en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵军利,男,1987年生,实验师,地图学与地理信息系统;E-mail: zhaojunli@cug.edu.cn。

通讯作者:

陈占龙,男,1980年生,教授,地图制图学与地理信息工程;E-mail: chenzl@cug.edu.cn。

参考文献
安艳东, 张灿. 2024. 基于多源遥感技术的泥石流小流域及沟道侵蚀特征分析. 科学技术创新, (10): 32~35.
参考文献
陈国良. 2011. 煤矿区“一张图” 建设的若干关键技术研究. 导师: 汪云甲, 李钢. 徐州: 中国矿业大学博士学位论文: 1~128.
参考文献
陈君, 马立龙, 谢万兵. 2024. 阿尔金地区地质灾害隐患识别及形变特征分析———SBAS-InSAR 结合光学遥感的综合遥感技术研究. 新疆地质, 42(1): 307~313.
参考文献
陈荣, 韩浩武, 傅佩红, 杨雨菲, 黄魏. 2021. 基于多时相遥感影像和随机森林算法的土壤制图. 土壤, 53(5): 1087~1094.
参考文献
陈伟涛, 王力哲, 董玉森, 阎继宁, 李显巨. 2017. 军事地质遥感理论与方法. 武汉: 中国地质大学出版社: 1~206.
参考文献
陈占龙, 陶留锋, 孙政权, 王润, 龚希, 徐道柱, 马超, 赵军利. 2022. 数据工程视角下的军事地质数据体系研究. 测绘与空间地理信息, 45(11): 1~4.
参考文献
程冬, 张永志, 王晓航, 韩鸣. 2019. 基于 Sentinel-1A 数据的 2017 年伊拉克哈莱卜杰 MW7. 3 地震同震形变场分析及断层滑动分布反演. 地震学报, 41(4): 484~493+548.
参考文献
程众帅. 2024. 基于支持向量机和信息量模型的长白山崩塌灾害风险评价. 导师: 张以晨, 张智勇. 长春: 长春工程学院硕士学位论文: 1~57.
参考文献
达尼克·尤里·格利高利耶维奇, 齐欣原. 2008. 现代和未来战争及军事行动的内容、本质与定义问题. 天津行政学院学报, 10(6): 43~47.
参考文献
代晶晶, 王登红, 陈郑辉, 于扬. 2013. IKONOS 遥感数据在离子吸附型稀土矿区环境污染调查中的应用研究———以赣南寻乌地区为例. 地球学报, 34(3): 354~360.
参考文献
代晶晶, 王瑞江, 王登红, 陈郑辉. 2014. 基于 IKONOS 数据的赣南离子吸附型稀土矿非法开采监测研究. 地球学报, 35(4): 503~509.
参考文献
邓锟. 2016. 神府矿区采空区塌陷 IKONOS 遥感影像特征. 能源环境保护, 30(3): 54~56.
参考文献
丁辉, 张茂省, 李林, 王佳运, 裴赢. 2009. IKONOS 数据在翠华山滑坡研究中的应用. 自然灾害学报, 18(3): 165~170.
参考文献
丁丽, 朱谷昌, 王娟, 张建国, 杨自安, 石菲菲. 2010. IKONOS 影像在矿山环境遥感监测中的应用———以白银煤矿区为例. 测绘与空间地理信息, 33(1): 37~41.
参考文献
段涛, 邓宇峰, 郭猛猛, 郑雪静, 梁迪文. 2024. 无人机低空遥感技术在崩塌地质灾害动态监测中的应用. 能源技术与管理, 49(3): 31~34.
参考文献
范林林. 2017. 基于六角格网的越野路径规划技术方法研究. 导师: 华一新. 郑州: 信息工程大学硕士学位论文: 1~69.
参考文献
范敏, 孙小飞, 苏凤环, 蒋华标, 韩磊. 2017. 国产高分卫星数据在西南山区地质灾害动态监测中的应用. 国土资源遥感, 29(S1): 85~89.
参考文献
葛良胜. 2017. 武警黄金部队构建“玻璃地球”. 国土资源(媒体广场), 60.
参考文献
葛良胜, 王梁, 张栋, 戚冉. 2023. 军事地质导论. 北京: 国防工业出版社: 1~506.
参考文献
郭玉斌. 2019. 基于遥感技术的矿山塌陷地质灾害调查的应用研究. 世界有色金属, 141+143.
参考文献
韩俊, 王保云, 徐繁树. 2024. 基于自校正原型网络的泥石流灾害易发性评价———以怒江州为例. 人民长江, 55(3): 123~133.
参考文献
韩晓青, 杜红悦. 2016. 高分辨率天绘卫星数据遥感地质应用研究. 铀矿地质, 32(1): 48~53.
参考文献
韩子清, 黎朗, 高晖. 2024. 基于 GF-7 数据的豫西山区地质灾害遥感解译. 河南科技, 11: 91~96.
参考文献
焦超卫, 陈富强, 李领军, 张云峰. 2013. 基于 ALOS 遥感影像的地质灾害调查研究. 现代测绘, 36(3): 3~6.
参考文献
金璐. 2024. 基于 Sentinel-1 SAR 数据的青藏高原湖冰冻融过程监测研究. 导师: 陈军. 合肥: 安徽违筑大学硕士学位论文: 1~62.
参考文献
李娜, 董新丰, 甘甫平, 闫柏琨, 朱婉菁. 2021. 高光谱遥感技术在基岩区区域地质调查填图中的应用. 地质通报, 40(1): 13~21.
参考文献
李万伦, 吕鹏, 孟庆奎, 王铭晗. 2020. 国外军事地质学热点问题. 地质论评, 66(1): 189~196.
参考文献
李显巨, 吴春明, 陈伟涛, 王力哲. 2019. 军事地质体遥感智能解译技术. 北京: 科学出版社: 1~123.
参考文献
李晓民, 张兴, 辛荣芳, 李宗仁, 李得林, 李冬玲. 2021. 国产高分数据在青海地区遥感解译泉点浅探. 地理空间信息, 19(2): 60~63+7.
参考文献
李远华, 姜琦刚, 周智勇, 崔瀚文, 林楠, 杨佳佳. 2012. 陆域遥感军事地质图基本要素及其表达方法. 世界地质, 31(3): 614~620.
参考文献
李志忠, 穆华一, 刘德长, 孙萍萍, 党福星, 刘拓, 贾俊, 王建华, 韩海辉, 马维峰, 汤晓君, 李文明, 赵君. 2021. “遥感先行”服务自然资源调查技术变革与调整. 地质与资源, 30(2): 153~160.
参考文献
连琛芹, 姚佛军, 陈懋弘, 马克忠, 王海龙. 2020. GF-5 高光谱数据在植被覆盖区的蚀变信息提取研究———以广东省玉水铜矿为例. 现代地质, 34(4): 680~686.
参考文献
廖秀英, 石英杰, 程辉, 王松涛, 梁继. 2024. 阿尔金山东段山间盆地地下水资源分布特征研究. 地球物理学进展, 39(1): 421~430.
参考文献
林海星, 程三友, 王曦, 陈静, 辜平阳, 庄玉军, 赵欣怡, 马刚. 2022. 青海赛什腾地区遥感影像岩石信息提取研究. 地质论评, 68(6): 2319~2335.
参考文献
刘德长, 童勤龙, 林子喻, 杨国防. 2015. 欧洲大陆遥感地质解译、诠释与矿产勘查战略选区. 国土资源遥感, 27(3): 136~143.
参考文献
刘衡, 时卫民, 李水泉, 曾以雄. 2013. 防护工程进出道路抗打击能力试验研究. 防护工程, 35(1): 6~10.
参考文献
刘华国. 2011. 基于高分辨率遥感影像的柯坪推覆构造系的构造变形研究. 导师: 冉勇康. 北京: 中国地震局地质研究所硕士学位论文: 1~98.
参考文献
刘欢, 朱谷昌, 李智峰, 胡杏花, 郑纬. 2010. IKONOS 卫星影像在甘肃省红会煤矿区塌陷群识别中的应用. 中国地质灾害与防治学报, 21(4): 82~85.
参考文献
刘焕军, 杨昊轩, 徐梦园, 张新乐, 张小康, 于滋洋, 邵帅, 李厚萱. 2018. 基于裸土期多时相遥感影像特征及最大似然法的土壤分类. 农业工程学报 34, 132~139+304.
参考文献
刘丽明, 王晋. 2024. 中国高分辨率对地观测系统卫星概况、特征及应用. 长春大学学报, 34(2): 21~30.
参考文献
刘晓煌, 孙兴丽, 刘玖芬, 李新昊, 鲍宽乐, 李宝飞, 赵炳新, 杨伟龙. 2016. 陆域军事地质要素的提取及成果表达. 西北地质, 49(3): 193~203.
参考文献
刘晓煌, 孙兴丽, 毛景文, 关洪军, 戚冉, 李保飞, 刘玖芬, 杨伟龙, 赵炳新. 2017. 军事地质及其在现代战争中的作用. 地质通报, 36(9): 1656~1664.
参考文献
刘晓煌, 张露, 孙兴丽, 李喜来. 2018. 现代军事地质理论与应用. 北京: 科学出版社: 1~217.
参考文献
刘小霞. 2012. WorldView-1 卫星图像在康定县地质灾害中的应用. 四川地质学报, 32(1): 110~111.
参考文献
刘泽东, 彭中勤. 2017. 广西龙胜里市地区多源遥感数据地质构造信息提取研究. 矿产与地质, 31(5): 950~954.
参考文献
柳锋, 刘晓静. 2007. 军事工程选址决策支持系统概念设计. 地球信息科学, 9(3): 5~9.
参考文献
陆芬. 2024. 擦亮“东方慧眼”———国家最高科学技术奖获得者李德仁谈智能遥感卫星与应用[N]. 中国自然资源报, 2024-07-09 (第 7 版).
参考文献
路彦明, 李宏伟, 周宏, 杨贵才, 袁士松, 张栋. 2020. 军事地质概论. 长沙: 国防科技大学出版社: 1~291.
参考文献
吕易. 2023. 基于多源多时相遥感数据的岩石影像特征分析及分类研究. 导师: 杨长保. 长春: 吉林大学博士学位论文: 1~136.
参考文献
马姗姗, 杨嘉葳, 王继燕, 熊俊楠. 2024. 基于光谱特征的城市水体提取. 测绘通报, (6): 71~76.
参考文献
裴秋明, 沈家乐, 王世明, 房大任, 高永璋, 李典, 马少兵. 2024. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用: 以内蒙古水头萤石矿床为例. 西北地质, 57(4): 121~134.
参考文献
彭光雄, 高光明. 2013. 新疆阿祖拜矿田伟晶岩型矿床遥感找矿综合信息研究. 大地构造与成矿学, 37(1): 109~117.
参考文献
任丽秋, 杨鹏, 苏旭, 李庆. 2020. 关于提升天绘一号系列卫星服务能力的几点思考. 地理信息世界, 27(4): 119~122.
参考文献
史俊波, 康孔跃, 张辉善, 杨伟, 张杰, 刘恒轩, 任清军. 2016. SPOT5 数据在西昆仑麻扎构造混杂岩带填图中的应用. 国土资源遥感, 28(1): 107~113.
参考文献
宋丙剑. 2017. 矿产资源在战场环境保障中应用探讨. 河北北方学院学报(自然科学版), 33(9): 58~60.
参考文献
孙红政, 李宏伟, 徐哲. 2017. 地质要素在工程构筑选址中的影响特性分析. 测绘与空间地理信息, 40(10): 199~201+204.
参考文献
孙兴丽, 刘晓煌, 鲁继元, 毛景文, 徐学义, 关洪军, 李保飞, 刘玖芬, 鲍宽乐, 鲁世朋. 2017. 现代战争特点及军事地质调查. 地质论评, 63(1): 99~112.
参考文献
谭宏婕, 邱昆峰, 刘洪成, 张鹏聪, 符佳楠, 王瑞, 罗建翔, 师彦明. 2024. 西秦岭李坝造山型金矿床围岩蚀变特征: 基于高分五号 02 星(GF-5B)星载高光谱数据信息提取. 岩石学报, 40(6): 1784~1800.
参考文献
陶西贵, 黄自力, 王泓, 贾艺凡. 2017. 军事设施综合防护体系研究. 防护工程, 39(2): 67~70.
参考文献
田瑜基. 2020. 高分卫星在测绘中的应用展望. 科技与创新, (22): 160~161.
参考文献
童勤龙, 叶发旺, 秦明宽, 易敏, 伍炜超. 2022. WorldView-3 遥感数据在巴音戈壁盆地本巴图地区铀矿勘查中的应用. 地质论评, 68(6): 2349~2364.
参考文献
王德富, 李永鑫, 任娟, 范亚军, 刘立, 罗超. 2024. 联合无人机光学与机载 LiDAR 在高位滑坡要素识别中的应用: 以川西汶川龙溪沟滑坡为例. 现代地质, 38(2): 464~476.
参考文献
王杭生, 蔡钟业. 1985. 军事工程地质学与未来战争. 工程兵工程学院学报, (4): 57~61.
参考文献
王建楠, 李楚钰, 唐廷元, 李瀚琨, 梁鹏, 荣伟. 2024. 机载激光雷达点云分类研究进展与趋势. 北京测绘, 38(4): 603~608.
参考文献
王凯, 刘志刚. 2008. 地质雷达技术及其在军事地球物理中的应用. 见: 第三届国家安全地球物理学术研讨会论文集, 西安: 173~177.
参考文献
王磊. 2018. 基于 Sentinel-2A 的矿化蚀变异常信息提取分析与应用. 导师: 杨斌. 绵阳: 西南科技大学硕士学位论文: 1~81.
参考文献
王莉. 2022. 基于卫星影像的地表构造解译与烃微渗漏蚀变信息提取———以库车坳陷秋里塔格构造带西段为例. 导师: 吴珍云. 上海: 华东理工大学硕士学位论文: 1~81.
参考文献
王平平, 王婷, 赵慧, 姚虎, 尹艺霖. 2024. 基于 ASTER 和 WorldView-3 数据在新疆坡北地区蚀变矿物信息提取对比研究. 新疆地质, 42(1): 127~132.
参考文献
王瑞国. 2016. 基于 WorldView-2 数据的乌东煤矿地质灾害遥感调查及成因分析. 国土资源遥感, 28(2): 132~138.
参考文献
王晓志. 2018. 基于 Worldview2 数据的岫岩县地质灾害遥感解译与分析. 吉林地质, 37(4): 62~66+78.
参考文献
汪洋. 2024. 遥感技术在地质灾害治理中的应用———以潘集区地灾风险调查评价为例. 华北自然资源, (4): 86~89.
参考文献
温干祥. 2024. 遥感技术在地下水寻找中的空间监测应用研究. 科技与创新, (10): 178~180.
参考文献
吴炎达. 2019. 基于多数据源的成土母质信息提取研究. 导师: 孙福军, 王大鹏. 沈阳: 沈阳农业大学硕士学位论文: 1~76.
参考文献
校培喜. 2007. 遥感技术在基础地质调查研究与地质编图中的应用. 见: 第五届全国地质制图与 GIS 学术讨论会论文集, 海口: 187~188.
参考文献
徐定杰, 邹勇, 熊芝兰, 刘丹丹. 2006. 军事海洋环境视景仿真研究. 计算机仿真, 23(6): 171~175.
参考文献
徐宇翔, 胡庆武, 段延松, 李加元, 艾明耀, 赵鹏程. 2024. 融合 LiDAR 点云与无人机影像的滑坡动态监测技术. 测绘通报, (8): 42~47.
参考文献
许兵, 杨梦诗, 李志伟, 丁晓利, 冯光财. 2011. 结合 ALOS PALSAR 和 QuickBird 影像研究舟曲泥石流. 见: 中国地球物理学会第二十七届年会论文集, 长沙: 1003.
参考文献
严嘉豪. 2023. 基于 D-InSAR 与 Offset-Tracking 参数改进的长白山北景区泥石流物源变化研究. 导师: 张以晨, 刘海峰. 长春: 长春工程学院硕士学位论文: 1~58.
参考文献
颜成义. 2020. 地利———地质对军事活动的影响. 北京: 地质出版社: 1~208.
参考文献
燕翱翔. 2022. 联合 Sentinel-1 升降轨数据的三维同震形变场及断层滑动分布反演. 导师: 蒋亚楠, 程多祥. 成都: 成都理工大学硕士学位论文: 1~62.
参考文献
杨日红, 李志忠, 陈秀法. 2012. ASTER 数据的斑岩铜矿典型蚀变矿物组合信息提取方法———以秘鲁南部阿雷基帕省斑岩铜矿区为例. 地球信息科学学报, 14(3): 411~418.
参考文献
叶发旺, 刘德长. 2012. 巴什布拉克铀矿区褪色蚀变 Quickbird 高分图像地学分析. 地球信息科学学报, 14(1): 123~127.
参考文献
殷赵慧. 2022. 基于卷积神经网络的断层传播褶皱地表构造变形遥感解析. 导师: 沈晓华, 邹乐君. 杭州: 浙江大学博士学位论文: 1~86.
参考文献
于德浩, 龙凡, 杨清雷, 王康, 王李, 杨彤. 2017. 现代军事遥感地质学发展及其展望. 中国地质调查, 4(3): 74~82.
参考文献
占惠珠, 尚慧, 甘智慧. 2021. 采煤沉陷区高分遥感数据融合方法. 西安科技大学学报, 41(4): 673~681.
参考文献
张栋, 葛良胜, 吕新彪, 戚冉, 王卫兵, 闫家盼, 赵由之. 2024. 军事地球科学: 历史经验与现代挑战[J][OL]. 地质论评, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025
参考文献
张栋, 吕新彪, 葛良胜, 路彦明, 黄辉. 2019. 军事地质环境的研究内涵与关键技术. 地质论评, 65(1): 181~198.
参考文献
张广有, 孟庆奎, 王智超, 毕记省. 2022. 美国军事地质发展和启示. 地质论评, 68(5): 1912~1917.
参考文献
张景华, 李宗亮, 张建龙, 刘小霞, 欧阳渊. 2013. 四川省泸定县磨西台地地质灾害遥感监测研究. 水土保持通报, 33(3): 104~108+264.
参考文献
张珂, 吴星宇, 吴南, 黄轶铭, 张兆安. 2024. 基于高分一号的遥感影像水体信息提取方法对比分析与改进. 水资源保护, 40(4): 9~16.
参考文献
张磊. 2018. 不确定性指导下的自适应数字土壤制图补样方法. 导师: 朱阿兴. 南京: 南京师范大学硕士学位论文: 1~62.
参考文献
张伟刚, 郭衍游, 唐菊兴. 2010. 西藏甲玛铜多金属矿高分辨率 IKONOS 遥感影像的线性构造解译及其控矿构造分析. 矿床地质, 29(增刊): 701~702.
参考文献
张元涛, 余长发, 潘蔚, 田青林. 2020. WorldView-3 影像与 ASTER 热红外影像在内蒙古卫境地区铀矿勘查中的应用. 铀矿地质, 36(5): 408~417.
参考文献
赵家乐, 陈浩. 2019. 高分遥感影像煤矿非法开采动态监测应用. 卫星应用, (7): 18~23.
参考文献
赵燕伶, 蒙利, 郑晨, 郝旋捷, 冯晓天. 2024. 基于遥感技术的韩城市燎原煤矿矿山地质灾害监测与分析. 陕西地质, 42(1): 82~90.
参考文献
赵永辉, 吴健生, 陈军. 2005. 军事防空洞室裂隙隐患的地质雷达测试研究. 见: 2005 国家安全地球物理学术研讨会论文集. 西安: 74~80.
参考文献
中国矿业报评论员. 2017. 军事地质工作大有用武之地———写在中国人民解放军建军九十周年之际[N]. 中国矿业报, 2017-08-01 (第 1 版).
参考文献
周秋麟, 尹卫平, 吴日升. 2008. 军事海洋生态学研究进展. 海洋开发与管理, (5): 76~85.
参考文献
周燕. 2008. 遥感影像在岩溶石山区找水研究中的应用 ———以多依河流域为例. 导师: 朱杰勇. 昆明: 昆明理工大学硕士学位论文: 1~93.
参考文献
朱煜峰, 张明, 臧德彦, 鲁铁定. 2017. D-InSAR 技术在相山铀矿山沉降监测中的应用分析. 东华理工大学学报(自然科学版), 40 (3): 297~300.
参考文献
邹键, 唐文龙, 王凤华, 胡峰, 薄军委, 王志新, 刘治, 魏绪峰, 李勇. 2022. 高分遥感数据在胶东水道地区金成矿远景区圈定中的应用研究. 地质论评, 68(6): 2336~2348.
参考文献
Ahmadi H, Das A, Pourtaheri M, Komaki C B, Khairy H. 2014. Redefining the watershed line and stream networks via digital resources and topographic map using GIS and remote sensing case study: The Neka River’ s watershed. Natural hazards, 72: 711~722.
参考文献
Ahmadi H, Pekkan E. 2021. Fault-based geological lineaments extraction using remote sensing and GIS—A review. Geosciences, 11(5): 183.
参考文献
Albanwan H, Qin Rongjun, Liu Jungkuan. 2024. Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications. Remote Sensing, 16(3): 455.
参考文献
An Yandong, Zhang Can. 2024&. Analysis of erosion characteristics of small watershed and channel of debris flow based on Multi- source remote sensing technology. Scientifc and Technological Innovation, (10): 32~35.
参考文献
Asokan A, Anitha J, Ciobanu M, Gabor A, Naaji A, Hemanth D J. 2020. Image processing techniques for analysis of satellite images for historical maps classification———An overview. Applied Sciences, 10(12): 4207.
参考文献
Awad M E, Amer R, López-Galindo A, El-Rahmany M M, del Moral L F G, Viseras C. 2018. Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Applied Clay Science, 160: 249~262.
参考文献
Bao Yilin, Yao Fengmei, Meng Xiangtian, Wang Jingwen, Liu Huanjun, Wang Yihao, Liu Qi, Zhang Jiahua and Mouazen A M. 2024. A fine digital soil mapping by integrating remote sensingbased process model and deep learning method in Northeast China. Soil and Tillage Research, 238: 106010.
参考文献
Beiranvand Pour A, Hashim M. 2014. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, (3): 1~19.
参考文献
Bolouki S M, Ramazi H R, Maghsoudi A, Beiranvand Pour A, Sohrabi G. 2019. A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar—Arasbaran Area, NW Iran. Remote Sensing, 12(1): 105.
参考文献
Booysen R, Jackisch R, Lorenz S, Zimmermann R, Kirsch M, Nex P A, Gloaguen R. 2020. Detection of REEs with lightweight UAV-based hyperspectral imaging. Scientific Reports, 10(1): 17450.
参考文献
Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W. 2012. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sensing, 4(12): 3721~3740.
参考文献
Burton D, Dunlap D B, Wood L J, Flaig P P. 2011. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5): 339~347.
参考文献
Chen Guoliang. 2011&. Key Technologies on “One-chart” Construction in Coal Mining Area. Supervisor: Wang Yunjia, Li Gang. Xuzhou: Ph. D. Dissertation of China University of Mining and Technology: 1~128.
参考文献
Chen Jun, Ma Lilong, Xie Wanbing. 2024&. Identification of geological hazards and analysis of deformation characteristics in the Altun Mountain area of Ruoqiang County based on SBAS-InSAR and optical remote sensing technology. Xinjiang Geology, 42(1): 307~313.
参考文献
Chen Rong, Han Haowu, Fu Peihong, Yang Yufei, Huang Wei. 2021&. Soil mapping based on Multi-temporal remote sensing images and random forest algorithm. Soils, 53(5): 1087~1094.
参考文献
Chen Tao, Trinder J C, Niu Ruiqing. 2017. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China. Remote Sensing, 9(4): 333.
参考文献
Chen Weitao, Wang Lizhe, Dong Yusen, Yan Jining, Li Xianju. 2017# . Theories and Methods of Military Geological Remote Sensing. Wuhan: China University of Geosciences Press: 1~206.
参考文献
Chen Weitao, Li Xianju, Qin Xuwen, Wang Lizhe. 2024. Geological remote sensing: An overview. Research Gate: 1~235.
参考文献
Chen Zhanlong, Tao Liufeng, Sun Zhengquan, Wang Run, Gong Xi, Xu Daozhu, Ma Chao, Zhao Junli. 2022&. Research on military geological data system from the perspective of data engineering. Geomatics & Spatial Information Technology, 45(11): 1~4.
参考文献
Cheng Dong, Zhang Yongzhi, Wang Xiaohang, Han Ming. 2019&. Coseismic deformation and fault slip inversion of the 2017 MW7. 3 Halabjah, Iraq, earthquake based on Sentinel-1A data. Acta Seismologica Sinica, 41(4): 484~493.
参考文献
Cheng Zhongshuai. 2024&. Risk Assessment of Changbai Mountain Collapse Disaster Based on Support Vector Machine and Information Quantity Model. Supervisor: Zhang Yichen, Zhang Zhiyong. Changchun: Master ’ s Degree Thesis of Changchun Engineering College: 1~57.
参考文献
Currenti G, Solaro G, Napoli R, Pepe A, Bonaccorso A, Del Negro C, Sansosti E. 2012. Modeling of ALOS and COSMO-SkyMed satellite data at Mt. Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest. Remote Sensing of Environment, 125: 64~72.
参考文献
Dai Jingjing, Wang Denghong, Chen Zhenghui, Yu Yang. 2013&. Environment contamination investigation of ion-absorbed rare earth ore districts based on IKONOS remote sensing data: A case study of Xunwu area in South Jiangxi. Acta Geoscientica Sinica, 34 (3): 354~360.
参考文献
Dai Jingjing, Wang Ruijiang, Wang Denghong, Chen Zhenghui. 2014&. The investigation of unauthorized mining of Ion-absorbed rare earth ore deposits in South Jiangxi Province based on IKONOS data. Acta Geoscientica Sinica, 35(4): 503~509.
参考文献
Danik Yuri Grigoryevich, Qi Xinyuan. 2008 #. Content, essence, definition of modern and future wars and military operations. Journal of Tianjin Administration Institute, 10(6): 43~47.
参考文献
Deng Kun. 2016. Characteristics of Ikonos remote sensing image of collapse of mined out area at Shenfu. Energy Environmental Protection, 30(3): 54~56.
参考文献
Ding Hui, Zhang Maosheng, Li Lin, Wang Jiayun, Pei Ying. 2009. Application of IKONOS satellite remote sensing images in Cuihua Mountain landslide. Journal of Natural Disasters, 18 (3): 165~170.
参考文献
Ding Li, Zhu Guchang, Wang Juan, Zhang Jianguo, Yang Zi’ an, Shi Feifei. 2010&. Application of IKONOS image with remote sensing technique in the monitoring of mine environment———An example in Baiyin coal mine region. Geomatics & Spatial Information Technology, 33(1): 37~41.
参考文献
Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P. 2012. Sentinel-2: ESA’ s optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120: 25~36.
参考文献
Du Yun, Zhang Yihang, Ling Feng, Wang Qunming, Li Wenbo, Li Xiaodong. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4): 354.
参考文献
Duan Mengqi, Song Xiangyun, Li Zengqiang, Zhang Xiaoguang, Ding Xiaodong, Cui Dejie. 2024. Identifying soil groups and selecting a high-accuracy classification method based on multi-textural features with optimal window sizes using remote sensing images. Ecological Informatics, 81: 102563.
参考文献
Duan Tao, Deng Yufeng, Guo Mengmeng, Zheng Xuejing, Liang Diwen. 2024#. Application of unmanned aerial vehicle (UAV) low-altitude remote sensing technology in dynamic monitoring of collapse geological hazards. Energy Technology and Management, 49 (3): 31~34.
参考文献
Elhag M, Alshamsi D. 2019. Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geoscientific Instrumentation, Methods and Data Systems, 8(1): 45~54.
参考文献
Fan Linlin. 2017&. Research on Cross-country Path Planning Technology Based on Hexagonal Grid. Supervisor: Hua Yixin. Zhengzhou: Master’s Degree Thesis of PLA Information Engineering University: 1~69.
参考文献
Fan Min, Sun Xiaofei, Su Fenghuan, Jiang Huabiao, Han Lei. 2017&. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data. Remote Sensing for Land and Resources, 29(S1): 85~89.
参考文献
Feng Guangcai, Jónsson S, Klinger Y. 2017. Which fault segments ruptured in the 2008 Wenchuan earthquake and which did not? New evidence from near-fault 3D surface displacements derived from SAR image offsets. Bulletin of the Seismological Society of America, 107 (3): 1185~1200.
参考文献
Feng Wanpeng, Li Zhenhong, Elliott J R, Fukushima Y, Hoey T, Singleton A, Cook R, Xu Zhonghuai. 2013. The 2011 MW 6. 8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophysical Journal International, 195(1): 650~660.
参考文献
Fielding E J, Lundgren P R, Taymaz T, Yolsal-Cevikbilen S, Owen S E. 2013. Fault-slip source models for the 2011 M 7. 1 Van earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS, seismic waveform analysis. Seismological Research Letters, 84(4): 579~593.
参考文献
Frazier A E, Hemingway B L. 2021. A technical review of planet smallsat data: Practical considerations for processing and using planetscope imagery. Remote Sensing, 13(19): 3930.
参考文献
Fu L L, Pavelsky T, Cretaux J F, Morrow R, Farrar J T, Vaze P, Sengenes P, Vinogradova ‐ Shiffer N, Sylvestre-Baron A, Picot N. 2024. The surface water and ocean topography mission: A breakthrough in radar remote sensing of the ocean and land surface water. Geophysical Research Letters, 51(4): e2023GL107652.
参考文献
Ge Liangsheng, Wang Liang, Zhang Dong, Qi Ran. 2023#. Introduction to Military Geology. Beijing: National Defense Industry Press: 1~506.
参考文献
Ge Liangsheng. 2017 #. The Armed Police Gold Corps Builds a “Transparent Earth”. Land & Resources (Media Plaza): 60.
参考文献
Gharineiat Z, Tarsha Kurdi F, Campbell G. 2022. Review of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques. Remote Sensing, 14(19): 4685.
参考文献
Giordan D, Luzi G, Monserrat O, Dematteis N. 2022. Remote sensing analysis of geologic hazards. Remote Sensing, 14(19): 4818.
参考文献
Guo Yubin. 2019&. Application of remote sensing technology in survey of mine subsidence geological disasters. Geologic hazard, 141+143.
参考文献
Han Jun, Wang Baoyun, Xu Fanshu. 2024&. Assessment of debris flow susceptibility based on self ———Calibration prototype network: Case of Nujiang prefecture, Yunnan Province. Yangtze River, 55 (3): 123~133.
参考文献
Han Ling, Zhao Bo, Wu Jianjian, Zhang Shuyuan, Pilz J, Yang Fan. 2018. An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternary-covered region———North Baoji District of China. Geological Journal, 53: 352~363.
参考文献
Han Sipeng, Wan Zhipeng, Deng Junfeng, Zhang Congyuan, Liu Xingwu, Zhu Tong, Zhao Junli. 2024. RSW Former: A Multi-Scale fusion network from local to global with multiple stages for regional geological mapping. Remote Sensing, 16(14): 2548.
参考文献
Han Xiaoqing, Du Hongyue. 2016&. The application of high-spatial resolution Tianhui remote sensing data to geologic exploration. Uranium Geology, 32(1): 48~53.
参考文献
Han Ziqing, Li Lang, Gao Hui. 2024&. Remote sensing interpretation of geological disaster in the western mountainous areas of Henan based on GF-7 data. Henan Science and Technology, (11): 91~96.
参考文献
Hu Bin, Xu Yongyang, Wan Bo, Wu Xincai, Yi Guihua. 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geology Reviews, 101: 384~397.
参考文献
Hu Leyin, Dai Keren, Xing Chengqi, Li Zhenhong, Tomás R, Clark B, Shi Xianlin, Chen Mi, Zhang Rui, Qiu Qiang. 2019. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. International Journal of Applied Earth Observation and Geoinformation, 82: 101886.
参考文献
Hu Wenmin, Wu Lixin, Zhang Wei, Liu Bin, Xu Jiaxing. 2017. Ground deformation detection using China’s ZY-3 stereo imagery in an opencast mining area. ISPRS International Journal of GeoInformation, 6(11): 361.
参考文献
Hubbard B E, Gallegos T J, Stengel V. 2023. Mapping abandoned uranium mine features using Worldview-3 imagery in portions of Karnes, Atascosa and Live Oak Counties, Texas. Minerals, 13(7): 839.
参考文献
Huggel C, Kääb A, Salzmann N. 2006. Evaluation of QuickBird and IKONOS imagery for assessment of high-mountain hazards. EARSeL eProceedings, 5(1): 51~62.
参考文献
Ilieva M, Briole P, Ganas A, Dimitrov D, Elias P, Mouratidis A, Charara R. 2016. Fault plane modelling of the 2003 August 14 Lefkada Island Greece earthquake based on the analysis of ENVISAT SAR interferograms. Tectonophysics, 693: 47~65.
参考文献
Ishidoshiro N, Yamaguchi Y, Noda S, Asano Y, Kondo T, Kawakami Y, Mitsuishi M, Nakamura H. 2016. Geological mapping by combining spectral unmixing and cluster analysis for hyperspectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41: 431~435.
参考文献
Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66(2): 378~394.
参考文献
Jiao Chaowei, Chen Fuqiang, Li Lingjun, Zhang Yunfeng. 2013&. The survey and research of geological hazards based on ALOS image. Modern Surveying and Mapping, 36(3): 3~6.
参考文献
Jin Lu. 2024&. Monitoring Freeze-Melt Processes of Lakes on the Tibetan Plateau Using Sentinel-1 Synthetic Aperture Radar Imagery. Supervisor: Chen Jun. Hefei: Master’ s Degree Thesis of Anhui Jianzhu University: 1~62.
参考文献
Jing Liuzeng, Liu Zhijun, Liu Xiaoli, Milliner C, Rodriguez Padilla A M, Xu Shiqing, Avouac J P, Yao Wenqian, Klinger Y, Han Longfei. 2024. Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake. AGU Advances, 5: e2023AV001134.
参考文献
Jolivet R, Lasserre C, Doin M P, Guillaso S, Peltzer G, Dailu R, Sun J, Shen Z K, Xu X. 2012. Shallow creep on the Haiyuan fault Gansu, China revealed by SAR interferometry. Journal of Geophysical Research: Solid Earth, 117(B6): B06401.
参考文献
Joyce K E, Samsonov S, Levick S R, Engelbrecht J, Belliss S. 2014. Mapping and monitoring geological hazards using optical, LiDAR, synthetic aperture RADAR image data. Natural hazards, 73: 137~163.
参考文献
König T, Kux H J, Mendes R M. 2019. Shalstab mathematical model and WorldView-2 satellite images to identification of landslidesusceptible areas. Natural Hazards, 97(3): 1127~1149.
参考文献
Kruse F A, Perry S L. 2013. Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sensing, 5(6): 2688~2703.
参考文献
Kruse F A, Baugh W M, Perry S L. 2015. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. Journal of Applied Remote Sensing, 9(1): 096044~096044.
参考文献
Latifovic R, Pouliot D, Campbell J. 2018. Assessment of convolution neural networks for surficial geology mapping in the South Rae geological region, Northwest Territories, Canada. Remote Sensing, 10(2): 307.
参考文献
Li Na, Dong Xinfeng, Gan Fuping, Yan Baikun, Zhu Wanjing. 2021&. Application of hyperspectral remote sensing technology to regional geological survey and mapping in bedrock area. Geological Bulletin of China, 40(1): 13~21.
参考文献
Li Wanlun, Lü Peng, Meng Qingkui, Wang Minghan. 2020&. New progress in application of military geology abroad. Geological Review, 66(1): 189~196.
参考文献
Li Xianju, Chen Weitao, Cheng Xinwen, Wang Lizhe. 2016. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote sensing, 8(6): 514.
参考文献
Li Xianju, Wu Chunming, Chen Weitao, Wang Lizhe. 2019#. Remote Sensing Intelligent Interpretation Technology for Military Geological Bodies. Beijing: Science Press: 1~123.
参考文献
Li Xiaomin, Zhang Xing, Xin Rongfang, Li Zongren, Li Delin, Li Dongling. 2021&. Briefly explore of remote sensing interpretation spring point using domestic High-resolution data in Qinghai. Geospatial Information, 19(2): 60~63+7.
参考文献
Li Yongsheng, Jiang Wenliang, Zhang Jingfa. 2022. A time series processing chain for geological disasters based on a GPU-assisted sentinel-1 InSAR processor. Natural Hazards, 111(1): 803~815.
参考文献
Li Yuanhua, Jiang Qigang, Zhou Zhiyong, Cui Hanwen, Lin Nan, Yang Jiajia. 2012&. Basic elements of land remote sensing military geological map and its expression method. Global Geology, 31(3): 614~620.
参考文献
