en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘祥,男,1993年生,主要从事水文地质、区域地质研究;E-mail: 913819430@qq.com。

通讯作者:

吕国森,男,1997年生,硕士研究生,主要从事水文地质与地热地质研究;E-mail: lvguosen@my.swjtu.edu.cn。

参考文献
曹入文, 周训, 陈柄桦, 李状. 2021. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析. 地学前缘, 28(4): 361~372.
参考文献
陈海雯, 宋荣彩, 张超, 梁元, 王迎春, 郑峰, 王彦力, 王洪辉. 2023. 基于因子分析法的干热岩地热资源热储评价. 成都理工大学学报(自然科学版), 50(3): 333~350.
参考文献
陈文, 张彦, 张岳桥, 金贵善, 王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867~872.
参考文献
李晓, 王金金, 黄珣, 余中友. 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报(自然科学版), 45(6): 733~745.
参考文献
李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析. 地质论评, 67(4): 1050~1056.
参考文献
倪高倩, 张恒, 韦玉婷, 胡亚召. 2016. 四川地热流体水文地球化学及同位素特征简析. 新能源进展, 34(3): 184~194.
参考文献
宋春林, 孙向阳, 王根绪. 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究. 长江流域资源与环境, 24(11): 1860~1869.
参考文献
隋少强. 2020. 河北高阳地热田岩溶热储的成因. 成都理工大学学报(自然科学版), 47(04): 492~497.
参考文献
王贵玲. 2018. 中国地热志, 西南卷. 一.
参考文献
王国建, 宁丽荣, 李广之, 吴传芝, 朱怀平, 胡斌, 肖鹏飞, 唐俊红. 2021. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析. 地质论评, 67(1): 117~128.
参考文献
于津生. 1997. 中国同位素地球化学研究. 科学出版社.
参考文献
袁兴成, 张云辉, 王鹰, 黄珣, 孙明露, 吕国森. 2023. 鲜水河断裂带地热水化学特征及结垢趋势分析. 沉积与特提斯地质, 43(2): 357~372.
参考文献
张健, 李午阳, 唐显春, 天骄, 王迎春, 郭琦, 庞忠和. 2017. 川西高温水热活动区的地热学分析. 中国科学: 地球科学, 47(8): 899~915.
参考文献
张林, 雷宛, 胡旭, 孙东, 李大猛. 2018. 高密度电法与音频大地电磁法在四川某地热勘探中的应用. 勘察科学技术, (6): 55~58.
参考文献
张锡根. 1988. 同位素地球化学在地热勘探中的应用. 水文地质工程地质, (1): 28~31.
参考文献
章旭, 张文, 吕国森, 余中友, 代倩. 2023. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据. 沉积与特提斯地质, 43(2): 388~403.
参考文献
周鹏, 孙明露, 张云辉, 荣峰, 达娃, 万忠焱, 刘恭喜, 彭清华, 胡华山, 旦增, 刘振峰. 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究. 沉积与特提斯地质, 43(2): 322~339.
参考文献
Cao Ruwen, Zhou Xun, Chen Binghua, Li Zhuang. 2021&. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province. Earth Science Frontiers, 28(4): 361~372.
参考文献
Capaccioni B, Vaselli O, Tassi F, Santo A P, Huertas A D. 2011. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy). Journal of Hydrology, 396(3~4).
参考文献
Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(346): 1702~71703.
参考文献
Chandrajith R, Barth J A C, Subasinghe N D, Merten D, Dissanayake C B. 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology, 476: 360~369.
参考文献
Chen Wen, Zhang Yan, Zhang Yueqiao, Jin Guishan, Wang Qingli. 2006&. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau——evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867~872.
参考文献
Chen Haiwen, Song Rongcai, Zhang Chao, Liang Yuan, Wang Yingchun, Zheng Feng, Wang Yanli, Wang Honghui. 2023&. Geothermal storage evaluation of geothermal resources in hot dry rock based on factor analysis method. Journal of Chengdu University of Technology: Science & Technology Edition, 50(3): 333~350.
参考文献
Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1~4): 41~750.
参考文献
Giggenbach W F. 1988. Geothermal solute equilibria——derivation of Na—K—Mg—Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~72765.
参考文献
Holland H D. 1966. Solutions, minerals and equilibria: R. M. Garrels and C. L. Christ: Harper and Row, New York, 1965. 450 pp. $14. 25. Geochimica et Cosmochimica Acta, 30(4).
参考文献
Kong Yanlong, Wang Ke, Li Jie, Pang Zhonghe. 2019. Stable isotopes of precipitation in China: A consideration of moisture sources. Water, 11(6).
参考文献
Li Xiao, Wang Jinjin, Huang Xun, Yu Zhongyou. 2018&. Chemical and isotopic characteristics of hot water in the Kangding—Daofu section of Xianshuihe fault zone, Sichuan, China. Journal of Chengdu University of Technology: Science & Technology Edition, 45(6): 733~745.
参考文献
Li Xiao, Huang Xun, Liao Xin, Zhang Yunhui. 2020. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, Southwestern China. International Journal of Environmental Research and Public Health, 17(2): 500~514.
参考文献
Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas. Geological Review, 67(4): 1050~1056.
参考文献
Liu Wei, Guan Lufeng, Liu Yi, Xie Xiangang, Zhang Maoliang, Chen Biying, Xu Sheng, Sano Yuji. 2022. Fluid geochemistry and geothermal anomaly along the Yushu—Ganzi—Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity. Journal of Hydrology, 607.
参考文献
Ni Gaoqian, Zhang Heng, Wei Yuting, Hu Yazhao. 2016&. Hydrogeochemical and isotope characteristics of geothermal fluid in Sichuan. Advances in New and Renewable Energy, 34(3): 184~194.
参考文献
Pang Zhonghe, Reed M. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica et Cosmochimica Acta, 62(6): 1083~71091.
参考文献
Peacock J R, Mangan M T, McPhee D, Wannamaker P E. 2016. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics. Geophysical Research Letters, 43(15): 7953~7962.
参考文献
Qi Jihong, Xu Mo, An Chengjiao, Wu Mingliang, Zhang Yunhui, Li Xiao, Zhang Qiang, Lu Guoping. 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Physics of the Earth and Planetary Interiors, 263: 12~22.
参考文献
Ren Xiaofei, Li Peiyue, He Xiaodong, Su Fengmei, Elumalai V. 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80(1): 74~91.
参考文献
Rezaei A, Rezaeian M, Porkhial S. 2019. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics, 78: 9~27.
参考文献
Song Chunlin, Sun Xiangyang, Wang Genxu. 2015&. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860~1869.
参考文献
Sui Shaoqiang. 2020&. Genetic analysis of karst thermal reservoir in Gaoyang geothermal field, Hebei Province, China. Journal of Chengdu University of Technology: Science & Technology Edition, 47(04): 492~497.
参考文献
Wright P M, Ward S H, Ross H P, West R C. 1985. State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50(12): 2666~2696.
参考文献
Wang Guiling, Zhang Wei, Ma Feng, Lin Wenjing, Liang Jiyun, Zhu Xi. 2018. Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2): 273~285.
参考文献
Wang Guiling. 2018#. Geothermal records of China, Southwest Volume one. Beijing: Science Press.
参考文献
Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.
参考文献
Wang Guiling, Wang Wanli, Zhang Wei, Ma Feng, Liu Feng. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing—Tianjin—Hebei region in China. China Geology, 3(1): 173~181.
参考文献
Wang Guojian, Ning Lirong, Li Guangzhi, Wu Chuanzhi, Zhu Huaiping, Hu Bin, Xiao Pengfei, Tang Junhong. 2021&. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system. Geological Review, 67(1): 117~128.
参考文献
Wang Ying, Yuan Xingcheng, Zhang Yunhui, Zhang Xu, Xiao Yong, Duo Ji, Huang Xun, Sun Minglu, Lv Guosen. 2023. Hydrochemical, D—O—Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area, SW China: Insights into genetic mechanism and scaling potential. Ore Geology Reviews, 158.
参考文献
Yapp J, Crayton. 1982. A model for the relationships between precipitation D/H ratios and precipitation intensity. Journal of Geophysical Research Oceans, 87(C12): 9614~9620.
参考文献
Yi Lei, Qi Jihong, Li Xiao, Xu Mo, Zhang Xiaoyu, Zhang Qiang, Tang, Yige. 2021. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244.
参考文献
Yu Jinsheng, Zhang Hongbin, Yu Fuji, Liu Deping. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang. Acta Geochimica, (2): 93~101.
参考文献
Yu Jinsheng. 1997#. Research on isotope geochemistry in China. Beijing: Science Press.
参考文献
Yuan Xingcheng, Zhang Yunhui, Wang Ying, Huang Xun, Sun Minglu, L Guosen. 2023&. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sedimentary Geology and Tethyan Geology, 43(2): 357~372.
参考文献
Zhang Xigen. 1988#. Application of isotope geochemistry in geothermal exploration. Hydrogeology and Engineering Geology, (6): 55~58.
参考文献
Zhang Jian, Li Wuyang, Tang Xianchun, Tianjiao, Wang Yingchun, Guo Qi, Pang Zhonghe. 2017&. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan. Scientia Sinica(Terrae), 47(8): 899~915.
参考文献
Zhang Lin, Lei Wan, Hu Xu, Sun Dong, Li Dameng. 2018&. Application of high-density electrical method and audio magnetotelluric method in a geothermal exploration in Sichuan Province. Site Investigation Science and Technology, (6): 55~58.
参考文献
Zhang Wei, Wang Guiling, Xing Linxiao, Li Tingxin, Zhao Jiayi. 2019a. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan. Energy Exploration& Exploitation, 37(2): 626~645.
参考文献
Zhang Baojian, Zhao Tian, Li Yanyan, Xing Yifei, Wang Guiling, Gao Jun, Tang Xianchun, Yuan Wenzhen , Zhang Dailei. 2019b. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example. China Geology, 2(4): 512~521.
参考文献
Zhang Yunhui, Dai Yongsheng, Wang Ying, Huang Xun, Xiao Yong, Pei Qiuming. 2021. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. Science of the Total Environment, 784: 147186.
参考文献
Zhang Xialin, Deng Chengdong, Feng Tao, Zhang Yunhui. 2023. Geochemical investigations of the geothermal waters in the Kangding area, SW China: Constraints from hydrochemistry and D—O—T isotopy. Water, 15: 2761.
参考文献
Zhang Xu, Zhang Wen, L Guosen, Yu Zhongyou, Dai Qian. 2023&. Geochemical, geophysical genesis of the Ranggu geothermal spring in Aba Prefecture, Western Sichuan: Evidence from hydrogeochemical and geophysical exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388~403.
参考文献
Zhou Peng, Sun Minglu, Zhang Yunhui, Rongfeng, Dawa, Wan Zhongyan, Liu Gongxi, Peng Qinghua, Hu Huashan, Dan Zeng, Liu Zhenfeng. 2023&. Hydrogeochemical characteristics and genetic mechanism of the Molu geothermal springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322~339.
目录contents

