences between several typical pyroclastic rocks and their volcanism significance. Seismology and Geology, 46(2): 297~311.
参考文献
Xu Yigang, Guo Zhengfu, Liu Jiaqi. 2020&. Studies on Volcanology and Chemistry of the Earth ' s Interior in China: Progresses and Perspectives (2011~2020). Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 681~696.
参考文献
Yan Dong, Tian You, Zhao Dapeng, Li Hongli. 2023. Seismicity and magmatic system of the Changbaishan intraplate volcano in East Asia. Journal of Geophysical Research: Solid Earth, 128(9): 1~17.
参考文献
Yang Bo, Lin Wule, Hu Xiangyun, Fang Hui, Qiu Gengen, Wang Gang. 2021. The magma system beneath Changbaishan—Tianchi Volcano, China / North Korea: Constraints from three-dimensional magnetotelluric imaging. Journal of Volcanology and Geothermal Research, 419: 107385.
参考文献
Yang Hongfang, Liu Jiaqi, Sun Zhihao, Wang Pei, An Yanming, Wang Qian. 2023&. Structural constraints of Changbai mountain volcano, Journal of Hebei GEO University, 46(2): 12~21.
参考文献
Yang Jianfeng, Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579, 88~91.
参考文献
Yi Jian, Wang Pujun, Shan Xuanlong, Ventura G, Wu Chengzhi, Guo Jiannan, Liu Pencheng, Li Jiahui. 2021. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr—Nd isotopic and integrated geophysical data. Geoscience Frontiers, 12(5): 101171.
参考文献
Yoshida T. 2001. The evolution of arc magmatism in the NE Honshu arc, Japan. Tohoku Geophysical Journal, 36(2): 131~149.
参考文献
Zhang Changjian, Liu Shaojie, Luo Shaohui, Wang Ming. 2016&. Structure and geological significance of Pishan Caldera in Tarim Basin. Xinjiang Petroleum Geology, 37(3): 281~285.
参考文献
Zhang Qi, Yuan Jie. 2024&. The crisis and opportunity of geochemical research. Geological Review, 70(5): 1907~1926.
目录contents

    摘要

    破火山口是最具特色的火山机构,是由下部岩浆喷出导致地表塌陷形成的火山洼地,与岩浆运移、岩浆喷发和岩浆房减压等过程密切相关。破火山口塌陷过程的动力学研究一直是火山学与火山灾害等领域的热点问题。笔者等综述了破火山口的主要类型、演化过程、塌陷条件和影响因素,分析了破火山口塌陷的火山地质特征、数学模型、物理模型和数值模拟的研究进展。其研究可以为破火山口塌陷过程中的岩浆运移和喷发活动提供新思路。将破火山口塌陷的火山地质学与地球物理学研究相结合,能为火山监测和减灾工作提供新视角,也能为今后破火山口的研究提供新见解。

    Abstract

    Calderas, as the most distinctive landform of volcanoes, are volcanic depressions formed by surface collapse due to the eruption of magma. They are closely related to processes such as magma migration, eruption, and chamber depressurization. The dynamics of caldera collapse has always been a hot topic in volcanology and volcanic disaster. This paper reviews the main types, evolutionary processes, collapse conditions, and influencing factors of calderas. It also analyzes the research progress in volcanic geological characteristics, mathematical models, physical models, and numerical simulations of caldera collapse. The studies can provide new insights into magma migration and eruption during caldera collapse. Furthermore, the combination of volcanic geology and geophysical research on caldera collapse can offer a new perspective for volcanic monitoring and disaster mitigation, while also yielding valuable insights for future studies of caldera.

  • 破火山口( caldera)作为地球乃至太阳系地外天体的火山活动中普遍存在的火山机构,其命名源自拉丁语“ caldaria”,意思是沸腾的锅,最初被用于形容西班牙加那利群岛(Canary Islands)的大型碗状或锅状的火山洼地(Cole et al.,2005)。破火山口的定义通常是:在火山喷发过程中,由于下部岩浆快速喷出导致岩浆房上部岩石块体塌陷到岩浆房中后形成的地表火山洼地( Lipman,19841997; Acocella,2007),通常由多组环状断层组成,呈圆形或椭圆形,直径比其中的火山口大许多倍(Walker,1984)。

  • 在所有类型的火山环境中,无论岩浆成分、火山的形状、大小和构造背景,均能观察到破火山口的存在。现今保留下来的破火山口形成年龄可追溯到 93.6 Ma 以及前寒武纪,区域面积也从约 0. 03 km2 直到 4712 km2,其中绝大多数破火山口的面积小于 500 km2Geyer and Martí,2014; Acocella et al.,2015)。据统计,全世界约有 446 个成规模的破火山口分布在各种构造环境中,其中约 225 个形成于第四纪,97 个在全新世期间仍在活动。在 1998~2014 年间,有约 42 个破火山口的岩浆活动被明确监测到(图1)( Geyer and Martí,2008; Acocella et al.,2015)。

  • 火山喷发及其伴随的破火山口塌陷活动,作为地表最具灾难性的地质活动之一,不仅对人类社会和环境气候造成了相当大的影响,还展现出特殊的资源能源潜力(郭正府等,2019; 徐义刚等,2020; 丁毅等,2022; 魏海泉等,2022; 刘嘉麒等,2024)。火山喷发和破火山口塌陷通常会产生并排放大量火山灰和火山气体,大气与地表由此受到显著影响,甚至可能引发突发性的全球气候扰动(Gregg et al.,2012; Geshi et al.,2014)。例如,Chesner( 2012) 对约 74. 0 ka BP 印度尼西亚多巴(Toba)破火山口塌陷喷发活动的研究发现此次灾难性喷发导致当时北苏门答腊岛动植物群落的彻底毁灭。而 1883 年印度尼西亚喀拉喀托(Krakatau)破火山口塌陷喷发活动造成了大量人员死亡,并且古希腊米诺斯文明的毁灭也被证明与破火山口塌陷喷发活动有直接关系(Cole et al.,2005)。另一方面,破火山口塌陷的特殊环境也孕育了特殊的资源能源效应,例如新疆塔里木盆地马纳力克、皮山以及顺南等地区古老的破火山口在塌陷形成过程中就对周边地区断溶体油气藏体系的形成具有重要作用(张长建等,2016; 李坤白等,2017; 李海丰等,2021),同时破火山口也是地热活动频繁的场所,与地热能源的开发利用紧密相关(Stix et al.,2003)。

  • 图1 1998 年至 2014 年间活动的破火山口大地构造框架分布图(据 Acocella et al.,2015 修改)

  • Fig.1 Distribution map of the tectonic framework of active calderas from 1998 to 2014 (modified after Acocella et al., 2015)

  • 东亚地区破火山口火山(Caldera volcanoes in East Asia):长白山(Changbaishan,Mt. Changbai)、洞爷火山(Toya)、有珠火山(Mt. Usa)、阿苏火山(Aso)、樱岛火山(Sakurajima)、阿寒火山(Akan)、伊豆大岛火山(Izu-Oshima)、三宅岛火山(Miyakejima)、硫磺岛火山岛(Iwojima)

  • 破火山口塌陷动力学研究是揭示岩浆从深部上升到达地表喷发的重要途径和方法。国内已有针对破火山口及周边区域的研究通常集中在火山地质学等方向的研究,例如火山地层年代学、火山岩岩石学和地球化学、物理火山学与动力学、火山地质构造等方面的工作( 刘若新等,1999; 刘嘉麒等,20002015; 魏海泉等,20062024; 刘永顺等,20072011; 樊祺诚等,2007; 郭正府等,2010; 徐义刚等,2020; 丁毅等,2022; 郭磊等,2022; 杨红芳等,2023; 郭可欣等,2024; 张旗和原杰,2024)。近年来,随着数值模拟方法的发展与成熟(李忠海等,2019; Dai Liming et al.,2020; Yang Jianfeng and Faccenda,2020),愈加突显出其在火山动力学领域研究的重要性。笔者等综述了历年来国内外破火山口塌陷过程及其动力学的经典研究成果(包括火山地质学、数学模型、物理模型和数值模拟),并深入总结了破火山口塌陷领域多学科交叉研究的最新进展。

  • 1 破火山口塌陷的特征、过程与类型

  • 破火山口作为岩浆从地下喷出后塌陷形成的圆形或椭圆形火山洼地(图2),其标志性特征为相对平坦的底部和陡峭环绕的边缘( Bonini et al.,2021)。塌陷是破火山口形成的必经过程和核心环节,只有因岩浆运移、喷发而塌陷形成的火山洼地才能被定义为破火山口。

  • 早在 1820 年就存在“水泡说”用以描述西班牙帕尔马特(现称为 Taburiente)破火山口的形成过程。现有的观测和研究也显示,大多数破火山口在塌陷之前,通常伴随着新鲜岩浆注入,导致浅层岩浆房超压引发岩浆扰动,使得地表犹如“水泡”一般隆起,随后“水泡”破裂,岩浆沿着中央喷口或裂缝上升喷发,下部岩浆房因部分岩浆运移喷发而转为负压状态(汪相,2023a2023b),上部岩石块体则逐渐下沉进入岩浆房,进一步促进更多岩浆的喷发(图3)( Roche and Druitt,2001; Gudmundsson,2007; Gregg et al,2012)。以美国怀俄明州黄石湖西拇指区(West Thumb)为例,该地区约 640 ka BP 的一次大规模岩浆喷发导致了破火山口的塌陷,形成了一个直径约 8 km 的破火山口,同时该区域也被观测到存在周期性的隆起与下沉活动( Lowenstern et al.,2006)。

  • 图2 伊豆群岛三宅岛破火山口塌陷前(a)、后(b)SAR 图像(据 Kumagai,2001

  • Fig.2 SAR images before ( a) and after ( b) the collapse of the Miyakejima caldera, Izu Islands (after Kumagai, 2001)

  • (a)拍摄于 2000 年 6 月 6 日;(b)拍摄于 2000 年 8 月 30 日,三宅岛火山山顶处逐渐塌陷,最终形成了一个直径 1.7 km 的破火山口

  • (a) the image was taken on June6, 2000; (b) the image was taken on August 30, 2000, the summit of the Miyakejima volcano gradually collapsed, and eventually formed a caldera with a diameter of 1.7 kilometers

  • 值得注意的是,发生在破火山口侧翼的大量岩浆喷发活动也与破火山口塌陷有关(Tedesco et al.,2007; Coppola et al.,2016),岩浆的横向运移喷发也能显著降低岩浆房的压力,促使上部岩石块体下沉至岩浆房内,塌陷形成破火山口(图4)。例如,2000 年日本三宅岛(Miyakejima)火山虽在西北部发生了喷发活动,但仍触发了三宅岛破火山口的塌陷(Geshi et al.,2002)。 2014 年 8 月至 2015 年 2 月冰岛中部的巴达本加(Bárdarbunga / Bárðarbunga)火山喷发活动中,岩浆从 12 km 深的岩浆房,通过一条长达 48 km 长的运移通道到达火山东北部的胡勒汉(Holuhraun)火山并喷发,同样导致了巴达本加(Bárdarbunga / Bárðarbunga)破火山口的塌陷( Cesca et al.,2015; Riel et al.,2015; Gudmundsson et al.,2016)。

  • 图3 破火山口塌陷过程示意图(据 Gudmundsson,2007 修改)

  • Fig.3 Simplified diagram of the caldera collapse process (modified after Gudmundsson, 2007)

  • 基于典型破火山口的研究,破火山口塌陷的发展过程一般分为 4 个阶段:①塌陷前火山活动:浅层岩浆房为了容纳新注入的岩浆通常会膨胀导致地表隆起,但这种隆起会随着下方岩石块体的沉没而显著缩减,难以保存( Acocella and Mulugeta,2002; Druitt et al.,2012; Acocella et al.,2015); ②破火山口塌陷:与大规模岩浆抽出(喷发)相关的塌陷过程; ③塌陷后的岩浆活动和复苏:许多超级火山在破火山口塌陷形成后,仍持续喷发,岩浆的重新上升可能通过多种形式的隆起使破火山口中心部分再度抬升,形成嵌套破火山口或破火山口复合体,例如印度尼西亚的多巴(Toba)火山(Mucek et al.,2017); ④ 热液活动和矿化作用:可能贯穿于破火山口塌陷的整个过程中,但主要在后期的地热系统形成并开始占据主导地位。现实中具体破火山口的发展演化可能包括上述所有过程,也可能仅包含部分阶段或者某一阶段的特定火山活动(Lipman,1984)。

  • 图4 岩浆横向运移导致破火山口塌陷各阶段示意图(据 Geshi et al.,2002,修改):( a)岩浆横向运移并喷发;(b)环状断层传播到地表;(c)顶部岩石块体塌陷;( d)横向运移逐渐减少,转而通过断层上升

  • Fig.4 Stages diagram of caldera collapse induced by lateral magma migration (modified from Geshi et al., 2002) : (a) lateral migration and eruption of magma; ( b) propagation of ring faults to the surface; (c) collapse of the top block; (d) gradual reduction of lateral migration, shifting to rise through faults

  • 根据破火山口野外考察等火山地质研究,常见的破火山口塌陷类型可以划分为 4 种基本类型(图5):