Li Zhizhong, Mu Huayi, Liu Dechang, Sun Pingping, Party Fuxing, Liu Tuo, Jia Jun, Wang Jianhua, Han Haihui, Ma Weifeng, Tang Xiaojun, Li Wenming, Zhao Jun. 2021&. Remote sensing first: Service for the Technological revolution and innovation in natural resources survey. Geology and Resources, 30(2): 153~160.
参考文献
Lian Chenqin, Yao Fojun, Chen Maohong, Mark Zhong, Wang Hailong. The study on alteration information extraction of GF-5 Hyperspectral data in vegetation coverage area: A case study of the Yushui Copper Deposit in Guangdong Province. Geoscience, 34(4): 680~686.
参考文献
Liao Xiuying, Shi Yingjie, Cheng Hui, Wang Songtao, Liang Ji. 2024&. Study on distribution characteristics of groundwater resources intermountain basins in the Eastern part of Altun Mountains. Progress in Geophysics, 39(1): 421~430.
参考文献
Lin Haixing, Cheng Sanyou, Wang Xi, Chen Jing, Gu Pingyang, Zhuang Yujun, Zhao Xinyi, Ma Gang. 2022&. Study on rock information extraction from remote sensing images in Saishiteng Area, Qinghai Province. Geological Review, 68(6): 2319~2335.
参考文献
Liu Dechang, Tong Qinlong, Lin Ziyu, Yang Guofang. 2015&. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe. Remote Sensing for Land and Resources, 27(3): 136~143.
参考文献
Liu Feng, Liu Xiaojing. 2007&. The conceptual design of decision support system of selecting locus for military projects. GeoInformation Science, 9(3): 5~9.
参考文献
Liu Heng, Shi Weimin, Li Shuiquan, Zeng Yixiong. 2013&. Experimental research on the anti-attack performance of the access roads of protective engineering. Protective Engineering, 35(1): 6~10.
参考文献
Liu Huaguo. 2011&. A Study on the Tectonic Deformation of the Kalpin Thrust Tectonic System Based on High-Resolution Satellite Images. Supervisor: Ran Yongkang. Beijing: Master ’ s Degree Thesis of Institute of Geology, China Earthquake Administration: 1~98.
参考文献
Liu Huan, Zhu Guchang, Li Zhifeng, Hu Xinghua, Zheng Wei. 2010&. Application of IKONOS satellite images to recognition of the ground collapses in Honghui Coal Mine, Gansu Province. The Chinese Journal of Geological Hazard and Control, 21(4): 82~85.
参考文献
Liu Huanjun, Yang Haoxuan, Xu Mengyuan, Zhang Xinle, Zhang Xiaokang, Yu Ziyang, Shao Shuai, Li Houxuan. 2018&. Soil classification based on maximum likelihood method and features of multi-temporal remote sensing images in bare soil period. Transactions of the Chinese Society of Agricultural Engineering, 34(14): 132~139+304.
参考文献
Liu Liming, Wang Jin. 2024&. Overview, Characteristics and Applications of High-resolution on earth observation system satellites of China. Journal of Changchun Unversity, 34(2): 21~30.
参考文献
Liu Lupeng, Xiao Jun, Wang Ying. 2019. Major orientation estimationbased rock surface extraction for 3D Rock-mass point clouds. Remote sensing, 11(6): 635.
参考文献
Liu Xiaohuang, Sun Xingli, Liu Jiufen, Li Xinhao, Bao Kuanle, Li Baofei, Zhao Bingxin, Yang Weilong. 2016&. Extraction and result expression of land area military geological elements. Northwestern Geology, 49(3): 193~203.
参考文献
Liu Xiaohuang, Sun Xingli, Mao Jingwen, Guan Hongjun, Qi Ran, Li Baofei, Liu Jiufen, Yang Weilong, Zhao Bingxin. 2017&. Military geology and its role in Modern War. Geological Bulletin of China, 36(9): 1656~1664.
参考文献
Liu Xiaohuang, Zhang Lu, Sun Xingli, Li Xilai. 2018 #. Modern Military Geological Theory and Application. Beijing: Science Press: 1~217.
参考文献
Liu Xiaoxia. 2012&. The Application of WorldView-1 satellite images to geohazards survey in Kangding County. Acta Geologica Sichuan, 32(1): 110~111.
参考文献
Liu Zedong, Peng Zhongqin. 2017&. Extraction of geological structure information from Multi-Source remote sensing data in Lishi area of Longsheng in Guangxi. Mineral Resources and Geology, 31 (5): 950~954.
参考文献
Lu Yanming, Li Hongwei, Zhou Hong, Yang Guicai, Yuan Shisong, Zhang Dong. 2020#. Introduction to Military Geology. Changsha: National University of Defense Technology Press: 1~291.
参考文献
Lü Yi. 2023&. Rock Image Feature Analysis and Classification Using Multi-Source and Multi-Temporal Remote Sensing Data. Supervisor: Yang Changbao. Ph. D. Dissertation of Jilin University: 1~136.
参考文献
Ma Shanshan, Yang Jiawei, Wang Jiyan, Xiong Junnan. 2024&. Urban water extraction based on spectral features. Bulletin of Surveying and Mapping, (6): 71~76.
参考文献
Madani A, Niyazi B. 2015. Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: A case study from Wadi Yalamlam Basin, Makkah Province, Western Saudi Arabia. Environmental Earth Sciences, 74: 5129~5142.
参考文献
Malainine C E, Raji O, Ouabid M, Bodinier J L, El Messbahi H. 2022. Prospectivity mapping of carbonatite-associated iron oxide deposits using an integration process of ASTER and Sentinel-2A multispectral data. International Journal of Remote Sensing, 43(13): 4951~4983.
参考文献
Meng Fanqi, Zhu Sihong, Li Yufei, Zhang Yong, Niu Wei, Lin Bo. 2024. Identification of geological hazards in Yishui County Shandong Province using GF-2 remote sensing images. International Conference on Remote Sensing Technology and Survey Mapping (RSTSM 2024), SPIE, 13166: 55~62.
参考文献
Monsef H A E, Khalifa I H, Faisal M. 2015. Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and World View II images at Wadi Rofaiyed, South Sinai, Egypt. Arabian Journal of Geosciences, 8: 9285-9300.
参考文献
Mota R, Pacheco J M, Pimentel A, Gil A. 2024. Monitoring volcanic plumes and clouds using remote sensing: A systematic review. Remote Sensing, 16(10): 1789.
参考文献
Mulder V, De Bruin S, Schaepman M E, Mayr T. 2011. The use of remote sensing in soil and terrain mapping———A review. Geoderma, 162(1~2): 1~19.
参考文献
Nagaraj R, Kumar L S. 2024. Extraction of surface water bodies using optical remote sensing images: A review. Earth Science Informatics, 17(2): 893~956.
参考文献
Ninomiya Y, Fu Bihong. 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108: 54~72.
参考文献
Oikonomidis D, Vavelidis M, Melfos V, Artashova M. 2017. Searching for ancient gold mines in Filippoi area, Macedonia, Greece, using Worldview-2 satellite imagery. Geocarto International, 32(1): 87~96.
参考文献
Pearlman J S, Barry P S, Segal C C, Shepanski J, Beiso D, Carman S L. 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1160~1173.
参考文献
Pei Qiuming, Shen Jiale, Wang Shiming, Fang Daren, Gao Yongzhang, Li Dian, Ma Shaobing. 2024&. Exploring luorite veins using Multisource remote sensing astellite data: A case study from the Shuitou fluorite deposit in Inner Mongolia, China. Northwestern Geology, 57(4): 121~134.
参考文献
Peng Guangxi, Gao Guangming. 2013&. Remote sensing prospecting of pegmatite deposits in the Azubai region, Xinjiang. Geotectonica et Metallogenia, 37(1): 109~117.
参考文献
Raharimahefa T, Kusky T M. 2009. Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Research, 15(1): 14~27.
参考文献
Ren Liqiu, Yang Peng, Su Xu, Li Qing. 2020&. Several thoughts on enhancing the service capabilities of the Tianhui-1 series of satellites. Geomatics World, 27(4): 119~122.
参考文献
Ren Yuhuan, Liu Yalan. 2016. Geological disaster detection from remote sensing image based on experts’ knowledge and image features. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 677~680.
参考文献
Robson B A, Bolch T, MacDonell S, Hölbling D, Rastner P, Schaffer N. 2020. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 250: 112033.
参考文献
Rowan L C, Mars J C. 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer ASTER data. Remote Sensing of Environment, 84(3): 350~366.
参考文献
Sang Xuejia, Xue Linfu, Ran Xiangjin, Li Xiaoshun, Liu Jiwen, Liu Zeyu. 2020. Intelligent high-resolution geological mapping based on SLIC-CNN. ISPRS International Journal of Geo-Information, 9(2): 99.
参考文献
She Jinxing, Mabi, A, Liu Zhongming, Sheng Mingqiang, Dong Xiujun, Liu Fei, Wang Shiyang. 2021. Analysis using high-precision airborne LiDAR data to survey potential collapse geological hazards. Advances in civil Engineering, 2021(1): 6475942.
参考文献
Shellum C, Trudnak J. 2005. GIS-based geology and geotechnical estimates for military applications. ARMA US Rock Mechanics/ Geomechanics Symposium. ARMA, 2005: ARMA-05-871.
参考文献
Shi Junbo, Kang Kongyue, Zhang Huishan, Yang Wei, Zhang Jie, Liu Hengxuan, Ren Qingjun. 2016&. Application of SPOT5 data to geological mapping of Mazha Tectonic Melange Belt in West Kunlun Mountains. Remote Sensing for Land and Resources, 28(1): 107~113.
参考文献
Shirmard H, Farahbakhsh E, Beiranvand Pour A, Muslim A M, Müller R D, Chandra R. 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing, 12(8): 1261.
参考文献
Shirmard H, Farahbakhsh E, Müller R D, Chandra R. 2022. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268: 112750.
参考文献
Song Bingjian. 2017#. Discussion on the application of mineral resources in battlefield environment support. Journal of Hebei North University (Natural Science Edition), 33(9): 58~60.
参考文献
Sturzenegger M. 2010. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques, Burnaby: A Dissertation for a Doctoral Degree at Simon Fraser University: 1~343.
参考文献
Sun Hongzheng, Li Hongwei, Xu Zhe. 2017&. Influence characteristics analysis of geological elements in engineering site selection and construction. Geomatics & Spatial Information Technology, 40(10): 199~201+204.
参考文献
Sun Xingli, Liu Xiaohuang, Lu Jiyuan, Mao Jingwen, Xu Xueyi, Guan Hongjun, Li Baofei, Liu Jiufeng, Bao Kuanle, Lu Shipeng. 2017&. The characteristics of modern war and the investigation in military Geology. Geological Review, 63(1): 99~112.
参考文献
Tagnon B O, Assoma V T, Mangoua J M O, Douagui A G, Kouamé F K, Savané I. 2020. Contribution of SAR/ RADARSAT-1 and ASAR/ ENVISAT images to geological structural mapping and assessment of lineaments density in Divo—Oume area Cote d ’ Ivoire. The Egyptian Journal of Remote Sensing and Space Science, 23(2): 231~241.
参考文献
Tan Hongjie, Qiu Kunfeng, Liu Hongcheng, Zhang Pengcong, Fu Jianan, Wang Rui, Luo Jianxiang, Shi Yanming. 2024&. Alteration characteristics of wall rocks in the Liba Orogenic gold deposit, West Qinling: Based on information extraction from GF-5B spaceborne Hyperspectral data. Acta Petrologica Sinica, 40 (6): 1784~1800.
参考文献
Tan Qulin, Bai Minzhou, Zhou Pinggen, Hu Jun, Qin Xiaochun. 2021. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS. Measurement, 169: 108370.
参考文献
Tang Shulan, Cao Jiannong. 2020. Deposit location identification based on feature decomposition of high-resolution remote sensing images. IEEE Access, 9: 15239~15251.
参考文献
Tao Xigui, Huang Zili, Wang Hong, Jia Yifan. 2017&. Research on the Comprehensive protection system of military facilities. Protective Engineering, 39(2): 67~70.
参考文献
Tian Yuji. 2020 #. Prospects for the application of High-resolution satellites in surveying and mapping. Science and Technology and Innovation, 22: 160~161.
参考文献
Tong Qinlong, Ye Fawang, Qin Mingkuan, Yi Min, Wu Weichao. 2022&. Application of World View-3 remote sensing data to uranium exploration in Benbatu area, Bayingobi Basin. Geological Review, 68(6): 2349~2364.
参考文献
Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M. 2012. GMES Sentinel-1 mission. Remote sensing of environment, 120: 9~24.
参考文献
Valade S, Ley A, Massimetti F, D’ Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter T R. 2019. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system. Remote Sensing, 11(13): 1528.
参考文献
Van der Meer F D, Van der Werff H M, Van Ruitenbeek F J, Hecker C A, Bakker W H, Noomen M F, Van Der Meijde M, Carranza E J M, De Smeth J B, Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: A review. International journal of applied Earth observation and geoinformation, 14(1): 112~128.
参考文献
Wang Defu, Li Yongxin, Ren Juan, Fan Yajun, Liu Li, Luo Chao. 2024&. Application of joint UAV optics and airborne LiDAR in high level landslide element identification: A case study from the Longxigou landslide in Wenchuan, Western Sichuan. Geoscience, 38(2): 464~476.
参考文献
Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geology, 1(3): 415~424.
参考文献
Wang Hangsheng, Cai Zhongye. 1985#. Military engineering geology and future warfare. Journal of Engineering Corps Engineering Academy, (4): 57~61.
参考文献
Wang Jiannan, Li Chuyu, Tang Tingyuan, Li Hankun, Liang Peng, Rong Wei. 2024&. Research progress and trend of airborne LiDAR point cloud classification. Beijing Surveying and Mapping, 38(4): 603~608.
参考文献
Wang Kai, Liu Zhigang. 2008. Ground penetrating radar technology and its application in military geophysics. In: Proceedings of the Third National Security Geophysics Symposium, Xi’an: 173~177.
参考文献
Wang Lei. 2018&. Extraction and Analysis of Mineralized Alteration Anomaly Information Based on Sentinel-2A. Supervisor: Yang Bin. Mianyang: Southwest University of Science and Technology Master Degree Thesis: 1~81.
参考文献
Wang Li. 2022&. Surface Structure Interpretation and Hydrocarbon Microseepage Alteration Information Extraction Based on Satellite Images———A Case Study of the Western Segment of Qiulitage Structural Belt in Kuqa Depression. Supervisor: Wu Zhenyun. Shanghai: Dissertation for master’s degree of East China University of Technology: 1~81.
参考文献
Wang Lizhe, Zuo Boxin, Le Yuan, Chen Yifu, Li Jun. 2023. Penetrating remote sensing: Next-generation remote sensing for transparent Earth. Innovation Camb, 4(6): 100519.
参考文献
Wang Pingping, Wang Ting, Zhao Hui, Yao Hu, Yin Yilin. 2024&. Comparative study on extracting altered mineral information in the Pobei area of Xinjiang based on ASTER and WorldView-3 data. Xinjiang Geology, 42(1): 127~132.
参考文献
Wang Qing, Jiang Yonghua, Zhang Guo, Sheng Qinghong. 2015. Earthquake monitoring for multi-temporal images of Ziyuan-3. International Conference on Intelligent Earth Observing and Applications 2015. SPIE, 2015, 9808: 543~551.
参考文献
Wang Ruiguo. 2016&. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on World View-2 data. Remote Sensing for Land and Resources, 28(2): 132~138.
参考文献
Wang Xiaozhi. 2018&. Remote sensing interpretation and analysis of geological disasters in Xiuyan County based on Worldview 2. Jilin Geology, 37(4): 62~66+78.
参考文献
Wang Yang. 2024. Application of remote sensing technology in geological disaster management: A case study of geological disaster risk assessment in Panji District. North China Natural Resources, (4): 86~89.
参考文献
Wen Ganxiang. 2024 #. Research on the application of remote sensing technology in spatial monitoring for groundwater exploration. Science and Technology & Innovation, 10: 178~180.
参考文献
Wu Chunming, Li Xiao, Chen Weitao, Li Xianju. 2020. A review of geological applications of high-spatial-resolution remote sensing data. Journal of Circuits, Systems and Computers, 29 (6): 2030006.
参考文献
Wu Weihua, Yang Yang, Wu Bangyu, Ma Debo, Tang Zhanxin, Yin Xia. 2023. MTL-FaultNet: Seismic data reconstruction assisted multi-task deep learning 3D fault interpretation. IEEE Transactions on Geoscience and Remote Sensing, 61: 5914815.
参考文献
Wu Yanda. 2019&. Research on Information Extraction of Soil Parent Material Based on Multiple Data Sources. Supervisor: Sun Fujun, Wang Dapeng. Shenyang: Master ’ s Degree Thesis of Shenyang Agricultural University: 1~76.
参考文献
Xiao Peixi. 2007 #. Application of remote sensing technology in basic geological survey research and geological mapping. In: Proceedings of the 5th National Symposium on Geological Mapping and GIS, Haikou: 187~188.
参考文献
Xu Bing, Yang Mengshi, Li Zhiwei, Ding Xiaoli, Feng Guangcai. 2011 #. Mudslide studying of Zhouqu by integrating ALOS PALSAR and QuickBird optical image. In: Proceedings of the 27th Annual Meeting of the China Geophysical Society, Changsha: 1003.
参考文献
Xu Dingjie, Zou Yong, Xiong Zhilan, Liu Dandan. 2006&. Research on visual simulation system of martial marine environment. Computer Simulation, 23(6): 171~175.
参考文献
Xu Lina, Duan Junbin, Niu Ruiqing, Fang Shenghui, Dong, Yanfang. 2014. The landslide stability evaluation method research in the Three Gorges reservoir using ZY-3 data. 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014: 4303~4306.
参考文献
Xu Qiang, Zhao Bo, Dai Keren, Dong Xiujun, Li Weile, Zhu Xing, Yang Yinghui, Xiao Xianxuan, Wang Xin, Huang Jian, Lu Huiyan, Deng Bo, Ge Daqing. 2023. Remote sensing for landslide investigations: A progress report from China. Engineering Geology, 321: 107156.
参考文献
Xu Yuxiang, Hu Qingwu, Duan Yansong, Li Kaiyuan, Ai Mingyao, Zhao Pengcheng. 2024&. Landslide dynamic monitoring technology by integrating LiDAR point cloud and UAV image. Bulletin of Surveying and Mapping, 8: 42~47.
参考文献
Yan Aoxiang. 2022&. Three-Dimensional Isoseismic Deformation Field Extraction and Inversion of Fault Slip Distribution from Ascending and Descending Sentinel-1 Satellite Data. Supervisors: Jiang Yanan, Cheng Duoxiang. Chengdu: Master ’ s Degree Thesis of Chengdu University of Technology: 1~62.
参考文献
Yan Chengyi. 2020. Geographical Advantage: The Influence of Geology on Military Activities. Beijing: Geological Press: 1~208.
参考文献
Yan Jiahao. 2023&. Study on Changes of Debris Flow Sources in the Northern Scenic Area of Changbai Mountain Based on D-InSAR and Offset-Tracking Parameter Improvement. Supervisor: Zhang Yichen and Liu Haifeng. Changchun: Master ’ s Degree Dissertation of Changchun Institute of Technology: 1~58.
参考文献
Yang Rihong, Li Zhizhong, Chen Xiufa. 2012&. Information extraction of typical alteration mineral assemblage in porphyry copper using ASTER satellite data, Arequipa Province of South Peru. Journal of Geo-Information Science, 14(3): 411~418.
参考文献
Yang Siquan, He Haixia, Chen Weitao, Wang Lizhe. 2018. Direct tangible damage assessment for regional snowmelt flood disasters with HJ-1 and HR satellite images: A case study of the Altay region, northern Xinjiang, China. Natural Hazards, 94: 1099~1116.
参考文献
Yang Xiaohong, Li Yue, Wei Yu, Chen Zhanlong, Xie Peng. 2020. Water body extraction from Sentinel-3 image with multiscale spatiotemporal Super-resolution mapping. Water, 12(9): 2605.
参考文献
Yang Xu, Liu Dechang, Zhang Jielin. 2008. Extraction of ore-searching information of uranium deposit based on high spatial resolution satellite data. Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images. SPIE, 2008, 7147: 62~69.
参考文献
Yazdi M, Sadati N, Matkan A, Ashoorloo D. 2011. Application of remote sensing in monitoring of faults, International Journal of Environmental Research, 5(2): 457~468.
参考文献
Ye Bei, Tian Shufang, Ge Jia, Sun Yaqin. 2017. Assessment of WorldView-3 data for lithological mapping. Remote Sensing, 9(11): 1132.
参考文献
Ye Fawang, Liu Dechang. 2012&. Analysis on the fading alteration in Bashibulake Uranium mineralization area using Quickbird High resolution satellite remote sensing data. Journal of Geo-Information Science, 14(1): 123~127.
参考文献
Yesou H, Besnus Y, Rolet J. 1993. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery———A contribution to the study of geological structures. ISPRS Journal of Photogrammetry and Remote Sensing, 48(5): 23~36.
参考文献
Yi Wenxing, Li An, Xu Liangxin, Hu Zongkai, Li Xiaolong. 2024. Evidence of dextral strike-slip movement of the Alakol Lake fault in the Western Junggar based on remote sensing. Remote Sensing, 16(14): 2615.
参考文献
Yin Zhaohui. 2022&. The Remote Sensing Analysis of Surface Tectonic Deformation of Fault—Propagation Folds Based on Convolutional Neural Network. Supervisors: Shen Xiaohua, Zou Lejun. Hangzhou: Ph. D. Dissertation, Zhejiang University: 1~86.
参考文献
Yu Dehao, Long Fan, Yang Qinglei, Wang Kang, Wang Li, Yang Tong. 2017&. Development and prospects of modern military remote sensing geology. Geological Survey of China, 4(3): 74~82.
参考文献
Zhan Huizhu, Shang Hui, Gan Zhihui. 2021. Fusion method of Highresolution remote sensing data in coal mining subsidence area. Journal of Xi’an University of Science and Technology, 41(4): 673~681.
参考文献
Zhang Dong, Ge Liangsheng, Lv Xinbiao, Qi Ran, Wang Weibing, Yan Jiapan, Zhao Youzhi. 2024&. Military geosciences: Past lessons and modern challenges [ J] [ OL]. Geological Review, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025
参考文献
Zhang Dong, Lü Xinbiao, Ge Liangsheng, Lu Yanming, Huang Hui. 2019&. Research connotation and key technology of the military geological environment in the land battlefield. Geological Review, 65(1): 181~198.
参考文献
Zhang Guangyou, Meng Qingkui, Wang Zhichao, Bi Jisheng. 2022&. The development and enlightenment of U. S. military Geology. Geological Review. 68(5): 1912~1917.
参考文献
Zhang Jinghua, Li Zongliang, Zhang Jianlong, Liu Xiaoxia, Ouyang Yuan. 2013&. Remote sensing monitoring of geological hazards on Moxi Platform in Luding County of Sichuan Province. Bulletin of Soil and Water Conservation, 33(3): 104~108+264.
参考文献
Zhang Ke, Wu Xingyu, Wu Nan, Huang Yiming, Zhang Zhao’ an. 2024&. Comparative analysis and improvement of water body information extraction methods from remote sensing images based on GF-1. Water Resources Protection, 40(4): 9~16.
参考文献
Zhang Lei. 2018&. An Adaptive Uncertainty-Guided Sampling Strategy for Digital Soil Mapping. Supervisors: Zhu Axing. Nanjing: Master’s Degree Dissertation of Nanjing Normal University: 1~62.
参考文献
Zhang Weigang, Guo Yanyou, Tang Juxing. 2010 #. Interpretation of linear structures from high-resolution IKONOS remote sensing imagery of the Jiama copper polymetallic deposit in Tibet and analysis of ore-controlling structures. Mineral Deposits, 29(Suppl): 701~702.
参考文献
Zhang Yuantao, Yu Changfa, Pan Wei, Tian Qinglin. 2020&. Application of world View-3 and ASTER TIR for the exploration of uranium in Weijing, Inner Mongolia. Uranium Geology. 36 (5): 408~417.
参考文献
Zhao Jiale, Chen Hao. 2019 #. Application of high-resolution remote sensing imagery in dynamic monitoring of illegal coal mining. Satellite Applications, (7): 18~23.
参考文献
Zhao Yanling, Meng Li, Zheng Chen, Hao Xuanjie, Feng Xiaotian. 2024&. Monitoring and analysis of mine geological disasters of Liao Yuan coal mine in Hancheng City based on remote sensing technology. Geology of Shaanxi, 42(1): 82~90.
参考文献
Zhao Yonghui, Wu Jiansheng, Chen Jun. 2005 #. Study on ground penetrating radar testing of fracture hidden danger in military AirRaid shelter. In: Proceedings of the 2005 National Security Geophysical Symposium, Xi’an: 74~80.
参考文献
Zhong Jiaxin, Li Qiaomin, Zhang Jia, Luo Pingping, Zhu Wei. 2024. Risk assessment of geological landslide hazards using D-InSAR and Remote Sensing. Remote Sensing, 16(2): 345.
参考文献
Zhou Qiulin, Yin Weiping, Wu Risheng. 2008#. Advances in military marine ecology research. Ocean Development and Management, (5): 76~85.
参考文献
Zhou Yan. 2008&. Application of Remote Sensing Imagery in Water Exploration Research in Karst Rocky Mountainous Regions: A Case Study of the Duoyi River Basin. Supervisor: Zhu Jieyong. Kunming: Master’ s Dissertation of Kunming University of Science and Technology: 1~93.
参考文献
Zhu Yufeng, Zhang Ming, Zang Deyan, Lu Tieding. 2017&. Analysis of surface subsidence monitoring in Xiangshan Uranium mine area based on D-InSAR technology. Journal of East China University of Technology ( Natural Science), 40(3): 297~300.
参考文献
Zou Jian, Tang Wenlong, Wang Fenghua, Hu Feng, Bo Junwei, Wang Zhixin, Liu Zhi, Wei Xufeng, Li Yong. 2022&. Application research of high-resolution remote sensing date in the delineation of gold metallogenic potential areas in Shuidao area of Jiaodong Peninsula. Geological Review, 68(6): 2336~2348.
目录contents