    摘要

    为揭示川西白玉县德西村地热水的成因机制。本研究基于德西村 6 组和周边 12 组地热水的水化学数据,综合利用水化学、同位素、地热温度计、音频大地电磁等方法探究了德西村地热水的成因机制。结果显示:德西村地热水为以地温梯度和断层摩擦生热增温为主要热源的岩溶型热水,补给来源为东侧高程 4073 ~ 4162 m 处的大气降水和冰雪融水,水化学类型主要为 HCO-3—Na +·Ca 2+型,主要水化学过程为碳酸盐矿物的溶解和阳离子交换作用,与其周边热水的水化学特征差异显著。德西村地热水地处杂马岗向斜南西翼,受德西村断裂与杂马岗向斜控制,岩溶裂隙和溶蚀孔洞以及上下两套千枚岩、板岩为主的隔水层组成了地热水的运移通道,其循环深度约 1284 ~ 1576 m,热水在运移过程中受西侧德西村逆冲断裂阻断,沿次级断裂和张性、脆性等构造破碎带向上传递,在碳酸盐岩与碎屑岩互层的岩溶裂隙层中富集形成温度约为 75. 0 ~ 89. 6℃的热储。本次研究成果可为川西白玉县地热资源的开发利用提供有力支撑。

    Abstract

    Objectives: In order to reveal the genesis mechanism of geothermal water in Dexi Geothermal Field.

    Methods: This study used techniques including hydrochemistry, isotopes, geothermometers, and audio magnetotelluric to analyze the genesis mechanism of geothermal water based on the hydrochemical data of groups 6 and nearly groups 12 of the geothermal water in Dexi Geothermal Field.

    Results: Results show that the geothermal water in Dexi Geothermal Field is of the karst type, with the primary heat sources being fault friction heating and geothermal gradients. At 4073~4162 metres above the eastern high mountain, atmospheric precipitation and ice and snow melting water serve as its sources of recharging. The primary hydrochemical processes are the dissolution of carbonate minerals and cation exchange, which are very different from the hydrochemical characteristics of the surrounding geothermal water. The hydrochemical type is mostly HCO-3—Na +·Ca 2+ type. Controlled by the Zamagang Syncline and the Dexi Village Fault, the geothermal water in Dexi Geothermal Field is situated on the southwest wing of the Zamagang Syncline. The migration of underground geothermal water is facilitated by karst fractures, dissolution holes, and two sets of impermeable strata primarily made of slate and phyllite. The circulation depth of this water is around 1284 ~ 1576 metres. The Dexi Village thrust fault on the west side blocks the geothermal water during the migration process. The water is then transmitted upward along the faults and structural fracture zones, such as tension and brittleness, and is enriched in the karst fracture layer between carbonate and clastic rocks. This results in the formation of a thermal reservoir, which has a temperature range of about 75. 0~89. 6℃ .

    Conclusions: This study may offer a crucial support for the development and utilization of geothermal resources in Baiyu County.

  • 由于全球能源危机和环境恶化等问题日趋严重,清洁能源的开发利用越来越受到人们重视(Capaccioni et al.,2011)。地热能作为一种重要的、可再生的清洁能源,能减少大气碳排放,缓解全球气候变暖,因此开发地热能对实现“碳达峰、碳中和” 战略目标有重要意义( Wang Guiling et al.,20182020; Wang Chenguang and Zheng Mianping,2019; 陈海雯等,2023; 章旭等,2023; 周鹏等,2023)。已有研究表明,揭示地热资源成因机制是合理开发利用地热能的关键( Zhang Xialin et al.,2023)。

  • 水文地球化学方法在分析地热水成因机制方面卓有成效。水文地球化学方法包括水化学分析和环境同位素分析,在揭示地热水的水化学类型、阐明水—岩相互作用、估算热储温度和热水循环深度中发挥重要作用(Chandrajith et al.,2013; 王国建等,2021)。环境同位素可以揭示地下水的来源、迁移以及地下水年龄,其中 D—O 同位素已经成为分析地热水的补给来源和计算补给高程的重要手段(宋春林等,2015)。另外,音频大地电磁法是地热勘探中常用的地球物理方法,能有效的反映地层岩性特征、含水层部位、断层通道和裂隙储层( 张林等,2018)。