  • (1)活塞型( piston / plate)塌陷:连贯较完整的顶部岩石块体作为一个整体,沿着塌陷形成的环状断层沉入下部岩浆房中,火山口湖破火山口是活塞型塌陷类型的典型代表( Lipman,1997),如美国火山口湖(Crater Lake)破火山口和中国长白山天池破火山口等。

  • (2)碎块型( piecemeal)塌陷:具有高度破碎的破火山口岩块以及不同部分在不同时间或以不同速率下沉的破火山口塌陷模式,几乎所有的多旋回火山的破火山口都属于碎块型塌陷,例如西班牙特赫达(Tejeda)破火山口(Troll et al.,2002)。

  • (3)活板门型(trapdoor)塌陷:类似“活板门”状的塌陷类型,破火山口岩块两侧塌陷深度和程度有明显差别,例如美国长谷( Long Valley)破火山口(Kennedy et al.,2008)。

  • (4)下垂型(downsag)塌陷:在环状断层未形成或未到达地表时发生的破火山口塌陷类型,岩浆房顶部岩石块体的部分或者全部岩石发生弯曲变形,但不会产生明显的边界断层,例如新西兰陶波(Taupo)破火山口(Spinks et al.,2005)。

  • 此外,哥斯达黎加瓜亚博(Guayabo)破火山口表现出一种形似“V”或者“漏斗”的漏斗型(funnel / chaotic)塌陷类型(图5)。这种“异常”的塌陷类型可能是由多种原因造成的:①塌陷前期的岩浆爆炸式喷发导致喷发中心的通道破坏程度严重,塌陷程度最大(Aramaki,1984); ②在碎块塌陷的基础上,某一塌陷部分的块体单独下沉至更深处(Scandone,1990); ③随着环状断层的生长,塌陷中心部分的塌陷深度逐渐变至最深(Hallinan,1993)。鉴于其成因不够单一且具有代表性,是否将其视为一种新的塌陷类型,仍存在一定争议。

  • 图5 破火山口 5 种主要塌陷类型示意图(据 Cole et al.,2005 修改)

  • Fig.5 Five main types of the collapse calderas (modified after Cole et al., 2005)

  • 据研究统计,自然界中最普遍存在的破火山口塌陷类型是活塞型塌陷,其次是活板门型塌陷和漏斗型塌陷(Geyer and Martí,2008)。

  • 2 破火山口塌陷机制

  • 破火山口的塌陷机制主要有两种。一种是在塌陷时岩浆房处于超压状态,通常在岩浆喷发之前就达到了足以形成环状断层的应力场条件。岩浆房超压的形成因素一般包括:来自岩浆系统更深处富含挥发分岩浆的持续补给、深部岩浆房的膨胀或者无水矿物结晶析出导致熔体富集挥发分( Blake,1984)。其中,岩浆房内的超压必须超过围岩抗拉强度一到两个数量级(Gudmundsson,1998),并且需要长达数十年的大量岩浆补给才能产生足够高的超压导致岩浆喷发形成破火山口( Druitt et al.,2012)。超压机制的最大缺陷在于该情况下形成的理想边界环状断层与实地观测到的断层倾向和倾角通常存在一定的矛盾(Geyer and Martí,2014)。另一种是岩浆房处于负压状态,即岩浆房由于先前的岩浆运移喷发导致其处于负压状态。但先前认为负压机制的不足在于岩浆房负压状态通常会导致岩浆上升通道关闭。然而,数值模拟研究表明,一定地形荷载能够改变应力场,从而使岩浆上升通道保持开放状态,最终实现负压状态下的破火山口塌陷(Pinel and Jaupart,2005)。此外,还有部分研究认为外部压力过大,从上方向下压裂地壳,同样有可能导致破火山口塌陷。

  • 在两种主要塌陷机制中,破火山口塌陷的关键和基本过程都是岩浆房发生减压。当岩浆预先喷发(也称为前兆喷发)的体积达到一定阈值( 10%~60%)时,才会开始塌陷形成破火山口,例如冰岛巴达本加(Bárdarbunga / Bárðarbunga)火山触发破火山口塌陷的前兆喷发临界体积分数为 0.12~0.21(Gregg et al.,2012; Gudmundsson et al.,2016)。小规模的前兆喷发一般不会导致塌陷形成破火山口,但仍然会导致岩浆房上部地表发生下垂(Geshi et al.,2023)。

  • 已有研究通常将破火山口塌陷的岩浆房减压过程简化为一个垂直活塞式模型(图3,图5),该模型设想了一个顶部连贯的块体沿着圆形且垂直的断层逐步沉降到下部岩浆房中(Kumagai et al.,2001),原理是上部岩石块体在其自身的重力与岩浆房对其的压力及岩石块体与环状断层之间的摩擦三者共同作用下,发生沉降塌陷。这种简化不仅与众多破火山口实例相吻合,同时也降低了研究的复杂性和难度。该模型通常也不考虑由岩浆横向运移喷发形成破火山口的情况,因为难以定量估计岩浆的侵入喷发量,并且可能涉及多个破火山口生长并重复塌陷的复杂情况(Michon et al.,2011)。针对 2000 年日本三宅岛(Miyakejima)破火山口塌陷过程提出的垂直活塞模型揭示:岩浆房减压和岩浆房上部岩石块体与环状断层间摩擦的共同作用,是控制岩浆房上部岩石块体逐步沉降的关键因素(Kumagai et al.,2001)。随后使用该垂直活塞模型进一步的研究明确了岩浆房的减压受喷发比(塌陷前喷发的岩浆体积与岩浆房中总体积之比)和岩浆的体积模量的双重控制(Stix and Kobayashi,2008)。

  • 破火山口塌陷前兆喷发体积可以从地质证据或地球物理观测推断出来,而下方岩浆房总体积对破火山口塌陷具有主要控制作用( Anderson et al.,2019)。如何详细确定下部岩浆房的体积? 一些研究将岩浆房的总体积假设为总喷发体积,但这种假设缺乏科学验证。前人基于破火山口塌陷前后的喷发活动,利用活塞模型推导得出达到塌陷条件的前兆岩浆喷发临界体积(式 1)以及下部岩浆房理论总体积的计算公式(式 2)(图6),并且推导得出岩浆房总体积始终大于塌陷喷发总体积,这也说明在破火山口塌陷喷发过程中,岩浆房并未完全排空,即使喷发一半岩浆量的可能性也小于 5%,表明始终仍有超过一半的岩浆滞留在下部岩浆房中(Geshi et al.,20142023; Anderson et al.,2019)。

  • Vemin =10ρgh2kr2tanΦ
    (1)
  • 式中,Vemin—破火山口塌陷的前兆喷发临界体积,ρ—塌陷岩石块体的密度,g—重力加速度,h—破火山口岩块的高度,也是未塌陷时地表到岩浆房顶部的深度,k—岩浆的体积模量(式 3),r—破火山口岩块的水平半径,Φ—内摩擦角

  • 图6 破火山口塌陷条件计算示意图(据 Geshi et al.,2023 修改):(a)破火山口塌陷前,h—破火山口岩块的高度,r—破火山口岩块的水平半径;(b)破火山口塌陷后

  • Fig.6 Schematic diagram of calculation conditions for collapse calderas (modified after Geshi et al., 2023) : (a) before caldera cpllapse, h—the height of the caldera block, r—the horizontal radius of the caldera block; (b) after caldera collapse

  • Vr=rkρgh2tanΦVprec
    (2)
  • 式中,Vr—下部岩浆房理论总体积,Vprec—前兆喷发的岩浆总体积。

  • k=ΔPVΔV=ΔPVΔVg+ΔVm=kgkmkmx+kg(1-x)
    (3)
  • 式中,k—岩浆的体积模量; x—气相分数,kg—气体的体积模量,km—熔体的体积模量,△P—岩浆房减压值,△V—岩浆房的体积变化,△Vg—气相的体积变化,△Vm—熔体和晶体的体积变化。气相分数 x 由岩浆中原始水含量和减压量控制。

  • 3 破火山口塌陷动力学的研究

  • 近 30 年来,对于前兆喷发如何触发塌陷形成破火山口的研究从不同方法入手开展了多方面的动力学研究。 Acocella(2007)的研究指出不同的初始条件和塌陷过程造就了不同特征的破火山口,具体包括直径(几千米到几十千米)、沉降深度( 米到千米)、形状(圆形、椭圆形或多边形、嵌套、重叠)、喷发产物的成分(从铁镁质到长英质岩浆)和构造环境(火山口边界断层的类型)的显著变化。笔者等综合前人研究成果,将影响破火山口特征的因素大致归纳为两方面:① 以下部岩浆房的影响为主,包括下部岩浆房的大小、深度和形状、岩浆房减压过程及喷发岩浆体积等; ② 以上部岩石块体的影响为主,包括上部岩石块体构造不连续性(存在断层)、上部岩石块体地层不均匀性(存在薄弱层)、上部岩石块体纵横比等。

  • 同时笔者等将破火山口塌陷动力学研究方式具体划分为火山地质学、数学模型、物理模型以及数值模拟 4 大部分。火山地质学和数学模型侧重于下部岩浆房对破火山口塌陷过程的直接影响,而物理模型与数值模拟则更多聚焦于对上部岩石块体的研究。这不仅反映了研究方式的多样性,也表明随着火山地质学到与地球物理学研究成果深度融合的数值模拟方法的应用,对于破火山口塌陷动力学过程的研究更加全面和深入,对影响破火山口特征的因素及其组合效应的认识也更加精准。

  • 3.1 火山地质学

  • 火山地质学主要是通过地质学的研究方法对破火山口及其周边区域进行系统研究,特别是运用塌陷喷发产生的火山岩来确定岩浆成分以及期次、喷发体积等信息。该研究方法得出的结论比较直接,是重要的地质学证据,同时也为后续深入研究破火山口塌陷提供了基础信息,如推断破火山口塌陷的前兆喷发临界体积等。局限在于缺乏理想研究地点,新近塌陷的破火山口,其边界断层常因火山喷发物质的迅速沉积与填充而难以直接对其进行研究。并且野外工作只能调查破火山口塌陷后的构造环境,由于破火山口塌陷的爆炸性和瞬时性,对破火山口塌陷这一过程的直接深入研究较困难(Acocella et al.,2012)。

  • 尽管如此,火山地质学仍成功归纳出不同构造环境下的破火山口特征,裂谷带中的破火山口通常呈现出清晰明显的边界断层,具有活塞型塌陷的特征,并通常因为嵌套塌陷而变得更为复杂,如肯尼亚和冰岛裂谷带中的破火山口(Bosworth et al.,2003; Gudmundsson and Nilsen,2006)。同样,热点地区破火山口也通常具有类似活塞型塌陷类型的特征,其破火山口大小与塌陷程度适中,如厄瓜多尔加拉帕戈斯( Galapagos)和西班牙加那利群岛( Canary Islands)(Chadwick and Howard,1991; Rowland and Munro,1992)。相比之下,在汇聚型板块边界区域内,部分破火山口显示出不太明确的边缘,出现下垂型塌陷类型的特征,并且规模较大(直径通常大于 10 km),沉降程度也更为显著(可高达数千米),如日本本州东北部以及新西兰陶波( Taupo)火山区(Yoshida,2001; Spinks et al.,2005)。

  • 此外,火山地质学研究还揭示了破火山口大小和喷发体积(岩浆房大小)之间的正相关关系。通常情况下,未导致破火山口塌陷的岩浆喷发量远小于破火山口塌陷喷发的岩浆量,直径 3~5 km 的破火山口是由 2~10 km3 的岩浆喷发形成的,直径 10~20 km 的破火山口是由超过 100 km3 的岩浆喷发形成的,直径超过 50 km 的破火山口是由超过 1000 km3 的岩浆喷发形成的,对于直径小于 3 km 的破火山口,其大小与形成破火山口的岩浆喷发体积之间的正相关性较弱(Geshi et al.,2014)。

  • 3.2 数学模型

  • 针对破火山口处喷发的情况对破火山口塌陷的影响因素进行研究,首先是岩浆房顶板形状(上部岩石块体底板形状)的影响,椭圆形垂直破火山口塌陷临界喷发速率相比圆形垂直破火山口更大。其次是破火山口岩块形状的影响,边界向内倾斜的环状断层包围形成的正圆台状破火山口岩块与圆柱形破火山口岩块相比,其临界喷发速率变化范围较大,但临界喷发速率通常较小(Geshi et al.,2014)。

  • 数学模型推测出破火山口塌陷临界喷发岩浆房体积分数取决于喷发岩浆总体积分数,并受上部岩石块体纵横比的影响(Geyer et al,2006)。上部岩石块体纵横比较低(小于 0.7~0.85)的情况下,破火山口塌陷所需临界喷发岩浆房体积分数更加贴合该数学模型,例如日本艾拉(Aira)、美国长谷( Long Valley)和南美洲拉帕卡纳(La Pacana)破火山口,而上部岩石块体纵横比较高(大于 0.7~0.85)时,喷发岩浆总体积分数需要大于 70%才能更好贴合该数学模型。假设岩浆房排空的情况下,理论计算得到活塞型塌陷类型最大岩石块体纵横比在 1~1.4 范围内,而确切值主要取决于环状断层倾角和岩石块体抗拉强度(Roche and Druitt,2001)。