    摘要

    军事地质也已成为立体化、透明化和信息化战场环境的重要组成部分。遥感技术能够提供大范围、动态的、多视角、重复对地观测的遥感数据,为军事地质要素信息提取及应用提供了丰富的数据源。笔者等概述了军事地质及相关的遥感影像数据,重点回顾了对基于遥感影像的岩体、土体、水体、地质构造、地质灾害及地质资源军事地质信息提取及应用的研究现状,概括分析了基于遥感影像军事地质信息提取及应用发展挑战和趋势,总结指出:基于遥感影像军事地质信息提取存在精度不高、不稳定性难题,制约了军事地质要素在军事应用中的潜力。未来,随着深度学习、人工智能和大语言模型等先进技术快速发展,基于遥感影像军事地质信息提取及应用将有更广阔前景。

    Abstract

    Military geology has become an essential component of the three-dimensional, transparent, and information-driven battlefield environment. Remote sensing technology provides extensive, dynamic, multi-perspective, and repetitive data for ground observation, offering rich data sources for the extraction and application of military geological information. This article presents an overview of military geology and related remote sensing image data, focus on current research in the extraction and application of military geological information from remote sensing images, including rock formations, soil bodies, water bodies, geological structures, geological hazards, and geological resources. It summarizes and analyzes the challenges and development trends in military geological information extraction and application, highlighting issues such as low accuracy and instability in the extraction process, which limit the potential of military geological elements in military applications. In the future, with the rapid advancement of technologies such as deep learning, artificial intelligence, and large language models, the extraction and application of military geological information based on remote sensing images hold promising prospects.

  • 军事地质作为战场环境保障的重要组成部分(张广有等,2022),军事地质信息(即军事地质要素信息)提取及应用一直是军事地质领域研究的热点。对俄乌冲突亚速钢铁厂围攻战、巴以冲突加沙地道战等现代战争样式研究分析发现,地下空间作战已成为现代战争新型作战样式之一。地下空间作战是军事地质领域研究关注的焦点,因此,国内外专家十分重视军事地质在现代战争中的关键作用,将军事地质视为为决定现代战争胜败的重要因素之一,在未来军事地质将是世界强国争相抢占的战略制高点(张广有等,2022)。现代战争的战场环境日益复杂,作战节奏加快,武器杀伤力大,对军事情报信息需求更加复杂多样、要求更加全面苛刻,对战场环境保障提出了更高要求。随着卫星侦察、精确制导和精准打击等高科技手段和武器装备的运用,现代化战场环境逐步向深地、深海、深空和外太空多维空间扩展(徐定杰等,2006; 达尼克·尤里·格利高利耶维奇等,2008; 周秋麟等,2008; 刘晓煌等,20172018; 孙兴丽等,2017; 于德浩等,2017; 张栋等,2019; 李万伦等,2020),作战样式已发生了深刻变化(李远华等,2012),军事行动不再仅限于地表,而是向地下、水下、太空等空间发展,使地质在军事活动中愈加重要(李远华等,2012; 陶西贵等,2017)。

  • 军事地质已成为立体化、透明化、信息化战场环境的重要组成部分,在战略筹划、指挥控制、驻屯集结、野战机动等军事行动中,发挥十分重要的作用(Shellumet al.,2005; 中国矿业报评论员,2017)。地表重要目标是军事行动关注的焦点,而诸如地面承载通行、地质灾害规避、战场工程建设等军事地质保障也已成为现代战争关注的重点。快速、高精度地获取地质信息已成为军事行动与决策考虑的重要因素,过去小范围或重点区域地质调查保障模式,难以满足信息化条件下的现代军事战略和战术行动需求,因此,区域或全球军事地质环境信息提取及应用显得十分重要,且要求更高(陈伟涛等,2017)。

  • 目前,军事地质信息提取主要依靠现地测量、外业调绘、实地数据收集等手段完成,这些工作方式通常受到气候条件、地形和操作方法等影响(Latifovic et al.,2018; Sang Xuejia et al.,2020); 此外,军事地质工作本身具有明显的国防特征,有时某些区域难以抵达,这些使得军事地质信息提取及应用存在巨大挑战。军事地质作为应用地质的一个分支(葛良胜等,2023),目前,应用地质调查手段已由传统调查方法向依托科技创新和现代信息建设为技术支撑的新方法转变(李志忠等,2021)。遥感技术已成为信息化条件下的现代军事领域的“高技术”(李远华等,2012),能大范围、快速、周期性地获取对地观测信息,在军事目标探测、侦察、制导和监视等方面展开了广泛应用。遥感技术具有无禁区大面积同步观测,实时战场态势动态监测,极大减少人力、物力、财力和时间的投入等优势,有效地提升作战信息化水平,为夺取战场信息优势提供重要保障(李远华等,2012; 于德浩等,2017)。遥感技术在观测、探测、监测方面具有快速、多尺度、多角度、立体、动态、综合的特点,能够快速观测军事地质要素的分布特征,在影像上显示各要素的细节特征; 快速探测军事地质要素的物化特性,能够详细、准确地了解各要素的空间分布范围和走向等; 快速监测军事地质要素的动态变化,如地质灾害识别预警、战后毁伤评估等; 在军事地质调查、填图、分析、解译等方面发挥着重要作用。因此,应用不同种类遥感影像能够为军事地质信息提取及应用所涉及的大多数挑战和缺点提供有效的解决方案。

  • 地质学家将诸多遥感影像处理理论、算法应用于地质调查工作,例如 Raharimahefa 等(2009)使用 LandSat-7 ETM +影像进行构造制图。 Ninomiya 等(2019)等人应用 ASTER 遥感影像进行岩性识别。 Shirmard 等(2020)使用 ASTER 遥感影像识别、区分和增强诸如岩性单元、蚀变带和结构等特征寻找矿床,有力促进矿产资源勘查。在地质信息处理方面,遥感影像处理方法主要用于卫星影像降维、增强、特征提取与检测、分割或分类、融合、变化检测等(Asokan et al.,2020)。全天时、全天候的 SAR 影像被广泛应用于地质构造制图任务中( Tagnon et al.,2020)。 Booysen 等(2020) 基于轻量化无人机高光谱成像进行稀土元素检测,李娜等(2021)采用高光谱遥感技术在基岩区区域进行地质调查填图。当前,已有很多人将遥感技术引入到地质领域进行综述( Mulder et al.,2011; Van der Meer et al.,2012; Ahmadi et al.,2021; Frazier et al.,2021; Gharineiat et al.,2022; Shirmard et al.,2022; Albanwan et al.,2024; Chen Weitao et al.,2024; Mota et al.,2024),但是,探索遥感技术在军事地质领域的应用的相关研究还较少。究其原因,主要是 ①多数国家将军事地质工作保密管理程度设置高、专业性理论性强、成果质量要求严、人员经费投入大等,使得相关研究成果很少公开; ②目前公开的军事地质相关理论、方法还处于探索阶段,还未形成体系化,研究成果碎片化( 于德浩等,2017; 张栋等,2019)。

  • 目前,关于军事地质信息获取的文献资料鲜有报道。笔者等总结了遥感影像在应用地质领域的研究现状,结合已公开的军事遥感地质相关研究成果,基于遥感技术军事地质信息的提取及应用现状进行深入探讨。因军事地质要素集是应用地质要素集的子集,军事地质要素只关注应用地质要素中对军事活动有用的要素及其属性信息。从信息获取的角度来看,军事地质要素信息与应用地质要素信息获取的理论、方式、方法应保持一致。目前,军事地质工作的理论方法、标准规范和技术装备等还未形成体系,应用地质相关理论、技术、方法在军事地质领域中依然适用。

  • 1 军事地质及相关遥感影像

  • 1.1 军事地质要素及其属性

  • 军事地质是军事与地质有机结合(葛良胜等,2023)。从 20 世纪末,科索沃战争、海湾战争、巴以冲突、俄乌冲突等战争冲突,明显地看到作战空间正逐步由地表向地下拓展,战场地质环境作为基础性保障的地位与作用愈来愈重要。为此,着眼当前战场地质环境军事地质保障需求,强化军事需求牵引,坚持军事应用为目标,遵循地质学理论与规律,通过开展军事工程地质(王杭生等 1985)、军事设施安全隐患监测(赵永辉等,2005)、防护工程进出道路抗打击能力(刘衡等,2013)、地质雷达探测技术军事应用(王凯等,2009)、战略性矿产资源开发与利用(宋丙剑,2017)、军事工程选址(柳锋等,2007; 孙红政等,2017)、越野路径规划(范林林,2017)等具体应用研究,以军事地质为研究主题,总结出了野战机动、工事构筑、驻屯集结、给水保障 4 种典型的军事应用主题(张栋等,2019)。众多军事地质专家归纳总结出,军事地质应重点关注岩体、土体、水体、地质构造、地质灾害、地质资源等要素(李远华等,2012; 刘晓煌等,2016; 陈伟涛等,2017; 于德浩等,2017; 李显巨等,2019; 张栋等,2019; 路彦明等,2020; 颜成义,2020; 陈占龙等,2022; 葛良胜等,2023)。军事地质工作以服务国防和军队建设为目标,军事地质要素是传统地质综合一体化要素集的子集,因此,军事地质要素既具有地质属性特征,也具有军事属性特征。

  • 1.1.1 军事地质要素地质属性

  • 军事地质要素遵循传统地质学理论、方法体系,正在逐步构建军事地质要素分类及其属性结构,为军事地质信息提取及应用提供理论框架支撑。军事地质要素结合传统地质要素理论,也初步构建了相关分类体系。明确各军事地质要素的名称、物理特征属性(如岩体(石)的基本类型、特征、物质特征、物质组成、工程力学性质,土体的形成、类型与分布、物质特征、物质组成、物理属性、工程力学性质等,水体类型、特点、水质及相关指标参数,地质构造类型及特征,地质灾害形成机理、分类等,地质资源分类、分布等)。从军事地质要素分类及属性构成看,仍然具备地质要素基本属性特征。

  • 1.1.2 军事地质要素军事属性

  • 军事地质要素从其被提出,就已赋予军事特性。军事地质因服务作战而诞生,保障作战而发展演进。军事地质主要是将军事学与地质学相关理论、方法与技术深度交叉融合,并将其应用于国防和军队现代化建设,增强以军事地质为支撑的国防军队战斗力。军事地质要素主要包括岩体、土体、水体、地质构造、地质灾害、地质资源等,摆脱了地质学综合一体化对军事地质调查的约束,突出了以服务军事作战需求为目的的军事地质信息的本质特性(葛良胜等,2023)。从已公开的军事地质文献资料可知,军事地质要素属性构成十分注重要素在服务作战中的作用,如岩体要素重点关注其类型、物理性质、物质组成、坚硬程度、压缩模量、承载力( 路彦明等,2020)等,这些属性对军事工事构造、战场环境建设、特种装备机动等重要军事工程或活动提供必要基础信息支撑。

  • 1.2 主要遥感影像

  • 遥感技术可为应用地质调查提供丰富、多样的数据资源,且被广泛应用,也已成为军事地质要素信息提取及应用的基础。进入 21 世纪,卫星技术得到空前发展,卫星搭载的传感器探测波段范围得到极大扩展,覆盖了从可见光、近红外、红外到微波全波段范围,形成了高空间分辨率光学卫星遥感、高光谱分辨率卫星遥感、高分辨率星载合成孔径雷达(SAR)、高分辨率合成孔径雷达干涉(InSAR)、机载激光雷达(LiDAR)等多样化、体系化对地观测模式,能够为全球提供不同类型的高质量遥感影像数据源,也为军事地质信息提取及应用提供了丰富的数据资源(李显巨等,2019)。

  • 目前,应用地质调查中主要应用的遥感影像包括:LandSat 系列、Sentinel 系列、ALOS 系列、SPOT 系列、WordView 系列及 QuickBird 等国外卫星影像; 国内卫星影像主要包括天绘系列、高分系列和资源三号等影像。这些影像数据在应用地质调查相关科学研究、工程任务中被广泛应用,深受用户的青睐。

  • 1.2.1 LandSat 系列卫星影像

  • LandSat 系列卫星是美国国家航空航天局(NASA)主导的一项长期地球观测计划。自 1972 年首颗卫星成功发射以来,一直实施对地观测任务,该卫星影像面向全球用户免费使用。 Landsat 系列卫星影像的中红外波段为 2100~2300 nm,处于水体的强吸收带,在影像上呈黑色,土壤和岩石含量的变化很敏感,能够有效区分岩石类型、岩石的热蚀度、探测与交代岩石有关的黏土矿物,被称为“地质波段”(陈伟涛等,2017; 李显巨等,2019)。

  • 1.2.2 Sentinel 系列卫星影像

  • Sentinel 系列卫星是欧洲哥白尼(Copernicus)计划的一部分,由欧洲委员会(EC)投资,欧洲航天局(ESA)研制。该系列卫星自 2014 年 4 月 3 日首次发射,其中,Sentinel-1 搭载的合成孔径雷达(SAR),具备全天候、全天时对地观测(Torres et al.,2012),Sentinel-2 搭载多光谱成像仪(MSI)提供高分辨率多光谱影像(Drusch et al.,2012; Du Yun et al.,2016),为地表矿物分布、地质构造、地表变形监测等提供高分辨率影像,在地质灾害监测( Li Yongsheng et al.,2022; Valade et al.,2019; 陈君等,2024; 金璐,2024)、地质构造研究( Hu Leyin et al.,2019; Ji Lingyun et al.,2020; 程冬等,2019; 王莉,2022; 燕翱翔,2022)、矿产资源勘探( Hu Bin et al.,2018; Malainine et al.,2022; 王磊,2018)等方面具有十分重要的价值。

  • 1.2.3 SPOT 系列卫星影像

  • SPOT 系列卫星是由法国国家空间研究中心(CNES)研制的一系列地球观测卫星。自 1986 年以来,SPOT 系列卫星影像能够清晰地显示地质构造和岩石组成等细节特征,SPOT 多光谱影像已被广泛应用于地质特征制图(史俊波等,2016; 校培喜,2007)、地质构造研究(Yesou et al.,1993; 刘华国,2011; 刘泽东等,2017)和岩性信息提取(Han Ling et al.,2018),在应用地质调查方面发挥了重要作用。

  • 1.2.4 ALOS 系列卫星影像

  • ALOS 系列卫星是由日本宇宙航空研究开发机构(JAXA)研制、发射的一系列高性能对地观测卫星。其中,ALOS-2 卫星搭载的 PALSAR-2 的 L 波段合成孔径雷达(SAR),对地表具有很好的穿透性,能够很好地反映浅地层地表风化层特征(陈伟涛等,2017)。 ALOS 影像能够揭示地表的地质构造和岩石矿物特征信息,在地质灾害监测( 焦超卫等,2013; 赵燕伶等,2024)、沉降变形监测( 陈国良,2011; 朱煜峰等,2017)等方面发挥重要作用,能够还好地服务于应用地质调查相关工作。

  • 1.2.5 WorldView 系列卫星影像

  • WorldView 系列卫星由美国 DigitalGlobe 公司研发,2007 年实现首颗卫星成功发射。目前,WorldView-3、WorldView-4 卫星影像空间分辨率大幅提高,全色影像分辨率可达 0.31 m( Shirmard et al.,2022)。 WorldView 系列卫星具有超高空间分辨率,能够捕捉到地质构造、岩石类型、矿物分布细节特征,在地质灾害防灾(刘小霞,2012; 王瑞国,2016; 王晓志,2018; König et al.,2019; 郭玉斌,2019)、提取矿物蚀变信息(Monsef et al.,2015; 王平平等,2024)、评价岩性填图数据( Kruse et al.,2015; Ye Bei et al.,2017)、绘制矿物图(Kruse and Perry,2013)、地质找矿(Oikonomidis et al.,2017; 张元涛等,2020; 童勤龙等,2022; Hubbard et al.,2023; 裴秋明等,2024)等应用地质工作方面具有十分重要的价值。

  • 1.2.6 QuickBird 卫星影像

  • QuickBird 卫星是一颗由美国 DigitalGlobe 公司开发、运营的高分辨率商业遥感卫星,2015 年 1 月退役。 QuickBird 卫星影像能够清晰地反映岩石的矿物成分和蚀变特征,在提取矿物蚀变信息(叶发旺等 2012)、地质找矿(Yang Xu et al.,2008; 彭光雄等,2013)方面发挥重要作用; 具有高频重访能力和高空间分辨率,对地质灾害识别与监测(许兵等,2011; 张景华等,2013; Ren Yuhuan et al.,2016; 占惠珠等,2021)方面,具有十分重要应用价值。

  • 1.2.7 IKONOS 卫星影像

  • IKONOS 卫星是世界上第一颗空间分辨率优于 1 m 的商业遥感卫星,该卫星是美国洛克希德·马丁公司与柯达公司等研制,2015 年 3 月 31 日超期退役。 IKONOS 卫星影像能够清晰呈现地表细节,有助于地质构造与岩性识别(张伟刚等,2010)能够捕捉到地表植被覆盖下的矿化蚀变信息,有助于矿产资源勘探(Wang Denghong et al.,2018)、矿区环境监测(丁丽等,2010; 代晶晶等,2013)、非法采矿监测(代晶晶等; 2014); 高分辨率特性使其能够准确捕捉地质灾害的前兆信息,为防灾减灾工作提供预警信息(Huggel et al.,2006; 丁辉等,2009; 刘欢等,2010; 邓锟,2016)。

  • 1.2.8 LiDAR 点云数据

  • LiDAR(Light Detection and Ranging)点云数据主要基于汽车、无人机和地面支撑设备搭载 LiDAR 传感器,通过激光探测与测距技术获取高精度的 3D 数据(Burton et al.,2011)。 LiDAR 能够直接对地表与地面进行 3D 密集采样,是目前最直接和重要的 3D 地理空间数据获取手段(王建楠等,2024)。 LiDAR 影像数据可生产高精度的 DEM,分析地表形态变化和识别地质构造,能够有效地进行地质灾害识别与监测( Joyce et al.,2014; She Jinxing et al.,2021; 王德富等,2024; 徐宇翔等,2024)。

  • 1.2.9 天绘系列卫星影像

  • 天绘系列卫星是我国遥感卫星领域的重要组成部分,具备高分辨率成像、多光谱成像等先进技术特点(韩晓青等,2016; 任丽秋等,2020)。该系列卫星对地观测能力强,天绘二号卫星系统是中国首个基于干涉合成孔径雷达技术的微波测绘卫星系统,能够实现全天候、全天时卫星影像获取,天绘六号卫星全色影像空间分辨率达到 0.8 m。天绘系列卫星影像主要分为光学影像与 SAR 影像,在地质灾害识别与监测(范敏等,2017)、地质找矿(韩晓青等,2016)领域方面具有很好的应用潜力。

  • 1.2.10 高分系列卫星影像

  • 高分系列卫星是中国高分辨率对地观测系统重大专项的组成部分,卫星的发射始于 2013 年,到目前为止已发射 20 余颗卫星(刘丽明等,2024)。高分系列卫星实现了宽幅、亚米全色、多极化 SAR 成像、地球同步轨道秒级成像、高光谱观测、精准农业、立体测绘等先进技术,提升了我国卫星遥感能力的国际影响力,极大丰富了我国自主对地观测的数据源(刘丽明等,2024)。高分系列卫星影像数据图像清晰,图像色彩逼真且丰富,在蚀变信息提取(连琛芹等,2020; 谭宏婕等,2024)、金成矿远景区圈定(邹键等,2022)、地灾风险调查评价(汪洋,2024)、地质灾害遥感解译(韩子清等,2024)、矿山非法开采监测(赵家乐等,2019)、地质填图(李娜等,2021)等应用地质领域具有十分重要价值。

  • 1.2.11 资源三号系列卫星

  • 资源三号系列卫星由我国自主研发,全色分辨率达到 2.5 m,01 星是我国第一颗民用高分辨率测绘卫星,在国土资源信息详查和自然资源调查等领域发挥了巨大作用(田瑜基,2020)。该卫星能够捕捉微观地貌特征的详细信息,并能准确反映次要断裂构造的线性影像特征(Hu Wenmin et al.,2017)。在地震监测(Wang Qing et al.,2015)、滑坡灾害制图、滑坡稳定性评价(Xu Lina et al.,2014)、区域融雪洪水灾害(Yang Siquan et al.,2018)、地表采矿(Li Xianju et al.,2016)等应用地质领域被广泛应用。

  • 总之,在应用地质领域常用的这些遥感影像主要包括光学影像、SAR 影像、高光谱影像和 LiDAR 点云影像。其中,LandSat 系列和 Sentinel 系列卫星影像数据质量好,对全球用户免费,被广泛应用。 SPOT、ALOS、WorldView 系列、QuickBird 和 IKONOS 卫星影像具有高空间分辨率、重复周期短、覆盖范围广。此外,Sentinel-1 搭载的合成孔径雷达( SAR)、 ALOS 卫星搭载微波 PALSAR 传感器,能够实现对地全天候、全天时观测,获得高质量 SAR 影像,受到用户的青睐。 LiDAR 影像数据是激光测距的点云数据,获取方便灵活、且精度高,在应用中具有极大优势。天绘系列、高分系列和资源三号系列卫星是我国自主研发的高分辨率遥感卫星,实施对地观测在应用地质调查、军事地质信息提取及应用具有十分重要的价值。此外,除了上述遥感影像外,还有 ASTER(Rowan et al.,2003)、GeoEye-1、RapidEye、 Hyperion( Pearlman et al.,2003)、 HyMap(Ishidoshiro et al.,2016)、HySpex( Buddenbaum et al.,2012)、RADARSAT-1、RADARSAT-1 等遥感影像在应用地质领域也被广泛应用。

  • 2 军事地质信息提取及应用现状

  • 基于遥感影像军事地质信息提取及应用,主要利用影像上地物要素的色调、纹理、形状、大小、阴影、位置、布局等特征进行解译与处理分析(李显巨等,2019)。

  • 2.1 岩体

  • 岩体要素是军事地质应用中重点关注的基本要素,是军事活动中越野机动承载力、工事选址与构筑、火力运用与打击效果等分析评估的基础(路彦明等,2020; 陈占龙等,2022)。岩体要素的类型、风化程度、完整程度、坚硬程度、基本质量级别和基岩上覆土厚度等基本特征是军事活动决策与分析的重要指标(张栋等,2019)。通过遥感技术可以对任务区进行连续探测,结合其他地质资料,通过构建格网可以进行岩体不连续性和岩石边坡几何形状进行多尺度表征研究,能够对岩体体积进行估算、破坏表面进行详细表征、滑动前地形进行重建(Sturzenegger,2010)。 Liu Lupeng 等(2019)能够有效准确地通过主方向估计的三维岩体点云 LiDAR 数据中提取了岩石的表面信息,为岩体三维建模和工程计算提供基础。基于遥感影像能够对恶劣环境地区地质调查提供有力支撑,如冰川地区、高海拔地区。智利半干旱安第斯山脉的 La Laguna 集水区和喜马拉雅山脉中部的 Poiqu 集水区,海拔高、气温低,都是人们难以抵达区域,单独依靠传统的人工方式进行该区域岩石冰川调查,效率极低; Robson 等( 2020) 基于 Pléiades、Sentinel-1 和 Sentinel-2 卫星遥感影像,将卷积神经网络( CNN)和基于对象的图像分析(OBIA)方法相结合,对这两个区域的岩石冰川进行了自动检测识别,极大提高工作效率,取得了良好效果,但其生产者精度只有 75. 0%~75.4%。林海星等(2023)选择 Landsat-8 OLI、ASTER 和 Sentinel-2A 为数据源,在青海赛什腾地区基于多重分形理论和主成分分析方法,综合野外实地调查验证、岩石样品实测光谱分析、薄片镜下鉴定,建立该区域岩体目视解译标志,获得了小赛什腾山 1 ∶ 50000 遥感解译图,识别出研究区主要岩性分布,但野外验证工作量大,成本高。吕易( 2023) 基于多时相 Sentinel-1、 Landsat-8 和 Sentinel-2 数据,针对岩石出露区域和植被覆盖区域分别开展了岩石自动分类研究,研究发现 Sentinel-1 双极化雷达数据对于特定的岩石如灰岩、白云岩具有较好的识别效果,多时相 Sentinel1 雷达数据、Landsat-8 光学遥感影像能够明显地提高岩石单元分类精度,为高植被覆盖区的地质解译、地质填图提供了有效探索,但最好的精度也只有 77.66%。 Han Sipeng 等( 2024) 提出了一种基于 Transformer 的多阶段和多尺度融合网络 RSWFormer,构建了一个包含不同地质环境遥感特征类别和复杂岩性特征的多源地质遥感影像集 multi-GL9,基于 GF-2 影像提取精度达到了 92.15%,超过了现有方法。

  • 目前,基于遥感影像可进行岩体多尺度表征、三维建模、岩石冰川自动识别、岩性识别分类等研究或任务,有效地提高工作效率,推动了岩石高精度和定量化解译的进程,极大减少野外调查工作量,且能够快速获取大范围各类岩体或岩石类型的空间区域分布,但是,其他特性相关研究仍然很少,此外,实地外野调查验证成本高、数据不足,信息提取及应用的精度验证仍有待进一步提高。