  • 川西地区作为我国地热资源重要赋存区域之一,分为炉霍—康定、理塘和巴塘—乡城地热带,分别位于鲜水河、甘孜—理塘和金沙江断裂带,近年来一直是地热资源勘查的热点地区( Li Xiao et al.,2020; Liu Wei et al.,2022)。前人对川西地区地热资源的地球化学特征、成因机制和深部热结构开展了一系列研究,包括热储温度评估,川西高原区域断裂带与地热系统之间关系的厘定等( Qi Jihong et al.,2017; Rezaei et al.,2019; Zhang Wei et al.,2019a)。

  • 2022 年,笔者等在白玉县德西村降曲河东岸的地热调查中获得温度 58℃的地热钻井水,井深 70~100 m。德西村地热井是川西白玉县地热资源勘探的又一个突破,根据对泉点及地热钻井的观测,发现其年度水温、水量变化不大,水温动态稳定,流量变化小,具有较大的开发利用价值,但其成因机制尚需开展进一步研究。因此,本文以德西村地热井为研究对象,通过三口浅地热钻井,分别采集和测试丰、枯两期的两组热水样品,结合周边地热水的水文地球化学数据,探讨德西村地热水的水文地球化学演化过程,并结合基础地质和地球物理勘探,构建了地热水成因模式概念模型,以期为研究区及周边地热资源进一步开发利用提供理论依据。

  • 1 区域地质背景

  • 四川省西部位于龙门山、茶坪山、夹金山、贡嘎山、锦屏山以西,属青藏高原的东延部分,平均海拔 3000~4000 m(倪高倩等,2016; 张健等,2017)。构造上属于松潘—甘孜造山带之中的地块上,自华力西期以来,经历了长期的构造—岩浆活动,喜马拉雅期以来伴随青藏高原的不均匀抬升作用,构造活动强烈,为川西地区热水的产出创造了有利条件(陈文等,2006)。研究区位于四川省西部的白玉县德西村,巴塘县茶洛乡温泉群西北部约 28 km,海拔在 2640~5725 m 之间,河流切割深度大,相对高差悬殊,为高山峡谷区。区内属亚热带气候区,气候温和,日照充足,年平均温度 12.3℃,1 月均温-1.6℃,7 月均温 15.8℃,降水量小,时空分布不均,年均降水量 600 mm,年均无霜期 156 d,年均日照时 2133.6 h,日照充足、干湿季分明,昼夜温差大,大陆性气候特点明显。

  • 图1 四川省地图(a); 白玉县德西村地热田及邻区区域地质图(b); 钻孔位置和音频大地电磁位置图(c); A—B 剖面图(d)

  • Fig.1 Map of Sichuan Province (a) ; geological map in the study area (b) ; borehole location and audio magnetotelluric location map (c) ; A—B section (d)

  • Er—热鲁组; T1-2b—三叠纪中下统上组; T1-2a—三叠纪中下统下组; P3c3—赤丹潭组三段; P3c2—赤丹潭组二段; P3c1—赤丹潭组一段; D2c—苍纳组; D2q—穹错组; Qhal—第四系冲积物; Qhpal—第四系洪冲积物; γβ53—黑云母花岗岩; βμ—辉绿岩脉

  • Er—Relu Formation; T1-2b—Upper Formation of Middle Lower Triassic; T1-2a—Lower Middle Triassic Formation; P3c3—Section 3 of the Chidantan Formation; P3c2—Section 2 of the Chidantan Formation; P3c1—Section 1 of the Chidantan Formation; D2c—Cangna group; D2q— Qiongcuo Formation; Qhal—Quaternary alluvial deposits; Qhpal—Quaternary alluvium; γβ53—biotite granite; βμ—diabase vein

  • 研究区构造位置位于北北西向构造与北西向构造交错部位,位于杂马岗—毛垭坝断层带西部沙马乡一线( F1)北东上盘,沙马—桑曲断层( F2)、降曲—党结真拉断层(F3)以东,地处杂马岗向斜南西翼(图1)。这几条断裂均具有活动性,表现为以逆冲+走滑作用为主,兼具差异性断块抬升。其中,党结真拉—降曲断层、沙马—桑曲断层规模大,可能已深达下地壳,断层带上地震频发。区内以古生界地层分布最广,岩性以变质砂岩、板岩及变质火山、结晶碳酸盐岩为主。区内主要河流上端均呈南北走向,岭谷相间,东西横穿,注入金沙江。由北而南排列的主要河流与山脊有赠曲、欧曲、降曲、巴曲河等,巴曲河又称巴塘河、巴楚河、曲戈河,属金沙江一级支流(曹入文等,2021)。

  • 2 采样和测试方法

  • 2.1 样品采集和测试

  • 于 2022 年丰水期和枯水期在四川省白玉县沙马乡德西村的 3 口地热井共采集了 6 组地热井样品(表1)。温度、 pH、电导率( EC),氧化还原电位(ORP)和溶解性总固体( TDS)在现场使用德国 Multi3630IDS 便携式多参数水质分析仪测量。 HCO-3 采用格兰氏滴定法进行测量。取样前用待采水样将采样瓶清洗和漂洗至少 3 次,所有水样均通过 0.2 μm 过滤膜进行过滤,并装入 550 mg 高密度聚乙烯瓶,阳离子测试样品中加入 1 ∶ 1 的硝酸溶液,使样品 pH <2,然后密封。对于开展 SiO2 分析测试的样品,使用去离子水将热水样品稀释 5 倍,以防止水中的 SiO2 沉淀。将采集的样品送至四川省地质矿产勘查开发局成都综合岩矿测试中心进行全分析水质检测。样品中的主要阳离子(K +、Na +、Ca2+和 Mg2+)使用电感耦合等离子体发射光谱仪( ICP-OES)分析; 阴离子(Cl-、SO 2- 4 和 F-)通过离子色谱法(Diona ICS-1100)进行分析; 硅和其他微量元素通过 ICP-MS(7000C,Agilent)进行检测。样品的离子电荷平衡小于± 5%。用于氢氧同位素( δD 和 δ18O)测试的水样,保存在不添加化学试剂的高密度聚乙烯瓶中,由科荟测试(天津)科技有限公司分析,采用水平衡氢氧同位素分析法(MAT251EM)测量,结果以维也纳标准平均海水( V-SMOW)作为标准。 δDV-SMOW δ18OV-SMOW 的检测相对误差分别为 ±0.5%和±0.1%。

  • 2.2 音频大地电磁法

  • 音频大地电磁法广泛用于探查地下电阻率分布,探索导体、含水层,确认设计的钻孔位置等(Wright et al.,1985)。音频大地电磁勘探是地热勘探常用的地球物理方法,其低电阻率值区通常与富水破碎带有关,即很可能为地下水的运移通道和赋存空间(Peacock et al.,2016)。本次工作采用的设备是由湖南元石仪器有限公司独立自主研发的 F3 宽音频大地电磁仪,该仪器在传统 AMT 探测深度不够方面拓宽了工作频率,具有设备集成度高、轻便、高效、可靠等优点。根据已有地质资料和水文地质资料,在勘查区内垂直构造线和泉眼分布延伸方向布置可控源音频大地电磁测深测量 20 个点,点距控制在 20~50 m 不等,能较好地反应测线位置埋深 300 m 内的富水情况,相对确定断层和隔水层的埋深分布情况。本次野外数据采集是采用 12 通道,搭配 2 根电极和 2 根磁极,每个分量在高中低频段进行三频段同时采集(高频 100~4 kHz、中频 4 kHz~400 Hz、低频 400~1 Hz),实际采集频率设置为 10 H z~100 kHz,采集了 TE 模式和 TM 模式数据。