  • 随后利用活塞模型将日本艾拉(Aira)破火山口与日本喜界(Kikai)破火山口对比研究发现,岩浆房的深度对破火山口塌陷也有重要影响作用,相同水平尺寸的破火山口,破火山口塌陷所需的负压与岩浆房深度的平方成正比(式 4),即下部岩浆房越深,越不容易形成大型破火山口(Geshi et al,2023)。

  • Pu=12μρgLSch2
    (4)
  • 式中,Pu—开始塌陷时岩浆房临界负压,μ—火山口边界环状断层静摩擦系数,ρ—顶部岩石块体的密度,g—重力加速度,Sc—破火山口底面积,L—破火山口周长,h—破火山口岩石块体的高度,也是未塌陷时地表到岩浆房顶部的深度。

  • 其次,针对侧翼岩浆喷发导致破火山口塌陷的情况,在 2014 年至 2015 年冰岛上胡勒汉(Holuhraun)火山喷发导致巴达本加(Bárdarbunga / Bárðarbunga)破火山口进一步塌陷喷发过程中(Gudmundsson et al.,2016),受意大利斯特龙博利火山(Stromboli)的重力驱动岩浆喷发模型(Ripepe et al.,2015)的启发,Coppola 等(2017)同样提出了一个非弹性重力驱动岩浆喷发数学模型,该数学模型反映了喷发岩浆体积总体上呈指数形式变化(图7),同中分辨率成像光谱仪(MODIS)测量出的岩浆体积变化趋势相符,并与 GPS 实际观测到的巴达本加(Bárdarbunga / Bárðarbunga)破火山口的沉降深度相吻合。 2018 年美国基拉韦厄(Kīlauea)破火山口的塌陷喷发的数学模型表明,岩浆喷发总体积总是超过破火山口处喷发岩浆的体积(Roman et al.,2021),而在此前,由于破火山口塌陷超压理论的影响,认为岩浆房可能在塌陷过程中膨胀,破火山口塌陷的所需喷发岩浆体积大于侵入围岩和喷发岩浆的实际体积(Bosworth et al.,2003)。

  • 3.3 物理模型

  • 物理模型的主要优点是可以在合理的时间跨度(数分钟到数天内),以可实现的实验室尺度(毫米到米)直接观察到三维变形过程,另一个优点是设置模型不需要任何高级的分析方法与模拟装置。针对破火山口塌陷研究最大的限制在于难以模拟温度梯度(Acocella,2007),与岩浆相关的过程都与温度变化相关,而大多数进行的物理模型的基本假设是缺乏温度控制的。此外,破火山口塌陷的研究通常模拟了一个由两部分组成的系统:下部岩浆房和脆性上地壳,忽略了韧性地壳,并且在物理模型中也没有更好的表达出岩浆房的收缩。

  • 图7 冰岛巴达本加破火山口塌陷喷发数学模型( 据 Coppola et al.,2017 修改):( a)中分辨率成像光谱仪(MODIS)测量的岩浆喷发体积与数学模型对应。( b)巴达本加破火山口塌陷深度与数学模型相吻合

  • Fig.7 Mathematical model of Bárdarbunga / Bárðarbunga caldera collapse, Iceland ( modified after Coppola et al., 2017) : (a) the magma eruption volume measured by the Moderate Resolution Imaging Spectroradiometer ( MODIS) corresponds to the mathematical model. ( b) the collapse depth of the Bárdarbunga / Bárðarbunga caldera aligns with the mathematical model

  • 编号表示喷发的主要步骤:①岩浆横向运移喷出; ②破火山口开始塌陷; ③喷发开始; ④岩浆横向运移停止; ⑤喷发结束

  • Numbered circles indicate the main steps of the eruption: ① lateral migration and ejection of magma; ② start of caldera collapse; ③ start of effusive eruption; ④ closure of lateral migration of magma; ⑤ end of eruption

  • 图8 岩浆房超压实验结果图(据 Acocella and Mulugeta,2002 修改):(a)实验装置剖面图;(b)模型顶端塌陷实拍图;(c)模型顶端塌陷示意图

  • Fig.8 Experimental results of magma chamber overpressure ( modified after Acocella and Mulugeta, 2002) : ( a) sectional view of the experimental setup; ( b) actual photograph of the collapse at the top of the model; ( c) schematic diagram of the collapse at the top of the model

  • 对于岩浆房超压引发破火山口塌陷的物理模型相对有限,且受限于实验材料的物理特性,超压膨胀过程较难还原和保存,笔者等仅列举 Acocella 和 Mulugeta( 2002) 的经典岩浆房超压实验结果( 图8)。除此之外的一系列超压实验也表明,在形成破火山口之前,地表应发生显著隆起,但实验中的隆起形态与天然破火山口契合度较差,因此超压物理模型目前还难以全面地解释天然破火山口的形成与演化。

  • 针对岩浆房负压引发破火山口塌陷的物理模型明显更加成熟全面,并已归纳总结出 4 个主要阶段(图9)(Acocella,2007)。不同的负压物理模型通过采用多样化的材料组合,深入探究了包括上部岩石块体纵横比、岩浆房顶板形态(上部岩石块体底板形态)、火山锥体存在与否、岩浆房形状和深度等因素对最终塌陷形成破火山口特征的影响(Roche et al.,2000)。实验结果显示上部岩石块体纵横比对塌陷破火山口边界断层类型及其生长过程具有显著影响(Roche et al.,2000)。岩浆房顶板形态(即上部岩石块体底板形态)同样对塌陷破火山口边界断层类型及其生长过程具有显著影响,例如圆形穹顶产生不对称塌陷(活板门塌陷)(Acocella et al.,2001)。此外,地表火山锥体的存在会影响逆断层和正断层的分布,也会使破火山口块体具有更不均匀的碎裂,但总体塌陷过程与没有地表火山锥体时基本一致。同样的实验还表明,下部岩浆房膨胀和收缩的周期循环变化也可能解释了碎块型塌陷类型的发展(Walter and Troll,2001)。并且下部岩浆房形状和塌陷破火山口构造之间具有一定的继承性,平面呈近圆形的岩浆房的减压收缩形成圈闭状破火山口,平面呈长条形的岩浆房的减压收缩则形成线形塌陷构造(戈红星等,2023)。岩浆房越深,塌陷程度就越大,这是由于岩浆房内沉降量较大所致,但涉及到破火山口向外增长时,模型结果与前述模型间存在细微差别,具体表现为内部和外部断层组均呈多边形,这是以前很少观察到的(Kennedy et al.,2004)。此外,断层还与破火山口相关的硫化物生成和热液矿化作用息息相关( Stix et al.,2003),不同破火山口类型的断层分布差异很大,这也解释了为什么热液活动很少局限于环状断层区域内。

  • 环状断层的倾角和扩展传播方向已被证明是控制所产生破火山口塌陷结构的大小及其与下部岩浆房关系的重要参数(Geyer and Martí,2014)。近年来,更多物理模型也逐渐开始关注破火山口塌陷过程中环状断层的生长过程,该方面的研究同样从下部岩浆房本身性质和上部岩石块体性质两方面入手,首先,模拟证明了岩浆房顶板的椭圆度对于破火山口边界环状断层生长和传播的影响,椭圆状破火山口边界断层由顶板呈椭圆形的岩浆房产生,断层传播到地表后,先是在椭圆短轴两端各形成一条向外倾斜的逆断层,随后传播到长轴两端,这是由于沿岩浆房顶板短轴方向的整体剪切应变表现最大化,导致此处开始塌陷,塌陷深度更是与沿短轴方向的断层和沿长轴方向的弯曲有关( Holohan et al.,20082013)。其次,探究岩浆房形态和地壳不连续性对破火山口塌陷过程的影响(图10),模型显示出破火山口相关断层的生长和传播具有一定的继承性,在地壳不连续性(即地壳中存在断层)因素的影响下,塌陷后形成了与破火山口边界不直接相连、并且在破火山口中呈直线形的断层,在岩浆房形态的不连续性(即岩浆房呈不规则形状)因素的影响下,塌陷后会产生非环状的破火山口边界断层,最后两种因素组合不仅会形成直线和环状组合的边界断层,同时还能够抑制此前物理模型中常见的标准破火山口结构的形成(即早期向内倾斜的反向环状断层,随后是外围的正常环状断层),并与 4 个实例(墨西哥阿科库尔科( Acoculco)和洛斯胡梅罗斯(Los Humeros)破火山口复合体、意大利图斯科洛— 阿特米西奥(Tuscolo—Artemisio)破火山口和苏格兰的格伦科( Glencoe)破火山口)都较为贴切(Maestrelli et al.,2021)。

  • 图9 负压实验中破火山口塌陷演化 4 个阶段示意图(据 Acocella,2007,修改):(a)阶段 1,破火山口岩块下沉:(b)阶段 2,形成反向环状断层;(c)阶段 3,外围下沉;(d)阶段 4,形成正常环状断层

  • Fig.9 Diagram illustrating the four stages of caldera collapse evolution during negative pressure experiments ( modified from Acocella, 2007) : (a) stage 1, subsidence of the caldera block; (b) stage 2, formation of the reverse ring flauts; (c) stage 3, subsidence of the outer area; (d) stage 4, formation of the normal ring faults

  • 图10 破火山口相关断层的生长实验(据 Maestrelli et al.,2021 修改):(a)基础模型的 2D 变形模式;(b)覆盖层内部近垂直断层的 2D 变形模式;(c)岩浆房不规则外形的 2D 变形模式;(d)(b)和(c)两者组合的 2D 变形模式

  • Fig.10 Experiment on growth of related faults in caldera (modified after Maestrelli et al., 2021) : (a) 2D deformation pattern of the basic model; (b) 2D deformation pattern of near-vertical fault within the overlay; (c) 2D deformation pattern of an irregular magma chamber shape; (d) 2D deformation pattern combining both (b) and (c)

  • 3.4 数值模拟

  • 数值模拟方面的研究工作实现了破火山口塌陷动力学研究的重要突破。数值模拟方法模拟破火山口塌陷过程,特别是边界环状断层的形成过程,极大地改善了物理模型存在材料局限性的问题。此外,数值模拟不仅可以进行岩浆房负压的破火山口塌陷过程研究,还可以进行超压的模拟工作,即表现地表膨胀隆起过程。数值模拟方法同时也被认为是未来最适合模拟破火山口塌陷过程和相关结构发展的研究方法(Somr et al.,2023)。

  • 数值模拟在模拟破火山口塌陷过程应用中最大的优点就是可以计算还原塌陷过程中岩浆房周边的应力场,明确断层的生长过程以及岩浆的上升喷出。现有数值模拟重点探究了球形(建模为二维圆形)岩浆房和扁椭球形(建模为二维椭圆形)岩浆房形成破火山口边界环状断层时围岩的应力状态。模拟结果表明,下部岩浆房状态改变通常有利于岩浆沿断层上升,而不是环状断层形成,除非岩浆房所在的层非常软或有新鲜岩浆的补充,此时应力场有利于环状断层的形成(Gudmundsson,2007)。并且上覆地壳各层应力场均匀化是环状断层形成的必要条件,在塌陷形成破火山口后,其下部的应力场也随之发生改变,从而改变未来嵌套塌陷破火山口形成的条件。

  • 数值模型的设置还可以考虑塌陷岩石块体本身地层不均匀性(即薄弱层存在与否)的影响,以及塌陷期间或之后破火山口内火山喷发物质(如喷出岩和熔岩流)的影响。数值模拟结果显示,浅层岩浆房周围的应力场是否有利于形成嵌套或重叠的火山口结构取决于以下 3 个方面的影响:①先前破火山口塌陷结构的大小; ②新的岩浆房的大小是否可能产生后续破火山口塌陷; ③围岩的力学性质以及破火山口内火山喷发物质的力学性质( Geyer and Marti,2009)。同时,针对上覆地壳薄弱层的存在与否对破火山口塌陷形成和结构的影响进行了数值模拟的结果表明(图11),地壳内薄弱层的存在降低了岩浆房内的临界岩浆负压,有利于破火山口塌陷的发生,薄弱层的厚度越大,这种效应越明显,薄弱层越靠近岩浆房,薄弱层的影响越强( Reutz and Galland,2023)。

  • 此外,利用有限元方法(FEM)建立了预测岩浆房上方断层发育的通用模型(图12),模拟了两种塌陷机制下各种可能的岩浆房形状和上部岩石块体纵横比情况,讨论了深部岩浆房膨胀阶段(图12)、环状断层的生长和破火山口塌陷过程,证明了岩浆房内的压力演化是通过围岩的一系列破裂过程来体现的(Somr et al.,2023)。负压岩浆房形成的断层主要是向外倾斜或(近)垂直的,而超压岩浆房形成的断层则是向内倾斜或(近)垂直的; 无论岩浆房形状和破火山口塌陷情况(超压或负压)如何,环状断层都是沿逆时针生长,并且总是在岩浆房边缘起始并向上传播; 环状断层的倾斜度同样受到上部岩石块体纵横比变化的显著影响,具体表现为:随着岩石块体纵横比的减小,环状断层的倾斜趋势反而更加明显和陡峭。因此,环状断层几何形状和倾向的变化也意味着破火山口塌陷机制的变化。