  • 2.2 土体

  • 土体要素也是军事地质应用中重点关注的基本要素,其类型、物理特性对装备机动、工事构筑、打击效果等军事活动分析评估有着重要影响(路彦明等,2020)。多源遥感影像不仅能够降低土体要素信息提取的成本,还显著提高了土体信息提取精度(张磊,2018)。遥感技术在土体信息提取及地质调查中发挥了重要,已成为土体环境要素表达的新技术和新工具(Mulder et al.,2011)。吴炎达(2019) 基于 Google Earth 遥感影像、地质图、土壤图、DEM 等多源数据,通过人机交互目视解译方法,能够准确、全面地识别土母质信息,精度为 75%。陈荣等(2021)基于多时相 Sentinel-2 遥感影像,联合辅助母质类型图、等高线数据,采用随机森林算法实现了高精度土壤制图,总体分类精度为 86%。刘焕军等(2018)辅助全国第二次土壤普查数据、DEM 数据,基于裸土期多时相 Landsat-8 遥感影像特征,采用最大似然法完成了土壤分类,总体分类精度为 91.0%。 Duan Mengqi 等(2024)基于 LandSat-8 遥感影像、DEM(10 m)等数据进行土壤类群分类,比较了最大似然分类法(MLC)、支持向量机( SVM)、人工神经网络(ANN)和随机森林(RF)4 种方法,SVM 分类精度最高,为 71.61%。 Bao Yilin 等(2024) 基于 LandSat TM、OLI 遥感影像、气象数据,应用 CNN 模型实现了高精度土壤分类,经验证核心区域分类结果较为准确,精度为 91.08%。

  • 目前,基于遥感影像识别土母质信息、土壤分类、土壤制图进行土体信息提取及应用,能够有效地实现土壤分类,实现数字土壤制图,已成为应用地质常用手段。大大减少了野外调绘,能够获取区域土体要素类型的空间分布信息。但是,野外验证数据不足,使得土体信息提取及应用的精度验证存在不确定性。

  • 2.3 水体

  • 水体要素是军事活动中人和装备不可或缺的基本要素,也是军事地质保障的基本要素。水体要素根据其对军事活动的作用,主要包括地下水与地表水(路彦明等,2020)。遥感技术的快速发展,将地表水信息提取推向一个新的时代(Nagaraj et al.,2024)。 Ahmadi 等(2014)基于 ASTER、SRTM、数字地形等数据开展流域划分与河网分析研究,结果表明 ASTER DEM 是描绘流域边界最合适,特别是在崎岖的地形中; 此外,基于 ASTER DEM 计算的河流流向、天然支流与河流的实际位置匹配很好。 Yang Xiaohong 等(2020) 基于 Sentinel-3 影像,应用多尺度时空超分辨率映射方法进行水体提取,效率显著提升,精度达 93.55%。张珂等(2024)基于 GF-1 遥感影像,提出了一种改进的最大类间方差联合的水体提取方法,可以在一定程度上降低误提现象,平均相对误差为 4.69%,R2 为 0.8579。马姗姗等(2024) 基于 AISA 航空高光谱影像、珠海一号(OHS-2D)卫星高光谱影像,提出了 MHDWI 改进的高光谱差异水体指数实现高精度城市水体提取,能够有效抑制建筑物阴影噪声的误差,最高精度为 98.50%。 Fu 等(2024)提出了基于 SWOT 雷达卫星数据全球水面高程变化研究的新方法。以上研究主要是基于遥感影像进行地表水信息进行提取,成效显著,精度相对较高,但是也存在不稳定性。对地下水,遥感技术依然有很大作用。周燕(2008) 基于 ETM+影像信息异常,结合水文地质图泉点分布及水文地质环境分析,为岩溶石山区找水指明了方向。 Madani 等( 2015) 基于 Landsat-7 ETM +、RapidEye、 ASTER、TRMM 多源卫星遥感影像,绘制了沙特阿拉伯西部麦加省瓦迪·亚拉姆拉姆盆地地下水潜力图。李晓民等(2021) 应用高分数据在青海地区遥感解译泉点,发现对于大涌水量、大流量的遥感影像泉水点,解译效果较好; 而小涌水量、小流量的泉水点解译效果不佳。温干祥(2024)基于 TM、ETM+等多源遥感影像对贵州省不同区域地下水流向和水体深度进行监测。廖秀英等(2024)基于 ETM+影像和地球物理方法,开展了阿尔金山东段山间盆地地下水资源分布特征研究,推测该地区地下水补给来源、地下运移通道、富集区、排泄区和第四系沉积中心及其形态。

  • 目前,基于遥感影像进行流域分析、水体提取、地下找水、泉眼解译、地下水流向、深度监测、地下水资源分布等都表现出十分重要的应用价值,遥感影像能够快速获取区域内水体的空间分布特征信息。但是,受数据源、类型、空间位置等关键因素影响,野外实地调查成本高、验证数据不充足等影响,关于水体信息提取及应用的精度有待进一步提升,相关方法只适用于特定地区、特定场景,难以广泛普及。

  • 2.4 地质灾害

  • 地质灾害要素是一种不确定要素,主要包括滑坡、泥石流、崩塌等。通过掌握灾害类型、诱发因子及相关规律,为军事活动趋利避害提供辅助参考(路彦明等,2020)。遥感技术具有宏观真实、动态监测、详实精准的优势,在地质灾害体识别、监测、预警等方面发挥了重要作用(Albanwan et al.,2024)。通过光学、合成孔径雷达等传感器,能够针对滑坡、采矿引起的沉降和土地变形,火山、冰川流和沙丘迁移等地质灾害进行检测和绘制地质灾害潜在危险区,分析灾害的易发性和触发因素,监测地质灾害过程的演变,为制定预警和早期预警策略提供支撑(Giordan et al.,2022)。 Xu Qiang 等(2023)发布了我国滑坡遥感调查进展报告,遥感技术已成为调查和监测滑坡的首选工具。例如,Xu Lina 等(2014) 综合 ALOS、ZY-3 遥感影像与其他地质数据进行三峡水库滑坡稳定性评价方法研究,准确率为 94%以上。 Chen Tao 等(2017) 基于 ZY-3 卫星影像数据,应用随机森林和数学形态学方法,快速制作基于对象的我国三峡库区滑坡灾害图,精度为 93.3%,及时应对三峡地区的自然灾害提供了有力支撑。 Yang Siquan 等(2018)基于 HJ-1 和 GF-1 影像实现了我国新疆北部阿勒泰区域性融雪洪水灾害详细评估,估算出受灾居民点的户数、房间数,道路基础设施总里程,受灾人口数,洪灾面积等,为设计救援计划和灾害补贴方案制定提供了有力的科学依据。 Tan Qulin 等( 2021) 开展了基于多源遥感影像和 GIS 综合分析的道路沿线滑坡地质灾害风险评估研究,准确率为 67%。 Zhong Jiaxin 等(2024) 利用 DInSAR 和遥感技术进行地质滑坡灾害风险评估,共识别出 47 个疑似滑坡灾害点和 21 个现场调查点,验证 16 个,准确率为 76.19%。 Meng Fanqi 等(2024)利用 GF-2 遥感影像解译出山东省沂水县 9 种地质灾害,其中滑坡灾害 6 种,崩塌灾害 3 种,通过现场验证,基于 GF-2 图像只能解译地形明显的区域地质灾害,平坦地区地质灾害精度相对较低。安艳东等(2024) 基于卫星雷达影像、航空遥感影像、大比例数字地形图和野外调查数据进行泥石流小流域及沟道侵蚀特征分析,总结出研究区域泥石流受沟道的面积、高差、长度,以及流域的面积、圆度比等因素影响。严嘉豪(2023) 基于 D-InSAR 与 Offset-Tracking 参数改进,开展了长白山北景区泥石流物源变化研究,探索出针对不同季节,基于 D-InSAR 应用偏移量追踪技术对研究区内物源变化监测是最合适的方法。韩俊等(2024)应用 GF-1、Google Earth 遥感影像、DEM 数据泥,基于自校正原型网络模型开展石流灾害易发性评价,正确率达 86.32%。段涛等(2024)应用无人机低空遥感技术,开展崩塌地质灾害动态监测,效果良好。程众帅(2024) 基于 Landsat-8 OLI/ TIRS 影像、气象水文、地形等数据,支持向量机模型进行崩塌灾害风险评价,AUC 值为 90.96%。

  • 目前,遥感影像在地质灾害识别、监测、预警等方面发挥了重要作用。地质灾害要素涉及滑坡、泥石流、崩塌等,类型多而复杂,影响地质灾害识别、监测、预警的因素众多,能够快速、大范围对地实施观测,可以获取灾害地质体时空特征变化。然而,每种地质灾害识别评价方法存在差异,且精度差异较大,难以有效服务军事应用。

  • 2.5 地质构造

  • 地质构造常见的基本类型为断层、褶皱、节理,其常常影响工事构筑的难易程度和工程的稳定性(路彦明等,2020)。陆地上地理地貌类型与空间分布,实际上受地质演化过程深度影响,从地理空间对陆战场作战的影响规律看,地质构造格局还控制并影响陆战场空间布局(张栋等,2019)。遥感技术能够提供大范围、高效率实现对地观测,学者将其应用于地质构造识别,如断层监测(Yazdi et al.,2011)、褶皱地表构造变形解译(殷赵慧,2022)等。 Currenti 等(2012) 基于 ALOS 和 COSMO-SkyMed 卫星数据对埃特纳火山建模,揭示秘鲁断层系统重大活动与火山动荡关系的律。 Jolivet 等(2012) 应用 SAR 干涉技术揭示中国甘肃海原断层浅层蠕变规律。 Feng Wanpeng 等( 2013) 基于 ALOS PALSAR 图像研究 2011 年 3 月 24 日缅甸 6.8 级走滑地震的震源机制和滑动分布,断裂发生在 Nam Ma 断层以西的近垂直左旋走滑断层上,走向为 70°,最大滑动 4.2 m 发生在深度为 2.5 km 处,显著滑动仅限于地壳上部 10 km。 Fielding 等( 2013) 基于 Envisat 卫星和 COSMO-SkyMed 星座 SAR 干涉测量、像素偏移跟踪、GPS 和地震波形分析,构建 2011 年土耳其 7.1 级 Van 地震的断层滑动源模型。 Ilieva 等(2016)基于 ENVISAT SAR 干涉图,对 2003 年 8 月 14 日希腊莱夫卡达岛的地震断层面进行建模,推测断层为纯右旋走滑断层,向东倾斜 59±5°,长 16±2 km,宽 10± 2 km,InSAR 观测的上升和下降组合表明,2003 年地震断层上没有明显的倾滑分量。 Feng Guangcai 等(2017)通过 SAR 图像偏移进行估计 2008 年汶川7.9 级地震近断层地面位移信息,发现青川断层在 2008 年汶川地震中没有破裂,在主震期间或之后,北川断层向北延伸时发生了地表断层。 Elhag 等(2019)基于 Sentinel-2 卫星数据和 DEM 等数据,应用 GIS 技术识别出希腊克里特岛大多数构造断层信息,并还发现了一些线性构造。 Wu Weihua 等(2023)基于地震数据提出了一种基于多任务 MTL FaultNet 的地震断层检测方法,检测到的断层具有很强的连续性,断层带的内部细节丰富,对走滑断层和相关小规模断层的描述清晰。 Yi Wenxing 等(2024)开展基于遥感的西准噶尔 Alakol Lake 断裂右旋走滑运动证据研究发现,Alakol Lake 断层的右旋走滑速率为 0.8~1.2 mm / a(接近 1.2 mm / a),Alakol Lake 断层的走滑速率相对高于北部地区的 Chingiz 断层( 约 0.7 mm / a),但低于南部地区的 Dzhuangian 断层(3.2~5 mm / a),Chingiz – Alakol – Dzhuangian 断层带向哈萨克斯坦地台内部变形逐渐减小。 Jing Liuzeng 等(2024)结合野外和多种遥感技术,以厘米分辨率影像绘制了马多地震的地表破裂图,发现相对于区域应力场,158 km 长的地表破裂由方向错误的结构继承的 N110°走向段和较年轻的最佳方向 N093°走向段组成。

  • 遥感影像能够很好地反映地质构造信息。基于遥感影像研究断层系统活动与火山动荡关系的规律、地震的震源机理、断层产状信息等。目前,基于影像进行地质构造识别,主要结合多种资料,大部分研究主要是针对断层特征信息进行归纳推理,进而判断地质构造特征的空间分布、方向等。基于影像地质构造信息提取及应用受多方面因素影响,精度评价方法既有主观评价也有实地调查,评价方法存在模糊性和不确定性。

  • 2.6 地质资源

  • 军事活动离不了资源保障,特别是具有战略意义的关键金属资源(包括稀有、稀散和稀土元素等)(宋丙剑,2017)。遥感技术被广泛有效地用于矿产勘查( Awad et al.,2018)。其中,ASTER、ALI 和 Hyperion 是矿产调查最常用的遥感影像(Beiranvand Pour 等 2014)。杨日红等(2012)基于 ASTER、TM/ TEM+遥感影像提取秘鲁南部阿雷基帕省斑岩铜矿区泥化—绢英岩化类和青磐岩化蚀变矿物组合信息,最后采用高分辨率卫星影像,或与已有矿床、或已有物化探异常等相结合的方式进行相互验证,以提高蚀变矿物信息提取、综合调查与评价结果的可靠性。 Kruse 等( 2013) 通过应用最小距离分类方法,从机载可见/ 红外成像光谱仪(AVIRIS)、ASTER 和 World View-3 数据中提取矿物的目标区域,总体精度最高为 80.83%。刘德长等(2015)以 LandSat-7 ETM+为主要信息源,对欧洲大陆的地层、岩体、构造进行了遥感地质解译,编制了 1 ∶ 500 万欧洲大陆地质矿产遥感解译图等系列图件,诠释与矿产勘查战略选区研究,为境外投资战略决策和欧洲大陆矿产勘查战略选区研究提供了技术支持。 Bolouki 等(2019) 基于 Landsat-7 ETM +、 Landsat-8 OLI 和 ASTER 影像,使用贝叶斯网络分类器,生成矿产潜力图,总体精度为 76.66%。 Tang Shulan 等(2020) 一种基于高分辨率遥感影像特征分解的矿床定位方法,充分利用高分辨率遥感影像显示的颜色、形状、纹理等图像形状,从而利用数学、图像处理等技术对数据进行充分挖掘,确定研究现场的勘探目标区域。此外,Booysen 等(2020) 应用于基于轻型无人机的高光谱数据,直接勘查纳米比亚 Marinkas Quellen 和芬兰 Siilinjarvi 的稀土元素空间分布。

  • 地质资源岩矿信息因矿物种类、丰度以及遥感影像类型的不同,即使同类、相同丰度资源矿物也会因地形、地貌等其他外界因素影响,导致其在影像上的特征也存在差异。应用遥感影像圈定找矿靶区、提取蚀变矿物信息、制作矿产潜力图、制作矿产遥感解译图等,在地质找矿领域发挥重要作用,但精度还有待进一步提升。目前,实地调查资料少、成本高,部分地区难以抵达等仍然是遥感地质资源调查研究亟待解决的难题。

  • 近年来,卫星遥感技术取得了重大进展,美国 SpaceX 公司推动的卫星网络星链计划,建立了一个庞大的卫星星座,为实现全球宽带互联网覆盖; 我国李德仁院士带领团队推进通导遥一体化的“东方慧眼” 智能遥感星座建设,有效解决我国的通信、导航、遥感卫星系统各成体系,军民系统孤立、信息分离、服务滞后问题(陆芬,2024)。光学遥感技术随着空间分辨率不断提升,增强了其对地观测的能力,影像能够清晰展现地表详细信息,能够对地质构造、岩石矿物等地质要素识别有巨大潜力。雷达卫星 SAR 影像,能够全天时、全天候、高精度地对地实施观测,对地表形变、灾害监测、预警、预报等具有十分重要的价值。各平台搭载的高光谱传感器能够捕捉到岩心中微弱的光谱差异,从而识别出不同的矿物成分,增强矿物识别的准确性。因此,遥感技术在岩石矿物、水体、土体识别,地质填图,矿产资源勘查,地质灾害监测与预警、预报等方面已被广泛应用,突出了遥感技术在应用地质领域的巨大潜力。

  • 3 发展挑战和趋势

  • 基于遥感影像军事地质信息提取及应用是军事地质工作的关键环节,是一项长期性、基础性工作。伴随卫星遥感、计算机等先进技术快速发展,基于遥感影像军事地质信息提取及应用充满机遇,同时也面临着许多技术和应用挑战。

  • 3.1 面临的挑战

  • (1)军事地质要素类型复杂,单一类型遥感数据源难以满足军事地质信息提取的要求。军事地质要素虽然是传统地质学要素的一部分,但是其包含多个小类、子类。葛良胜等(2023)将军事地质要素划分为 3 级 8 类几十个子类,如土体,可划分岩块、砾石、沙(砂)土、粉土(粉砂)、黏土、特殊性土 6 个小类; 其中,小类还可以再细分,如砾石可细分为粗砾、中砾、细砾 3 个子类等,大大增加了基于影像的军事地质要素信息解译的难度。绝大多数遥感影像主要反映地表信息或浅层信息,而实际上,大多数地质体都具有空间三维特征( Wu Chunming et al.,2020),此外,遥感影像获取还受气象条件、地形等外界因素影响,导致数据缺乏连续性,使得遥感影像数据源本身也存在不足( Van der Meer et al.,2012),因此,单一类型数据源也很难胜任军事遥感信息提取及应用。结合以往相关研究成果,无论采用目视解译还是机器学习等先进方法,还需要综合地质调查、地球物理、地球化学等其他数据辅助,减少地质体解译的模糊性,提高信息获取的精度,及应用模型构建,这已成为基于遥感影像地质信息提取及应用的通识。

  • (2)遥感影像类型复杂,数据精度、尺度各不相同,处理难度大。遥感平台、传感器的类型越来越多,影像数据精度、尺度却各不相同; 获得的遥感影像种类多、数据量呈几何级数增长,数据呈现高复杂、高维度特点。军事地质要素除了部分暴露在地表,还有部分分布在空间一定范围内,加大了军事地质遥感解译难度,需要众多的专业技术人员参与,工作量大、耗时长,影像解译结果的精度却难以保证。应用机器学习、深度学习等先进方法处理海量遥感影像,计算成本极大增加,而且还可能出现过拟合和问题依赖的风险。从当前研究现状分析发现:机器学习、深度学习、人工智能、大语言模型等先进技术,尚未在军事地质和应用地质领域被充分应用,传统的目视解译方法仍然在军事地质和应用地质遥感调查领域被广泛应用,效率低、费时费力,解译精度存在不确定性。

  • (3)军事地质要素信息提取精度难以满足军事应用需求。军事地质工作是以服务国防和军队建设为目标,其重心是以服务国防和军队建设的重要任务或工程。现代战争突出 “ 三深”、 “ 三快”、 “ 三非”、“五高”信息化战争特点(刘晓煌等,2017),按照精确制导、精准打击的目标实施战场环境保障要求,保障数据应更加精细、更加精准; 然而,目前军事地质要素信息提取精度和可靠性难以保证。主要存在问题:①实地调查的真实数据缺乏,现地调查成本高,很多地区难以到达(如高植被覆盖区、高山海岛、地形特别陡峭区、高寒高海拔地区等)。 ②精度评价方法不一致,涉及地质要素复杂多样,验证数据类型不一致、信息获取方法差异大、人员操作等因素影响,使得最终精度评价存在不确定性。

  • (4)基于遥感影像军事地质信息提取只能获取部分信息,而非全部。基于遥感影像提取军事地质信息内容包括要素类型、水平空间分布范围(面状要素)、空间位置(点、线状要素)等。除此之外,应用遥感影像还可进行地质灾害易发性和稳定性评估等。但是,有些军事地质要素信息仍需要通过实地调查、测量或查阅资料获取。如河流的底质、流速、季节性枯水(月份)、水库的容量等,地下水是否有毒、是否可以饮用等。

  • 3.2 发展趋势

  • 多样化军事需求已成为军事地质快速发展创新的主要动力(张栋等,2024)。科技的迅猛发展、武器装备快速升级、作战样式深刻变革,增强军事地质保障力量显得尤为重要。

  • (1)构建空天地一体化对地观测,强化军事地质保障能力。构建空天地一体化对地观测,能够有效地将卫星、飞机、无人机以及地面监测设备组成综合对地观测系统,收集大量的高空间、高光谱、高时间分辨率的遥感影像,使得遥感影像数据更加连续、现势性更好。这些丰富、高质量的遥感影像有助于更精确地识别地质结构和地表形变,提升识别、监测、预警、预报能力,有助于战场地质环境态势感知、动态监测、毁伤评估、战后战场环境修复等。

  • (2)构建透明战场地质环境,提升战场地质环境保障的新质战斗力。为打赢未来信息化战争,构建“玻璃地球”,透视战场,已成为当今世界新的军事竞争的焦点(葛良胜,2017)。为此,Wang Lizhe 等(2023)等人提出了透视遥感“ Penetrating Remote Sensing”“透明地球”的理论框架,实现地上地下战场环境全空间探测,将高光谱、电磁和多元物理技术协同融合,覆盖紫外线、可见光、红外线、微波和其他低频电磁波整个波谱范围,兼容静态磁场和重力场等经典势场,进行地表到地球内部探测、建模、分析,揭示地球结构组成和进化进程,克服传统遥感技术只能实现浅地表观测的缺陷,开创多层次、三维、多角度、全方位、全天候对地观测的新时代,提升战场地质环境保障的新质战斗力。

  • (3)构建海量数据+人工智能+大语言模型的智能战场环境保障新模式。海量数据处理分析、人工智能应用、大语言模型智能计算已成为当前科技发展的主流方向。目前,空天地一体化对地观测网逐步建成,美国 SpaceX 公司卫星网络星链计划正在建成,我国通导遥一体化的“东方慧眼”智能遥感星座建设也在有条不稳地推进,为军事地质要素信息提取提供了海量的遥感影像资源。人工智能、大语言模型研发日新月异,新算法、新模型、新应用层出不穷。构建透明战场地质环境的机遇即将来临,将快速推动构建智能战场环境保障的新模式,为战略筹划、战役部署、战术行动提供有力保障。

  • 目前,基于遥感影像军事地质信息提取及应用,在军事地质领域发挥重要作用。航天卫星技术越来越成熟,卫星传感器种类和数量越来越多; 无人机机动灵活、发展快速; 地面设备搭载传感器更加丰富多样,精度更高。空天地一体化对地观测部署,使得遥感影像大范围、快速、多视角对地重复观测优势得到进一步发展,为军事地质信息提取提供了更加丰富的数据资源,大幅提升了遥感影像的精度和质量,海量数据处理、人工智能、大语言模型快速发展,将推动军事地质要素信息提取进入发展的快车道。

  • 4 总结与展望

  • (1)基于遥感影像在地质领域应用已取得重大进展,尤其是在地质要素空间分布、位置信息提取方面。相关研究成果也为军事地质应用提供了强有力的技术支撑,为军事地质信息快速、高精度提取奠定了良好基础。

  • (2)无论是岩体、土体、水体、地质构造、地质资源信息提取,还是地质灾害识别、监测、预警等,综合国内外研究表明,遥感影像发挥重要数据源作用,提供了重要的空间信息; 但是,目前受地质要素种类、方法、人员操作、数据类型等因素影响,相关成果精度不高、评价存在不稳定性,制约了军事地质要素在军事应用中的潜力。

  • (3)基于遥感影像军事地质应用中,目视解译方法仍然被广泛应用,深度学习、人工智能、大语言模型等先进技术方法应用还不充分,精度还有待进一步提升。

  • 5 建议

  • 军事地质与国防安全和军队建设紧密相连,军事地质涉及战场环境、军事任务、部队机动、要点选址、重要目标防护等关键情报,如今关于军事地质相关资料却极度缺乏。大多数公开资料主要是应用地质调查相关的研究文献,有关军事地质研究主要针对部分军事需求展开特定研究,研究成果体系化还未形成。与美西方强国相比,我国军事地质学科建设薄弱、滞后,军事地质理论研究水平不高,地质科学研究和军事应用结合不紧密,还未形成体系化的战场地质环境保障理论,有关军事地质为主题的科研交流少,未建立起比较成熟的现代军事地球科学研究体系,难以有效指导军事地质相关工作。

  • 未来,在更高要求的作战任务需求牵引下,应通过定期或不定期组织相关科研活动,加强用户与承研单位之间的交流沟通,充分利用丰富的遥感数据源、快速发展的深度学习、人工智能和大语言模型等先进技术,构建一套完整的、适用于遥感影像军事地质要素信息提取及应用的理论与方法体系,能够有效地指导具体军事地质工作开展,极大地发挥军事地质在作战决策中的重要作用,推动现代化信息保障能力不断快速发展。

  • 致谢:中国地质大学(武汉)董玉森副教授对论文多次给予了宝贵的修改意见,在此表示衷心感谢。

  • 参考文献

    • 安艳东, 张灿. 2024. 基于多源遥感技术的泥石流小流域及沟道侵蚀特征分析. 科学技术创新, (10): 32~35.

    • 陈国良. 2011. 煤矿区“一张图” 建设的若干关键技术研究. 导师: 汪云甲, 李钢. 徐州: 中国矿业大学博士学位论文: 1~128.

    • 陈君, 马立龙, 谢万兵. 2024. 阿尔金地区地质灾害隐患识别及形变特征分析———SBAS-InSAR 结合光学遥感的综合遥感技术研究. 新疆地质, 42(1): 307~313.

    • 陈荣, 韩浩武, 傅佩红, 杨雨菲, 黄魏. 2021. 基于多时相遥感影像和随机森林算法的土壤制图. 土壤, 53(5): 1087~1094.

    • 陈伟涛, 王力哲, 董玉森, 阎继宁, 李显巨. 2017. 军事地质遥感理论与方法. 武汉: 中国地质大学出版社: 1~206.

    • 陈占龙, 陶留锋, 孙政权, 王润, 龚希, 徐道柱, 马超, 赵军利. 2022. 数据工程视角下的军事地质数据体系研究. 测绘与空间地理信息, 45(11): 1~4.

    • 程冬, 张永志, 王晓航, 韩鸣. 2019. 基于 Sentinel-1A 数据的 2017 年伊拉克哈莱卜杰 MW7. 3 地震同震形变场分析及断层滑动分布反演. 地震学报, 41(4): 484~493+548.

    • 程众帅. 2024. 基于支持向量机和信息量模型的长白山崩塌灾害风险评价. 导师: 张以晨, 张智勇. 长春: 长春工程学院硕士学位论文: 1~57.

    • 达尼克·尤里·格利高利耶维奇, 齐欣原. 2008. 现代和未来战争及军事行动的内容、本质与定义问题. 天津行政学院学报, 10(6): 43~47.

    • 代晶晶, 王登红, 陈郑辉, 于扬. 2013. IKONOS 遥感数据在离子吸附型稀土矿区环境污染调查中的应用研究———以赣南寻乌地区为例. 地球学报, 34(3): 354~360.

    • 代晶晶, 王瑞江, 王登红, 陈郑辉. 2014. 基于 IKONOS 数据的赣南离子吸附型稀土矿非法开采监测研究. 地球学报, 35(4): 503~509.

    • 邓锟. 2016. 神府矿区采空区塌陷 IKONOS 遥感影像特征. 能源环境保护, 30(3): 54~56.

    • 丁辉, 张茂省, 李林, 王佳运, 裴赢. 2009. IKONOS 数据在翠华山滑坡研究中的应用. 自然灾害学报, 18(3): 165~170.

    • 丁丽, 朱谷昌, 王娟, 张建国, 杨自安, 石菲菲. 2010. IKONOS 影像在矿山环境遥感监测中的应用———以白银煤矿区为例. 测绘与空间地理信息, 33(1): 37~41.

    • 段涛, 邓宇峰, 郭猛猛, 郑雪静, 梁迪文. 2024. 无人机低空遥感技术在崩塌地质灾害动态监测中的应用. 能源技术与管理, 49(3): 31~34.

    • 范林林. 2017. 基于六角格网的越野路径规划技术方法研究. 导师: 华一新. 郑州: 信息工程大学硕士学位论文: 1~69.

    • 范敏, 孙小飞, 苏凤环, 蒋华标, 韩磊. 2017. 国产高分卫星数据在西南山区地质灾害动态监测中的应用. 国土资源遥感, 29(S1): 85~89.

    • 葛良胜. 2017. 武警黄金部队构建“玻璃地球”. 国土资源(媒体广场), 60.

    • 葛良胜, 王梁, 张栋, 戚冉. 2023. 军事地质导论. 北京: 国防工业出版社: 1~506.

    • 郭玉斌. 2019. 基于遥感技术的矿山塌陷地质灾害调查的应用研究. 世界有色金属, 141+143.

    • 韩俊, 王保云, 徐繁树. 2024. 基于自校正原型网络的泥石流灾害易发性评价———以怒江州为例. 人民长江, 55(3): 123~133.

    • 韩晓青, 杜红悦. 2016. 高分辨率天绘卫星数据遥感地质应用研究. 铀矿地质, 32(1): 48~53.

    • 韩子清, 黎朗, 高晖. 2024. 基于 GF-7 数据的豫西山区地质灾害遥感解译. 河南科技, 11: 91~96.

    • 焦超卫, 陈富强, 李领军, 张云峰. 2013. 基于 ALOS 遥感影像的地质灾害调查研究. 现代测绘, 36(3): 3~6.

    • 金璐. 2024. 基于 Sentinel-1 SAR 数据的青藏高原湖冰冻融过程监测研究. 导师: 陈军. 合肥: 安徽违筑大学硕士学位论文: 1~62.

    • 李娜, 董新丰, 甘甫平, 闫柏琨, 朱婉菁. 2021. 高光谱遥感技术在基岩区区域地质调查填图中的应用. 地质通报, 40(1): 13~21.

    • 李万伦, 吕鹏, 孟庆奎, 王铭晗. 2020. 国外军事地质学热点问题. 地质论评, 66(1): 189~196.