  • 图2 白玉县德西村地热水的 Piper 图

  • Fig.2 Piper diagram ofgeothermal water in the Dexi Geothermal Field, Baiyu County

  • 表1 白玉县沙马乡德西村地热水样品测试结果及邻区温泉水水化学资料

  • Table1 Test results of geothermal water samples from the Dexi Geothermal Field,Baiyu County,western Sichuan, and the hydrochemical data of the springs in adjacent areas

  • 3 结果

  • 3.1 水文地球化学相

  • 本次研究的数据分析结果如表1所示,地热井水中揭露温度为44.3~52.5℃,pH值为6.6~7.1,呈现中至弱酸性,总溶解固体物质含量(Total dissolved solids,简称TDS)范围为1390~1494 m/L。地热井水的水化学类型为HCO-3—Na+·Ca2+(图2),主要阳离子是Na+和Ca2+,含量分别为114~133 mg/L和177~200 mg/L。主要阴离子是HCO-3,含量为947~1026 mg/L。相比于温泉水,地热井水具有较高的常量元素Ca2+、Mg2+和微量元素Sr2+,具有较低含量的常量元素Cl-和微量元素SiO2、F-、Li+(图3)。此外,地热井水丰水期(SK1-F、SK2-F、SK3-F)和枯水期(SK1-K、SK2-K、SK3-K)的水化学组分含量非常接近(表1),表明其地热水的来源稳定,循环路径较长,化学组分不受短期的降雨影响。

  • 而相比于地热井水,温泉水的出露温度较高,范围为52.0~88.0℃,pH值为6.9~9.6,呈现中至碱性,TDS变化范围较大,为320.2~1425.8 mg/L。水化学类型为HCO-3—Na+,主要阳离子是Na+,质量浓度为80~360 mg/L。主要阴离子是HCO-3,含量为250.2~1339.4 mg/L。地下热水中溶滤了大量微量元素F-,其含量最高达18.0 mg/L(SC3-3)。此外,温泉水SiO2含量范围为56.0~218.2 mg/L,平均含量高达128.8 mg/L,这可能是巴塘县茶洛乡、措拉乡巴曲河两岸有大范围的花岗岩侵入所致(曹入文等,2021)。

  • 图3 川西白玉县德西村地热水的 Schoeller 图

  • Fig.3 Schoeller diagramof geothermal water in Dexi geothermal field, Baiyu County

  • 3.2 氢氧同位素(δD 和 δ18O)

  • 本次研究共采集了 3 组 δD 和 δ18O 同位素数据(表1),德西村地热水 3 个钻孔的 δD 值范围为-141.5‰~-143.8‰,δ18O 值范围为-18.4‰~-18.5‰,这 3 个钻孔的 δD 和 δ18O 同位素值非常相近,且地理位置接近,推测其来源一致。

  • 4 讨论

  • 4.1 水化学特征分析

  • 在地下热水循环期间,通过主要离子比值关系可以识别地热水中主要离子的来源( 袁兴成等,2023; 章旭等,2023)。图4a — e 中,γ( Cl-)与 γ(Na +)+γ(K +)的关系表明(图4a),两类地热水中盐岩矿物的溶解作用很低。第 1 类地热水位于靠近 y = x 线的上方(图4b、c)和 y = x 线的下方(图4d),表明第 1 类地热水中相对高含量的 Ca2+极大可能来源于碳酸盐矿物的溶解,而非石膏矿物。其中,钻孔热水中的 HCO-3 含量高于 Ca2+ +Mg2+的含量(图4b、 c),表明热水中的 HCO-3 除了碳酸盐矿物的溶解外,还有其它来源。而周边温泉水中 Ca2+离子主要来源于石膏矿物的溶解(图4d),HCO-3 则主要来源于硅酸盐矿物的溶解(图4b、c 和 e),其 Na + 、K +和 HCO-3 可能来自于地下深部水—CO2—钠/ 钾硅酸盐矿物的反应产物(式 1、2)(Yi Lei et al.,2021)。

  • 2NaAlSi3O8+3H2O+CO2Al2Si2O5(OH)4+4SiO2+2Na++2HCO3-
    (1)
  • 2KAlSi3O8+3H2O+CO2Al2Si2O5(OH)4+4SiO2+2K++2HCO3-
    (2)
  • 离子组合 γ(Na + )+γ(K + )-γ(Cl-)和 γ(Ca2+)+γ(Mg2+ )-γ(HCO-3 )-γ(SO 2-4)之间的关系可以显示地下水和对应的含水层是否发生了离子交换( Ren Xiaofei et al.,2021)。如图4f 所示,两类热水分布在 y =-x 线上且位于 γ( Na +)+ γ( K +)-γ(Cl -)>0 和 γ( Ca2+)+ γ(Mg2+)-γ(HCO-3)-γ(SO 2-4)<0 的区域,表明阳离子交换反应为这两类热水含水层的主要反应过程和影响地热水中部分离子浓度的重要因素。另一方面,CAI-Ⅰ指数(式 3)和 CAI-Ⅱ指数(式 4)能很好地揭示地下水阳离子交换过程,当 CAI-Ⅰ和 CAI-Ⅱ 均小于 0 时,表明地下水发生正向阳离子交换过程(式 5); 反之,则发生了反向阳离子交换过程(式 6)(Zhang Yunhui et al.,2021)。在本次研究中,两类热水样品的点落于 CAI-Ⅰ和 CAI-Ⅱ值小于 0 的区域(图4g),证明这两类热水都发生了显著的正向阳离子交换反应,这也可能是导致地热井水 Na +含量相对较高的直接原因。

  • CAI-I =γCl--γNa++γK+γCl-
    (3)
  • CAI- II =γCl--γNa+-γK+γHCO3-+γSO42-+γCO32-+γNO3-
    (4)
  • Ca2+Mg2++2NaX( solids )2Na++CaX2MgX2( solids )
    (5)
  • 2Na++CaX2MgX2( solids )Ca2+Mg2++2NaX ( solids
    (6)
  • 曹入文等(2021) 研究发现温泉热水的储层温度在 150~200℃之间,因此根据 Garrels 和 CHrist’ s 提出的基于在固相中相对保守的 Al 元素而提出的 K2O—Al2O3—SiO2—H2O 系统和 Na2O—Al2O3— SiO2—H2O 系统( Holland,1966),绘制了 100℃ 和 200℃下的硅酸盐矿物热力学活性图。如图4h,i 所示,温泉热水点位于钾长石与白云母和高岭石与钠长石及钠云母 100℃平衡线(实线)附近,位于白云母与三水铝矿和钠云母与高岭石及三水铝矿 200℃ 平衡线(虚线)附近,这表明热液蚀变为温泉水提供了部分的 Na +和 K +Zhang Xialin et al.,2023)。

  • 图4 川西白玉县德西村地热水中主要离子之间的关系

  • Fig.4 The relationship between the major ions of geothermal water in Dexi Geothermal Field, Baiyu County, western Sichuan

  • 因此,控制德西村地热钻孔热水中离子含量的水—岩作用相对单一,主要为碳酸盐矿物的溶解和阳离子交换作用,而其周边温泉热水的水—岩作用类型复杂,包括硅酸盐矿物的溶解、水—CO2—长石矿物的反应、阳离子交换以及热液蚀变等。

  • 4.2 氢—氧同位素分析

  • 4.2.1 热水补给类型

  • 地下水中的氢氧同位素特征可以确定地下水的补给来源和解释地下水与大气降水、地表水之间的关系(张锡根,1988; 李晓等,2018)。 Craig(1961) 给出全球大气降水( GMWL)的数学关系式 δD = 8δ18O+10。研究区位于川西地区,因此选用全球大气降水线和我国西南地区的大气降雨线(CMWL)δD= 8.41δ18O+16.72(Kong Yanlong et al.,2019)判断地热水的补给来源。如图5 所示,德西村地热水位于大气降水线附近,表明德西村地热水主要由大气降水补给。另外,德西村地热水的样品点向大气降水线的右侧轻微偏移,这可能是地下热水在封闭环境中发生了水—岩相互作用所致(Zhang Baojian et al.,2019b)。