  • 图11 不同数值模拟实验组合中应力轨迹和塑形能量耗散横截面图(据 Reutz and Galland,2023):(a)没有薄弱层,岩块纵横比为 0.71;(b)L1 和 L2 为较厚薄弱层,岩块纵横比为 0.71;(c)L1~L4 为较薄薄弱层,岩块纵横比为 0.71

  • Fig.11 Cross-sectional diagrams of stress trajectories and plastic energy dissipation across different numerical simulation experiment combinations (after Reutz and Galland, 2023) : (a) Without weak layers, and the aspect ratio of the rock block is 0.71; (b) L1 and L2 are thicker weak layers, and the aspect ratio of the rock block is 0.71; ( c) L1~L4 are thinner weak layers, and the aspect ratio of the rock block is 0.71

  • σ1—最大主应力; σ3—最小主应力

  • σ1—maximum principal stress; σ3—minimum principal stress

  • 图12 利用有限元方法(FEM)建立的破火山口塌陷数值模型与岩浆房膨胀状态下对应的分析概念模型(据 Somr et al.,2023 修改)

  • Fig.12 Numerical model of caldera collapse established using FEM and corresponding analytical conceptual model under the inflation stage of magma chamber ( modified after Somr et al., 2023)

  • 4 学科交叉方向展望

  • 4.1 地球物理学

  • 现有对活动火山区的研究显示,火山地震的发生是由于岩浆房活动或岩浆运移导致附近应力集中所致,这意味着大规模火山地震活动会忠实地记录岩浆运移通道的演变。高分辨率火山地震位置的解译将有助于更好地了解岩浆运移以及火山地震活动的成因(Aoki et al.,1999; Dahm et al.,2016; Gudmundsson et al.,2016)。例如,从 2000 年 7 月 8 日开始,在大约 40 天内,日本三宅岛(Miyakejima)破火山口逐渐塌陷形成,同时在此期间该区域内每天监测到一到两次的地震活动。据此 Kumagai 等(2001)开发了一个垂直活塞模型来解释破火山口和长周期地震信号,该模型不仅初步揭示了破火山口的形成过程,同时也表明了破火山口塌陷形成与长周期地震信号是同步发生的。另外,通过地震震中位置来确定破火山口塌陷形成断层的形状(Holohan et al.,2008; Gudmundsson et al.,2016)(图13),地震活动也是预测喷发口可能位置和喷发的最有效指标(Acocella et al.,2015)。这都说明地球物理学的技术手段和研究,特别是地震学,提供了研究破火山口形成时下部岩浆活动的关键证据。地震活动资料同时也适用于对深部保存的破火山口的识别和建模,例如运用三维地震剖面资料揭示了塔里木盆地东河塘工区发育的近圆形和拉长状两类破火山口的特征(李晓敏等,2022)。

  • 图13 冰岛巴达本加破火山口塌陷期间地震活动与塌陷二维 DEM 模型图(据 Gudmundsson et al.,2016 修改):(a)2014 年 8 月 1 日至 10 月 17 日地震分布图;(b)和(c)地震活动约束塌陷过程二维 DEM 建模

  • Fig.13 Figure of seismic activity and 2D DEM model of the Bárdarbunga / Bárðarbunga caldera collapse, Iceland (modified after Gudmundsson et al., 2016) : ( a) earthquake distribution map from August 1st to October 17th, 2014; ( b) and ( c) twodimensional DEM modeling of the collapse process constrained by seismic activity

  • 图14 哥伦比亚纳里尼奥火山口下电阻率 3D 模型(据 Kim et al.,2024 修改)

  • Fig.14 3D resistivity model beneath the Narino caldera, Colombia (modified after Kim et al., 2024)

  • 岩浆房 R1 呈碗形,紫色线条表示破火山口边缘

  • The magma chamber R1 is bowl-shaped, and the purple lines represent the rim of the caldera

  • 大地测量工作也是监测火山地表变形的重要手段,针对破火山口的大地测量记录的变形数据也为监测破火山口塌陷提供了独特的研究视角( Tizzani et al.,2007; Riel et al.,2015; Angarita et al.,2024; Segall et al.,2024)。日本艾拉(Aira)破火山口形成时的地面变形模型也启示了监测喷发期间地面变形的强度将有助于预测破火山口塌陷的可能性(Geshi et al.,2021)。

  • 大地电磁(MT)作为火山系统地球物理学最常用的研究方法之一,广泛用于地壳断层结构分析、火山下方岩浆房的识别、深层地热资源的勘探等,如今也逐渐用于深部岩浆系统与地表火山机构(如破火山口)的联系方面。例如,基于 25 个站点的大地电磁数据建立的哥伦比亚纳里尼奥( Narino)火山的三维(3D)电阻率模型(图14),直观展示出了纳里尼奥(Narino)破火山口结构及其深部岩浆系统之间的联系(Kim et al.,2024)。在我国东北五大连池火山区,三维大地电磁成像揭示了尾山破火山口下方 20 km 深的三维(3D)高分辨率电阻率结构,发现了火山锥下方大约 3~4 km 以下存在明显的低电阻率异常,进一步证实了尾山火山可能处于一定的活跃状态(Gao Ji et al.,2020)。

  • 重力异常反演既可以反演深部岩浆运移(钱知之和杨文采,2024),也可以用于破火山口塌陷前期地表变形过程更为细致的研究。例如,意大利坎皮佛莱格瑞(Campi Flegrei)破火山口变形位置下方的重力异常反演建模研究发现,除了新鲜岩浆的注入导致破火山口变形外,还存在破火山口下方热液系统流体进出的影响(Battaglia et al.,2006)。

  • 对于此前研究程度较低的洋底火山,运用地球物理数据进行破火山口塌陷的研究也愈加成熟。例如,利用 2008 年和 2015 年在日本北硫磺岛(KitaIoto Island)监测到的地震信号来尝试测量地震前火山下方积聚的岩浆压力,假设地震是由于火山下方的岩浆房超压导致火山口内断层系统重新激活而发生的,将震前岩浆超压与“C”形垂直断层的大小联系起来,据此提出一种通过量化地震规模来评估当时下部岩浆房压力的方法( Sandanbata and Saito,2023)。在日本须美寿岛( Sumisu Island)和新西兰柯蒂斯岛(Curtis Island)海底破火山口相似“C” 形垂直断层的发现也支持了这方面的工作。 2018 年厄瓜多尔内格拉(Negra)破火山口发生了部分塌陷,通过此前地震数据的分析和建模(图15),发现地震活动沿着先前确定的“C”形垂直断层发生,但破火山口边界断层从未被激活( Shreve and Delgado,2023),并且 2018 年的喷发体积太小,不足以触发全面喷发(Geshi et al.,2014)。因此,研究海底破火山口的“C”形垂直断层及其性质至关重要,有助于对岩浆房应力状态进行更可靠的估计,为全面了解大洋中海底破火山口的行为提供难得的机会。

  • 图15 厄瓜多尔内格拉破火山口 “C”形垂直断层滑动模型以及对应概念模型(据 Shreve and Delgado,2023 修改)

  • Fig.15 C-shaped vertical fault slip model and corresponding conceptual model of the Negra caldera, Ecuador (modified after Shreve and Delgado, 2023)

  • 4.2 火山地质学

  • 火山地质学是研究破火山口的重要工作之一。首先通过现场调查得到的构造要素(如断层)和岩浆特征(如岩脉)可以初步推断出破火山口塌陷的发展过程和影响因素,为下一步模拟模型的设置和测试提供了思路。例如,墨西哥洛斯胡梅罗斯(Los Humeros)火山群的火山地质学研究推测出洛斯胡梅罗斯破火山口的形状由塌陷期间继承性结构的再激活控制(Bonini et al.,2021),为后续开发研究继承性结构对于破火山口塌陷过程影响的物理模型奠定了基础(Maestrelli et al.,2021)。

  • 同时火山地质学研究也是发现破火山口塌陷过程中许多重要现象的关键工作基础。例如,冰岛哈布纳山(Hafnarfjall)破火山口环状断层中的岩脉产状随深度的变化而发生突变,但总体倾角急剧向内( Browning and Gudmundsson,2015),这一发现提供了一种先前未曾报道过的岩浆沿着破火山口边界环状断层上升机制。在破火山口塌陷过程中,本身就存在或塌陷产生的断层为岩浆提供了上升通道,在这些断层中,垂直的环状断层是最优选的岩浆上升路径。垂直的环状断层在作为下部岩浆上升主要通道的同时,还会捕获临近沿着其它断层上升的岩浆,使其运移路径发生偏转并最终沿垂直环状断层上升到达地表喷发(图16)。

  • 此外,对采集到的破火山口塌陷同期喷发产物进行地球化学分析,可以进一步得到深部岩浆演化与减压过程等重要信息。例如,利用火山碎屑岩的斑晶中的火山玻璃内含水量的变化揭示并计算出日本艾拉(Aira)火山大约 30 ka BP 破火山口形成时的岩浆房的减压量高达 170 MPa(Geshi et al.,2021)。

  • 国内不同地区存在不同时期形成的众多破火山口,在破火山口的火山地质学研究中,长白山天池火山以面积约 9.82 km2 的近圆形火山口湖———天池而闻名(Wang Nan et al.,2019),是国内研究程度最高的活火山。多年来,国内学者积累了一批有价值的长白山地区火山岩年代学、岩石学和地球化学的研究成果,并将其火山活动过程划分为造盾阶段、造锥阶段和晚期碱流质喷发 3 个阶段,其中,晚期碱流质喷发阶段的千年大喷发导致了长白山天池破火山口的塌陷形成(刘嘉麒等,2015; 潘波等,2017; Yi Jian et al.,2021; Liang Xuran et al.,2022)。长白山天池火山下部的岩浆系统庞大复杂(Yang Bo et al.,2021; Fan Xingli et al.,2022; Yan Dong et al.,2023),为长白山天池火山的千年大喷发活动提供了岩浆供给,也为长白山天池破火山口塌陷提供了驱动力。长白山天池破火山口作为国内塌陷程度最大的第四纪破火山口,也是今后国内研究破火山口塌陷动力学过程的理想场所。

  • 图16 环状断层捕获偏转岩浆形成环状岩脉示意图(据 Browning and Gudmundsson,2015 修改)

  • Fig.16 Schematic diagram of circular fault capturing and deflecting magma to form annular dykes (modified after Browning and Gudmundsson, 2015)

  • 5 结论

  • 笔者等总结了破火山口塌陷的特征、过程和类型。常见的破火山口塌陷类型包括:活塞型塌陷、碎块型塌陷、活板门型塌陷、下垂型塌陷和漏斗型塌陷。明确了破火山口塌陷的条件主要包括塌陷前兆喷发岩浆体积以及岩浆房减压量等塌陷阈值。岩浆房的超压和负压状态是触发破火山口塌陷的两种主要机制,两者均强调了岩浆房减压过程在破火山口塌陷中的关键作用,但在触发破火山口边界断层形成的具体条件上存在差异。影响塌陷形成破火山口特征的因素主要包括岩浆房(岩浆房深度,岩浆房顶板形态,岩浆房形状等)和上部岩石块体(上部岩石块体纵横比、上部岩石块体构造不连续性、上部岩石块体地层不均匀性等)两方面。

  • 从火山地质学研究、数学模型、物理模型和数值模拟 4 个方面,系统总结了破火山口塌陷动力学的研究进展和主要认识,对于破火山口塌陷动力学的研究需要将火山地质学、地球物理和数值模拟等方法进行结合。因此,破火山口塌陷动力学的研究不仅丰富了目前对破火山口塌陷的认知,也为认识岩浆上升喷发活动提供了新的思路,丰富了对火山深部岩浆活动的理解,并能为监测火山活动、评估火山灾害风险提供有力的技术支持。

  • 致谢:感谢刘永顺教授和章雨旭研究员详细审阅文稿,并提出宝贵的修改意见。

  • 参考文献

    • 丁毅, 孙继明, 吴云霞. 2022. 破火山口研究述评. 地质论评, 68 (5): 1969~1979.

    • 樊祺诚, 隋建立, 李霓, 孙谦, 徐义刚. 2007. 长白山天池火山双岩浆房岩浆作用与互动式喷发. 矿物岩石地球化学通报, (4): 315~318.

    • 戈红星, Martin P A J, Bruno C V. 2003. 破火山口塌陷构造的物理模拟研究. 南京大学学报(自然科学版), 39(3): 309~318.

    • 郭可欣, 刘永顺, 聂保锋, 郭磊, 张辉, 黄志聪, 侯鹏, 李耀. 2024. 镜泊湖地区杏山火山群的火山岩特征及其岩浆演化. 地质论评. 70(1): 137~154.

    • 郭正府, 李晓惠, 张茂亮. 2010. 火山活动与深部碳循环的关系. 第四纪研究, 30(3): 497~505.

    • 郭正府, 孙玉涛, 赵文斌. 2019. 玛珥湖温室气体释放: 以长白山火山区为例. 中国矿物岩石地球化学学会, 中国矿物岩石地球化学学会第 17 届学术年会论文摘要集: 1181~1182.