    • 李显巨, 吴春明, 陈伟涛, 王力哲. 2019. 军事地质体遥感智能解译技术. 北京: 科学出版社: 1~123.

    • 李晓民, 张兴, 辛荣芳, 李宗仁, 李得林, 李冬玲. 2021. 国产高分数据在青海地区遥感解译泉点浅探. 地理空间信息, 19(2): 60~63+7.

    • 李远华, 姜琦刚, 周智勇, 崔瀚文, 林楠, 杨佳佳. 2012. 陆域遥感军事地质图基本要素及其表达方法. 世界地质, 31(3): 614~620.

    • 李志忠, 穆华一, 刘德长, 孙萍萍, 党福星, 刘拓, 贾俊, 王建华, 韩海辉, 马维峰, 汤晓君, 李文明, 赵君. 2021. “遥感先行”服务自然资源调查技术变革与调整. 地质与资源, 30(2): 153~160.

    • 连琛芹, 姚佛军, 陈懋弘, 马克忠, 王海龙. 2020. GF-5 高光谱数据在植被覆盖区的蚀变信息提取研究———以广东省玉水铜矿为例. 现代地质, 34(4): 680~686.

    • 廖秀英, 石英杰, 程辉, 王松涛, 梁继. 2024. 阿尔金山东段山间盆地地下水资源分布特征研究. 地球物理学进展, 39(1): 421~430.

    • 林海星, 程三友, 王曦, 陈静, 辜平阳, 庄玉军, 赵欣怡, 马刚. 2022. 青海赛什腾地区遥感影像岩石信息提取研究. 地质论评, 68(6): 2319~2335.

    • 刘德长, 童勤龙, 林子喻, 杨国防. 2015. 欧洲大陆遥感地质解译、诠释与矿产勘查战略选区. 国土资源遥感, 27(3): 136~143.

    • 刘衡, 时卫民, 李水泉, 曾以雄. 2013. 防护工程进出道路抗打击能力试验研究. 防护工程, 35(1): 6~10.

    • 刘华国. 2011. 基于高分辨率遥感影像的柯坪推覆构造系的构造变形研究. 导师: 冉勇康. 北京: 中国地震局地质研究所硕士学位论文: 1~98.

    • 刘欢, 朱谷昌, 李智峰, 胡杏花, 郑纬. 2010. IKONOS 卫星影像在甘肃省红会煤矿区塌陷群识别中的应用. 中国地质灾害与防治学报, 21(4): 82~85.

    • 刘焕军, 杨昊轩, 徐梦园, 张新乐, 张小康, 于滋洋, 邵帅, 李厚萱. 2018. 基于裸土期多时相遥感影像特征及最大似然法的土壤分类. 农业工程学报 34, 132~139+304.

    • 刘丽明, 王晋. 2024. 中国高分辨率对地观测系统卫星概况、特征及应用. 长春大学学报, 34(2): 21~30.

    • 刘晓煌, 孙兴丽, 刘玖芬, 李新昊, 鲍宽乐, 李宝飞, 赵炳新, 杨伟龙. 2016. 陆域军事地质要素的提取及成果表达. 西北地质, 49(3): 193~203.

    • 刘晓煌, 孙兴丽, 毛景文, 关洪军, 戚冉, 李保飞, 刘玖芬, 杨伟龙, 赵炳新. 2017. 军事地质及其在现代战争中的作用. 地质通报, 36(9): 1656~1664.

    • 刘晓煌, 张露, 孙兴丽, 李喜来. 2018. 现代军事地质理论与应用. 北京: 科学出版社: 1~217.

    • 刘小霞. 2012. WorldView-1 卫星图像在康定县地质灾害中的应用. 四川地质学报, 32(1): 110~111.

    • 刘泽东, 彭中勤. 2017. 广西龙胜里市地区多源遥感数据地质构造信息提取研究. 矿产与地质, 31(5): 950~954.

    • 柳锋, 刘晓静. 2007. 军事工程选址决策支持系统概念设计. 地球信息科学, 9(3): 5~9.

    • 陆芬. 2024. 擦亮“东方慧眼”———国家最高科学技术奖获得者李德仁谈智能遥感卫星与应用[N]. 中国自然资源报, 2024-07-09 (第 7 版).

    • 路彦明, 李宏伟, 周宏, 杨贵才, 袁士松, 张栋. 2020. 军事地质概论. 长沙: 国防科技大学出版社: 1~291.

    • 吕易. 2023. 基于多源多时相遥感数据的岩石影像特征分析及分类研究. 导师: 杨长保. 长春: 吉林大学博士学位论文: 1~136.

    • 马姗姗, 杨嘉葳, 王继燕, 熊俊楠. 2024. 基于光谱特征的城市水体提取. 测绘通报, (6): 71~76.

    • 裴秋明, 沈家乐, 王世明, 房大任, 高永璋, 李典, 马少兵. 2024. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用: 以内蒙古水头萤石矿床为例. 西北地质, 57(4): 121~134.

    • 彭光雄, 高光明. 2013. 新疆阿祖拜矿田伟晶岩型矿床遥感找矿综合信息研究. 大地构造与成矿学, 37(1): 109~117.

    • 任丽秋, 杨鹏, 苏旭, 李庆. 2020. 关于提升天绘一号系列卫星服务能力的几点思考. 地理信息世界, 27(4): 119~122.

    • 史俊波, 康孔跃, 张辉善, 杨伟, 张杰, 刘恒轩, 任清军. 2016. SPOT5 数据在西昆仑麻扎构造混杂岩带填图中的应用. 国土资源遥感, 28(1): 107~113.

    • 宋丙剑. 2017. 矿产资源在战场环境保障中应用探讨. 河北北方学院学报(自然科学版), 33(9): 58~60.

    • 孙红政, 李宏伟, 徐哲. 2017. 地质要素在工程构筑选址中的影响特性分析. 测绘与空间地理信息, 40(10): 199~201+204.

    • 孙兴丽, 刘晓煌, 鲁继元, 毛景文, 徐学义, 关洪军, 李保飞, 刘玖芬, 鲍宽乐, 鲁世朋. 2017. 现代战争特点及军事地质调查. 地质论评, 63(1): 99~112.

    • 谭宏婕, 邱昆峰, 刘洪成, 张鹏聪, 符佳楠, 王瑞, 罗建翔, 师彦明. 2024. 西秦岭李坝造山型金矿床围岩蚀变特征: 基于高分五号 02 星(GF-5B)星载高光谱数据信息提取. 岩石学报, 40(6): 1784~1800.

    • 陶西贵, 黄自力, 王泓, 贾艺凡. 2017. 军事设施综合防护体系研究. 防护工程, 39(2): 67~70.

    • 田瑜基. 2020. 高分卫星在测绘中的应用展望. 科技与创新, (22): 160~161.

    • 童勤龙, 叶发旺, 秦明宽, 易敏, 伍炜超. 2022. WorldView-3 遥感数据在巴音戈壁盆地本巴图地区铀矿勘查中的应用. 地质论评, 68(6): 2349~2364.

    • 王德富, 李永鑫, 任娟, 范亚军, 刘立, 罗超. 2024. 联合无人机光学与机载 LiDAR 在高位滑坡要素识别中的应用: 以川西汶川龙溪沟滑坡为例. 现代地质, 38(2): 464~476.

    • 王杭生, 蔡钟业. 1985. 军事工程地质学与未来战争. 工程兵工程学院学报, (4): 57~61.

    • 王建楠, 李楚钰, 唐廷元, 李瀚琨, 梁鹏, 荣伟. 2024. 机载激光雷达点云分类研究进展与趋势. 北京测绘, 38(4): 603~608.

    • 王凯, 刘志刚. 2008. 地质雷达技术及其在军事地球物理中的应用. 见: 第三届国家安全地球物理学术研讨会论文集, 西安: 173~177.

    • 王磊. 2018. 基于 Sentinel-2A 的矿化蚀变异常信息提取分析与应用. 导师: 杨斌. 绵阳: 西南科技大学硕士学位论文: 1~81.

    • 王莉. 2022. 基于卫星影像的地表构造解译与烃微渗漏蚀变信息提取———以库车坳陷秋里塔格构造带西段为例. 导师: 吴珍云. 上海: 华东理工大学硕士学位论文: 1~81.

    • 王平平, 王婷, 赵慧, 姚虎, 尹艺霖. 2024. 基于 ASTER 和 WorldView-3 数据在新疆坡北地区蚀变矿物信息提取对比研究. 新疆地质, 42(1): 127~132.

    • 王瑞国. 2016. 基于 WorldView-2 数据的乌东煤矿地质灾害遥感调查及成因分析. 国土资源遥感, 28(2): 132~138.

    • 王晓志. 2018. 基于 Worldview2 数据的岫岩县地质灾害遥感解译与分析. 吉林地质, 37(4): 62~66+78.

    • 汪洋. 2024. 遥感技术在地质灾害治理中的应用———以潘集区地灾风险调查评价为例. 华北自然资源, (4): 86~89.

    • 温干祥. 2024. 遥感技术在地下水寻找中的空间监测应用研究. 科技与创新, (10): 178~180.

    • 吴炎达. 2019. 基于多数据源的成土母质信息提取研究. 导师: 孙福军, 王大鹏. 沈阳: 沈阳农业大学硕士学位论文: 1~76.

    • 校培喜. 2007. 遥感技术在基础地质调查研究与地质编图中的应用. 见: 第五届全国地质制图与 GIS 学术讨论会论文集, 海口: 187~188.

    • 徐定杰, 邹勇, 熊芝兰, 刘丹丹. 2006. 军事海洋环境视景仿真研究. 计算机仿真, 23(6): 171~175.

    • 徐宇翔, 胡庆武, 段延松, 李加元, 艾明耀, 赵鹏程. 2024. 融合 LiDAR 点云与无人机影像的滑坡动态监测技术. 测绘通报, (8): 42~47.

    • 许兵, 杨梦诗, 李志伟, 丁晓利, 冯光财. 2011. 结合 ALOS PALSAR 和 QuickBird 影像研究舟曲泥石流. 见: 中国地球物理学会第二十七届年会论文集, 长沙: 1003.

    • 严嘉豪. 2023. 基于 D-InSAR 与 Offset-Tracking 参数改进的长白山北景区泥石流物源变化研究. 导师: 张以晨, 刘海峰. 长春: 长春工程学院硕士学位论文: 1~58.

    • 颜成义. 2020. 地利———地质对军事活动的影响. 北京: 地质出版社: 1~208.

    • 燕翱翔. 2022. 联合 Sentinel-1 升降轨数据的三维同震形变场及断层滑动分布反演. 导师: 蒋亚楠, 程多祥. 成都: 成都理工大学硕士学位论文: 1~62.

    • 杨日红, 李志忠, 陈秀法. 2012. ASTER 数据的斑岩铜矿典型蚀变矿物组合信息提取方法———以秘鲁南部阿雷基帕省斑岩铜矿区为例. 地球信息科学学报, 14(3): 411~418.

    • 叶发旺, 刘德长. 2012. 巴什布拉克铀矿区褪色蚀变 Quickbird 高分图像地学分析. 地球信息科学学报, 14(1): 123~127.

    • 殷赵慧. 2022. 基于卷积神经网络的断层传播褶皱地表构造变形遥感解析. 导师: 沈晓华, 邹乐君. 杭州: 浙江大学博士学位论文: 1~86.

    • 于德浩, 龙凡, 杨清雷, 王康, 王李, 杨彤. 2017. 现代军事遥感地质学发展及其展望. 中国地质调查, 4(3): 74~82.

    • 占惠珠, 尚慧, 甘智慧. 2021. 采煤沉陷区高分遥感数据融合方法. 西安科技大学学报, 41(4): 673~681.

    • 张栋, 葛良胜, 吕新彪, 戚冉, 王卫兵, 闫家盼, 赵由之. 2024. 军事地球科学: 历史经验与现代挑战[J][OL]. 地质论评, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025

    • 张栋, 吕新彪, 葛良胜, 路彦明, 黄辉. 2019. 军事地质环境的研究内涵与关键技术. 地质论评, 65(1): 181~198.

    • 张广有, 孟庆奎, 王智超, 毕记省. 2022. 美国军事地质发展和启示. 地质论评, 68(5): 1912~1917.

    • 张景华, 李宗亮, 张建龙, 刘小霞, 欧阳渊. 2013. 四川省泸定县磨西台地地质灾害遥感监测研究. 水土保持通报, 33(3): 104~108+264.

    • 张珂, 吴星宇, 吴南, 黄轶铭, 张兆安. 2024. 基于高分一号的遥感影像水体信息提取方法对比分析与改进. 水资源保护, 40(4): 9~16.

    • 张磊. 2018. 不确定性指导下的自适应数字土壤制图补样方法. 导师: 朱阿兴. 南京: 南京师范大学硕士学位论文: 1~62.

    • 张伟刚, 郭衍游, 唐菊兴. 2010. 西藏甲玛铜多金属矿高分辨率 IKONOS 遥感影像的线性构造解译及其控矿构造分析. 矿床地质, 29(增刊): 701~702.

    • 张元涛, 余长发, 潘蔚, 田青林. 2020. WorldView-3 影像与 ASTER 热红外影像在内蒙古卫境地区铀矿勘查中的应用. 铀矿地质, 36(5): 408~417.

    • 赵家乐, 陈浩. 2019. 高分遥感影像煤矿非法开采动态监测应用. 卫星应用, (7): 18~23.

    • 赵燕伶, 蒙利, 郑晨, 郝旋捷, 冯晓天. 2024. 基于遥感技术的韩城市燎原煤矿矿山地质灾害监测与分析. 陕西地质, 42(1): 82~90.

    • 赵永辉, 吴健生, 陈军. 2005. 军事防空洞室裂隙隐患的地质雷达测试研究. 见: 2005 国家安全地球物理学术研讨会论文集. 西安: 74~80.

    • 中国矿业报评论员. 2017. 军事地质工作大有用武之地———写在中国人民解放军建军九十周年之际[N]. 中国矿业报, 2017-08-01 (第 1 版).

    • 周秋麟, 尹卫平, 吴日升. 2008. 军事海洋生态学研究进展. 海洋开发与管理, (5): 76~85.

    • 周燕. 2008. 遥感影像在岩溶石山区找水研究中的应用 ———以多依河流域为例. 导师: 朱杰勇. 昆明: 昆明理工大学硕士学位论文: 1~93.

    • 朱煜峰, 张明, 臧德彦, 鲁铁定. 2017. D-InSAR 技术在相山铀矿山沉降监测中的应用分析. 东华理工大学学报(自然科学版), 40 (3): 297~300.

    • 邹键, 唐文龙, 王凤华, 胡峰, 薄军委, 王志新, 刘治, 魏绪峰, 李勇. 2022. 高分遥感数据在胶东水道地区金成矿远景区圈定中的应用研究. 地质论评, 68(6): 2336~2348.

    • Ahmadi H, Das A, Pourtaheri M, Komaki C B, Khairy H. 2014. Redefining the watershed line and stream networks via digital resources and topographic map using GIS and remote sensing case study: The Neka River’ s watershed. Natural hazards, 72: 711~722.

    • Ahmadi H, Pekkan E. 2021. Fault-based geological lineaments extraction using remote sensing and GIS—A review. Geosciences, 11(5): 183.

    • Albanwan H, Qin Rongjun, Liu Jungkuan. 2024. Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications. Remote Sensing, 16(3): 455.

    • An Yandong, Zhang Can. 2024&. Analysis of erosion characteristics of small watershed and channel of debris flow based on Multi- source remote sensing technology. Scientifc and Technological Innovation, (10): 32~35.

    • Asokan A, Anitha J, Ciobanu M, Gabor A, Naaji A, Hemanth D J. 2020. Image processing techniques for analysis of satellite images for historical maps classification———An overview. Applied Sciences, 10(12): 4207.

    • Awad M E, Amer R, López-Galindo A, El-Rahmany M M, del Moral L F G, Viseras C. 2018. Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Applied Clay Science, 160: 249~262.

    • Bao Yilin, Yao Fengmei, Meng Xiangtian, Wang Jingwen, Liu Huanjun, Wang Yihao, Liu Qi, Zhang Jiahua and Mouazen A M. 2024. A fine digital soil mapping by integrating remote sensingbased process model and deep learning method in Northeast China. Soil and Tillage Research, 238: 106010.

    • Beiranvand Pour A, Hashim M. 2014. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, (3): 1~19.

    • Bolouki S M, Ramazi H R, Maghsoudi A, Beiranvand Pour A, Sohrabi G. 2019. A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar—Arasbaran Area, NW Iran. Remote Sensing, 12(1): 105.

    • Booysen R, Jackisch R, Lorenz S, Zimmermann R, Kirsch M, Nex P A, Gloaguen R. 2020. Detection of REEs with lightweight UAV-based hyperspectral imaging. Scientific Reports, 10(1): 17450.

    • Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W. 2012. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sensing, 4(12): 3721~3740.

    • Burton D, Dunlap D B, Wood L J, Flaig P P. 2011. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5): 339~347.

    • Chen Guoliang. 2011&. Key Technologies on “One-chart” Construction in Coal Mining Area. Supervisor: Wang Yunjia, Li Gang. Xuzhou: Ph. D. Dissertation of China University of Mining and Technology: 1~128.

    • Chen Jun, Ma Lilong, Xie Wanbing. 2024&. Identification of geological hazards and analysis of deformation characteristics in the Altun Mountain area of Ruoqiang County based on SBAS-InSAR and optical remote sensing technology. Xinjiang Geology, 42(1): 307~313.

    • Chen Rong, Han Haowu, Fu Peihong, Yang Yufei, Huang Wei. 2021&. Soil mapping based on Multi-temporal remote sensing images and random forest algorithm. Soils, 53(5): 1087~1094.

    • Chen Tao, Trinder J C, Niu Ruiqing. 2017. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China. Remote Sensing, 9(4): 333.

    • Chen Weitao, Wang Lizhe, Dong Yusen, Yan Jining, Li Xianju. 2017# . Theories and Methods of Military Geological Remote Sensing. Wuhan: China University of Geosciences Press: 1~206.

    • Chen Weitao, Li Xianju, Qin Xuwen, Wang Lizhe. 2024. Geological remote sensing: An overview. Research Gate: 1~235.

    • Chen Zhanlong, Tao Liufeng, Sun Zhengquan, Wang Run, Gong Xi, Xu Daozhu, Ma Chao, Zhao Junli. 2022&. Research on military geological data system from the perspective of data engineering. Geomatics & Spatial Information Technology, 45(11): 1~4.

    • Cheng Dong, Zhang Yongzhi, Wang Xiaohang, Han Ming. 2019&. Coseismic deformation and fault slip inversion of the 2017 MW7. 3 Halabjah, Iraq, earthquake based on Sentinel-1A data. Acta Seismologica Sinica, 41(4): 484~493.

    • Cheng Zhongshuai. 2024&. Risk Assessment of Changbai Mountain Collapse Disaster Based on Support Vector Machine and Information Quantity Model. Supervisor: Zhang Yichen, Zhang Zhiyong. Changchun: Master ’ s Degree Thesis of Changchun Engineering College: 1~57.

    • Currenti G, Solaro G, Napoli R, Pepe A, Bonaccorso A, Del Negro C, Sansosti E. 2012. Modeling of ALOS and COSMO-SkyMed satellite data at Mt. Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest. Remote Sensing of Environment, 125: 64~72.

    • Dai Jingjing, Wang Denghong, Chen Zhenghui, Yu Yang. 2013&. Environment contamination investigation of ion-absorbed rare earth ore districts based on IKONOS remote sensing data: A case study of Xunwu area in South Jiangxi. Acta Geoscientica Sinica, 34 (3): 354~360.

    • Dai Jingjing, Wang Ruijiang, Wang Denghong, Chen Zhenghui. 2014&. The investigation of unauthorized mining of Ion-absorbed rare earth ore deposits in South Jiangxi Province based on IKONOS data. Acta Geoscientica Sinica, 35(4): 503~509.

    • Danik Yuri Grigoryevich, Qi Xinyuan. 2008 #. Content, essence, definition of modern and future wars and military operations. Journal of Tianjin Administration Institute, 10(6): 43~47.

    • Deng Kun. 2016. Characteristics of Ikonos remote sensing image of collapse of mined out area at Shenfu. Energy Environmental Protection, 30(3): 54~56.

    • Ding Hui, Zhang Maosheng, Li Lin, Wang Jiayun, Pei Ying. 2009. Application of IKONOS satellite remote sensing images in Cuihua Mountain landslide. Journal of Natural Disasters, 18 (3): 165~170.

    • Ding Li, Zhu Guchang, Wang Juan, Zhang Jianguo, Yang Zi’ an, Shi Feifei. 2010&. Application of IKONOS image with remote sensing technique in the monitoring of mine environment———An example in Baiyin coal mine region. Geomatics & Spatial Information Technology, 33(1): 37~41.

    • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P. 2012. Sentinel-2: ESA’ s optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120: 25~36.

    • Du Yun, Zhang Yihang, Ling Feng, Wang Qunming, Li Wenbo, Li Xiaodong. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4): 354.

    • Duan Mengqi, Song Xiangyun, Li Zengqiang, Zhang Xiaoguang, Ding Xiaodong, Cui Dejie. 2024. Identifying soil groups and selecting a high-accuracy classification method based on multi-textural features with optimal window sizes using remote sensing images. Ecological Informatics, 81: 102563.

    • Duan Tao, Deng Yufeng, Guo Mengmeng, Zheng Xuejing, Liang Diwen. 2024#. Application of unmanned aerial vehicle (UAV) low-altitude remote sensing technology in dynamic monitoring of collapse geological hazards. Energy Technology and Management, 49 (3): 31~34.

    • Elhag M, Alshamsi D. 2019. Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geoscientific Instrumentation, Methods and Data Systems, 8(1): 45~54.

    • Fan Linlin. 2017&. Research on Cross-country Path Planning Technology Based on Hexagonal Grid. Supervisor: Hua Yixin. Zhengzhou: Master’s Degree Thesis of PLA Information Engineering University: 1~69.

    • Fan Min, Sun Xiaofei, Su Fenghuan, Jiang Huabiao, Han Lei. 2017&. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data. Remote Sensing for Land and Resources, 29(S1): 85~89.

    • Feng Guangcai, Jónsson S, Klinger Y. 2017. Which fault segments ruptured in the 2008 Wenchuan earthquake and which did not? New evidence from near-fault 3D surface displacements derived from SAR image offsets. Bulletin of the Seismological Society of America, 107 (3): 1185~1200.

    • Feng Wanpeng, Li Zhenhong, Elliott J R, Fukushima Y, Hoey T, Singleton A, Cook R, Xu Zhonghuai. 2013. The 2011 MW 6. 8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophysical Journal International, 195(1): 650~660.

    • Fielding E J, Lundgren P R, Taymaz T, Yolsal-Cevikbilen S, Owen S E. 2013. Fault-slip source models for the 2011 M 7. 1 Van earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS, seismic waveform analysis. Seismological Research Letters, 84(4): 579~593.

    • Frazier A E, Hemingway B L. 2021. A technical review of planet smallsat data: Practical considerations for processing and using planetscope imagery. Remote Sensing, 13(19): 3930.

    • Fu L L, Pavelsky T, Cretaux J F, Morrow R, Farrar J T, Vaze P, Sengenes P, Vinogradova ‐ Shiffer N, Sylvestre-Baron A, Picot N. 2024. The surface water and ocean topography mission: A breakthrough in radar remote sensing of the ocean and land surface water. Geophysical Research Letters, 51(4): e2023GL107652.

    • Ge Liangsheng, Wang Liang, Zhang Dong, Qi Ran. 2023#. Introduction to Military Geology. Beijing: National Defense Industry Press: 1~506.

    • Ge Liangsheng. 2017 #. The Armed Police Gold Corps Builds a “Transparent Earth”. Land & Resources (Media Plaza): 60.

    • Gharineiat Z, Tarsha Kurdi F, Campbell G. 2022. Review of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques. Remote Sensing, 14(19): 4685.

    • Giordan D, Luzi G, Monserrat O, Dematteis N. 2022. Remote sensing analysis of geologic hazards. Remote Sensing, 14(19): 4818.

    • Guo Yubin. 2019&. Application of remote sensing technology in survey of mine subsidence geological disasters. Geologic hazard, 141+143.

    • Han Jun, Wang Baoyun, Xu Fanshu. 2024&. Assessment of debris flow susceptibility based on self ———Calibration prototype network: Case of Nujiang prefecture, Yunnan Province. Yangtze River, 55 (3): 123~133.

    • Han Ling, Zhao Bo, Wu Jianjian, Zhang Shuyuan, Pilz J, Yang Fan. 2018. An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternary-covered region———North Baoji District of China. Geological Journal, 53: 352~363.

    • Han Sipeng, Wan Zhipeng, Deng Junfeng, Zhang Congyuan, Liu Xingwu, Zhu Tong, Zhao Junli. 2024. RSW Former: A Multi-Scale fusion network from local to global with multiple stages for regional geological mapping. Remote Sensing, 16(14): 2548.

    • Han Xiaoqing, Du Hongyue. 2016&. The application of high-spatial resolution Tianhui remote sensing data to geologic exploration. Uranium Geology, 32(1): 48~53.

    • Han Ziqing, Li Lang, Gao Hui. 2024&. Remote sensing interpretation of geological disaster in the western mountainous areas of Henan based on GF-7 data. Henan Science and Technology, (11): 91~96.

    • Hu Bin, Xu Yongyang, Wan Bo, Wu Xincai, Yi Guihua. 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geology Reviews, 101: 384~397.

    • Hu Leyin, Dai Keren, Xing Chengqi, Li Zhenhong, Tomás R, Clark B, Shi Xianlin, Chen Mi, Zhang Rui, Qiu Qiang. 2019. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. International Journal of Applied Earth Observation and Geoinformation, 82: 101886.

    • Hu Wenmin, Wu Lixin, Zhang Wei, Liu Bin, Xu Jiaxing. 2017. Ground deformation detection using China’s ZY-3 stereo imagery in an opencast mining area. ISPRS International Journal of GeoInformation, 6(11): 361.

    • Hubbard B E, Gallegos T J, Stengel V. 2023. Mapping abandoned uranium mine features using Worldview-3 imagery in portions of Karnes, Atascosa and Live Oak Counties, Texas. Minerals, 13(7): 839.

    • Huggel C, Kääb A, Salzmann N. 2006. Evaluation of QuickBird and IKONOS imagery for assessment of high-mountain hazards. EARSeL eProceedings, 5(1): 51~62.

    • Ilieva M, Briole P, Ganas A, Dimitrov D, Elias P, Mouratidis A, Charara R. 2016. Fault plane modelling of the 2003 August 14 Lefkada Island Greece earthquake based on the analysis of ENVISAT SAR interferograms. Tectonophysics, 693: 47~65.

    • Ishidoshiro N, Yamaguchi Y, Noda S, Asano Y, Kondo T, Kawakami Y, Mitsuishi M, Nakamura H. 2016. Geological mapping by combining spectral unmixing and cluster analysis for hyperspectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41: 431~435.

    • Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66(2): 378~394.

    • Jiao Chaowei, Chen Fuqiang, Li Lingjun, Zhang Yunfeng. 2013&. The survey and research of geological hazards based on ALOS image. Modern Surveying and Mapping, 36(3): 3~6.

    • Jin Lu. 2024&. Monitoring Freeze-Melt Processes of Lakes on the Tibetan Plateau Using Sentinel-1 Synthetic Aperture Radar Imagery. Supervisor: Chen Jun. Hefei: Master’ s Degree Thesis of Anhui Jianzhu University: 1~62.

    • Jing Liuzeng, Liu Zhijun, Liu Xiaoli, Milliner C, Rodriguez Padilla A M, Xu Shiqing, Avouac J P, Yao Wenqian, Klinger Y, Han Longfei. 2024. Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake. AGU Advances, 5: e2023AV001134.

    • Jolivet R, Lasserre C, Doin M P, Guillaso S, Peltzer G, Dailu R, Sun J, Shen Z K, Xu X. 2012. Shallow creep on the Haiyuan fault Gansu, China revealed by SAR interferometry. Journal of Geophysical Research: Solid Earth, 117(B6): B06401.

    • Joyce K E, Samsonov S, Levick S R, Engelbrecht J, Belliss S. 2014. Mapping and monitoring geological hazards using optical, LiDAR, synthetic aperture RADAR image data. Natural hazards, 73: 137~163.

    • König T, Kux H J, Mendes R M. 2019. Shalstab mathematical model and WorldView-2 satellite images to identification of landslidesusceptible areas. Natural Hazards, 97(3): 1127~1149.

    • Kruse F A, Perry S L. 2013. Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sensing, 5(6): 2688~2703.

    • Kruse F A, Baugh W M, Perry S L. 2015. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. Journal of Applied Remote Sensing, 9(1): 096044~096044.

    • Latifovic R, Pouliot D, Campbell J. 2018. Assessment of convolution neural networks for surficial geology mapping in the South Rae geological region, Northwest Territories, Canada. Remote Sensing, 10(2): 307.

    • Li Na, Dong Xinfeng, Gan Fuping, Yan Baikun, Zhu Wanjing. 2021&. Application of hyperspectral remote sensing technology to regional geological survey and mapping in bedrock area. Geological Bulletin of China, 40(1): 13~21.

    • Li Wanlun, Lü Peng, Meng Qingkui, Wang Minghan. 2020&. New progress in application of military geology abroad. Geological Review, 66(1): 189~196.

    • Li Xianju, Chen Weitao, Cheng Xinwen, Wang Lizhe. 2016. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote sensing, 8(6): 514.