  • 4.2.2 热水补给高程

  • 由于本次研究地热水样品表现出 δ18O 漂移特征,故采用 δD 计算补给高程:

  • H=h+δD-δD0gradD
    (7)
  • 式中:H 为补给高程,m; δD 为补给高程处大气降水稳定同位素组成; δD0 为为当地大气降水平均组成,取研究区附近的甘孜西绒坝岔降水样的 δD 值,为-126.6‰(曹入文等,2021); h 为当地平均地面高程,取平均值 3500 m。 gradD 为研究区降水 δD 随高程变化的梯度值,Yu Jinsheng 等(1984)通过对贵州— 重庆—四川—西藏一线的水同位素研究,提出了我国西南地区的 δD 随高程变化的梯度值为-2.6‰/ 100 m。

  • 图5 川西白玉县德西村地热水的 δD —δ18O 关系图

  • Fig.5 δD—δ18O relationship diagram of geothermal water in Dexi Geothermal Field, Baiyu County

  • 将以上参数代入式 7 计算出热水的补给高程见表2,德西村热水的补给高程为 4073~4162 m。结合当地的地理地貌和构造特征以及热水补给高差的相对长短,推测德西村地热资源补给来源主要为德西村东部的高山(即降曲河发源地),该处山峰冬季积雪,因此认为还有冰雪融水的补给。

  • 4.2.3 补给区温度

  • 大气降水的平均同位素组成与温度存在着正相关关系,称为温度效应(Yapp and Crayton,1982)。因此可利用大气降水中 δD 的温度效应估算补给区的温度。

  • 全球大气降水中 δD 与当年平均气温 t 之间的线性关系(曹入文等,2021):

  • δD=5.6t-100
    (8)
  • 中国地区的大气降水 δD 值的温度效应一般可表示为(于津生,1997):

  • δD=3t-92
    (9)
  • 计算结果如表2 所示,补给区温度皆为负值,这可能是德西村地热水海拔较高(近 3300 m),四周皆是高山,其附近存在常年积雪的雪山所致。笔者等取其平均值作为补给区温度,因此德西村地热水的补给区温度区间为-12~-12.5℃,符合上述有冰雪融水补给的结论。

  • 表2 川西白玉县沙马乡德西村地热水氢氧同位素测试数据和补给区高程及补给区温度计算结果

  • Table2 Hydroxyl isotope test data and recharge zone elevation and recharge zone temperature calculations of the samples from the Dexi Geothermal Field, Baiyu County, western Sichuan

  • 4.3 热储特征分析

  • 4.3.1 热储温度计算

  • 在使用地热温度计前,需先用 Na—K—Mg 三角图解法判断地热水的水—岩平衡状态(Giggenbach,1988; Wang Ying et al.,2023)。图6a 显示热水样品位于未成熟水区域,因此,可认为德西村地热水样品未达到水—岩平衡状态,热储温度计算更适宜采用二氧化硅地热温度计。

  • 4.3.1.1 二氧化硅地热温度计

  • 热水中 SiO2 浓度对温度的变化反应灵敏,这也是其成为地热系统中被广泛应用的经验地温计的主要原因(李义曼等,2021)。天然状态下存在多种二氧化硅矿物,如石英、玉髓、方石英等。由于不同矿物形态的 SiO2 在水中的溶解度不同,在选用 SiO2 地热温度计时,需根据实际地热系统条件选择合理的方法。在此利用 PHREEQC 软件计算的矿物饱和指数( Saturation Index,即 SI)来选取合适的二氧化硅地热温度计(Wang Ying et al.,2023)。图6b 显示德西村地热水中石英基本上处于过饱和状态,故而选择石英地热温度计。对应的经验公式如下(Fournier,1977):

  • 无蒸汽损失:

  • tC=13095.19-lgρSiO2mg/L-273.15
    (10)
  • 最大蒸汽损失:

  • tC=15225.75-lgρSiO2mg/L-273.15
    (11)
  • 计算结果如表3 所示,德西村地热水的热储温度范围为 83.9~89.6℃。

  • 表3 川西白玉县沙马乡德西村地热水热储温度(℃)计算结果

  • Table3 Calculation results of thermal reservoir temperature (℃) for the Dexi Geothermal Field, Baiyu County, western Sichuan

  • 4.3.1.2 多矿物平衡模拟

  • 在地热系统中,矿物—流体的化学平衡是研究水热—化学作用过程的重要手段,也可以用来对热储温度范围进行进一步约束( Pang Zhonghe and Reed,1998; Yi Lei et al.,2021)。由于 Al 在地热流体中含量低且难以测量,本文采用 FixAl 法减少 Al 数据缺失带来的影响,重建研究区热水的平衡状态(Pang Zhonghe and Reed,1998)。本次研究选取 ZK1-F、ZK2-F、和 ZK3-F 进行计算,根据其热储岩性进行矿物选择,然后采用 SOLVEQ-XPT 软件对多矿物的溶解平衡指数进行计算。假设 Al 的质量浓度为 0. 05 mg / L,计算的步长为 25℃,温度范围为 25~200℃,计算过程中考虑 CO2 的脱气影响(Yi Lei et al.,2021),在计算中添加相同的 HCO-3 和 H + (按物质的量计,即相同的摩尔数)到地热水中。以 0. 01mol / L 为步长添加相同摩尔数的 HCO-3 和 H + ,当分别添加 0.1 mol / L 的 HCO-3 和 H +进行二氧化碳修正时,几乎所有选定的矿物得到收敛,ZK1-F、ZK2-F、 ZK3-F 热水的收敛区间均在 75~100°C 之间(图7),与传统地热温度计的计算结果接近,因此可认为德西村地热水的热储温度范围为 75~89.6℃。

  • 4.3.2 循环深度估算

  • 前面分析到,区域热水是大气降水来源,入渗补给后经循环加热后形成的。地下热水热储温度的计算值可以用来估算热水的循环深度。从热水的水文地球化学特征分析可知,阿坝州地热水是大气降水入渗补给后经深循环获取深部热流加热后形成的。地下热水的温度主要依靠深循环通过地热增温获取,可以根据地热增温梯度计算深部地下热水的循环深度(章旭等,2023)。

  • H=tH-t0K+H0
    (12)
  • 式中 tH 为热储温度,单位℃; K 为地热增温梯度,取 5℃ / 100 m(曹入文等,2021); T0 为平均气温,取白玉县年平均气温 12.3℃; H0 为恒温带厚度,取用我国南方平均厚度 30 m。计算得出德西村地热水的循环深度范围为 1284~1576 m。

  • 4.4 音频大地电磁分析

  • 本次研究沿垂直德西村断裂和泉眼分布延伸方向共布置 2 条物探测线,分别为 LINE1 和 LINE2 测线(图1c)。其中 LINE1 测线长 450 m,布置测点 24 个,平均点距 20 m; LINE2 测线与 LINE1 测线平行布置,可与 LINE1 测线互相验证,LINE2 测线长 270m,布置测点 14 个,平均点距 20 m。所有测点坐标、高程采用 GPS 实测,与测深点位一一对应。本次数据是采用拓创 VitasEM 软件处理,成果图是采用的 Golden Software Surfer15 软件绘制,结合地质资料综合分析选取 OCCAM 和 BOSICK+PH 算法结果作为 LINE1 和 LINE2 的反演成果图,反演深度均为 650 m,并在反演成果图的基础上进行解译(图8)。