    • 郭磊, 刘永顺, 聂保锋, 黄志聪, 侯鹏, 李耀, 郭可欣. 2022. 黑龙江镜泊湖地区蛤蟆塘火山空落堆积物形成机制研究. 地质论评, 68(5): 1980~1995.

    • 李海丰, 刘欢, 许建华, 龚鹏宇, 管亚伦, 陈新, 周晨光, 潘俊尧, 郑国利, 崔青雯, 刘佳琪. 2021. 塔里木盆地马纳力克破火山口地质特征、演化及其石油地质意义. 2021 油气田勘探与开发国际会议论文集(下册): 749~756.

    • 李坤白, 吕海涛, 蒲仁海, 曹自成, 徐鹏晔. 2017. 塔里木盆地顺南地区火山口地震勘探方法及其与油气关系. 地质科技情报, 36 (5): 249~255.

    • 李晓敏, 田伟, 弓明月, 王磊, 刘平平, 何衍鑫. 2022. 塔里木东河塘二叠纪破火山口的三维地震解释与形成机制研究. 矿物岩石地球化学通报, 41(4): 747~758+693~694.

    • 李忠海, 杨舒婷, 刘明启, 皇甫鹏鹏. 2019. 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44(12): 3984~3992.

    • 刘嘉麒, Negendank J. F. W. , 王文远, 储国强, Mingram J. , 郭正府, 骆祥君, 陈锐, 刘东生. 2000. 中国玛珥湖的时空分布与地质特征. 第四纪研究, 20(1): 78~86.

    • 刘嘉麒, 陈双双, 郭文峰, 孙春青, 张茂亮, 郭正府. 2015. 长白山火山研究进展. 矿物岩石地球化学通报, 34(4): 710~723.

    • 刘嘉麒, 吴成桥, 张斌, 孙智浩, 朱泽阳, 许立青, 张蕾, 叶张煌, 郭正府. 2024. 新疆“木吉火山群”的属性与特征. 地质学报, 98(6): 1637~1648.

    • 刘若新, 樊祺诚, 魏海泉, 李霓. 1999. 中国活火山研究. 地质论评, 45(S1): 3~15.

    • 刘永顺, 聂保锋, 孙善平, 穆大卫, 史延升. 2007. 长白山天池火山气象站期晚期碱流质熔岩的岩石学研究. 现代地质. 21(2): 296~306.

    • 刘永顺, 聂保锋, 彭年. 2011. 中国物理火山学研究进展评述. 矿物岩石地球化学通报, 30(4): 375~381.

    • 潘波, 樊祺诚, 许建东, 武成智, 陈正全, 郭峰. 2017. 长白山天池火山千年大喷发的岩浆过程. 岩石学报, 33(1): 163~172.

    • 钱知之, 杨文采. 2024. 东非大裂谷的地壳和上地幔密度结构. 地质论评, 70(1): 1~8.

    • 汪相. 2023a. 暗色微粒包体是壳幔岩浆混合作用的证据吗? 地质论评, 69(1): 76~87.

    • 汪相. 2023b. 关于南岭花岗岩及其成矿作用问题的思考———与吴福元教授等商榷. 地质论评, 69(6): 2023~2031.

    • 魏海泉, Melnik O, 刘永顺, Barmin A, Sparks R S J. 2006. 火山通道岩浆流动动力学模型在天池火山喷发过程中的应用. 岩石学报, 22(12): 3007~3013.

    • 魏海泉, 白志达, 刘永顺. 2022. 火山碎屑岩的百年研究. 地质论评, 68(5): 1918~1941.

    • 魏海泉, 陈正全, 刘永顺, 白志达. 2024. 几种特殊火山碎屑岩的形成机制及研究意义. 地震地质, 46(2): 297~311.

    • 徐义刚, 郭正府, 刘嘉麒. 2020. 中国火山学和地球内部化学研究进展与展望(2011~2020 年). 矿物岩石地球化学通报, 39(4): 681~696.

    • 杨红芳, 刘嘉麒, 孙智浩, 王沛, 安彦明, 王倩. 2023. 长白山火山的构造制约. 河北地质大学学报, 46(2): 12~21.

    • 张长建, 刘少杰, 罗少辉, 王明. 2016. 塔里木盆地皮山破火山口构造及其油气地质意义. 新疆石油地质, 37(3): 281~285.

    • 张旗, 原杰. 2024. 地球化学研究的危机与机遇. 地质论评, 70(5): 1907~1926.

    • Acocella V, Cifelli F, Funiciello R. 2001. Formation of nonintersecting nested calderas: Insights from analogue models. Terra Nova, 13 (1): 58~63.

    • Acocella V, Mulugeta G. 2002. Experiments simulating surface deformation induced by pluton emplacement. Tectonophysics, 352 (3~4): 275~293.

    • Acocella V. 2007. Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth-Science Reviews, 85(3~4): 125~160.

    • Acocella V, Palladino D M, Cioni R, Russo P, Simei S. 2012. Caldera structure, amount of collapse, and erupted volumes: The case of Bolsena caldera, Italy. Geological Society of America Bulletin, 124 (9~10): 1562~1576.

    • Acocella V, Di Lorenzo R, Newhall C, Scandone R. 2015. An overview of recent ( 1988 to 2014 ) caldera unrest: Knowledge and perspectives. Reviews of Geophysics, 53(3): 896~955.

    • Anderson K R, Johanson I A, Patrick M R, Gu M, Segall P, Poland M P, Montgomery-Brown E K, Miklius A. 2019. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science, 366(6470): 1214.

    • Angarita M, Grapenthin R, Henderson S, Christoffersen M, Anderson K R. 2024. Versatile modeling of deformation ( VMOD) inversion framework: Application to 20 years of observations at Westdahl Volcano and Fisher Caldera, Alaska, US. Geochemistry, Geophysics, Geosystems, 25(4): 1~19.

    • Aoki Y, Segall P, Kato T, Cervelli P, Shimada S. 1999. Imaging magma transport during the 1997 seismic swarm off the Izu Peninsula, Japan. Science, 286(5441): 927~930.

    • Aramaki S. 1984. Formation of the Aira Caldera, southern Kyushu, ~ 22, 000 years ago. Journal of Geophysical Research: Solid Earth, 89 (B10): 8485~8501.

    • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G. 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Research Letters, 33(1): 1~4.

    • Blake S. 1984. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. Journal of Geophysical Research: Solid Earth, 89(B10): 8237~8244.

    • Bonini M, Maestrelli D, Corti G, Del Ventisette C, Moratti G, CarrascoNúñez G, Giordano G, Lucci F, Norini G, Piccardi L, Urbani S, Montanari D. 2021. Modeling intra-caldera resurgence settings: Laboratory experiments with application to the Los Humeros Volcanic Complex (Mexico). Journal of Geophysical Research: Solid Earth, 126(3): 1~32.

    • Bosworth W, Burke K, Strecker M. 2003. Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics, 22(4): 1~21.

    • Browning J, Gudmundsson A. 2015. Caldera faults capture and deflect inclined sheets: An alternative mechanism of ring dike formation. Bulletin of Volcanology, 77(4): 1~13.

    • Cesca S, Heimann S, Hensch M, Hjörleifsdóttir V, Holohan E, Dahm T. 2015. Complex rupture processes at the Bárðarbunga caldera, Iceland. In: EGU General Assembly Conference Abstracts, 17: EGU2015-8883.

    • Chadwick W W, Howard K A. 1991. The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bulletin of Volcanology, 53: 259~275.

    • Chesner C A. 2012. The Toba Caldera Complex. Quaternary International, 258: 5~18.

    • Cole J, Milner D, Spinks K. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.

    • Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D. 2016. Birth of a lava lake: Nyamulagira volcano 2011~2015. Bulletin of Volcanology, 78(3): 1~13.

    • Coppola D, Ripepe M, Laiolo M, Cigolini C. 2017. Modelling satellitederived magma discharge to explain caldera collapse. Geology, 45 (6): 523~526.

    • Dahm T, Hainzl S, Heimann S, Simone C, Martin H, Eleonora R, Eoghan H. 2016. The collapse mechanics at the Bardabunga caldera during the 2014 / 2015 volcanic eruption. In: EGU General Assembly Conference Abstracts, 18: EGU2016-8962.

    • Dai Liming, Wang Liangliang, Lou Da, Li Zhonghai, Dong Hao, Ma Fangfang, Li Fakun, Li Sanzhong, Yu, Shengyao. 2020. Slab rollback versus delamination: Contrasting fates of flat-slab subduction and implications for South China evolution in the Mesozoic. Journal of Geophysical Research: Solid Earth, 125(4): 1~18.

    • Druitt T H, Costa F, Deloule E, Dungan M, Scaillet B. 2012. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature, 482(7383): 77~80.

    • Fan Qicheng, Sui Jianli, Li Ni, Sun Qian, Xu Yigang. 2007&. The magmatism and interactive eruption of the two magma chambers in the Tianchi volcano, Changbaishan. Bulletin of Mineralogy, Petrology and Geochemistry, (4): 315~318.

    • Fan Xingli, Guo Zhen, Zhao Yang, Chen Qifu. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China / North Korea, revealed by ambient noise adjoint tomography. Geophysical Research Letters, 49(12): 1~10.

    • Gao Ji, Zhang Haijiang, Zhang Senqi, Xin Hailiang, Li Zhiwei, Tian Wei, Bao Feng, Cheng Zhengpu, Jia Xiaofeng, Fu Lei. 2020. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology, 48(9): 913~918.

    • Geshi N, Shimano T, Chiba T, Nakada S. 2002. Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bulletin of Volcanology, 64(1): 55~68.

    • Geshi N, Ruch J, Acocella V. 2014. Evaluating volumes for magma chambers and magma withdrawn for caldera collapse. Earth and Planetary Science Letters, 396: 107~115.

    • Geshi N, Yamasaki T, Miyagi I, Conway C E. 2021. Magma chamber decompression during explosive caldera-forming eruption of Aira caldera. Communications Earth & Environment, 2(1): 200.

    • Geshi N, Miyagi I, Saito G, Conway C E. 2023. Caldera collapse thresholds correlate with magma chamber dimensions. Scientific Reports, 13: 7463.

    • Geyer A, Folch A, Martí J. 2006. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach. Journal of Volcanology and Geothermal Research, 157(4): 375~386.

    • Geyer A, Martí J. 2008. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. Journal of Volcanology and Geothermal Research, 175(3): 334~354.

    • Geyer A, Martí J. 2009. Stress fields controlling the formation of nested and overlapping calderas: Implications for the understanding of caldera unrest. Journal of Volcanology and Geothermal Research, 181(3~4): 185~195.

    • Geyer A, Martí J. 2014. A short review of our current understanding of the development of ring faults during collapse caldera formation. Frontiers in Earth Science, 2(22): 1~13.

    • Ge Hongxing, Martin P A J, Bruno C V. 2003&. Experimental studies of caldera-collapse structures above deflating magma chambers. Journal of Nanjing University (Natural Sciences), (3): 309~318.

    • Gregg P M, de Silva S L, Grosfils E B, Parmiginai J P. 2012. Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. Journal of Volcanology and Geothermal Research, 241~242: 1~12.

    • Gudmundsson A. 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bulletin of Volcanology, 60(3): 160~170.

    • Gudmundsson A, Nilsen K. 2006. Ring-faults in composite volcanoes: Structures, models and stress fields associated with their formation. Geological Society, London, Special Publications, 269 (1): 83~108.

    • Gudmundsson A. 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164 (3): 142~160.

    • Gudmundsson M T, Jónsdóttir K, Hooper A, Holohan E P, Halldórsson S A, Ófeigsson B G, Cesca S, Vogfjörd K S, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, ··· Aiuppa A. 2016. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 353(6296): 262.

    • Guo Kexin, Liu Yongshun, Nie Baofeng, Guo Lei, Zhang Hui, Huang Zhicong, Hou Peng, Li Yao. 2024&. The volcanic rock characteristics and magmatic evolution of the Xingshan Volcano Group in the Jingpo Lake area. Geological Review, 70(1): 137~154.

    • Guo Lei, Liu Yongshun, Nie Baofeng, Huang Zhicong, Hou Peng, Li Yao, Guo Kexin. 2022&. Study on formation mechanism of fallout deposits in Hamatang volcano, Jingpo Lake area, Heilongjiang. Geological Review, 68(5): 1980~1995.

    • Guo Zhengfu, Li Xiaohui, Zhang Maoliang. 2010&. Volcanic Activities and Deep Carbon Cycle. Quaternary Sciences. 30(3): 497~505.

    • Guo Zhengfu, Sun Yutao, Zhao Wenbin. 2019#. Release ofgreenhouse gases from Maar Lakes: a case study of Changbaishan volcanic area. Chinese Society for Mineralogy, Petrology and Geochemistry, Proceedings of the 17th Annual Meeting of the Chinese Society for Mineralogy, Petrology and Geochemistry: 1181~1182.

    • Hallinan S. 1993. Nonchaotic collapse at funnel calderas: Gravity study of the ring fractures at Guayabo caldera, Costa Rica. Geology, 21 (4): 367~370.

    • Holohan E P, Vries B V W D, Troll V R, Walter T R, Walsh J J. 2008. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas. IOP Conference Series: Earth and Environmental Science, 3: 012018.