    • Li Xianju, Wu Chunming, Chen Weitao, Wang Lizhe. 2019#. Remote Sensing Intelligent Interpretation Technology for Military Geological Bodies. Beijing: Science Press: 1~123.

    • Li Xiaomin, Zhang Xing, Xin Rongfang, Li Zongren, Li Delin, Li Dongling. 2021&. Briefly explore of remote sensing interpretation spring point using domestic High-resolution data in Qinghai. Geospatial Information, 19(2): 60~63+7.

    • Li Yongsheng, Jiang Wenliang, Zhang Jingfa. 2022. A time series processing chain for geological disasters based on a GPU-assisted sentinel-1 InSAR processor. Natural Hazards, 111(1): 803~815.

    • Li Yuanhua, Jiang Qigang, Zhou Zhiyong, Cui Hanwen, Lin Nan, Yang Jiajia. 2012&. Basic elements of land remote sensing military geological map and its expression method. Global Geology, 31(3): 614~620.

    • Li Zhizhong, Mu Huayi, Liu Dechang, Sun Pingping, Party Fuxing, Liu Tuo, Jia Jun, Wang Jianhua, Han Haihui, Ma Weifeng, Tang Xiaojun, Li Wenming, Zhao Jun. 2021&. Remote sensing first: Service for the Technological revolution and innovation in natural resources survey. Geology and Resources, 30(2): 153~160.

    • Lian Chenqin, Yao Fojun, Chen Maohong, Mark Zhong, Wang Hailong. The study on alteration information extraction of GF-5 Hyperspectral data in vegetation coverage area: A case study of the Yushui Copper Deposit in Guangdong Province. Geoscience, 34(4): 680~686.

    • Liao Xiuying, Shi Yingjie, Cheng Hui, Wang Songtao, Liang Ji. 2024&. Study on distribution characteristics of groundwater resources intermountain basins in the Eastern part of Altun Mountains. Progress in Geophysics, 39(1): 421~430.

    • Lin Haixing, Cheng Sanyou, Wang Xi, Chen Jing, Gu Pingyang, Zhuang Yujun, Zhao Xinyi, Ma Gang. 2022&. Study on rock information extraction from remote sensing images in Saishiteng Area, Qinghai Province. Geological Review, 68(6): 2319~2335.

    • Liu Dechang, Tong Qinlong, Lin Ziyu, Yang Guofang. 2015&. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe. Remote Sensing for Land and Resources, 27(3): 136~143.

    • Liu Feng, Liu Xiaojing. 2007&. The conceptual design of decision support system of selecting locus for military projects. GeoInformation Science, 9(3): 5~9.

    • Liu Heng, Shi Weimin, Li Shuiquan, Zeng Yixiong. 2013&. Experimental research on the anti-attack performance of the access roads of protective engineering. Protective Engineering, 35(1): 6~10.

    • Liu Huaguo. 2011&. A Study on the Tectonic Deformation of the Kalpin Thrust Tectonic System Based on High-Resolution Satellite Images. Supervisor: Ran Yongkang. Beijing: Master ’ s Degree Thesis of Institute of Geology, China Earthquake Administration: 1~98.

    • Liu Huan, Zhu Guchang, Li Zhifeng, Hu Xinghua, Zheng Wei. 2010&. Application of IKONOS satellite images to recognition of the ground collapses in Honghui Coal Mine, Gansu Province. The Chinese Journal of Geological Hazard and Control, 21(4): 82~85.

    • Liu Huanjun, Yang Haoxuan, Xu Mengyuan, Zhang Xinle, Zhang Xiaokang, Yu Ziyang, Shao Shuai, Li Houxuan. 2018&. Soil classification based on maximum likelihood method and features of multi-temporal remote sensing images in bare soil period. Transactions of the Chinese Society of Agricultural Engineering, 34(14): 132~139+304.

    • Liu Liming, Wang Jin. 2024&. Overview, Characteristics and Applications of High-resolution on earth observation system satellites of China. Journal of Changchun Unversity, 34(2): 21~30.

    • Liu Lupeng, Xiao Jun, Wang Ying. 2019. Major orientation estimationbased rock surface extraction for 3D Rock-mass point clouds. Remote sensing, 11(6): 635.

    • Liu Xiaohuang, Sun Xingli, Liu Jiufen, Li Xinhao, Bao Kuanle, Li Baofei, Zhao Bingxin, Yang Weilong. 2016&. Extraction and result expression of land area military geological elements. Northwestern Geology, 49(3): 193~203.

    • Liu Xiaohuang, Sun Xingli, Mao Jingwen, Guan Hongjun, Qi Ran, Li Baofei, Liu Jiufen, Yang Weilong, Zhao Bingxin. 2017&. Military geology and its role in Modern War. Geological Bulletin of China, 36(9): 1656~1664.

    • Liu Xiaohuang, Zhang Lu, Sun Xingli, Li Xilai. 2018 #. Modern Military Geological Theory and Application. Beijing: Science Press: 1~217.

    • Liu Xiaoxia. 2012&. The Application of WorldView-1 satellite images to geohazards survey in Kangding County. Acta Geologica Sichuan, 32(1): 110~111.

    • Liu Zedong, Peng Zhongqin. 2017&. Extraction of geological structure information from Multi-Source remote sensing data in Lishi area of Longsheng in Guangxi. Mineral Resources and Geology, 31 (5): 950~954.

    • Lu Yanming, Li Hongwei, Zhou Hong, Yang Guicai, Yuan Shisong, Zhang Dong. 2020#. Introduction to Military Geology. Changsha: National University of Defense Technology Press: 1~291.

    • Lü Yi. 2023&. Rock Image Feature Analysis and Classification Using Multi-Source and Multi-Temporal Remote Sensing Data. Supervisor: Yang Changbao. Ph. D. Dissertation of Jilin University: 1~136.

    • Ma Shanshan, Yang Jiawei, Wang Jiyan, Xiong Junnan. 2024&. Urban water extraction based on spectral features. Bulletin of Surveying and Mapping, (6): 71~76.

    • Madani A, Niyazi B. 2015. Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: A case study from Wadi Yalamlam Basin, Makkah Province, Western Saudi Arabia. Environmental Earth Sciences, 74: 5129~5142.

    • Malainine C E, Raji O, Ouabid M, Bodinier J L, El Messbahi H. 2022. Prospectivity mapping of carbonatite-associated iron oxide deposits using an integration process of ASTER and Sentinel-2A multispectral data. International Journal of Remote Sensing, 43(13): 4951~4983.

    • Meng Fanqi, Zhu Sihong, Li Yufei, Zhang Yong, Niu Wei, Lin Bo. 2024. Identification of geological hazards in Yishui County Shandong Province using GF-2 remote sensing images. International Conference on Remote Sensing Technology and Survey Mapping (RSTSM 2024), SPIE, 13166: 55~62.

    • Monsef H A E, Khalifa I H, Faisal M. 2015. Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and World View II images at Wadi Rofaiyed, South Sinai, Egypt. Arabian Journal of Geosciences, 8: 9285-9300.

    • Mota R, Pacheco J M, Pimentel A, Gil A. 2024. Monitoring volcanic plumes and clouds using remote sensing: A systematic review. Remote Sensing, 16(10): 1789.

    • Mulder V, De Bruin S, Schaepman M E, Mayr T. 2011. The use of remote sensing in soil and terrain mapping———A review. Geoderma, 162(1~2): 1~19.

    • Nagaraj R, Kumar L S. 2024. Extraction of surface water bodies using optical remote sensing images: A review. Earth Science Informatics, 17(2): 893~956.

    • Ninomiya Y, Fu Bihong. 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108: 54~72.

    • Oikonomidis D, Vavelidis M, Melfos V, Artashova M. 2017. Searching for ancient gold mines in Filippoi area, Macedonia, Greece, using Worldview-2 satellite imagery. Geocarto International, 32(1): 87~96.

    • Pearlman J S, Barry P S, Segal C C, Shepanski J, Beiso D, Carman S L. 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1160~1173.

    • Pei Qiuming, Shen Jiale, Wang Shiming, Fang Daren, Gao Yongzhang, Li Dian, Ma Shaobing. 2024&. Exploring luorite veins using Multisource remote sensing astellite data: A case study from the Shuitou fluorite deposit in Inner Mongolia, China. Northwestern Geology, 57(4): 121~134.

    • Peng Guangxi, Gao Guangming. 2013&. Remote sensing prospecting of pegmatite deposits in the Azubai region, Xinjiang. Geotectonica et Metallogenia, 37(1): 109~117.

    • Raharimahefa T, Kusky T M. 2009. Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Research, 15(1): 14~27.

    • Ren Liqiu, Yang Peng, Su Xu, Li Qing. 2020&. Several thoughts on enhancing the service capabilities of the Tianhui-1 series of satellites. Geomatics World, 27(4): 119~122.

    • Ren Yuhuan, Liu Yalan. 2016. Geological disaster detection from remote sensing image based on experts’ knowledge and image features. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 677~680.

    • Robson B A, Bolch T, MacDonell S, Hölbling D, Rastner P, Schaffer N. 2020. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 250: 112033.

    • Rowan L C, Mars J C. 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer ASTER data. Remote Sensing of Environment, 84(3): 350~366.

    • Sang Xuejia, Xue Linfu, Ran Xiangjin, Li Xiaoshun, Liu Jiwen, Liu Zeyu. 2020. Intelligent high-resolution geological mapping based on SLIC-CNN. ISPRS International Journal of Geo-Information, 9(2): 99.

    • She Jinxing, Mabi, A, Liu Zhongming, Sheng Mingqiang, Dong Xiujun, Liu Fei, Wang Shiyang. 2021. Analysis using high-precision airborne LiDAR data to survey potential collapse geological hazards. Advances in civil Engineering, 2021(1): 6475942.

    • Shellum C, Trudnak J. 2005. GIS-based geology and geotechnical estimates for military applications. ARMA US Rock Mechanics/ Geomechanics Symposium. ARMA, 2005: ARMA-05-871.

    • Shi Junbo, Kang Kongyue, Zhang Huishan, Yang Wei, Zhang Jie, Liu Hengxuan, Ren Qingjun. 2016&. Application of SPOT5 data to geological mapping of Mazha Tectonic Melange Belt in West Kunlun Mountains. Remote Sensing for Land and Resources, 28(1): 107~113.

    • Shirmard H, Farahbakhsh E, Beiranvand Pour A, Muslim A M, Müller R D, Chandra R. 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing, 12(8): 1261.

    • Shirmard H, Farahbakhsh E, Müller R D, Chandra R. 2022. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268: 112750.

    • Song Bingjian. 2017#. Discussion on the application of mineral resources in battlefield environment support. Journal of Hebei North University (Natural Science Edition), 33(9): 58~60.

    • Sturzenegger M. 2010. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques, Burnaby: A Dissertation for a Doctoral Degree at Simon Fraser University: 1~343.

    • Sun Hongzheng, Li Hongwei, Xu Zhe. 2017&. Influence characteristics analysis of geological elements in engineering site selection and construction. Geomatics & Spatial Information Technology, 40(10): 199~201+204.

    • Sun Xingli, Liu Xiaohuang, Lu Jiyuan, Mao Jingwen, Xu Xueyi, Guan Hongjun, Li Baofei, Liu Jiufeng, Bao Kuanle, Lu Shipeng. 2017&. The characteristics of modern war and the investigation in military Geology. Geological Review, 63(1): 99~112.

    • Tagnon B O, Assoma V T, Mangoua J M O, Douagui A G, Kouamé F K, Savané I. 2020. Contribution of SAR/ RADARSAT-1 and ASAR/ ENVISAT images to geological structural mapping and assessment of lineaments density in Divo—Oume area Cote d ’ Ivoire. The Egyptian Journal of Remote Sensing and Space Science, 23(2): 231~241.

    • Tan Hongjie, Qiu Kunfeng, Liu Hongcheng, Zhang Pengcong, Fu Jianan, Wang Rui, Luo Jianxiang, Shi Yanming. 2024&. Alteration characteristics of wall rocks in the Liba Orogenic gold deposit, West Qinling: Based on information extraction from GF-5B spaceborne Hyperspectral data. Acta Petrologica Sinica, 40 (6): 1784~1800.

    • Tan Qulin, Bai Minzhou, Zhou Pinggen, Hu Jun, Qin Xiaochun. 2021. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS. Measurement, 169: 108370.

    • Tang Shulan, Cao Jiannong. 2020. Deposit location identification based on feature decomposition of high-resolution remote sensing images. IEEE Access, 9: 15239~15251.

    • Tao Xigui, Huang Zili, Wang Hong, Jia Yifan. 2017&. Research on the Comprehensive protection system of military facilities. Protective Engineering, 39(2): 67~70.

    • Tian Yuji. 2020 #. Prospects for the application of High-resolution satellites in surveying and mapping. Science and Technology and Innovation, 22: 160~161.

    • Tong Qinlong, Ye Fawang, Qin Mingkuan, Yi Min, Wu Weichao. 2022&. Application of World View-3 remote sensing data to uranium exploration in Benbatu area, Bayingobi Basin. Geological Review, 68(6): 2349~2364.

    • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M. 2012. GMES Sentinel-1 mission. Remote sensing of environment, 120: 9~24.

    • Valade S, Ley A, Massimetti F, D’ Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter T R. 2019. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system. Remote Sensing, 11(13): 1528.

    • Van der Meer F D, Van der Werff H M, Van Ruitenbeek F J, Hecker C A, Bakker W H, Noomen M F, Van Der Meijde M, Carranza E J M, De Smeth J B, Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: A review. International journal of applied Earth observation and geoinformation, 14(1): 112~128.

    • Wang Defu, Li Yongxin, Ren Juan, Fan Yajun, Liu Li, Luo Chao. 2024&. Application of joint UAV optics and airborne LiDAR in high level landslide element identification: A case study from the Longxigou landslide in Wenchuan, Western Sichuan. Geoscience, 38(2): 464~476.

    • Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geology, 1(3): 415~424.

    • Wang Hangsheng, Cai Zhongye. 1985#. Military engineering geology and future warfare. Journal of Engineering Corps Engineering Academy, (4): 57~61.

    • Wang Jiannan, Li Chuyu, Tang Tingyuan, Li Hankun, Liang Peng, Rong Wei. 2024&. Research progress and trend of airborne LiDAR point cloud classification. Beijing Surveying and Mapping, 38(4): 603~608.

    • Wang Kai, Liu Zhigang. 2008. Ground penetrating radar technology and its application in military geophysics. In: Proceedings of the Third National Security Geophysics Symposium, Xi’an: 173~177.

    • Wang Lei. 2018&. Extraction and Analysis of Mineralized Alteration Anomaly Information Based on Sentinel-2A. Supervisor: Yang Bin. Mianyang: Southwest University of Science and Technology Master Degree Thesis: 1~81.

    • Wang Li. 2022&. Surface Structure Interpretation and Hydrocarbon Microseepage Alteration Information Extraction Based on Satellite Images———A Case Study of the Western Segment of Qiulitage Structural Belt in Kuqa Depression. Supervisor: Wu Zhenyun. Shanghai: Dissertation for master’s degree of East China University of Technology: 1~81.

    • Wang Lizhe, Zuo Boxin, Le Yuan, Chen Yifu, Li Jun. 2023. Penetrating remote sensing: Next-generation remote sensing for transparent Earth. Innovation Camb, 4(6): 100519.

    • Wang Pingping, Wang Ting, Zhao Hui, Yao Hu, Yin Yilin. 2024&. Comparative study on extracting altered mineral information in the Pobei area of Xinjiang based on ASTER and WorldView-3 data. Xinjiang Geology, 42(1): 127~132.

    • Wang Qing, Jiang Yonghua, Zhang Guo, Sheng Qinghong. 2015. Earthquake monitoring for multi-temporal images of Ziyuan-3. International Conference on Intelligent Earth Observing and Applications 2015. SPIE, 2015, 9808: 543~551.

    • Wang Ruiguo. 2016&. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on World View-2 data. Remote Sensing for Land and Resources, 28(2): 132~138.

    • Wang Xiaozhi. 2018&. Remote sensing interpretation and analysis of geological disasters in Xiuyan County based on Worldview 2. Jilin Geology, 37(4): 62~66+78.

    • Wang Yang. 2024. Application of remote sensing technology in geological disaster management: A case study of geological disaster risk assessment in Panji District. North China Natural Resources, (4): 86~89.

    • Wen Ganxiang. 2024 #. Research on the application of remote sensing technology in spatial monitoring for groundwater exploration. Science and Technology & Innovation, 10: 178~180.

    • Wu Chunming, Li Xiao, Chen Weitao, Li Xianju. 2020. A review of geological applications of high-spatial-resolution remote sensing data. Journal of Circuits, Systems and Computers, 29 (6): 2030006.

    • Wu Weihua, Yang Yang, Wu Bangyu, Ma Debo, Tang Zhanxin, Yin Xia. 2023. MTL-FaultNet: Seismic data reconstruction assisted multi-task deep learning 3D fault interpretation. IEEE Transactions on Geoscience and Remote Sensing, 61: 5914815.

    • Wu Yanda. 2019&. Research on Information Extraction of Soil Parent Material Based on Multiple Data Sources. Supervisor: Sun Fujun, Wang Dapeng. Shenyang: Master ’ s Degree Thesis of Shenyang Agricultural University: 1~76.

    • Xiao Peixi. 2007 #. Application of remote sensing technology in basic geological survey research and geological mapping. In: Proceedings of the 5th National Symposium on Geological Mapping and GIS, Haikou: 187~188.

    • Xu Bing, Yang Mengshi, Li Zhiwei, Ding Xiaoli, Feng Guangcai. 2011 #. Mudslide studying of Zhouqu by integrating ALOS PALSAR and QuickBird optical image. In: Proceedings of the 27th Annual Meeting of the China Geophysical Society, Changsha: 1003.

    • Xu Dingjie, Zou Yong, Xiong Zhilan, Liu Dandan. 2006&. Research on visual simulation system of martial marine environment. Computer Simulation, 23(6): 171~175.

    • Xu Lina, Duan Junbin, Niu Ruiqing, Fang Shenghui, Dong, Yanfang. 2014. The landslide stability evaluation method research in the Three Gorges reservoir using ZY-3 data. 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014: 4303~4306.

    • Xu Qiang, Zhao Bo, Dai Keren, Dong Xiujun, Li Weile, Zhu Xing, Yang Yinghui, Xiao Xianxuan, Wang Xin, Huang Jian, Lu Huiyan, Deng Bo, Ge Daqing. 2023. Remote sensing for landslide investigations: A progress report from China. Engineering Geology, 321: 107156.

    • Xu Yuxiang, Hu Qingwu, Duan Yansong, Li Kaiyuan, Ai Mingyao, Zhao Pengcheng. 2024&. Landslide dynamic monitoring technology by integrating LiDAR point cloud and UAV image. Bulletin of Surveying and Mapping, 8: 42~47.

    • Yan Aoxiang. 2022&. Three-Dimensional Isoseismic Deformation Field Extraction and Inversion of Fault Slip Distribution from Ascending and Descending Sentinel-1 Satellite Data. Supervisors: Jiang Yanan, Cheng Duoxiang. Chengdu: Master ’ s Degree Thesis of Chengdu University of Technology: 1~62.

    • Yan Chengyi. 2020. Geographical Advantage: The Influence of Geology on Military Activities. Beijing: Geological Press: 1~208.

    • Yan Jiahao. 2023&. Study on Changes of Debris Flow Sources in the Northern Scenic Area of Changbai Mountain Based on D-InSAR and Offset-Tracking Parameter Improvement. Supervisor: Zhang Yichen and Liu Haifeng. Changchun: Master ’ s Degree Dissertation of Changchun Institute of Technology: 1~58.

    • Yang Rihong, Li Zhizhong, Chen Xiufa. 2012&. Information extraction of typical alteration mineral assemblage in porphyry copper using ASTER satellite data, Arequipa Province of South Peru. Journal of Geo-Information Science, 14(3): 411~418.

    • Yang Siquan, He Haixia, Chen Weitao, Wang Lizhe. 2018. Direct tangible damage assessment for regional snowmelt flood disasters with HJ-1 and HR satellite images: A case study of the Altay region, northern Xinjiang, China. Natural Hazards, 94: 1099~1116.

    • Yang Xiaohong, Li Yue, Wei Yu, Chen Zhanlong, Xie Peng. 2020. Water body extraction from Sentinel-3 image with multiscale spatiotemporal Super-resolution mapping. Water, 12(9): 2605.

    • Yang Xu, Liu Dechang, Zhang Jielin. 2008. Extraction of ore-searching information of uranium deposit based on high spatial resolution satellite data. Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images. SPIE, 2008, 7147: 62~69.

    • Yazdi M, Sadati N, Matkan A, Ashoorloo D. 2011. Application of remote sensing in monitoring of faults, International Journal of Environmental Research, 5(2): 457~468.

    • Ye Bei, Tian Shufang, Ge Jia, Sun Yaqin. 2017. Assessment of WorldView-3 data for lithological mapping. Remote Sensing, 9(11): 1132.

    • Ye Fawang, Liu Dechang. 2012&. Analysis on the fading alteration in Bashibulake Uranium mineralization area using Quickbird High resolution satellite remote sensing data. Journal of Geo-Information Science, 14(1): 123~127.

    • Yesou H, Besnus Y, Rolet J. 1993. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery———A contribution to the study of geological structures. ISPRS Journal of Photogrammetry and Remote Sensing, 48(5): 23~36.

    • Yi Wenxing, Li An, Xu Liangxin, Hu Zongkai, Li Xiaolong. 2024. Evidence of dextral strike-slip movement of the Alakol Lake fault in the Western Junggar based on remote sensing. Remote Sensing, 16(14): 2615.

    • Yin Zhaohui. 2022&. The Remote Sensing Analysis of Surface Tectonic Deformation of Fault—Propagation Folds Based on Convolutional Neural Network. Supervisors: Shen Xiaohua, Zou Lejun. Hangzhou: Ph. D. Dissertation, Zhejiang University: 1~86.

    • Yu Dehao, Long Fan, Yang Qinglei, Wang Kang, Wang Li, Yang Tong. 2017&. Development and prospects of modern military remote sensing geology. Geological Survey of China, 4(3): 74~82.

    • Zhan Huizhu, Shang Hui, Gan Zhihui. 2021. Fusion method of Highresolution remote sensing data in coal mining subsidence area. Journal of Xi’an University of Science and Technology, 41(4): 673~681.

    • Zhang Dong, Ge Liangsheng, Lv Xinbiao, Qi Ran, Wang Weibing, Yan Jiapan, Zhao Youzhi. 2024&. Military geosciences: Past lessons and modern challenges [ J] [ OL]. Geological Review, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025

    • Zhang Dong, Lü Xinbiao, Ge Liangsheng, Lu Yanming, Huang Hui. 2019&. Research connotation and key technology of the military geological environment in the land battlefield. Geological Review, 65(1): 181~198.

    • Zhang Guangyou, Meng Qingkui, Wang Zhichao, Bi Jisheng. 2022&. The development and enlightenment of U. S. military Geology. Geological Review. 68(5): 1912~1917.

    • Zhang Jinghua, Li Zongliang, Zhang Jianlong, Liu Xiaoxia, Ouyang Yuan. 2013&. Remote sensing monitoring of geological hazards on Moxi Platform in Luding County of Sichuan Province. Bulletin of Soil and Water Conservation, 33(3): 104~108+264.

    • Zhang Ke, Wu Xingyu, Wu Nan, Huang Yiming, Zhang Zhao’ an. 2024&. Comparative analysis and improvement of water body information extraction methods from remote sensing images based on GF-1. Water Resources Protection, 40(4): 9~16.

    • Zhang Lei. 2018&. An Adaptive Uncertainty-Guided Sampling Strategy for Digital Soil Mapping. Supervisors: Zhu Axing. Nanjing: Master’s Degree Dissertation of Nanjing Normal University: 1~62.

    • Zhang Weigang, Guo Yanyou, Tang Juxing. 2010 #. Interpretation of linear structures from high-resolution IKONOS remote sensing imagery of the Jiama copper polymetallic deposit in Tibet and analysis of ore-controlling structures. Mineral Deposits, 29(Suppl): 701~702.

    • Zhang Yuantao, Yu Changfa, Pan Wei, Tian Qinglin. 2020&. Application of world View-3 and ASTER TIR for the exploration of uranium in Weijing, Inner Mongolia. Uranium Geology. 36 (5): 408~417.

    • Zhao Jiale, Chen Hao. 2019 #. Application of high-resolution remote sensing imagery in dynamic monitoring of illegal coal mining. Satellite Applications, (7): 18~23.

    • Zhao Yanling, Meng Li, Zheng Chen, Hao Xuanjie, Feng Xiaotian. 2024&. Monitoring and analysis of mine geological disasters of Liao Yuan coal mine in Hancheng City based on remote sensing technology. Geology of Shaanxi, 42(1): 82~90.

    • Zhao Yonghui, Wu Jiansheng, Chen Jun. 2005 #. Study on ground penetrating radar testing of fracture hidden danger in military AirRaid shelter. In: Proceedings of the 2005 National Security Geophysical Symposium, Xi’an: 74~80.

    • Zhong Jiaxin, Li Qiaomin, Zhang Jia, Luo Pingping, Zhu Wei. 2024. Risk assessment of geological landslide hazards using D-InSAR and Remote Sensing. Remote Sensing, 16(2): 345.

    • Zhou Qiulin, Yin Weiping, Wu Risheng. 2008#. Advances in military marine ecology research. Ocean Development and Management, (5): 76~85.

    • Zhou Yan. 2008&. Application of Remote Sensing Imagery in Water Exploration Research in Karst Rocky Mountainous Regions: A Case Study of the Duoyi River Basin. Supervisor: Zhu Jieyong. Kunming: Master’ s Dissertation of Kunming University of Science and Technology: 1~93.

    • Zhu Yufeng, Zhang Ming, Zang Deyan, Lu Tieding. 2017&. Analysis of surface subsidence monitoring in Xiangshan Uranium mine area based on D-InSAR technology. Journal of East China University of Technology ( Natural Science), 40(3): 297~300.

    • Zou Jian, Tang Wenlong, Wang Fenghua, Hu Feng, Bo Junwei, Wang Zhixin, Liu Zhi, Wei Xufeng, Li Yong. 2022&. Application research of high-resolution remote sensing date in the delineation of gold metallogenic potential areas in Shuidao area of Jiaodong Peninsula. Geological Review, 68(6): 2336~2348.

  • 参考文献

    • 安艳东, 张灿. 2024. 基于多源遥感技术的泥石流小流域及沟道侵蚀特征分析. 科学技术创新, (10): 32~35.

    • 陈国良. 2011. 煤矿区“一张图” 建设的若干关键技术研究. 导师: 汪云甲, 李钢. 徐州: 中国矿业大学博士学位论文: 1~128.

    • 陈君, 马立龙, 谢万兵. 2024. 阿尔金地区地质灾害隐患识别及形变特征分析———SBAS-InSAR 结合光学遥感的综合遥感技术研究. 新疆地质, 42(1): 307~313.

    • 陈荣, 韩浩武, 傅佩红, 杨雨菲, 黄魏. 2021. 基于多时相遥感影像和随机森林算法的土壤制图. 土壤, 53(5): 1087~1094.

    • 陈伟涛, 王力哲, 董玉森, 阎继宁, 李显巨. 2017. 军事地质遥感理论与方法. 武汉: 中国地质大学出版社: 1~206.

    • 陈占龙, 陶留锋, 孙政权, 王润, 龚希, 徐道柱, 马超, 赵军利. 2022. 数据工程视角下的军事地质数据体系研究. 测绘与空间地理信息, 45(11): 1~4.

    • 程冬, 张永志, 王晓航, 韩鸣. 2019. 基于 Sentinel-1A 数据的 2017 年伊拉克哈莱卜杰 MW7. 3 地震同震形变场分析及断层滑动分布反演. 地震学报, 41(4): 484~493+548.

    • 程众帅. 2024. 基于支持向量机和信息量模型的长白山崩塌灾害风险评价. 导师: 张以晨, 张智勇. 长春: 长春工程学院硕士学位论文: 1~57.

    • 达尼克·尤里·格利高利耶维奇, 齐欣原. 2008. 现代和未来战争及军事行动的内容、本质与定义问题. 天津行政学院学报, 10(6): 43~47.

    • 代晶晶, 王登红, 陈郑辉, 于扬. 2013. IKONOS 遥感数据在离子吸附型稀土矿区环境污染调查中的应用研究———以赣南寻乌地区为例. 地球学报, 34(3): 354~360.

    • 代晶晶, 王瑞江, 王登红, 陈郑辉. 2014. 基于 IKONOS 数据的赣南离子吸附型稀土矿非法开采监测研究. 地球学报, 35(4): 503~509.

    • 邓锟. 2016. 神府矿区采空区塌陷 IKONOS 遥感影像特征. 能源环境保护, 30(3): 54~56.

    • 丁辉, 张茂省, 李林, 王佳运, 裴赢. 2009. IKONOS 数据在翠华山滑坡研究中的应用. 自然灾害学报, 18(3): 165~170.

    • 丁丽, 朱谷昌, 王娟, 张建国, 杨自安, 石菲菲. 2010. IKONOS 影像在矿山环境遥感监测中的应用———以白银煤矿区为例. 测绘与空间地理信息, 33(1): 37~41.

    • 段涛, 邓宇峰, 郭猛猛, 郑雪静, 梁迪文. 2024. 无人机低空遥感技术在崩塌地质灾害动态监测中的应用. 能源技术与管理, 49(3): 31~34.