  • 图6 川西白玉县德西村地热水的 Na—K—Mg 三角图和矿物饱和指数图

  • Fig.6 Na—K—Mg diagram and mineral saturation index plots of geothermal water in Dexi Geothermal Field, Baiyu County

  • 图7 川西白玉县德西村地热水的 lg(Q/ K)—温度图

  • Fig.7 lg (Q/ K) —temperature plot of geothermal water in Dexi Geothermal Field, Baiyu County, western Sichuan

  • Q—离子活度积; K—化学反应平衡常数

  • Q—ionic activity product; K—equilibrium constant of chemical reaction

  • 图8 LINE1 和 LINE2 剖面解译

  • Fig.8 Interpretation of LINE1 and LINE2 sections

  • 如图8a 所示,1~9 号、13~16 号测点为高阻层,推测是以二叠系碳酸岩为主、含基性千枚岩和板岩的基岩层,孔隙发育程度低,含水较少。 9~13 号、16~20 号、23~24 号测点浅部被第四系冲积物覆盖,深部为低阻异常带,推测为二叠系碳酸岩,附近存在断裂,使其孔隙、裂隙发育度高,为相对富水区域,其带状斜向下贯通的低阻异常带是构成底部热源与水源通向地表的良好通道。

  • LINE2 与 LINE1 为平行测线、线距较小、两条测线在相对应里程的深部均呈“低阻、相对高阻、低阻”分布特征,LINE2 与 LINE1 的富水层一致,具有互通性。如图8b 所示,8~12 号测点为相对高阻层,浅部有第四系覆盖层,层厚约 20 m,推测为二叠系碳酸岩,孔隙发育程度低,含水较少。 1~6 号测点深部(海拔 3200 m 以下)、12~14 号测点之间为低阻异常带,推测为二叠系碳酸岩,附近存在断裂,使其孔隙、裂隙发育度高,为富水带,其中 12~14 号测点之间从浅地表向深部贯通的低阻异常带极有可能是构成底部热源与水源通向地表的良好通道。因此,我们认为在德西村降曲河东侧有两条次级破碎带,是热水富集和出露的重要条件。

  • 4.5 成因模式概念模型

  • 通过基础地质、水—岩作用、氢—氧同位素、热源温度和循环深度等特征对德西村地热成因进行分析,发现其成因与其周围的温泉成因(尤其是巴塘巴曲河温泉群)具有明显的差异,其为褶皱带向斜构造内中深埋藏缓慢交替类型的岩溶型热水。主要含水层为二叠系上统赤丹潭组碳酸盐岩与碎屑岩互层岩溶水,地层中等倾角,推测热储主要为碳酸盐岩与碎屑岩互层的岩溶裂隙热储。研究区地处杂马岗向斜南西翼,温泉的分布主要受德西村断裂与杂马岗向斜控制,其构造活动强烈。杂马岗向斜内碳酸盐岩发育一系列岩溶裂隙、溶蚀孔洞,同时其上下两套千枚岩、板岩为主的岩层形成隔水层,在运移过程中受西侧德西村逆冲断裂阻断,断裂带内发育一系列的次级断裂和张性、脆性等构造,使得深部的热源能够通过断裂向上传递。同时断裂活动使地层产生一系列横向、纵向运动,最终导致岩体较为破碎,裂隙发育,尤其转折端及断层破碎带。岩溶裂隙、溶蚀孔洞与断裂裂隙成为地下热水运移的优势通道(隋少强,2020)。

  • 如图9 所示,德西村地热水成因模型为沙马乡德西村地区东侧约 8~10 km 处高山地区海拔约 4073~4162 m 的大气降水和冰雪融水通过地表裂隙下渗,经杂马岗向斜向地下深处循环,区域内的碳酸盐岩裂隙、溶隙以及溶蚀孔洞为地下水提供了循环的通道,同时其上下两套千枚岩、板岩为主的岩层形成相对隔水层,地下水在深部 1284~1576 m 汇集经地温梯度增温和断层机械摩擦生热增温至 75. 0~89.6℃,形成地热水,期间发生的主要水— 岩作用为碳酸盐矿物的溶解,较多的 HCO- 3、Ca2+和 Mg2+溶滤进热水中。然后热水在势差和热动力的驱动下向西部地势较低的地方流动,在德西村附近遇断层封闭隔水使得地热水向上运移,与浅部冷水混合,发生阳离子交换作用,Na + 含量增加,最后沿着背斜核部破碎通道上升,在德西村(即河谷两侧)钻井揭露形成 44.3~52.5℃的 HCO-3—Na +·Ca2+ 型温泉。

  • 5 结论

  • (1)德西村地热水的水化学类型为 HCO-3—Na + ·Ca2+型,水—岩作用相对单一,为碳酸盐矿物的溶解和阳离子交换作用,而其周边的热水水化学类型为 HCO- 3—Na + 型,水—岩作用类型相对复杂,包括硅酸盐矿物的溶解、水—CO2—长石矿物的反应、阳离子交换以及热液蚀变等。

  • (2)德西村地热水为大气降水和冰雪融水补给,补给高程为 4073~4162 m,补给区温度约为-12~-12.5℃,推测德西村地热水补给来源主要为德西村东部的高山(即降曲河发源地)。热水循环深度为 1284~1576 m,热储为碳酸盐岩与碎屑岩互层的岩溶裂隙热储,热储温度范围为 75~89.6℃。

  • 图9 川西白玉县德西村地热水成因模式图

  • Fig.9 Genesis model diagram of geothermal water in Dexi Geothermal Field, Baiyu County, western Sichuan

  • (3)LINE1 测线的 9~13 号、16~20 号测点之间以及 LINE2 测线的 12~14 号测点之间带状斜向下贯通的低阻异常带极有可能是构成底部热源与水源通向地表的良好通道,是热水富集和出露的重要条件。

  • (4)德西村成因模式主要为德西村东侧高山大气降水和冰雪融水通过地表裂隙下渗,经杂马岗向斜向地下深处循环,区域内的碳酸盐岩溶隙、溶蚀孔洞与千枚岩、板岩为主的隔水层形成地下水循环通道,在深部 1284~1576 m 汇集经地热增温、断层机械摩擦生热增温后,沿着背斜核部破碎通道上升,在浅地表钻井揭露形成地热水。

  • 参考文献

    • 曹入文, 周训, 陈柄桦, 李状. 2021. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析. 地学前缘, 28(4): 361~372.

    • 陈海雯, 宋荣彩, 张超, 梁元, 王迎春, 郑峰, 王彦力, 王洪辉. 2023. 基于因子分析法的干热岩地热资源热储评价. 成都理工大学学报(自然科学版), 50(3): 333~350.

    • 陈文, 张彦, 张岳桥, 金贵善, 王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867~872.

    • 李晓, 王金金, 黄珣, 余中友. 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报(自然科学版), 45(6): 733~745.

    • 李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析. 地质论评, 67(4): 1050~1056.

    • 倪高倩, 张恒, 韦玉婷, 胡亚召. 2016. 四川地热流体水文地球化学及同位素特征简析. 新能源进展, 34(3): 184~194.

    • 宋春林, 孙向阳, 王根绪. 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究. 长江流域资源与环境, 24(11): 1860~1869.

    • 隋少强. 2020. 河北高阳地热田岩溶热储的成因. 成都理工大学学报(自然科学版), 47(04): 492~497.

    • 王贵玲. 2018. 中国地热志, 西南卷. 一.

    • 王国建, 宁丽荣, 李广之, 吴传芝, 朱怀平, 胡斌, 肖鹏飞, 唐俊红. 2021. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析. 地质论评, 67(1): 117~128.