    • Holohan E P, Walter T R, Schöpfer M P J, Walsh J J, van Wyk de Vries B, Troll V R. 2013. Origins of oblique-slip faulting during caldera subsidence. Journal of Geophysical Research: Solid Earth, 118(4): 1778~1794.

    • Kennedy B, Stix J, Vallance J W, Lavallée Y, Longpré M A. 2004. Controls on caldera structure: Results from analogue sandbox modeling. Geological Society of America Bulletin, 116(5~6): 515~524.

    • Kennedy B, Mark Jellinek A, Stix J. 2008. Coupled caldera subsidence and stirring inferred from analogue models. Nature Geoscience, 1: 385~389.

    • Kim K, Lee S K, Oh S, Kwon H-S. 2024. Implication of Nari Caldera structure of Ulleung Island from a 3-D resistivity model using magnetotellurics. Geosciences Journal, 28(5): 747~760.

    • Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J. 2001. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science, 293 (5530): 687~690.

    • Liang Xuran, Zhao Dapeng, Xu Yigang, Hua Yuanyuan. 2022. Anisotropic tomography and dynamics of the big mantle wedge. Geophysical Research Letters, 49(5): 1~10.

    • Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.

    • Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59 (3): 198~218.

    • Li Haifeng, Liu Huan, Xu Jianhua, Gong Pengyu, Guan Yalun, Chen Xin, Zhou Chenguang, Pan Junyao, Zheng Guoli, Cui Qingwen, Liu jiaqi. 2021&. Geological characteristics, evolution and petroleum geological significance of Manalik Caldera in Tarim Basin. Proceedings of the 2021 International Conference on Oil and Gas Field Exploration and Development (Volume 2): 749~756.

    • Li Kunbai, Lü Haitao, Pu Renhai, Cao Zicheng, Xu Pengye. 2017&. Seismic exploration of volcanic craters in Shunnan Area, Tarim Basin and its relationship with oil and gas. Geological Science and Technology Information, 36(5): 249~255.

    • Li Xiaomin, Tian Wei, Gong Mingyue, Wang Lei, Liu Pingping, He Yanxin. 2022&. Three-D seismic interpretation and formation mechanism of Permian calderas in the Donghetang area of the Tarim Basin, Xinjiang, China, Bulletin of Mineralogy. Petrology and Geochemistry, 41(4): 747~758+693~694.

    • Li Zhonghai, Yang Shuting, Liu Mingqi, Huangfu Pengpeng. 2019&. Aqueous fluid activity and its effects in the subduction zones: A systematic numerical modeling study. Earth Science, 44(12): 3984~3992.

    • Liu Jiaqi, Negendank J F W, Wang Wenyuan, Chu Guoqiang, Mingram J, Guo Zhengfu, Luo Xiangjun, Chen Rui, Liu Tuangsheng. 2000. The Distribution and Geological Characteristics of Maar Lakes in China. Quaternary Sciences. 20(1): 78~86.

    • Liu Jiaqi, Chen Shuangshuang, Guo Wenfeng, Sun Chunqing, Zhang Maoliang, Guo Zhengfu. 2015&. Research advances in the Mt. Changbai Volcano. Bulletin of Mineralogy. Petrology and Geochemistry, 34(4): 710~723.

    • Liu Jiaqi, Wu Chengqiao, Zhang Bin, Sun Zhihao, Zhu Zeyang, Xu Liqing, Zhang Lei, Ye Zhanghuang, Guo Zhengfu. 2024&. The atributes and characteristics of “ Muji volcano group” in Xinjiang. Acta Geologica Sinica, 98(6): 1637~1648.

    • Liu Ruoxin, Fan Qicheng, Wei Haiquan, Li Ni. 1999&. Study on active volcanoes of China. Geological Review, 45(S1): 3~15.

    • Liu Yongshun, Niu Baofeng, Sun Shanping, Mu Dawei, Shi Yansheng. 2007&. Petrology of Comenditic Lava from the Eruption at Late Qixiangzhan Stage in Tianchi Volcano Changbaishan Area. Geoscience, 21(2): 296~306.

    • Liu Yongshun, Niu Baofeng, Prng Nian. 2011&. An Overview of Physical Volcanology Progresses in China. Bulletin of Mineralogy, Petrology and Geochemistry. 30(4): 375~381.

    • Lowenstern J B, Smith R B, Hill D P. 2006. Monitoring supervolcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (1845): 2055~2072.

    • Maestrelli D, Bonini M, Corti G, Del Ventisette C, Montanari D. 2021. Exploring fault propagation and the role of inherited structures during caldera collapse through laboratory experiments. Journal of Volcanology and Geothermal Research, 414: 107232.

    • Michon L, Massin F, Famin V, Ferrazzini V, Roult G. 2011. Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal. Journal of Geophysical Research, 116 ( B3): B03209.

    • Mucek A E, Danišík M, de Silva S L, Schmitt A K, Pratomo I, Coble M A. 2017. Post-supereruption recovery at Toba Caldera. Nature Communications, 8(1): 1~9.

    • Pan Bo, Fan Qicheng, Xu Jiandong, Wu Chengzhi, Chen Zhengquan, Guo Feng. 2017&. Magmatic processes of the Millennium eruption at Changbaishan Tianchi volcano, China / North Korea. Acta Petrologica Sinica, 33(1): 163~172.

    • Pinel V, Jaupart C. 2005. Caldera formation by magma withdrawal from a reservoir beneath a volcanic edifice. Earth and Planetary Science Letters, 230(3~4): 273~287.

    • Qian Zhizhi, Yang Wencai. 2024&. The 3- D density structure of the great East- Africa Rift from the asthenosphere to crust. Geological Review, 70(1): 1~8.

    • Reutz E H, Galland O. 2023. The effect of weak Mohr—Coulomb layers on the onset of caldera collapse: A limit analysis modelling approach. Journal of Volcanology and Geothermal Research, 433: 107727.

    • Riel B, Milillo P, Simons M, Lundgren P, Kanamori H, Samsonov S. 2015. The collapse of Bárðarbunga caldera, Iceland. Geophysical Journal International, 202(1): 446~453.

    • Ripepe M, Donne D D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P. 2015. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nature Communications, 6: 6998.

    • Roche O, Druitt T H, Merle O. 2000. Experimental study of caldera formation. Journal of Geophysical Research: Solid Earth, 105 (B1): 395~416.

    • Roche O, Druitt T H. 2001. Onset of caldera collapse during ignimbrite eruptions. Earth and Planetary Science Letters, 191(3~4): 191~202.

    • Roman A, Lundgren P. 2021. Dynamics of large effusive eruptions driven by caldera collapse. Nature, 592(7854): 392~396.

    • Rowland S K, Munro D C. 1992. The caldera of Volcan Fernandina: A remote sensing study of its structure and recent activity. Bulletin of Volcanology, 55: 97~109.

    • Sandanbata O, Saito T. 2024. Quantifying magma overpressure beneath a submarine caldera: A mechanical modeling approach to tsunamigenic trapdoor faulting near Kita-Ioto Island, Japan. Journal of Geophysical Research: Solid Earth, 129(1): 1~23.

    • Scandone R. 1990. Chaotic collapse of calderas. Journal of Volcanology and Geothermal Research, 42(3): 285~302.

    • Segall P, Matthews M V, Shelly Y D R, Wang T A, Anderson K R. 2024. Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes. Nature Geoscience, 17 (3): 264~269.

    • Shreve T, Delgado F. 2023. Trapdoor fault activation: A step toward caldera collapse at Sierra Negra, Galápagos, Ecuador. Journal of Geophysical Research: Solid Earth, 128(5): 1~19.

    • Somr M, Žák J, Kabele P, Tomek F. 2023. Analysis of fracturing processes leading to caldera collapse. Earth-Science Reviews, 241: 104413.

    • Spinks K D, Acocella V, Cole J W, Bassett K N. 2005. Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 144(1~4): 7~22.

    • Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W, Franklin J. 2003. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375.

    • Stix J, Kobayashi T. 2008. Magma dynamics and collapse mechanisms during four historic caldera-forming events. Journal of Geophysical Research: Solid Earth, 113(B9): B09205.

    • Tedesco D, Vaselli O, Papale P, Carn S A, Voltaggio M, Sawyer G M, Durieux J, Kasereka M, Tassi F. 2007. January 2002 volcanotectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. Journal of Geophysical Research: Solid Earth, 112: B09202.

    • Tizzani P, Berardino P, Casu F, Euillades P, Manzo M, Ricciardi G, Zeni G, Lanari R. 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBASInSAR approach. Remote Sensing of Environment, 108(3): 277~289.

    • Troll V R, Walter T R, Schmincke H U. 2002. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology, 30(2): 135.

    • Walker G P L. 1984. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. Journal of Geophysical Research: Solid Earth, 89(B10): 8407~8416.

    • Walter T R, Troll V R. 2001. Formation of caldera periphery faults: An experimental study. Bulletin of Volcanology, 63(2~3): 191~203.

    • Wang Nan, Li Sanzhong, Hu Rijun, Xu Yongchen, Wang Xiangdong. 2019. Geomorphology of the underwater caldera of the Changbaishan Tianchi volcano using 3D virtual visualization. Geological Journal, 55(7): 5186~5196.

    • Wang Xiang. 2023a&. Dark-colored microgranular enclaves are not the evidence for magma mixing under crust—mantle interaction. Geological Review, 69(1): 76~87.

    • Wang Xiang. 2023b&. Thoughts on granite and its mineralization in Nanling Range———A discussion with Prof. WU Fuyuan et al. Geological Review, 69(6): 2023~2031.

    • Wei Haiquan, Melnik O, Liu Yongshun, Barmin A, Sparks R S J. 2006&. Conduit modeling of magma flow dynamics: a case study on the eruptive process at the Tianchi volcano. Acta Petrologica Sinica. 22(12): 3007~3013.

    • Wei Haiquan, Bai Zhida, Liu Yongshun. 2022&. Centurial study on pyroclastic rocks. Geological Review, 68(5): 1918~1941.

    • Wei Haiquan, Chen Zhengquan, Liu Yongshun, Bai Zhida. 2024&. Mechanism differences between several typical pyroclastic rocks and their volcanism significance. Seismology and Geology, 46(2): 297~311.

    • Xu Yigang, Guo Zhengfu, Liu Jiaqi. 2020&. Studies on Volcanology and Chemistry of the Earth ' s Interior in China: Progresses and Perspectives (2011~2020). Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 681~696.

    • Yan Dong, Tian You, Zhao Dapeng, Li Hongli. 2023. Seismicity and magmatic system of the Changbaishan intraplate volcano in East Asia. Journal of Geophysical Research: Solid Earth, 128(9): 1~17.

    • Yang Bo, Lin Wule, Hu Xiangyun, Fang Hui, Qiu Gengen, Wang Gang. 2021. The magma system beneath Changbaishan—Tianchi Volcano, China / North Korea: Constraints from three-dimensional magnetotelluric imaging. Journal of Volcanology and Geothermal Research, 419: 107385.

    • Yang Hongfang, Liu Jiaqi, Sun Zhihao, Wang Pei, An Yanming, Wang Qian. 2023&. Structural constraints of Changbai mountain volcano, Journal of Hebei GEO University, 46(2): 12~21.

    • Yang Jianfeng, Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579, 88~91.

    • Yi Jian, Wang Pujun, Shan Xuanlong, Ventura G, Wu Chengzhi, Guo Jiannan, Liu Pencheng, Li Jiahui. 2021. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr—Nd isotopic and integrated geophysical data. Geoscience Frontiers, 12(5): 101171.

    • Yoshida T. 2001. The evolution of arc magmatism in the NE Honshu arc, Japan. Tohoku Geophysical Journal, 36(2): 131~149.

    • Zhang Changjian, Liu Shaojie, Luo Shaohui, Wang Ming. 2016&. Structure and geological significance of Pishan Caldera in Tarim Basin. Xinjiang Petroleum Geology, 37(3): 281~285.

    • Zhang Qi, Yuan Jie. 2024&. The crisis and opportunity of geochemical research. Geological Review, 70(5): 1907~1926.

  • 参考文献

    • 丁毅, 孙继明, 吴云霞. 2022. 破火山口研究述评. 地质论评, 68 (5): 1969~1979.

    • 樊祺诚, 隋建立, 李霓, 孙谦, 徐义刚. 2007. 长白山天池火山双岩浆房岩浆作用与互动式喷发. 矿物岩石地球化学通报, (4): 315~318.

    • 戈红星, Martin P A J, Bruno C V. 2003. 破火山口塌陷构造的物理模拟研究. 南京大学学报(自然科学版), 39(3): 309~318.

    • 郭可欣, 刘永顺, 聂保锋, 郭磊, 张辉, 黄志聪, 侯鹏, 李耀. 2024. 镜泊湖地区杏山火山群的火山岩特征及其岩浆演化. 地质论评. 70(1): 137~154.

    • 郭正府, 李晓惠, 张茂亮. 2010. 火山活动与深部碳循环的关系. 第四纪研究, 30(3): 497~505.

    • 郭正府, 孙玉涛, 赵文斌. 2019. 玛珥湖温室气体释放: 以长白山火山区为例. 中国矿物岩石地球化学学会, 中国矿物岩石地球化学学会第 17 届学术年会论文摘要集: 1181~1182.