    • 范林林. 2017. 基于六角格网的越野路径规划技术方法研究. 导师: 华一新. 郑州: 信息工程大学硕士学位论文: 1~69.

    • 范敏, 孙小飞, 苏凤环, 蒋华标, 韩磊. 2017. 国产高分卫星数据在西南山区地质灾害动态监测中的应用. 国土资源遥感, 29(S1): 85~89.

    • 葛良胜. 2017. 武警黄金部队构建“玻璃地球”. 国土资源(媒体广场), 60.

    • 葛良胜, 王梁, 张栋, 戚冉. 2023. 军事地质导论. 北京: 国防工业出版社: 1~506.

    • 郭玉斌. 2019. 基于遥感技术的矿山塌陷地质灾害调查的应用研究. 世界有色金属, 141+143.

    • 韩俊, 王保云, 徐繁树. 2024. 基于自校正原型网络的泥石流灾害易发性评价———以怒江州为例. 人民长江, 55(3): 123~133.

    • 韩晓青, 杜红悦. 2016. 高分辨率天绘卫星数据遥感地质应用研究. 铀矿地质, 32(1): 48~53.

    • 韩子清, 黎朗, 高晖. 2024. 基于 GF-7 数据的豫西山区地质灾害遥感解译. 河南科技, 11: 91~96.

    • 焦超卫, 陈富强, 李领军, 张云峰. 2013. 基于 ALOS 遥感影像的地质灾害调查研究. 现代测绘, 36(3): 3~6.

    • 金璐. 2024. 基于 Sentinel-1 SAR 数据的青藏高原湖冰冻融过程监测研究. 导师: 陈军. 合肥: 安徽违筑大学硕士学位论文: 1~62.

    • 李娜, 董新丰, 甘甫平, 闫柏琨, 朱婉菁. 2021. 高光谱遥感技术在基岩区区域地质调查填图中的应用. 地质通报, 40(1): 13~21.

    • 李万伦, 吕鹏, 孟庆奎, 王铭晗. 2020. 国外军事地质学热点问题. 地质论评, 66(1): 189~196.

    • 李显巨, 吴春明, 陈伟涛, 王力哲. 2019. 军事地质体遥感智能解译技术. 北京: 科学出版社: 1~123.

    • 李晓民, 张兴, 辛荣芳, 李宗仁, 李得林, 李冬玲. 2021. 国产高分数据在青海地区遥感解译泉点浅探. 地理空间信息, 19(2): 60~63+7.

    • 李远华, 姜琦刚, 周智勇, 崔瀚文, 林楠, 杨佳佳. 2012. 陆域遥感军事地质图基本要素及其表达方法. 世界地质, 31(3): 614~620.

    • 李志忠, 穆华一, 刘德长, 孙萍萍, 党福星, 刘拓, 贾俊, 王建华, 韩海辉, 马维峰, 汤晓君, 李文明, 赵君. 2021. “遥感先行”服务自然资源调查技术变革与调整. 地质与资源, 30(2): 153~160.

    • 连琛芹, 姚佛军, 陈懋弘, 马克忠, 王海龙. 2020. GF-5 高光谱数据在植被覆盖区的蚀变信息提取研究———以广东省玉水铜矿为例. 现代地质, 34(4): 680~686.

    • 廖秀英, 石英杰, 程辉, 王松涛, 梁继. 2024. 阿尔金山东段山间盆地地下水资源分布特征研究. 地球物理学进展, 39(1): 421~430.

    • 林海星, 程三友, 王曦, 陈静, 辜平阳, 庄玉军, 赵欣怡, 马刚. 2022. 青海赛什腾地区遥感影像岩石信息提取研究. 地质论评, 68(6): 2319~2335.

    • 刘德长, 童勤龙, 林子喻, 杨国防. 2015. 欧洲大陆遥感地质解译、诠释与矿产勘查战略选区. 国土资源遥感, 27(3): 136~143.

    • 刘衡, 时卫民, 李水泉, 曾以雄. 2013. 防护工程进出道路抗打击能力试验研究. 防护工程, 35(1): 6~10.

    • 刘华国. 2011. 基于高分辨率遥感影像的柯坪推覆构造系的构造变形研究. 导师: 冉勇康. 北京: 中国地震局地质研究所硕士学位论文: 1~98.

    • 刘欢, 朱谷昌, 李智峰, 胡杏花, 郑纬. 2010. IKONOS 卫星影像在甘肃省红会煤矿区塌陷群识别中的应用. 中国地质灾害与防治学报, 21(4): 82~85.

    • 刘焕军, 杨昊轩, 徐梦园, 张新乐, 张小康, 于滋洋, 邵帅, 李厚萱. 2018. 基于裸土期多时相遥感影像特征及最大似然法的土壤分类. 农业工程学报 34, 132~139+304.

    • 刘丽明, 王晋. 2024. 中国高分辨率对地观测系统卫星概况、特征及应用. 长春大学学报, 34(2): 21~30.

    • 刘晓煌, 孙兴丽, 刘玖芬, 李新昊, 鲍宽乐, 李宝飞, 赵炳新, 杨伟龙. 2016. 陆域军事地质要素的提取及成果表达. 西北地质, 49(3): 193~203.

    • 刘晓煌, 孙兴丽, 毛景文, 关洪军, 戚冉, 李保飞, 刘玖芬, 杨伟龙, 赵炳新. 2017. 军事地质及其在现代战争中的作用. 地质通报, 36(9): 1656~1664.

    • 刘晓煌, 张露, 孙兴丽, 李喜来. 2018. 现代军事地质理论与应用. 北京: 科学出版社: 1~217.

    • 刘小霞. 2012. WorldView-1 卫星图像在康定县地质灾害中的应用. 四川地质学报, 32(1): 110~111.

    • 刘泽东, 彭中勤. 2017. 广西龙胜里市地区多源遥感数据地质构造信息提取研究. 矿产与地质, 31(5): 950~954.

    • 柳锋, 刘晓静. 2007. 军事工程选址决策支持系统概念设计. 地球信息科学, 9(3): 5~9.

    • 陆芬. 2024. 擦亮“东方慧眼”———国家最高科学技术奖获得者李德仁谈智能遥感卫星与应用[N]. 中国自然资源报, 2024-07-09 (第 7 版).

    • 路彦明, 李宏伟, 周宏, 杨贵才, 袁士松, 张栋. 2020. 军事地质概论. 长沙: 国防科技大学出版社: 1~291.

    • 吕易. 2023. 基于多源多时相遥感数据的岩石影像特征分析及分类研究. 导师: 杨长保. 长春: 吉林大学博士学位论文: 1~136.

    • 马姗姗, 杨嘉葳, 王继燕, 熊俊楠. 2024. 基于光谱特征的城市水体提取. 测绘通报, (6): 71~76.

    • 裴秋明, 沈家乐, 王世明, 房大任, 高永璋, 李典, 马少兵. 2024. 多源遥感卫星数据在脉状萤石矿床中的找矿预测应用: 以内蒙古水头萤石矿床为例. 西北地质, 57(4): 121~134.

    • 彭光雄, 高光明. 2013. 新疆阿祖拜矿田伟晶岩型矿床遥感找矿综合信息研究. 大地构造与成矿学, 37(1): 109~117.

    • 任丽秋, 杨鹏, 苏旭, 李庆. 2020. 关于提升天绘一号系列卫星服务能力的几点思考. 地理信息世界, 27(4): 119~122.

    • 史俊波, 康孔跃, 张辉善, 杨伟, 张杰, 刘恒轩, 任清军. 2016. SPOT5 数据在西昆仑麻扎构造混杂岩带填图中的应用. 国土资源遥感, 28(1): 107~113.

    • 宋丙剑. 2017. 矿产资源在战场环境保障中应用探讨. 河北北方学院学报(自然科学版), 33(9): 58~60.

    • 孙红政, 李宏伟, 徐哲. 2017. 地质要素在工程构筑选址中的影响特性分析. 测绘与空间地理信息, 40(10): 199~201+204.

    • 孙兴丽, 刘晓煌, 鲁继元, 毛景文, 徐学义, 关洪军, 李保飞, 刘玖芬, 鲍宽乐, 鲁世朋. 2017. 现代战争特点及军事地质调查. 地质论评, 63(1): 99~112.

    • 谭宏婕, 邱昆峰, 刘洪成, 张鹏聪, 符佳楠, 王瑞, 罗建翔, 师彦明. 2024. 西秦岭李坝造山型金矿床围岩蚀变特征: 基于高分五号 02 星(GF-5B)星载高光谱数据信息提取. 岩石学报, 40(6): 1784~1800.

    • 陶西贵, 黄自力, 王泓, 贾艺凡. 2017. 军事设施综合防护体系研究. 防护工程, 39(2): 67~70.

    • 田瑜基. 2020. 高分卫星在测绘中的应用展望. 科技与创新, (22): 160~161.

    • 童勤龙, 叶发旺, 秦明宽, 易敏, 伍炜超. 2022. WorldView-3 遥感数据在巴音戈壁盆地本巴图地区铀矿勘查中的应用. 地质论评, 68(6): 2349~2364.

    • 王德富, 李永鑫, 任娟, 范亚军, 刘立, 罗超. 2024. 联合无人机光学与机载 LiDAR 在高位滑坡要素识别中的应用: 以川西汶川龙溪沟滑坡为例. 现代地质, 38(2): 464~476.

    • 王杭生, 蔡钟业. 1985. 军事工程地质学与未来战争. 工程兵工程学院学报, (4): 57~61.

    • 王建楠, 李楚钰, 唐廷元, 李瀚琨, 梁鹏, 荣伟. 2024. 机载激光雷达点云分类研究进展与趋势. 北京测绘, 38(4): 603~608.

    • 王凯, 刘志刚. 2008. 地质雷达技术及其在军事地球物理中的应用. 见: 第三届国家安全地球物理学术研讨会论文集, 西安: 173~177.

    • 王磊. 2018. 基于 Sentinel-2A 的矿化蚀变异常信息提取分析与应用. 导师: 杨斌. 绵阳: 西南科技大学硕士学位论文: 1~81.

    • 王莉. 2022. 基于卫星影像的地表构造解译与烃微渗漏蚀变信息提取———以库车坳陷秋里塔格构造带西段为例. 导师: 吴珍云. 上海: 华东理工大学硕士学位论文: 1~81.

    • 王平平, 王婷, 赵慧, 姚虎, 尹艺霖. 2024. 基于 ASTER 和 WorldView-3 数据在新疆坡北地区蚀变矿物信息提取对比研究. 新疆地质, 42(1): 127~132.

    • 王瑞国. 2016. 基于 WorldView-2 数据的乌东煤矿地质灾害遥感调查及成因分析. 国土资源遥感, 28(2): 132~138.

    • 王晓志. 2018. 基于 Worldview2 数据的岫岩县地质灾害遥感解译与分析. 吉林地质, 37(4): 62~66+78.

    • 汪洋. 2024. 遥感技术在地质灾害治理中的应用———以潘集区地灾风险调查评价为例. 华北自然资源, (4): 86~89.

    • 温干祥. 2024. 遥感技术在地下水寻找中的空间监测应用研究. 科技与创新, (10): 178~180.

    • 吴炎达. 2019. 基于多数据源的成土母质信息提取研究. 导师: 孙福军, 王大鹏. 沈阳: 沈阳农业大学硕士学位论文: 1~76.

    • 校培喜. 2007. 遥感技术在基础地质调查研究与地质编图中的应用. 见: 第五届全国地质制图与 GIS 学术讨论会论文集, 海口: 187~188.

    • 徐定杰, 邹勇, 熊芝兰, 刘丹丹. 2006. 军事海洋环境视景仿真研究. 计算机仿真, 23(6): 171~175.

    • 徐宇翔, 胡庆武, 段延松, 李加元, 艾明耀, 赵鹏程. 2024. 融合 LiDAR 点云与无人机影像的滑坡动态监测技术. 测绘通报, (8): 42~47.

    • 许兵, 杨梦诗, 李志伟, 丁晓利, 冯光财. 2011. 结合 ALOS PALSAR 和 QuickBird 影像研究舟曲泥石流. 见: 中国地球物理学会第二十七届年会论文集, 长沙: 1003.

    • 严嘉豪. 2023. 基于 D-InSAR 与 Offset-Tracking 参数改进的长白山北景区泥石流物源变化研究. 导师: 张以晨, 刘海峰. 长春: 长春工程学院硕士学位论文: 1~58.

    • 颜成义. 2020. 地利———地质对军事活动的影响. 北京: 地质出版社: 1~208.

    • 燕翱翔. 2022. 联合 Sentinel-1 升降轨数据的三维同震形变场及断层滑动分布反演. 导师: 蒋亚楠, 程多祥. 成都: 成都理工大学硕士学位论文: 1~62.

    • 杨日红, 李志忠, 陈秀法. 2012. ASTER 数据的斑岩铜矿典型蚀变矿物组合信息提取方法———以秘鲁南部阿雷基帕省斑岩铜矿区为例. 地球信息科学学报, 14(3): 411~418.

    • 叶发旺, 刘德长. 2012. 巴什布拉克铀矿区褪色蚀变 Quickbird 高分图像地学分析. 地球信息科学学报, 14(1): 123~127.

    • 殷赵慧. 2022. 基于卷积神经网络的断层传播褶皱地表构造变形遥感解析. 导师: 沈晓华, 邹乐君. 杭州: 浙江大学博士学位论文: 1~86.

    • 于德浩, 龙凡, 杨清雷, 王康, 王李, 杨彤. 2017. 现代军事遥感地质学发展及其展望. 中国地质调查, 4(3): 74~82.

    • 占惠珠, 尚慧, 甘智慧. 2021. 采煤沉陷区高分遥感数据融合方法. 西安科技大学学报, 41(4): 673~681.

    • 张栋, 葛良胜, 吕新彪, 戚冉, 王卫兵, 闫家盼, 赵由之. 2024. 军事地球科学: 历史经验与现代挑战[J][OL]. 地质论评, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025

    • 张栋, 吕新彪, 葛良胜, 路彦明, 黄辉. 2019. 军事地质环境的研究内涵与关键技术. 地质论评, 65(1): 181~198.

    • 张广有, 孟庆奎, 王智超, 毕记省. 2022. 美国军事地质发展和启示. 地质论评, 68(5): 1912~1917.

    • 张景华, 李宗亮, 张建龙, 刘小霞, 欧阳渊. 2013. 四川省泸定县磨西台地地质灾害遥感监测研究. 水土保持通报, 33(3): 104~108+264.

    • 张珂, 吴星宇, 吴南, 黄轶铭, 张兆安. 2024. 基于高分一号的遥感影像水体信息提取方法对比分析与改进. 水资源保护, 40(4): 9~16.

    • 张磊. 2018. 不确定性指导下的自适应数字土壤制图补样方法. 导师: 朱阿兴. 南京: 南京师范大学硕士学位论文: 1~62.

    • 张伟刚, 郭衍游, 唐菊兴. 2010. 西藏甲玛铜多金属矿高分辨率 IKONOS 遥感影像的线性构造解译及其控矿构造分析. 矿床地质, 29(增刊): 701~702.

    • 张元涛, 余长发, 潘蔚, 田青林. 2020. WorldView-3 影像与 ASTER 热红外影像在内蒙古卫境地区铀矿勘查中的应用. 铀矿地质, 36(5): 408~417.

    • 赵家乐, 陈浩. 2019. 高分遥感影像煤矿非法开采动态监测应用. 卫星应用, (7): 18~23.

    • 赵燕伶, 蒙利, 郑晨, 郝旋捷, 冯晓天. 2024. 基于遥感技术的韩城市燎原煤矿矿山地质灾害监测与分析. 陕西地质, 42(1): 82~90.

    • 赵永辉, 吴健生, 陈军. 2005. 军事防空洞室裂隙隐患的地质雷达测试研究. 见: 2005 国家安全地球物理学术研讨会论文集. 西安: 74~80.

    • 中国矿业报评论员. 2017. 军事地质工作大有用武之地———写在中国人民解放军建军九十周年之际[N]. 中国矿业报, 2017-08-01 (第 1 版).

    • 周秋麟, 尹卫平, 吴日升. 2008. 军事海洋生态学研究进展. 海洋开发与管理, (5): 76~85.

    • 周燕. 2008. 遥感影像在岩溶石山区找水研究中的应用 ———以多依河流域为例. 导师: 朱杰勇. 昆明: 昆明理工大学硕士学位论文: 1~93.

    • 朱煜峰, 张明, 臧德彦, 鲁铁定. 2017. D-InSAR 技术在相山铀矿山沉降监测中的应用分析. 东华理工大学学报(自然科学版), 40 (3): 297~300.

    • 邹键, 唐文龙, 王凤华, 胡峰, 薄军委, 王志新, 刘治, 魏绪峰, 李勇. 2022. 高分遥感数据在胶东水道地区金成矿远景区圈定中的应用研究. 地质论评, 68(6): 2336~2348.

    • Ahmadi H, Das A, Pourtaheri M, Komaki C B, Khairy H. 2014. Redefining the watershed line and stream networks via digital resources and topographic map using GIS and remote sensing case study: The Neka River’ s watershed. Natural hazards, 72: 711~722.

    • Ahmadi H, Pekkan E. 2021. Fault-based geological lineaments extraction using remote sensing and GIS—A review. Geosciences, 11(5): 183.

    • Albanwan H, Qin Rongjun, Liu Jungkuan. 2024. Remote sensing-based 3D assessment of landslides: A review of the data, methods, and applications. Remote Sensing, 16(3): 455.

    • An Yandong, Zhang Can. 2024&. Analysis of erosion characteristics of small watershed and channel of debris flow based on Multi- source remote sensing technology. Scientifc and Technological Innovation, (10): 32~35.

    • Asokan A, Anitha J, Ciobanu M, Gabor A, Naaji A, Hemanth D J. 2020. Image processing techniques for analysis of satellite images for historical maps classification———An overview. Applied Sciences, 10(12): 4207.

    • Awad M E, Amer R, López-Galindo A, El-Rahmany M M, del Moral L F G, Viseras C. 2018. Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Applied Clay Science, 160: 249~262.

    • Bao Yilin, Yao Fengmei, Meng Xiangtian, Wang Jingwen, Liu Huanjun, Wang Yihao, Liu Qi, Zhang Jiahua and Mouazen A M. 2024. A fine digital soil mapping by integrating remote sensingbased process model and deep learning method in Northeast China. Soil and Tillage Research, 238: 106010.

    • Beiranvand Pour A, Hashim M. 2014. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. Springer Plus, (3): 1~19.

    • Bolouki S M, Ramazi H R, Maghsoudi A, Beiranvand Pour A, Sohrabi G. 2019. A remote sensing-based application of Bayesian networks for epithermal gold potential mapping in Ahar—Arasbaran Area, NW Iran. Remote Sensing, 12(1): 105.

    • Booysen R, Jackisch R, Lorenz S, Zimmermann R, Kirsch M, Nex P A, Gloaguen R. 2020. Detection of REEs with lightweight UAV-based hyperspectral imaging. Scientific Reports, 10(1): 17450.

    • Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W. 2012. Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sensing, 4(12): 3721~3740.

    • Burton D, Dunlap D B, Wood L J, Flaig P P. 2011. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5): 339~347.

    • Chen Guoliang. 2011&. Key Technologies on “One-chart” Construction in Coal Mining Area. Supervisor: Wang Yunjia, Li Gang. Xuzhou: Ph. D. Dissertation of China University of Mining and Technology: 1~128.

    • Chen Jun, Ma Lilong, Xie Wanbing. 2024&. Identification of geological hazards and analysis of deformation characteristics in the Altun Mountain area of Ruoqiang County based on SBAS-InSAR and optical remote sensing technology. Xinjiang Geology, 42(1): 307~313.

    • Chen Rong, Han Haowu, Fu Peihong, Yang Yufei, Huang Wei. 2021&. Soil mapping based on Multi-temporal remote sensing images and random forest algorithm. Soils, 53(5): 1087~1094.

    • Chen Tao, Trinder J C, Niu Ruiqing. 2017. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the Three-Gorges Reservoir, China. Remote Sensing, 9(4): 333.

    • Chen Weitao, Wang Lizhe, Dong Yusen, Yan Jining, Li Xianju. 2017# . Theories and Methods of Military Geological Remote Sensing. Wuhan: China University of Geosciences Press: 1~206.

    • Chen Weitao, Li Xianju, Qin Xuwen, Wang Lizhe. 2024. Geological remote sensing: An overview. Research Gate: 1~235.

    • Chen Zhanlong, Tao Liufeng, Sun Zhengquan, Wang Run, Gong Xi, Xu Daozhu, Ma Chao, Zhao Junli. 2022&. Research on military geological data system from the perspective of data engineering. Geomatics & Spatial Information Technology, 45(11): 1~4.

    • Cheng Dong, Zhang Yongzhi, Wang Xiaohang, Han Ming. 2019&. Coseismic deformation and fault slip inversion of the 2017 MW7. 3 Halabjah, Iraq, earthquake based on Sentinel-1A data. Acta Seismologica Sinica, 41(4): 484~493.

    • Cheng Zhongshuai. 2024&. Risk Assessment of Changbai Mountain Collapse Disaster Based on Support Vector Machine and Information Quantity Model. Supervisor: Zhang Yichen, Zhang Zhiyong. Changchun: Master ’ s Degree Thesis of Changchun Engineering College: 1~57.

    • Currenti G, Solaro G, Napoli R, Pepe A, Bonaccorso A, Del Negro C, Sansosti E. 2012. Modeling of ALOS and COSMO-SkyMed satellite data at Mt. Etna: Implications on relation between seismic activation of the Pernicana fault system and volcanic unrest. Remote Sensing of Environment, 125: 64~72.

    • Dai Jingjing, Wang Denghong, Chen Zhenghui, Yu Yang. 2013&. Environment contamination investigation of ion-absorbed rare earth ore districts based on IKONOS remote sensing data: A case study of Xunwu area in South Jiangxi. Acta Geoscientica Sinica, 34 (3): 354~360.

    • Dai Jingjing, Wang Ruijiang, Wang Denghong, Chen Zhenghui. 2014&. The investigation of unauthorized mining of Ion-absorbed rare earth ore deposits in South Jiangxi Province based on IKONOS data. Acta Geoscientica Sinica, 35(4): 503~509.

    • Danik Yuri Grigoryevich, Qi Xinyuan. 2008 #. Content, essence, definition of modern and future wars and military operations. Journal of Tianjin Administration Institute, 10(6): 43~47.

    • Deng Kun. 2016. Characteristics of Ikonos remote sensing image of collapse of mined out area at Shenfu. Energy Environmental Protection, 30(3): 54~56.

    • Ding Hui, Zhang Maosheng, Li Lin, Wang Jiayun, Pei Ying. 2009. Application of IKONOS satellite remote sensing images in Cuihua Mountain landslide. Journal of Natural Disasters, 18 (3): 165~170.

    • Ding Li, Zhu Guchang, Wang Juan, Zhang Jianguo, Yang Zi’ an, Shi Feifei. 2010&. Application of IKONOS image with remote sensing technique in the monitoring of mine environment———An example in Baiyin coal mine region. Geomatics & Spatial Information Technology, 33(1): 37~41.

    • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P. 2012. Sentinel-2: ESA’ s optical high-resolution mission for GMES operational services. Remote sensing of Environment, 120: 25~36.

    • Du Yun, Zhang Yihang, Ling Feng, Wang Qunming, Li Wenbo, Li Xiaodong. 2016. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4): 354.

    • Duan Mengqi, Song Xiangyun, Li Zengqiang, Zhang Xiaoguang, Ding Xiaodong, Cui Dejie. 2024. Identifying soil groups and selecting a high-accuracy classification method based on multi-textural features with optimal window sizes using remote sensing images. Ecological Informatics, 81: 102563.

    • Duan Tao, Deng Yufeng, Guo Mengmeng, Zheng Xuejing, Liang Diwen. 2024#. Application of unmanned aerial vehicle (UAV) low-altitude remote sensing technology in dynamic monitoring of collapse geological hazards. Energy Technology and Management, 49 (3): 31~34.

    • Elhag M, Alshamsi D. 2019. Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geoscientific Instrumentation, Methods and Data Systems, 8(1): 45~54.

    • Fan Linlin. 2017&. Research on Cross-country Path Planning Technology Based on Hexagonal Grid. Supervisor: Hua Yixin. Zhengzhou: Master’s Degree Thesis of PLA Information Engineering University: 1~69.

    • Fan Min, Sun Xiaofei, Su Fenghuan, Jiang Huabiao, Han Lei. 2017&. Application analysis of remote sensing dynamic monitoring for geological hazards in southwest mountainous areas using domestic high resolution satellite data. Remote Sensing for Land and Resources, 29(S1): 85~89.

    • Feng Guangcai, Jónsson S, Klinger Y. 2017. Which fault segments ruptured in the 2008 Wenchuan earthquake and which did not? New evidence from near-fault 3D surface displacements derived from SAR image offsets. Bulletin of the Seismological Society of America, 107 (3): 1185~1200.

    • Feng Wanpeng, Li Zhenhong, Elliott J R, Fukushima Y, Hoey T, Singleton A, Cook R, Xu Zhonghuai. 2013. The 2011 MW 6. 8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophysical Journal International, 195(1): 650~660.

    • Fielding E J, Lundgren P R, Taymaz T, Yolsal-Cevikbilen S, Owen S E. 2013. Fault-slip source models for the 2011 M 7. 1 Van earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS, seismic waveform analysis. Seismological Research Letters, 84(4): 579~593.

    • Frazier A E, Hemingway B L. 2021. A technical review of planet smallsat data: Practical considerations for processing and using planetscope imagery. Remote Sensing, 13(19): 3930.

    • Fu L L, Pavelsky T, Cretaux J F, Morrow R, Farrar J T, Vaze P, Sengenes P, Vinogradova ‐ Shiffer N, Sylvestre-Baron A, Picot N. 2024. The surface water and ocean topography mission: A breakthrough in radar remote sensing of the ocean and land surface water. Geophysical Research Letters, 51(4): e2023GL107652.

    • Ge Liangsheng, Wang Liang, Zhang Dong, Qi Ran. 2023#. Introduction to Military Geology. Beijing: National Defense Industry Press: 1~506.

    • Ge Liangsheng. 2017 #. The Armed Police Gold Corps Builds a “Transparent Earth”. Land & Resources (Media Plaza): 60.

    • Gharineiat Z, Tarsha Kurdi F, Campbell G. 2022. Review of automatic processing of topography and surface feature identification LiDAR data using machine learning techniques. Remote Sensing, 14(19): 4685.

    • Giordan D, Luzi G, Monserrat O, Dematteis N. 2022. Remote sensing analysis of geologic hazards. Remote Sensing, 14(19): 4818.

    • Guo Yubin. 2019&. Application of remote sensing technology in survey of mine subsidence geological disasters. Geologic hazard, 141+143.

    • Han Jun, Wang Baoyun, Xu Fanshu. 2024&. Assessment of debris flow susceptibility based on self ———Calibration prototype network: Case of Nujiang prefecture, Yunnan Province. Yangtze River, 55 (3): 123~133.

    • Han Ling, Zhao Bo, Wu Jianjian, Zhang Shuyuan, Pilz J, Yang Fan. 2018. An integrated approach for extraction of lithology information using the SPOT 6 imagery in a heavily Quaternary-covered region———North Baoji District of China. Geological Journal, 53: 352~363.

    • Han Sipeng, Wan Zhipeng, Deng Junfeng, Zhang Congyuan, Liu Xingwu, Zhu Tong, Zhao Junli. 2024. RSW Former: A Multi-Scale fusion network from local to global with multiple stages for regional geological mapping. Remote Sensing, 16(14): 2548.

    • Han Xiaoqing, Du Hongyue. 2016&. The application of high-spatial resolution Tianhui remote sensing data to geologic exploration. Uranium Geology, 32(1): 48~53.

    • Han Ziqing, Li Lang, Gao Hui. 2024&. Remote sensing interpretation of geological disaster in the western mountainous areas of Henan based on GF-7 data. Henan Science and Technology, (11): 91~96.

    • Hu Bin, Xu Yongyang, Wan Bo, Wu Xincai, Yi Guihua. 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geology Reviews, 101: 384~397.

    • Hu Leyin, Dai Keren, Xing Chengqi, Li Zhenhong, Tomás R, Clark B, Shi Xianlin, Chen Mi, Zhang Rui, Qiu Qiang. 2019. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. International Journal of Applied Earth Observation and Geoinformation, 82: 101886.

    • Hu Wenmin, Wu Lixin, Zhang Wei, Liu Bin, Xu Jiaxing. 2017. Ground deformation detection using China’s ZY-3 stereo imagery in an opencast mining area. ISPRS International Journal of GeoInformation, 6(11): 361.

    • Hubbard B E, Gallegos T J, Stengel V. 2023. Mapping abandoned uranium mine features using Worldview-3 imagery in portions of Karnes, Atascosa and Live Oak Counties, Texas. Minerals, 13(7): 839.

    • Huggel C, Kääb A, Salzmann N. 2006. Evaluation of QuickBird and IKONOS imagery for assessment of high-mountain hazards. EARSeL eProceedings, 5(1): 51~62.

    • Ilieva M, Briole P, Ganas A, Dimitrov D, Elias P, Mouratidis A, Charara R. 2016. Fault plane modelling of the 2003 August 14 Lefkada Island Greece earthquake based on the analysis of ENVISAT SAR interferograms. Tectonophysics, 693: 47~65.

    • Ishidoshiro N, Yamaguchi Y, Noda S, Asano Y, Kondo T, Kawakami Y, Mitsuishi M, Nakamura H. 2016. Geological mapping by combining spectral unmixing and cluster analysis for hyperspectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41: 431~435.

    • Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66(2): 378~394.

    • Jiao Chaowei, Chen Fuqiang, Li Lingjun, Zhang Yunfeng. 2013&. The survey and research of geological hazards based on ALOS image. Modern Surveying and Mapping, 36(3): 3~6.

    • Jin Lu. 2024&. Monitoring Freeze-Melt Processes of Lakes on the Tibetan Plateau Using Sentinel-1 Synthetic Aperture Radar Imagery. Supervisor: Chen Jun. Hefei: Master’ s Degree Thesis of Anhui Jianzhu University: 1~62.

    • Jing Liuzeng, Liu Zhijun, Liu Xiaoli, Milliner C, Rodriguez Padilla A M, Xu Shiqing, Avouac J P, Yao Wenqian, Klinger Y, Han Longfei. 2024. Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake. AGU Advances, 5: e2023AV001134.

    • Jolivet R, Lasserre C, Doin M P, Guillaso S, Peltzer G, Dailu R, Sun J, Shen Z K, Xu X. 2012. Shallow creep on the Haiyuan fault Gansu, China revealed by SAR interferometry. Journal of Geophysical Research: Solid Earth, 117(B6): B06401.

    • Joyce K E, Samsonov S, Levick S R, Engelbrecht J, Belliss S. 2014. Mapping and monitoring geological hazards using optical, LiDAR, synthetic aperture RADAR image data. Natural hazards, 73: 137~163.

    • König T, Kux H J, Mendes R M. 2019. Shalstab mathematical model and WorldView-2 satellite images to identification of landslidesusceptible areas. Natural Hazards, 97(3): 1127~1149.

    • Kruse F A, Perry S L. 2013. Mineral mapping using simulated Worldview-3 short-wave-infrared imagery. Remote Sensing, 5(6): 2688~2703.

    • Kruse F A, Baugh W M, Perry S L. 2015. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. Journal of Applied Remote Sensing, 9(1): 096044~096044.

    • Latifovic R, Pouliot D, Campbell J. 2018. Assessment of convolution neural networks for surficial geology mapping in the South Rae geological region, Northwest Territories, Canada. Remote Sensing, 10(2): 307.

    • Li Na, Dong Xinfeng, Gan Fuping, Yan Baikun, Zhu Wanjing. 2021&. Application of hyperspectral remote sensing technology to regional geological survey and mapping in bedrock area. Geological Bulletin of China, 40(1): 13~21.

    • Li Wanlun, Lü Peng, Meng Qingkui, Wang Minghan. 2020&. New progress in application of military geology abroad. Geological Review, 66(1): 189~196.

    • Li Xianju, Chen Weitao, Cheng Xinwen, Wang Lizhe. 2016. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote sensing, 8(6): 514.

    • Li Xianju, Wu Chunming, Chen Weitao, Wang Lizhe. 2019#. Remote Sensing Intelligent Interpretation Technology for Military Geological Bodies. Beijing: Science Press: 1~123.

    • Li Xiaomin, Zhang Xing, Xin Rongfang, Li Zongren, Li Delin, Li Dongling. 2021&. Briefly explore of remote sensing interpretation spring point using domestic High-resolution data in Qinghai. Geospatial Information, 19(2): 60~63+7.

    • Li Yongsheng, Jiang Wenliang, Zhang Jingfa. 2022. A time series processing chain for geological disasters based on a GPU-assisted sentinel-1 InSAR processor. Natural Hazards, 111(1): 803~815.

    • Li Yuanhua, Jiang Qigang, Zhou Zhiyong, Cui Hanwen, Lin Nan, Yang Jiajia. 2012&. Basic elements of land remote sensing military geological map and its expression method. Global Geology, 31(3): 614~620.

    • Li Zhizhong, Mu Huayi, Liu Dechang, Sun Pingping, Party Fuxing, Liu Tuo, Jia Jun, Wang Jianhua, Han Haihui, Ma Weifeng, Tang Xiaojun, Li Wenming, Zhao Jun. 2021&. Remote sensing first: Service for the Technological revolution and innovation in natural resources survey. Geology and Resources, 30(2): 153~160.

    • Lian Chenqin, Yao Fojun, Chen Maohong, Mark Zhong, Wang Hailong. The study on alteration information extraction of GF-5 Hyperspectral data in vegetation coverage area: A case study of the Yushui Copper Deposit in Guangdong Province. Geoscience, 34(4): 680~686.

    • Liao Xiuying, Shi Yingjie, Cheng Hui, Wang Songtao, Liang Ji. 2024&. Study on distribution characteristics of groundwater resources intermountain basins in the Eastern part of Altun Mountains. Progress in Geophysics, 39(1): 421~430.

    • Lin Haixing, Cheng Sanyou, Wang Xi, Chen Jing, Gu Pingyang, Zhuang Yujun, Zhao Xinyi, Ma Gang. 2022&. Study on rock information extraction from remote sensing images in Saishiteng Area, Qinghai Province. Geological Review, 68(6): 2319~2335.

    • Liu Dechang, Tong Qinlong, Lin Ziyu, Yang Guofang. 2015&. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe. Remote Sensing for Land and Resources, 27(3): 136~143.

    • Liu Feng, Liu Xiaojing. 2007&. The conceptual design of decision support system of selecting locus for military projects. GeoInformation Science, 9(3): 5~9.

    • Liu Heng, Shi Weimin, Li Shuiquan, Zeng Yixiong. 2013&. Experimental research on the anti-attack performance of the access roads of protective engineering. Protective Engineering, 35(1): 6~10.

    • Liu Huaguo. 2011&. A Study on the Tectonic Deformation of the Kalpin Thrust Tectonic System Based on High-Resolution Satellite Images. Supervisor: Ran Yongkang. Beijing: Master ’ s Degree Thesis of Institute of Geology, China Earthquake Administration: 1~98.

    • Liu Huan, Zhu Guchang, Li Zhifeng, Hu Xinghua, Zheng Wei. 2010&. Application of IKONOS satellite images to recognition of the ground collapses in Honghui Coal Mine, Gansu Province. The Chinese Journal of Geological Hazard and Control, 21(4): 82~85.

    • Liu Huanjun, Yang Haoxuan, Xu Mengyuan, Zhang Xinle, Zhang Xiaokang, Yu Ziyang, Shao Shuai, Li Houxuan. 2018&. Soil classification based on maximum likelihood method and features of multi-temporal remote sensing images in bare soil period. Transactions of the Chinese Society of Agricultural Engineering, 34(14): 132~139+304.

    • Liu Liming, Wang Jin. 2024&. Overview, Characteristics and Applications of High-resolution on earth observation system satellites of China. Journal of Changchun Unversity, 34(2): 21~30.

    • Liu Lupeng, Xiao Jun, Wang Ying. 2019. Major orientation estimationbased rock surface extraction for 3D Rock-mass point clouds. Remote sensing, 11(6): 635.

    • Liu Xiaohuang, Sun Xingli, Liu Jiufen, Li Xinhao, Bao Kuanle, Li Baofei, Zhao Bingxin, Yang Weilong. 2016&. Extraction and result expression of land area military geological elements. Northwestern Geology, 49(3): 193~203.

    • Liu Xiaohuang, Sun Xingli, Mao Jingwen, Guan Hongjun, Qi Ran, Li Baofei, Liu Jiufen, Yang Weilong, Zhao Bingxin. 2017&. Military geology and its role in Modern War. Geological Bulletin of China, 36(9): 1656~1664.

    • Liu Xiaohuang, Zhang Lu, Sun Xingli, Li Xilai. 2018 #. Modern Military Geological Theory and Application. Beijing: Science Press: 1~217.

    • Liu Xiaoxia. 2012&. The Application of WorldView-1 satellite images to geohazards survey in Kangding County. Acta Geologica Sichuan, 32(1): 110~111.

    • Liu Zedong, Peng Zhongqin. 2017&. Extraction of geological structure information from Multi-Source remote sensing data in Lishi area of Longsheng in Guangxi. Mineral Resources and Geology, 31 (5): 950~954.

    • Lu Yanming, Li Hongwei, Zhou Hong, Yang Guicai, Yuan Shisong, Zhang Dong. 2020#. Introduction to Military Geology. Changsha: National University of Defense Technology Press: 1~291.

    • Lü Yi. 2023&. Rock Image Feature Analysis and Classification Using Multi-Source and Multi-Temporal Remote Sensing Data. Supervisor: Yang Changbao. Ph. D. Dissertation of Jilin University: 1~136.

    • Ma Shanshan, Yang Jiawei, Wang Jiyan, Xiong Junnan. 2024&. Urban water extraction based on spectral features. Bulletin of Surveying and Mapping, (6): 71~76.

    • Madani A, Niyazi B. 2015. Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: A case study from Wadi Yalamlam Basin, Makkah Province, Western Saudi Arabia. Environmental Earth Sciences, 74: 5129~5142.

    • Malainine C E, Raji O, Ouabid M, Bodinier J L, El Messbahi H. 2022. Prospectivity mapping of carbonatite-associated iron oxide deposits using an integration process of ASTER and Sentinel-2A multispectral data. International Journal of Remote Sensing, 43(13): 4951~4983.

    • Meng Fanqi, Zhu Sihong, Li Yufei, Zhang Yong, Niu Wei, Lin Bo. 2024. Identification of geological hazards in Yishui County Shandong Province using GF-2 remote sensing images. International Conference on Remote Sensing Technology and Survey Mapping (RSTSM 2024), SPIE, 13166: 55~62.

    • Monsef H A E, Khalifa I H, Faisal M. 2015. Mapping of hydrothermal alteration zones associated with potential sulfide mineralization using the spectral linear unmixing technique and World View II images at Wadi Rofaiyed, South Sinai, Egypt. Arabian Journal of Geosciences, 8: 9285-9300.

    • Mota R, Pacheco J M, Pimentel A, Gil A. 2024. Monitoring volcanic plumes and clouds using remote sensing: A systematic review. Remote Sensing, 16(10): 1789.

    • Mulder V, De Bruin S, Schaepman M E, Mayr T. 2011. The use of remote sensing in soil and terrain mapping———A review. Geoderma, 162(1~2): 1~19.

    • Nagaraj R, Kumar L S. 2024. Extraction of surface water bodies using optical remote sensing images: A review. Earth Science Informatics, 17(2): 893~956.

    • Ninomiya Y, Fu Bihong. 2019. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geology Reviews, 108: 54~72.

    • Oikonomidis D, Vavelidis M, Melfos V, Artashova M. 2017. Searching for ancient gold mines in Filippoi area, Macedonia, Greece, using Worldview-2 satellite imagery. Geocarto International, 32(1): 87~96.

    • Pearlman J S, Barry P S, Segal C C, Shepanski J, Beiso D, Carman S L. 2003. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1160~1173.

    • Pei Qiuming, Shen Jiale, Wang Shiming, Fang Daren, Gao Yongzhang, Li Dian, Ma Shaobing. 2024&. Exploring luorite veins using Multisource remote sensing astellite data: A case study from the Shuitou fluorite deposit in Inner Mongolia, China. Northwestern Geology, 57(4): 121~134.

    • Peng Guangxi, Gao Guangming. 2013&. Remote sensing prospecting of pegmatite deposits in the Azubai region, Xinjiang. Geotectonica et Metallogenia, 37(1): 109~117.

    • Raharimahefa T, Kusky T M. 2009. Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Research, 15(1): 14~27.

    • Ren Liqiu, Yang Peng, Su Xu, Li Qing. 2020&. Several thoughts on enhancing the service capabilities of the Tianhui-1 series of satellites. Geomatics World, 27(4): 119~122.

    • Ren Yuhuan, Liu Yalan. 2016. Geological disaster detection from remote sensing image based on experts’ knowledge and image features. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 677~680.

    • Robson B A, Bolch T, MacDonell S, Hölbling D, Rastner P, Schaffer N. 2020. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sensing of Environment, 250: 112033.

    • Rowan L C, Mars J C. 2003. Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer ASTER data. Remote Sensing of Environment, 84(3): 350~366.

    • Sang Xuejia, Xue Linfu, Ran Xiangjin, Li Xiaoshun, Liu Jiwen, Liu Zeyu. 2020. Intelligent high-resolution geological mapping based on SLIC-CNN. ISPRS International Journal of Geo-Information, 9(2): 99.

    • She Jinxing, Mabi, A, Liu Zhongming, Sheng Mingqiang, Dong Xiujun, Liu Fei, Wang Shiyang. 2021. Analysis using high-precision airborne LiDAR data to survey potential collapse geological hazards. Advances in civil Engineering, 2021(1): 6475942.

    • Shellum C, Trudnak J. 2005. GIS-based geology and geotechnical estimates for military applications. ARMA US Rock Mechanics/ Geomechanics Symposium. ARMA, 2005: ARMA-05-871.

    • Shi Junbo, Kang Kongyue, Zhang Huishan, Yang Wei, Zhang Jie, Liu Hengxuan, Ren Qingjun. 2016&. Application of SPOT5 data to geological mapping of Mazha Tectonic Melange Belt in West Kunlun Mountains. Remote Sensing for Land and Resources, 28(1): 107~113.

    • Shirmard H, Farahbakhsh E, Beiranvand Pour A, Muslim A M, Müller R D, Chandra R. 2020. Integration of selective dimensionality reduction techniques for mineral exploration using ASTER satellite data. Remote Sensing, 12(8): 1261.

    • Shirmard H, Farahbakhsh E, Müller R D, Chandra R. 2022. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268: 112750.

    • Song Bingjian. 2017#. Discussion on the application of mineral resources in battlefield environment support. Journal of Hebei North University (Natural Science Edition), 33(9): 58~60.

    • Sturzenegger M. 2010. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques, Burnaby: A Dissertation for a Doctoral Degree at Simon Fraser University: 1~343.

    • Sun Hongzheng, Li Hongwei, Xu Zhe. 2017&. Influence characteristics analysis of geological elements in engineering site selection and construction. Geomatics & Spatial Information Technology, 40(10): 199~201+204.

    • Sun Xingli, Liu Xiaohuang, Lu Jiyuan, Mao Jingwen, Xu Xueyi, Guan Hongjun, Li Baofei, Liu Jiufeng, Bao Kuanle, Lu Shipeng. 2017&. The characteristics of modern war and the investigation in military Geology. Geological Review, 63(1): 99~112.

    • Tagnon B O, Assoma V T, Mangoua J M O, Douagui A G, Kouamé F K, Savané I. 2020. Contribution of SAR/ RADARSAT-1 and ASAR/ ENVISAT images to geological structural mapping and assessment of lineaments density in Divo—Oume area Cote d ’ Ivoire. The Egyptian Journal of Remote Sensing and Space Science, 23(2): 231~241.

    • Tan Hongjie, Qiu Kunfeng, Liu Hongcheng, Zhang Pengcong, Fu Jianan, Wang Rui, Luo Jianxiang, Shi Yanming. 2024&. Alteration characteristics of wall rocks in the Liba Orogenic gold deposit, West Qinling: Based on information extraction from GF-5B spaceborne Hyperspectral data. Acta Petrologica Sinica, 40 (6): 1784~1800.

    • Tan Qulin, Bai Minzhou, Zhou Pinggen, Hu Jun, Qin Xiaochun. 2021. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS. Measurement, 169: 108370.

    • Tang Shulan, Cao Jiannong. 2020. Deposit location identification based on feature decomposition of high-resolution remote sensing images. IEEE Access, 9: 15239~15251.

    • Tao Xigui, Huang Zili, Wang Hong, Jia Yifan. 2017&. Research on the Comprehensive protection system of military facilities. Protective Engineering, 39(2): 67~70.

    • Tian Yuji. 2020 #. Prospects for the application of High-resolution satellites in surveying and mapping. Science and Technology and Innovation, 22: 160~161.

    • Tong Qinlong, Ye Fawang, Qin Mingkuan, Yi Min, Wu Weichao. 2022&. Application of World View-3 remote sensing data to uranium exploration in Benbatu area, Bayingobi Basin. Geological Review, 68(6): 2349~2364.

    • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M. 2012. GMES Sentinel-1 mission. Remote sensing of environment, 120: 9~24.

    • Valade S, Ley A, Massimetti F, D’ Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter T R. 2019. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The MOUNTS monitoring system. Remote Sensing, 11(13): 1528.

    • Van der Meer F D, Van der Werff H M, Van Ruitenbeek F J, Hecker C A, Bakker W H, Noomen M F, Van Der Meijde M, Carranza E J M, De Smeth J B, Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: A review. International journal of applied Earth observation and geoinformation, 14(1): 112~128.

    • Wang Defu, Li Yongxin, Ren Juan, Fan Yajun, Liu Li, Luo Chao. 2024&. Application of joint UAV optics and airborne LiDAR in high level landslide element identification: A case study from the Longxigou landslide in Wenchuan, Western Sichuan. Geoscience, 38(2): 464~476.

    • Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geology, 1(3): 415~424.

    • Wang Hangsheng, Cai Zhongye. 1985#. Military engineering geology and future warfare. Journal of Engineering Corps Engineering Academy, (4): 57~61.

    • Wang Jiannan, Li Chuyu, Tang Tingyuan, Li Hankun, Liang Peng, Rong Wei. 2024&. Research progress and trend of airborne LiDAR point cloud classification. Beijing Surveying and Mapping, 38(4): 603~608.

    • Wang Kai, Liu Zhigang. 2008. Ground penetrating radar technology and its application in military geophysics. In: Proceedings of the Third National Security Geophysics Symposium, Xi’an: 173~177.

    • Wang Lei. 2018&. Extraction and Analysis of Mineralized Alteration Anomaly Information Based on Sentinel-2A. Supervisor: Yang Bin. Mianyang: Southwest University of Science and Technology Master Degree Thesis: 1~81.

    • Wang Li. 2022&. Surface Structure Interpretation and Hydrocarbon Microseepage Alteration Information Extraction Based on Satellite Images———A Case Study of the Western Segment of Qiulitage Structural Belt in Kuqa Depression. Supervisor: Wu Zhenyun. Shanghai: Dissertation for master’s degree of East China University of Technology: 1~81.

    • Wang Lizhe, Zuo Boxin, Le Yuan, Chen Yifu, Li Jun. 2023. Penetrating remote sensing: Next-generation remote sensing for transparent Earth. Innovation Camb, 4(6): 100519.

    • Wang Pingping, Wang Ting, Zhao Hui, Yao Hu, Yin Yilin. 2024&. Comparative study on extracting altered mineral information in the Pobei area of Xinjiang based on ASTER and WorldView-3 data. Xinjiang Geology, 42(1): 127~132.

    • Wang Qing, Jiang Yonghua, Zhang Guo, Sheng Qinghong. 2015. Earthquake monitoring for multi-temporal images of Ziyuan-3. International Conference on Intelligent Earth Observing and Applications 2015. SPIE, 2015, 9808: 543~551.

    • Wang Ruiguo. 2016&. Remote sensing investigation and analysis of geological disasters in the Wudong coal mine based on World View-2 data. Remote Sensing for Land and Resources, 28(2): 132~138.

    • Wang Xiaozhi. 2018&. Remote sensing interpretation and analysis of geological disasters in Xiuyan County based on Worldview 2. Jilin Geology, 37(4): 62~66+78.

    • Wang Yang. 2024. Application of remote sensing technology in geological disaster management: A case study of geological disaster risk assessment in Panji District. North China Natural Resources, (4): 86~89.

    • Wen Ganxiang. 2024 #. Research on the application of remote sensing technology in spatial monitoring for groundwater exploration. Science and Technology & Innovation, 10: 178~180.

    • Wu Chunming, Li Xiao, Chen Weitao, Li Xianju. 2020. A review of geological applications of high-spatial-resolution remote sensing data. Journal of Circuits, Systems and Computers, 29 (6): 2030006.

    • Wu Weihua, Yang Yang, Wu Bangyu, Ma Debo, Tang Zhanxin, Yin Xia. 2023. MTL-FaultNet: Seismic data reconstruction assisted multi-task deep learning 3D fault interpretation. IEEE Transactions on Geoscience and Remote Sensing, 61: 5914815.

    • Wu Yanda. 2019&. Research on Information Extraction of Soil Parent Material Based on Multiple Data Sources. Supervisor: Sun Fujun, Wang Dapeng. Shenyang: Master ’ s Degree Thesis of Shenyang Agricultural University: 1~76.

    • Xiao Peixi. 2007 #. Application of remote sensing technology in basic geological survey research and geological mapping. In: Proceedings of the 5th National Symposium on Geological Mapping and GIS, Haikou: 187~188.

    • Xu Bing, Yang Mengshi, Li Zhiwei, Ding Xiaoli, Feng Guangcai. 2011 #. Mudslide studying of Zhouqu by integrating ALOS PALSAR and QuickBird optical image. In: Proceedings of the 27th Annual Meeting of the China Geophysical Society, Changsha: 1003.

    • Xu Dingjie, Zou Yong, Xiong Zhilan, Liu Dandan. 2006&. Research on visual simulation system of martial marine environment. Computer Simulation, 23(6): 171~175.

    • Xu Lina, Duan Junbin, Niu Ruiqing, Fang Shenghui, Dong, Yanfang. 2014. The landslide stability evaluation method research in the Three Gorges reservoir using ZY-3 data. 2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014: 4303~4306.

    • Xu Qiang, Zhao Bo, Dai Keren, Dong Xiujun, Li Weile, Zhu Xing, Yang Yinghui, Xiao Xianxuan, Wang Xin, Huang Jian, Lu Huiyan, Deng Bo, Ge Daqing. 2023. Remote sensing for landslide investigations: A progress report from China. Engineering Geology, 321: 107156.

    • Xu Yuxiang, Hu Qingwu, Duan Yansong, Li Kaiyuan, Ai Mingyao, Zhao Pengcheng. 2024&. Landslide dynamic monitoring technology by integrating LiDAR point cloud and UAV image. Bulletin of Surveying and Mapping, 8: 42~47.

    • Yan Aoxiang. 2022&. Three-Dimensional Isoseismic Deformation Field Extraction and Inversion of Fault Slip Distribution from Ascending and Descending Sentinel-1 Satellite Data. Supervisors: Jiang Yanan, Cheng Duoxiang. Chengdu: Master ’ s Degree Thesis of Chengdu University of Technology: 1~62.

    • Yan Chengyi. 2020. Geographical Advantage: The Influence of Geology on Military Activities. Beijing: Geological Press: 1~208.

    • Yan Jiahao. 2023&. Study on Changes of Debris Flow Sources in the Northern Scenic Area of Changbai Mountain Based on D-InSAR and Offset-Tracking Parameter Improvement. Supervisor: Zhang Yichen and Liu Haifeng. Changchun: Master ’ s Degree Dissertation of Changchun Institute of Technology: 1~58.

    • Yang Rihong, Li Zhizhong, Chen Xiufa. 2012&. Information extraction of typical alteration mineral assemblage in porphyry copper using ASTER satellite data, Arequipa Province of South Peru. Journal of Geo-Information Science, 14(3): 411~418.

    • Yang Siquan, He Haixia, Chen Weitao, Wang Lizhe. 2018. Direct tangible damage assessment for regional snowmelt flood disasters with HJ-1 and HR satellite images: A case study of the Altay region, northern Xinjiang, China. Natural Hazards, 94: 1099~1116.

    • Yang Xiaohong, Li Yue, Wei Yu, Chen Zhanlong, Xie Peng. 2020. Water body extraction from Sentinel-3 image with multiscale spatiotemporal Super-resolution mapping. Water, 12(9): 2605.

    • Yang Xu, Liu Dechang, Zhang Jielin. 2008. Extraction of ore-searching information of uranium deposit based on high spatial resolution satellite data. Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images. SPIE, 2008, 7147: 62~69.

    • Yazdi M, Sadati N, Matkan A, Ashoorloo D. 2011. Application of remote sensing in monitoring of faults, International Journal of Environmental Research, 5(2): 457~468.

    • Ye Bei, Tian Shufang, Ge Jia, Sun Yaqin. 2017. Assessment of WorldView-3 data for lithological mapping. Remote Sensing, 9(11): 1132.

    • Ye Fawang, Liu Dechang. 2012&. Analysis on the fading alteration in Bashibulake Uranium mineralization area using Quickbird High resolution satellite remote sensing data. Journal of Geo-Information Science, 14(1): 123~127.

    • Yesou H, Besnus Y, Rolet J. 1993. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery———A contribution to the study of geological structures. ISPRS Journal of Photogrammetry and Remote Sensing, 48(5): 23~36.

    • Yi Wenxing, Li An, Xu Liangxin, Hu Zongkai, Li Xiaolong. 2024. Evidence of dextral strike-slip movement of the Alakol Lake fault in the Western Junggar based on remote sensing. Remote Sensing, 16(14): 2615.

    • Yin Zhaohui. 2022&. The Remote Sensing Analysis of Surface Tectonic Deformation of Fault—Propagation Folds Based on Convolutional Neural Network. Supervisors: Shen Xiaohua, Zou Lejun. Hangzhou: Ph. D. Dissertation, Zhejiang University: 1~86.

    • Yu Dehao, Long Fan, Yang Qinglei, Wang Kang, Wang Li, Yang Tong. 2017&. Development and prospects of modern military remote sensing geology. Geological Survey of China, 4(3): 74~82.

    • Zhan Huizhu, Shang Hui, Gan Zhihui. 2021. Fusion method of Highresolution remote sensing data in coal mining subsidence area. Journal of Xi’an University of Science and Technology, 41(4): 673~681.

    • Zhang Dong, Ge Liangsheng, Lv Xinbiao, Qi Ran, Wang Weibing, Yan Jiapan, Zhao Youzhi. 2024&. Military geosciences: Past lessons and modern challenges [ J] [ OL]. Geological Review, https: / / www. geojournals. cn / georev / georev / article / abstract / 20247004049? st = search; DOI: 10. 16509 / j. georeview. 2024. 07. 025

    • Zhang Dong, Lü Xinbiao, Ge Liangsheng, Lu Yanming, Huang Hui. 2019&. Research connotation and key technology of the military geological environment in the land battlefield. Geological Review, 65(1): 181~198.

    • Zhang Guangyou, Meng Qingkui, Wang Zhichao, Bi Jisheng. 2022&. The development and enlightenment of U. S. military Geology. Geological Review. 68(5): 1912~1917.

    • Zhang Jinghua, Li Zongliang, Zhang Jianlong, Liu Xiaoxia, Ouyang Yuan. 2013&. Remote sensing monitoring of geological hazards on Moxi Platform in Luding County of Sichuan Province. Bulletin of Soil and Water Conservation, 33(3): 104~108+264.

    • Zhang Ke, Wu Xingyu, Wu Nan, Huang Yiming, Zhang Zhao’ an. 2024&. Comparative analysis and improvement of water body information extraction methods from remote sensing images based on GF-1. Water Resources Protection, 40(4): 9~16.

    • Zhang Lei. 2018&. An Adaptive Uncertainty-Guided Sampling Strategy for Digital Soil Mapping. Supervisors: Zhu Axing. Nanjing: Master’s Degree Dissertation of Nanjing Normal University: 1~62.

    • Zhang Weigang, Guo Yanyou, Tang Juxing. 2010 #. Interpretation of linear structures from high-resolution IKONOS remote sensing imagery of the Jiama copper polymetallic deposit in Tibet and analysis of ore-controlling structures. Mineral Deposits, 29(Suppl): 701~702.

    • Zhang Yuantao, Yu Changfa, Pan Wei, Tian Qinglin. 2020&. Application of world View-3 and ASTER TIR for the exploration of uranium in Weijing, Inner Mongolia. Uranium Geology. 36 (5): 408~417.

    • Zhao Jiale, Chen Hao. 2019 #. Application of high-resolution remote sensing imagery in dynamic monitoring of illegal coal mining. Satellite Applications, (7): 18~23.

    • Zhao Yanling, Meng Li, Zheng Chen, Hao Xuanjie, Feng Xiaotian. 2024&. Monitoring and analysis of mine geological disasters of Liao Yuan coal mine in Hancheng City based on remote sensing technology. Geology of Shaanxi, 42(1): 82~90.

    • Zhao Yonghui, Wu Jiansheng, Chen Jun. 2005 #. Study on ground penetrating radar testing of fracture hidden danger in military AirRaid shelter. In: Proceedings of the 2005 National Security Geophysical Symposium, Xi’an: 74~80.

    • Zhong Jiaxin, Li Qiaomin, Zhang Jia, Luo Pingping, Zhu Wei. 2024. Risk assessment of geological landslide hazards using D-InSAR and Remote Sensing. Remote Sensing, 16(2): 345.

    • Zhou Qiulin, Yin Weiping, Wu Risheng. 2008#. Advances in military marine ecology research. Ocean Development and Management, (5): 76~85.

    • Zhou Yan. 2008&. Application of Remote Sensing Imagery in Water Exploration Research in Karst Rocky Mountainous Regions: A Case Study of the Duoyi River Basin. Supervisor: Zhu Jieyong. Kunming: Master’ s Dissertation of Kunming University of Science and Technology: 1~93.

    • Zhu Yufeng, Zhang Ming, Zang Deyan, Lu Tieding. 2017&. Analysis of surface subsidence monitoring in Xiangshan Uranium mine area based on D-InSAR technology. Journal of East China University of Technology ( Natural Science), 40(3): 297~300.

    • Zou Jian, Tang Wenlong, Wang Fenghua, Hu Feng, Bo Junwei, Wang Zhixin, Liu Zhi, Wei Xufeng, Li Yong. 2022&. Application research of high-resolution remote sensing date in the delineation of gold metallogenic potential areas in Shuidao area of Jiaodong Peninsula. Geological Review, 68(6): 2336~2348.