    • 于津生. 1997. 中国同位素地球化学研究. 科学出版社.

    • 袁兴成, 张云辉, 王鹰, 黄珣, 孙明露, 吕国森. 2023. 鲜水河断裂带地热水化学特征及结垢趋势分析. 沉积与特提斯地质, 43(2): 357~372.

    • 张健, 李午阳, 唐显春, 天骄, 王迎春, 郭琦, 庞忠和. 2017. 川西高温水热活动区的地热学分析. 中国科学: 地球科学, 47(8): 899~915.

    • 张林, 雷宛, 胡旭, 孙东, 李大猛. 2018. 高密度电法与音频大地电磁法在四川某地热勘探中的应用. 勘察科学技术, (6): 55~58.

    • 张锡根. 1988. 同位素地球化学在地热勘探中的应用. 水文地质工程地质, (1): 28~31.

    • 章旭, 张文, 吕国森, 余中友, 代倩. 2023. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据. 沉积与特提斯地质, 43(2): 388~403.

    • 周鹏, 孙明露, 张云辉, 荣峰, 达娃, 万忠焱, 刘恭喜, 彭清华, 胡华山, 旦增, 刘振峰. 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究. 沉积与特提斯地质, 43(2): 322~339.

    • Cao Ruwen, Zhou Xun, Chen Binghua, Li Zhuang. 2021&. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province. Earth Science Frontiers, 28(4): 361~372.

    • Capaccioni B, Vaselli O, Tassi F, Santo A P, Huertas A D. 2011. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy). Journal of Hydrology, 396(3~4).

    • Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(346): 1702~71703.

    • Chandrajith R, Barth J A C, Subasinghe N D, Merten D, Dissanayake C B. 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology, 476: 360~369.

    • Chen Wen, Zhang Yan, Zhang Yueqiao, Jin Guishan, Wang Qingli. 2006&. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau——evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867~872.

    • Chen Haiwen, Song Rongcai, Zhang Chao, Liang Yuan, Wang Yingchun, Zheng Feng, Wang Yanli, Wang Honghui. 2023&. Geothermal storage evaluation of geothermal resources in hot dry rock based on factor analysis method. Journal of Chengdu University of Technology: Science & Technology Edition, 50(3): 333~350.

    • Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1~4): 41~750.

    • Giggenbach W F. 1988. Geothermal solute equilibria——derivation of Na—K—Mg—Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~72765.

    • Holland H D. 1966. Solutions, minerals and equilibria: R. M. Garrels and C. L. Christ: Harper and Row, New York, 1965. 450 pp. $14. 25. Geochimica et Cosmochimica Acta, 30(4).

    • Kong Yanlong, Wang Ke, Li Jie, Pang Zhonghe. 2019. Stable isotopes of precipitation in China: A consideration of moisture sources. Water, 11(6).

    • Li Xiao, Wang Jinjin, Huang Xun, Yu Zhongyou. 2018&. Chemical and isotopic characteristics of hot water in the Kangding—Daofu section of Xianshuihe fault zone, Sichuan, China. Journal of Chengdu University of Technology: Science & Technology Edition, 45(6): 733~745.

    • Li Xiao, Huang Xun, Liao Xin, Zhang Yunhui. 2020. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, Southwestern China. International Journal of Environmental Research and Public Health, 17(2): 500~514.

    • Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas. Geological Review, 67(4): 1050~1056.

    • Liu Wei, Guan Lufeng, Liu Yi, Xie Xiangang, Zhang Maoliang, Chen Biying, Xu Sheng, Sano Yuji. 2022. Fluid geochemistry and geothermal anomaly along the Yushu—Ganzi—Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity. Journal of Hydrology, 607.

    • Ni Gaoqian, Zhang Heng, Wei Yuting, Hu Yazhao. 2016&. Hydrogeochemical and isotope characteristics of geothermal fluid in Sichuan. Advances in New and Renewable Energy, 34(3): 184~194.

    • Pang Zhonghe, Reed M. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica et Cosmochimica Acta, 62(6): 1083~71091.

    • Peacock J R, Mangan M T, McPhee D, Wannamaker P E. 2016. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics. Geophysical Research Letters, 43(15): 7953~7962.

    • Qi Jihong, Xu Mo, An Chengjiao, Wu Mingliang, Zhang Yunhui, Li Xiao, Zhang Qiang, Lu Guoping. 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Physics of the Earth and Planetary Interiors, 263: 12~22.

    • Ren Xiaofei, Li Peiyue, He Xiaodong, Su Fengmei, Elumalai V. 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80(1): 74~91.

    • Rezaei A, Rezaeian M, Porkhial S. 2019. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics, 78: 9~27.

    • Song Chunlin, Sun Xiangyang, Wang Genxu. 2015&. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860~1869.

    • Sui Shaoqiang. 2020&. Genetic analysis of karst thermal reservoir in Gaoyang geothermal field, Hebei Province, China. Journal of Chengdu University of Technology: Science & Technology Edition, 47(04): 492~497.

    • Wright P M, Ward S H, Ross H P, West R C. 1985. State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50(12): 2666~2696.

    • Wang Guiling, Zhang Wei, Ma Feng, Lin Wenjing, Liang Jiyun, Zhu Xi. 2018. Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2): 273~285.

    • Wang Guiling. 2018#. Geothermal records of China, Southwest Volume one. Beijing: Science Press.

    • Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.

    • Wang Guiling, Wang Wanli, Zhang Wei, Ma Feng, Liu Feng. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing—Tianjin—Hebei region in China. China Geology, 3(1): 173~181.

    • Wang Guojian, Ning Lirong, Li Guangzhi, Wu Chuanzhi, Zhu Huaiping, Hu Bin, Xiao Pengfei, Tang Junhong. 2021&. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system. Geological Review, 67(1): 117~128.

    • Wang Ying, Yuan Xingcheng, Zhang Yunhui, Zhang Xu, Xiao Yong, Duo Ji, Huang Xun, Sun Minglu, Lv Guosen. 2023. Hydrochemical, D—O—Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area, SW China: Insights into genetic mechanism and scaling potential. Ore Geology Reviews, 158.

    • Yapp J, Crayton. 1982. A model for the relationships between precipitation D/H ratios and precipitation intensity. Journal of Geophysical Research Oceans, 87(C12): 9614~9620.

    • Yi Lei, Qi Jihong, Li Xiao, Xu Mo, Zhang Xiaoyu, Zhang Qiang, Tang, Yige. 2021. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244.

    • Yu Jinsheng, Zhang Hongbin, Yu Fuji, Liu Deping. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang. Acta Geochimica, (2): 93~101.

    • Yu Jinsheng. 1997#. Research on isotope geochemistry in China. Beijing: Science Press.

    • Yuan Xingcheng, Zhang Yunhui, Wang Ying, Huang Xun, Sun Minglu, L Guosen. 2023&. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sedimentary Geology and Tethyan Geology, 43(2): 357~372.

    • Zhang Xigen. 1988#. Application of isotope geochemistry in geothermal exploration. Hydrogeology and Engineering Geology, (6): 55~58.

    • Zhang Jian, Li Wuyang, Tang Xianchun, Tianjiao, Wang Yingchun, Guo Qi, Pang Zhonghe. 2017&. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan. Scientia Sinica(Terrae), 47(8): 899~915.

    • Zhang Lin, Lei Wan, Hu Xu, Sun Dong, Li Dameng. 2018&. Application of high-density electrical method and audio magnetotelluric method in a geothermal exploration in Sichuan Province. Site Investigation Science and Technology, (6): 55~58.