    • 郭磊, 刘永顺, 聂保锋, 黄志聪, 侯鹏, 李耀, 郭可欣. 2022. 黑龙江镜泊湖地区蛤蟆塘火山空落堆积物形成机制研究. 地质论评, 68(5): 1980~1995.

    • 李海丰, 刘欢, 许建华, 龚鹏宇, 管亚伦, 陈新, 周晨光, 潘俊尧, 郑国利, 崔青雯, 刘佳琪. 2021. 塔里木盆地马纳力克破火山口地质特征、演化及其石油地质意义. 2021 油气田勘探与开发国际会议论文集(下册): 749~756.

    • 李坤白, 吕海涛, 蒲仁海, 曹自成, 徐鹏晔. 2017. 塔里木盆地顺南地区火山口地震勘探方法及其与油气关系. 地质科技情报, 36 (5): 249~255.

    • 李晓敏, 田伟, 弓明月, 王磊, 刘平平, 何衍鑫. 2022. 塔里木东河塘二叠纪破火山口的三维地震解释与形成机制研究. 矿物岩石地球化学通报, 41(4): 747~758+693~694.

    • 李忠海, 杨舒婷, 刘明启, 皇甫鹏鹏. 2019. 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44(12): 3984~3992.

    • 刘嘉麒, Negendank J. F. W. , 王文远, 储国强, Mingram J. , 郭正府, 骆祥君, 陈锐, 刘东生. 2000. 中国玛珥湖的时空分布与地质特征. 第四纪研究, 20(1): 78~86.

    • 刘嘉麒, 陈双双, 郭文峰, 孙春青, 张茂亮, 郭正府. 2015. 长白山火山研究进展. 矿物岩石地球化学通报, 34(4): 710~723.

    • 刘嘉麒, 吴成桥, 张斌, 孙智浩, 朱泽阳, 许立青, 张蕾, 叶张煌, 郭正府. 2024. 新疆“木吉火山群”的属性与特征. 地质学报, 98(6): 1637~1648.

    • 刘若新, 樊祺诚, 魏海泉, 李霓. 1999. 中国活火山研究. 地质论评, 45(S1): 3~15.

    • 刘永顺, 聂保锋, 孙善平, 穆大卫, 史延升. 2007. 长白山天池火山气象站期晚期碱流质熔岩的岩石学研究. 现代地质. 21(2): 296~306.

    • 刘永顺, 聂保锋, 彭年. 2011. 中国物理火山学研究进展评述. 矿物岩石地球化学通报, 30(4): 375~381.

    • 潘波, 樊祺诚, 许建东, 武成智, 陈正全, 郭峰. 2017. 长白山天池火山千年大喷发的岩浆过程. 岩石学报, 33(1): 163~172.

    • 钱知之, 杨文采. 2024. 东非大裂谷的地壳和上地幔密度结构. 地质论评, 70(1): 1~8.

    • 汪相. 2023a. 暗色微粒包体是壳幔岩浆混合作用的证据吗? 地质论评, 69(1): 76~87.

    • 汪相. 2023b. 关于南岭花岗岩及其成矿作用问题的思考———与吴福元教授等商榷. 地质论评, 69(6): 2023~2031.

    • 魏海泉, Melnik O, 刘永顺, Barmin A, Sparks R S J. 2006. 火山通道岩浆流动动力学模型在天池火山喷发过程中的应用. 岩石学报, 22(12): 3007~3013.

    • 魏海泉, 白志达, 刘永顺. 2022. 火山碎屑岩的百年研究. 地质论评, 68(5): 1918~1941.

    • 魏海泉, 陈正全, 刘永顺, 白志达. 2024. 几种特殊火山碎屑岩的形成机制及研究意义. 地震地质, 46(2): 297~311.

    • 徐义刚, 郭正府, 刘嘉麒. 2020. 中国火山学和地球内部化学研究进展与展望(2011~2020 年). 矿物岩石地球化学通报, 39(4): 681~696.

    • 杨红芳, 刘嘉麒, 孙智浩, 王沛, 安彦明, 王倩. 2023. 长白山火山的构造制约. 河北地质大学学报, 46(2): 12~21.

    • 张长建, 刘少杰, 罗少辉, 王明. 2016. 塔里木盆地皮山破火山口构造及其油气地质意义. 新疆石油地质, 37(3): 281~285.

    • 张旗, 原杰. 2024. 地球化学研究的危机与机遇. 地质论评, 70(5): 1907~1926.

    • Acocella V, Cifelli F, Funiciello R. 2001. Formation of nonintersecting nested calderas: Insights from analogue models. Terra Nova, 13 (1): 58~63.

    • Acocella V, Mulugeta G. 2002. Experiments simulating surface deformation induced by pluton emplacement. Tectonophysics, 352 (3~4): 275~293.

    • Acocella V. 2007. Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth-Science Reviews, 85(3~4): 125~160.

    • Acocella V, Palladino D M, Cioni R, Russo P, Simei S. 2012. Caldera structure, amount of collapse, and erupted volumes: The case of Bolsena caldera, Italy. Geological Society of America Bulletin, 124 (9~10): 1562~1576.

    • Acocella V, Di Lorenzo R, Newhall C, Scandone R. 2015. An overview of recent ( 1988 to 2014 ) caldera unrest: Knowledge and perspectives. Reviews of Geophysics, 53(3): 896~955.

    • Anderson K R, Johanson I A, Patrick M R, Gu M, Segall P, Poland M P, Montgomery-Brown E K, Miklius A. 2019. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science, 366(6470): 1214.

    • Angarita M, Grapenthin R, Henderson S, Christoffersen M, Anderson K R. 2024. Versatile modeling of deformation ( VMOD) inversion framework: Application to 20 years of observations at Westdahl Volcano and Fisher Caldera, Alaska, US. Geochemistry, Geophysics, Geosystems, 25(4): 1~19.

    • Aoki Y, Segall P, Kato T, Cervelli P, Shimada S. 1999. Imaging magma transport during the 1997 seismic swarm off the Izu Peninsula, Japan. Science, 286(5441): 927~930.

    • Aramaki S. 1984. Formation of the Aira Caldera, southern Kyushu, ~ 22, 000 years ago. Journal of Geophysical Research: Solid Earth, 89 (B10): 8485~8501.

    • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G. 2006. Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Research Letters, 33(1): 1~4.

    • Blake S. 1984. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. Journal of Geophysical Research: Solid Earth, 89(B10): 8237~8244.

    • Bonini M, Maestrelli D, Corti G, Del Ventisette C, Moratti G, CarrascoNúñez G, Giordano G, Lucci F, Norini G, Piccardi L, Urbani S, Montanari D. 2021. Modeling intra-caldera resurgence settings: Laboratory experiments with application to the Los Humeros Volcanic Complex (Mexico). Journal of Geophysical Research: Solid Earth, 126(3): 1~32.

    • Bosworth W, Burke K, Strecker M. 2003. Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics, 22(4): 1~21.

    • Browning J, Gudmundsson A. 2015. Caldera faults capture and deflect inclined sheets: An alternative mechanism of ring dike formation. Bulletin of Volcanology, 77(4): 1~13.

    • Cesca S, Heimann S, Hensch M, Hjörleifsdóttir V, Holohan E, Dahm T. 2015. Complex rupture processes at the Bárðarbunga caldera, Iceland. In: EGU General Assembly Conference Abstracts, 17: EGU2015-8883.

    • Chadwick W W, Howard K A. 1991. The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bulletin of Volcanology, 53: 259~275.

    • Chesner C A. 2012. The Toba Caldera Complex. Quaternary International, 258: 5~18.

    • Cole J, Milner D, Spinks K. 2005. Calderas and caldera structures: A review. Earth-Science Reviews, 69(1~2): 1~26.

    • Coppola D, Campion R, Laiolo M, Cuoco E, Balagizi C, Ripepe M, Cigolini C, Tedesco D. 2016. Birth of a lava lake: Nyamulagira volcano 2011~2015. Bulletin of Volcanology, 78(3): 1~13.

    • Coppola D, Ripepe M, Laiolo M, Cigolini C. 2017. Modelling satellitederived magma discharge to explain caldera collapse. Geology, 45 (6): 523~526.

    • Dahm T, Hainzl S, Heimann S, Simone C, Martin H, Eleonora R, Eoghan H. 2016. The collapse mechanics at the Bardabunga caldera during the 2014 / 2015 volcanic eruption. In: EGU General Assembly Conference Abstracts, 18: EGU2016-8962.

    • Dai Liming, Wang Liangliang, Lou Da, Li Zhonghai, Dong Hao, Ma Fangfang, Li Fakun, Li Sanzhong, Yu, Shengyao. 2020. Slab rollback versus delamination: Contrasting fates of flat-slab subduction and implications for South China evolution in the Mesozoic. Journal of Geophysical Research: Solid Earth, 125(4): 1~18.

    • Druitt T H, Costa F, Deloule E, Dungan M, Scaillet B. 2012. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature, 482(7383): 77~80.

    • Fan Qicheng, Sui Jianli, Li Ni, Sun Qian, Xu Yigang. 2007&. The magmatism and interactive eruption of the two magma chambers in the Tianchi volcano, Changbaishan. Bulletin of Mineralogy, Petrology and Geochemistry, (4): 315~318.

    • Fan Xingli, Guo Zhen, Zhao Yang, Chen Qifu. 2022. Crust and uppermost mantle magma plumbing system beneath Changbaishan intraplate volcano, China / North Korea, revealed by ambient noise adjoint tomography. Geophysical Research Letters, 49(12): 1~10.

    • Gao Ji, Zhang Haijiang, Zhang Senqi, Xin Hailiang, Li Zhiwei, Tian Wei, Bao Feng, Cheng Zhengpu, Jia Xiaofeng, Fu Lei. 2020. Magma recharging beneath the Weishan volcano of the intraplate Wudalianchi volcanic field, northeast China, implied from 3-D magnetotelluric imaging. Geology, 48(9): 913~918.

    • Geshi N, Shimano T, Chiba T, Nakada S. 2002. Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bulletin of Volcanology, 64(1): 55~68.

    • Geshi N, Ruch J, Acocella V. 2014. Evaluating volumes for magma chambers and magma withdrawn for caldera collapse. Earth and Planetary Science Letters, 396: 107~115.

    • Geshi N, Yamasaki T, Miyagi I, Conway C E. 2021. Magma chamber decompression during explosive caldera-forming eruption of Aira caldera. Communications Earth & Environment, 2(1): 200.

    • Geshi N, Miyagi I, Saito G, Conway C E. 2023. Caldera collapse thresholds correlate with magma chamber dimensions. Scientific Reports, 13: 7463.

    • Geyer A, Folch A, Martí J. 2006. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach. Journal of Volcanology and Geothermal Research, 157(4): 375~386.

    • Geyer A, Martí J. 2008. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. Journal of Volcanology and Geothermal Research, 175(3): 334~354.

    • Geyer A, Martí J. 2009. Stress fields controlling the formation of nested and overlapping calderas: Implications for the understanding of caldera unrest. Journal of Volcanology and Geothermal Research, 181(3~4): 185~195.

    • Geyer A, Martí J. 2014. A short review of our current understanding of the development of ring faults during collapse caldera formation. Frontiers in Earth Science, 2(22): 1~13.

    • Ge Hongxing, Martin P A J, Bruno C V. 2003&. Experimental studies of caldera-collapse structures above deflating magma chambers. Journal of Nanjing University (Natural Sciences), (3): 309~318.

    • Gregg P M, de Silva S L, Grosfils E B, Parmiginai J P. 2012. Catastrophic caldera-forming eruptions: Thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. Journal of Volcanology and Geothermal Research, 241~242: 1~12.

    • Gudmundsson A. 1998. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bulletin of Volcanology, 60(3): 160~170.

    • Gudmundsson A, Nilsen K. 2006. Ring-faults in composite volcanoes: Structures, models and stress fields associated with their formation. Geological Society, London, Special Publications, 269 (1): 83~108.

    • Gudmundsson A. 2007. Conceptual and numerical models of ring-fault formation. Journal of Volcanology and Geothermal Research, 164 (3): 142~160.

    • Gudmundsson M T, Jónsdóttir K, Hooper A, Holohan E P, Halldórsson S A, Ófeigsson B G, Cesca S, Vogfjörd K S, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, ··· Aiuppa A. 2016. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science, 353(6296): 262.

    • Guo Kexin, Liu Yongshun, Nie Baofeng, Guo Lei, Zhang Hui, Huang Zhicong, Hou Peng, Li Yao. 2024&. The volcanic rock characteristics and magmatic evolution of the Xingshan Volcano Group in the Jingpo Lake area. Geological Review, 70(1): 137~154.

    • Guo Lei, Liu Yongshun, Nie Baofeng, Huang Zhicong, Hou Peng, Li Yao, Guo Kexin. 2022&. Study on formation mechanism of fallout deposits in Hamatang volcano, Jingpo Lake area, Heilongjiang. Geological Review, 68(5): 1980~1995.

    • Guo Zhengfu, Li Xiaohui, Zhang Maoliang. 2010&. Volcanic Activities and Deep Carbon Cycle. Quaternary Sciences. 30(3): 497~505.

    • Guo Zhengfu, Sun Yutao, Zhao Wenbin. 2019#. Release ofgreenhouse gases from Maar Lakes: a case study of Changbaishan volcanic area. Chinese Society for Mineralogy, Petrology and Geochemistry, Proceedings of the 17th Annual Meeting of the Chinese Society for Mineralogy, Petrology and Geochemistry: 1181~1182.

    • Hallinan S. 1993. Nonchaotic collapse at funnel calderas: Gravity study of the ring fractures at Guayabo caldera, Costa Rica. Geology, 21 (4): 367~370.

    • Holohan E P, Vries B V W D, Troll V R, Walter T R, Walsh J J. 2008. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas. IOP Conference Series: Earth and Environmental Science, 3: 012018.

    • Holohan E P, Walter T R, Schöpfer M P J, Walsh J J, van Wyk de Vries B, Troll V R. 2013. Origins of oblique-slip faulting during caldera subsidence. Journal of Geophysical Research: Solid Earth, 118(4): 1778~1794.

    • Kennedy B, Stix J, Vallance J W, Lavallée Y, Longpré M A. 2004. Controls on caldera structure: Results from analogue sandbox modeling. Geological Society of America Bulletin, 116(5~6): 515~524.

    • Kennedy B, Mark Jellinek A, Stix J. 2008. Coupled caldera subsidence and stirring inferred from analogue models. Nature Geoscience, 1: 385~389.

    • Kim K, Lee S K, Oh S, Kwon H-S. 2024. Implication of Nari Caldera structure of Ulleung Island from a 3-D resistivity model using magnetotellurics. Geosciences Journal, 28(5): 747~760.

    • Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J. 2001. Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science, 293 (5530): 687~690.

    • Liang Xuran, Zhao Dapeng, Xu Yigang, Hua Yuanyuan. 2022. Anisotropic tomography and dynamics of the big mantle wedge. Geophysical Research Letters, 49(5): 1~10.

    • Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.

    • Lipman P W. 1997. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bulletin of Volcanology, 59 (3): 198~218.

    • Li Haifeng, Liu Huan, Xu Jianhua, Gong Pengyu, Guan Yalun, Chen Xin, Zhou Chenguang, Pan Junyao, Zheng Guoli, Cui Qingwen, Liu jiaqi. 2021&. Geological characteristics, evolution and petroleum geological significance of Manalik Caldera in Tarim Basin. Proceedings of the 2021 International Conference on Oil and Gas Field Exploration and Development (Volume 2): 749~756.

    • Li Kunbai, Lü Haitao, Pu Renhai, Cao Zicheng, Xu Pengye. 2017&. Seismic exploration of volcanic craters in Shunnan Area, Tarim Basin and its relationship with oil and gas. Geological Science and Technology Information, 36(5): 249~255.

    • Li Xiaomin, Tian Wei, Gong Mingyue, Wang Lei, Liu Pingping, He Yanxin. 2022&. Three-D seismic interpretation and formation mechanism of Permian calderas in the Donghetang area of the Tarim Basin, Xinjiang, China, Bulletin of Mineralogy. Petrology and Geochemistry, 41(4): 747~758+693~694.

    • Li Zhonghai, Yang Shuting, Liu Mingqi, Huangfu Pengpeng. 2019&. Aqueous fluid activity and its effects in the subduction zones: A systematic numerical modeling study. Earth Science, 44(12): 3984~3992.

    • Liu Jiaqi, Negendank J F W, Wang Wenyuan, Chu Guoqiang, Mingram J, Guo Zhengfu, Luo Xiangjun, Chen Rui, Liu Tuangsheng. 2000. The Distribution and Geological Characteristics of Maar Lakes in China. Quaternary Sciences. 20(1): 78~86.

    • Liu Jiaqi, Chen Shuangshuang, Guo Wenfeng, Sun Chunqing, Zhang Maoliang, Guo Zhengfu. 2015&. Research advances in the Mt. Changbai Volcano. Bulletin of Mineralogy. Petrology and Geochemistry, 34(4): 710~723.

    • Liu Jiaqi, Wu Chengqiao, Zhang Bin, Sun Zhihao, Zhu Zeyang, Xu Liqing, Zhang Lei, Ye Zhanghuang, Guo Zhengfu. 2024&. The atributes and characteristics of “ Muji volcano group” in Xinjiang. Acta Geologica Sinica, 98(6): 1637~1648.

    • Liu Ruoxin, Fan Qicheng, Wei Haiquan, Li Ni. 1999&. Study on active volcanoes of China. Geological Review, 45(S1): 3~15.

    • Liu Yongshun, Niu Baofeng, Sun Shanping, Mu Dawei, Shi Yansheng. 2007&. Petrology of Comenditic Lava from the Eruption at Late Qixiangzhan Stage in Tianchi Volcano Changbaishan Area. Geoscience, 21(2): 296~306.

    • Liu Yongshun, Niu Baofeng, Prng Nian. 2011&. An Overview of Physical Volcanology Progresses in China. Bulletin of Mineralogy, Petrology and Geochemistry. 30(4): 375~381.

    • Lowenstern J B, Smith R B, Hill D P. 2006. Monitoring supervolcanoes: Geophysical and geochemical signals at Yellowstone and other large caldera systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364 (1845): 2055~2072.

    • Maestrelli D, Bonini M, Corti G, Del Ventisette C, Montanari D. 2021. Exploring fault propagation and the role of inherited structures during caldera collapse through laboratory experiments. Journal of Volcanology and Geothermal Research, 414: 107232.

    • Michon L, Massin F, Famin V, Ferrazzini V, Roult G. 2011. Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal. Journal of Geophysical Research, 116 ( B3): B03209.

    • Mucek A E, Danišík M, de Silva S L, Schmitt A K, Pratomo I, Coble M A. 2017. Post-supereruption recovery at Toba Caldera. Nature Communications, 8(1): 1~9.

    • Pan Bo, Fan Qicheng, Xu Jiandong, Wu Chengzhi, Chen Zhengquan, Guo Feng. 2017&. Magmatic processes of the Millennium eruption at Changbaishan Tianchi volcano, China / North Korea. Acta Petrologica Sinica, 33(1): 163~172.

    • Pinel V, Jaupart C. 2005. Caldera formation by magma withdrawal from a reservoir beneath a volcanic edifice. Earth and Planetary Science Letters, 230(3~4): 273~287.

    • Qian Zhizhi, Yang Wencai. 2024&. The 3- D density structure of the great East- Africa Rift from the asthenosphere to crust. Geological Review, 70(1): 1~8.

    • Reutz E H, Galland O. 2023. The effect of weak Mohr—Coulomb layers on the onset of caldera collapse: A limit analysis modelling approach. Journal of Volcanology and Geothermal Research, 433: 107727.

    • Riel B, Milillo P, Simons M, Lundgren P, Kanamori H, Samsonov S. 2015. The collapse of Bárðarbunga caldera, Iceland. Geophysical Journal International, 202(1): 446~453.

    • Ripepe M, Donne D D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P. 2015. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nature Communications, 6: 6998.

    • Roche O, Druitt T H, Merle O. 2000. Experimental study of caldera formation. Journal of Geophysical Research: Solid Earth, 105 (B1): 395~416.

    • Roche O, Druitt T H. 2001. Onset of caldera collapse during ignimbrite eruptions. Earth and Planetary Science Letters, 191(3~4): 191~202.

    • Roman A, Lundgren P. 2021. Dynamics of large effusive eruptions driven by caldera collapse. Nature, 592(7854): 392~396.

    • Rowland S K, Munro D C. 1992. The caldera of Volcan Fernandina: A remote sensing study of its structure and recent activity. Bulletin of Volcanology, 55: 97~109.

    • Sandanbata O, Saito T. 2024. Quantifying magma overpressure beneath a submarine caldera: A mechanical modeling approach to tsunamigenic trapdoor faulting near Kita-Ioto Island, Japan. Journal of Geophysical Research: Solid Earth, 129(1): 1~23.

    • Scandone R. 1990. Chaotic collapse of calderas. Journal of Volcanology and Geothermal Research, 42(3): 285~302.

    • Segall P, Matthews M V, Shelly Y D R, Wang T A, Anderson K R. 2024. Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes. Nature Geoscience, 17 (3): 264~269.

    • Shreve T, Delgado F. 2023. Trapdoor fault activation: A step toward caldera collapse at Sierra Negra, Galápagos, Ecuador. Journal of Geophysical Research: Solid Earth, 128(5): 1~19.

    • Somr M, Žák J, Kabele P, Tomek F. 2023. Analysis of fracturing processes leading to caldera collapse. Earth-Science Reviews, 241: 104413.

    • Spinks K D, Acocella V, Cole J W, Bassett K N. 2005. Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 144(1~4): 7~22.

    • Stix J, Kennedy B, Hannington M, Gibson H, Fiske R, Mueller W, Franklin J. 2003. Caldera-forming processes and the origin of submarine volcanogenic massive sulfide deposits. Geology, 31(4): 375.

    • Stix J, Kobayashi T. 2008. Magma dynamics and collapse mechanisms during four historic caldera-forming events. Journal of Geophysical Research: Solid Earth, 113(B9): B09205.

    • Tedesco D, Vaselli O, Papale P, Carn S A, Voltaggio M, Sawyer G M, Durieux J, Kasereka M, Tassi F. 2007. January 2002 volcanotectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. Journal of Geophysical Research: Solid Earth, 112: B09202.

    • Tizzani P, Berardino P, Casu F, Euillades P, Manzo M, Ricciardi G, Zeni G, Lanari R. 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBASInSAR approach. Remote Sensing of Environment, 108(3): 277~289.

    • Troll V R, Walter T R, Schmincke H U. 2002. Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology, 30(2): 135.

    • Walker G P L. 1984. Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. Journal of Geophysical Research: Solid Earth, 89(B10): 8407~8416.

    • Walter T R, Troll V R. 2001. Formation of caldera periphery faults: An experimental study. Bulletin of Volcanology, 63(2~3): 191~203.

    • Wang Nan, Li Sanzhong, Hu Rijun, Xu Yongchen, Wang Xiangdong. 2019. Geomorphology of the underwater caldera of the Changbaishan Tianchi volcano using 3D virtual visualization. Geological Journal, 55(7): 5186~5196.

    • Wang Xiang. 2023a&. Dark-colored microgranular enclaves are not the evidence for magma mixing under crust—mantle interaction. Geological Review, 69(1): 76~87.

    • Wang Xiang. 2023b&. Thoughts on granite and its mineralization in Nanling Range———A discussion with Prof. WU Fuyuan et al. Geological Review, 69(6): 2023~2031.

    • Wei Haiquan, Melnik O, Liu Yongshun, Barmin A, Sparks R S J. 2006&. Conduit modeling of magma flow dynamics: a case study on the eruptive process at the Tianchi volcano. Acta Petrologica Sinica. 22(12): 3007~3013.

    • Wei Haiquan, Bai Zhida, Liu Yongshun. 2022&. Centurial study on pyroclastic rocks. Geological Review, 68(5): 1918~1941.

    • Wei Haiquan, Chen Zhengquan, Liu Yongshun, Bai Zhida. 2024&. Mechanism differences between several typical pyroclastic rocks and their volcanism significance. Seismology and Geology, 46(2): 297~311.

    • Xu Yigang, Guo Zhengfu, Liu Jiaqi. 2020&. Studies on Volcanology and Chemistry of the Earth ' s Interior in China: Progresses and Perspectives (2011~2020). Bulletin of Mineralogy, Petrology and Geochemistry, 39(4): 681~696.

    • Yan Dong, Tian You, Zhao Dapeng, Li Hongli. 2023. Seismicity and magmatic system of the Changbaishan intraplate volcano in East Asia. Journal of Geophysical Research: Solid Earth, 128(9): 1~17.

    • Yang Bo, Lin Wule, Hu Xiangyun, Fang Hui, Qiu Gengen, Wang Gang. 2021. The magma system beneath Changbaishan—Tianchi Volcano, China / North Korea: Constraints from three-dimensional magnetotelluric imaging. Journal of Volcanology and Geothermal Research, 419: 107385.

    • Yang Hongfang, Liu Jiaqi, Sun Zhihao, Wang Pei, An Yanming, Wang Qian. 2023&. Structural constraints of Changbai mountain volcano, Journal of Hebei GEO University, 46(2): 12~21.

    • Yang Jianfeng, Faccenda M. 2020. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579, 88~91.

    • Yi Jian, Wang Pujun, Shan Xuanlong, Ventura G, Wu Chengzhi, Guo Jiannan, Liu Pencheng, Li Jiahui. 2021. Modeling the multi-level plumbing system of the Changbaishan caldera from geochemical, mineralogical, Sr—Nd isotopic and integrated geophysical data. Geoscience Frontiers, 12(5): 101171.

    • Yoshida T. 2001. The evolution of arc magmatism in the NE Honshu arc, Japan. Tohoku Geophysical Journal, 36(2): 131~149.

    • Zhang Changjian, Liu Shaojie, Luo Shaohui, Wang Ming. 2016&. Structure and geological significance of Pishan Caldera in Tarim Basin. Xinjiang Petroleum Geology, 37(3): 281~285.

    • Zhang Qi, Yuan Jie. 2024&. The crisis and opportunity of geochemical research. Geological Review, 70(5): 1907~1926.