    • Zhang Wei, Wang Guiling, Xing Linxiao, Li Tingxin, Zhao Jiayi. 2019a. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan. Energy Exploration& Exploitation, 37(2): 626~645.

    • Zhang Baojian, Zhao Tian, Li Yanyan, Xing Yifei, Wang Guiling, Gao Jun, Tang Xianchun, Yuan Wenzhen , Zhang Dailei. 2019b. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example. China Geology, 2(4): 512~521.

    • Zhang Yunhui, Dai Yongsheng, Wang Ying, Huang Xun, Xiao Yong, Pei Qiuming. 2021. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. Science of the Total Environment, 784: 147186.

    • Zhang Xialin, Deng Chengdong, Feng Tao, Zhang Yunhui. 2023. Geochemical investigations of the geothermal waters in the Kangding area, SW China: Constraints from hydrochemistry and D—O—T isotopy. Water, 15: 2761.

    • Zhang Xu, Zhang Wen, L Guosen, Yu Zhongyou, Dai Qian. 2023&. Geochemical, geophysical genesis of the Ranggu geothermal spring in Aba Prefecture, Western Sichuan: Evidence from hydrogeochemical and geophysical exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388~403.

    • Zhou Peng, Sun Minglu, Zhang Yunhui, Rongfeng, Dawa, Wan Zhongyan, Liu Gongxi, Peng Qinghua, Hu Huashan, Dan Zeng, Liu Zhenfeng. 2023&. Hydrogeochemical characteristics and genetic mechanism of the Molu geothermal springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322~339.

  • 参考文献

    • 曹入文, 周训, 陈柄桦, 李状. 2021. 四川巴塘县茶洛地区温泉及间歇喷泉水化学特征和成因分析. 地学前缘, 28(4): 361~372.

    • 陈海雯, 宋荣彩, 张超, 梁元, 王迎春, 郑峰, 王彦力, 王洪辉. 2023. 基于因子分析法的干热岩地热资源热储评价. 成都理工大学学报(自然科学版), 50(3): 333~350.

    • 陈文, 张彦, 张岳桥, 金贵善, 王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867~872.

    • 李晓, 王金金, 黄珣, 余中友. 2018. 鲜水河断裂带康定至道孚段热水化学与同位素特征. 成都理工大学学报(自然科学版), 45(6): 733~745.

    • 李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析. 地质论评, 67(4): 1050~1056.

    • 倪高倩, 张恒, 韦玉婷, 胡亚召. 2016. 四川地热流体水文地球化学及同位素特征简析. 新能源进展, 34(3): 184~194.

    • 宋春林, 孙向阳, 王根绪. 2015. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究. 长江流域资源与环境, 24(11): 1860~1869.

    • 隋少强. 2020. 河北高阳地热田岩溶热储的成因. 成都理工大学学报(自然科学版), 47(04): 492~497.

    • 王贵玲. 2018. 中国地热志, 西南卷. 一.

    • 王国建, 宁丽荣, 李广之, 吴传芝, 朱怀平, 胡斌, 肖鹏飞, 唐俊红. 2021. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析. 地质论评, 67(1): 117~128.

    • 于津生. 1997. 中国同位素地球化学研究. 科学出版社.

    • 袁兴成, 张云辉, 王鹰, 黄珣, 孙明露, 吕国森. 2023. 鲜水河断裂带地热水化学特征及结垢趋势分析. 沉积与特提斯地质, 43(2): 357~372.

    • 张健, 李午阳, 唐显春, 天骄, 王迎春, 郭琦, 庞忠和. 2017. 川西高温水热活动区的地热学分析. 中国科学: 地球科学, 47(8): 899~915.

    • 张林, 雷宛, 胡旭, 孙东, 李大猛. 2018. 高密度电法与音频大地电磁法在四川某地热勘探中的应用. 勘察科学技术, (6): 55~58.

    • 张锡根. 1988. 同位素地球化学在地热勘探中的应用. 水文地质工程地质, (1): 28~31.

    • 章旭, 张文, 吕国森, 余中友, 代倩. 2023. 川西阿坝州壤古温泉成因机制研究: 来自水文地球化学和地球物理勘探的证据. 沉积与特提斯地质, 43(2): 388~403.

    • 周鹏, 孙明露, 张云辉, 荣峰, 达娃, 万忠焱, 刘恭喜, 彭清华, 胡华山, 旦增, 刘振峰. 2023. 藏南隆子县模麓温泉群水文地球化学特征及成因机制研究. 沉积与特提斯地质, 43(2): 322~339.

    • Cao Ruwen, Zhou Xun, Chen Binghua, Li Zhuang. 2021&. Hydrogeochemical characteristics and genetic analysis of the Chaluo hot springs and geysers in the Batang County of Sichuan Province. Earth Science Frontiers, 28(4): 361~372.

    • Capaccioni B, Vaselli O, Tassi F, Santo A P, Huertas A D. 2011. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy). Journal of Hydrology, 396(3~4).

    • Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(346): 1702~71703.

    • Chandrajith R, Barth J A C, Subasinghe N D, Merten D, Dissanayake C B. 2013. Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: Evidence for steeper than expected geothermal gradients. Journal of Hydrology, 476: 360~369.

    • Chen Wen, Zhang Yan, Zhang Yueqiao, Jin Guishan, Wang Qingli. 2006&. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau——evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22(4): 867~872.

    • Chen Haiwen, Song Rongcai, Zhang Chao, Liang Yuan, Wang Yingchun, Zheng Feng, Wang Yanli, Wang Honghui. 2023&. Geothermal storage evaluation of geothermal resources in hot dry rock based on factor analysis method. Journal of Chengdu University of Technology: Science & Technology Edition, 50(3): 333~350.

    • Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5(1~4): 41~750.

    • Giggenbach W F. 1988. Geothermal solute equilibria——derivation of Na—K—Mg—Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749~72765.

    • Holland H D. 1966. Solutions, minerals and equilibria: R. M. Garrels and C. L. Christ: Harper and Row, New York, 1965. 450 pp. $14. 25. Geochimica et Cosmochimica Acta, 30(4).

    • Kong Yanlong, Wang Ke, Li Jie, Pang Zhonghe. 2019. Stable isotopes of precipitation in China: A consideration of moisture sources. Water, 11(6).

    • Li Xiao, Wang Jinjin, Huang Xun, Yu Zhongyou. 2018&. Chemical and isotopic characteristics of hot water in the Kangding—Daofu section of Xianshuihe fault zone, Sichuan, China. Journal of Chengdu University of Technology: Science & Technology Edition, 45(6): 733~745.

    • Li Xiao, Huang Xun, Liao Xin, Zhang Yunhui. 2020. Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe Fault Zone, Southwestern China. International Journal of Environmental Research and Public Health, 17(2): 500~514.

    • Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas. Geological Review, 67(4): 1050~1056.

    • Liu Wei, Guan Lufeng, Liu Yi, Xie Xiangang, Zhang Maoliang, Chen Biying, Xu Sheng, Sano Yuji. 2022. Fluid geochemistry and geothermal anomaly along the Yushu—Ganzi—Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity. Journal of Hydrology, 607.

    • Ni Gaoqian, Zhang Heng, Wei Yuting, Hu Yazhao. 2016&. Hydrogeochemical and isotope characteristics of geothermal fluid in Sichuan. Advances in New and Renewable Energy, 34(3): 184~194.

    • Pang Zhonghe, Reed M. 1998. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochimica et Cosmochimica Acta, 62(6): 1083~71091.

    • Peacock J R, Mangan M T, McPhee D, Wannamaker P E. 2016. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics. Geophysical Research Letters, 43(15): 7953~7962.

    • Qi Jihong, Xu Mo, An Chengjiao, Wu Mingliang, Zhang Yunhui, Li Xiao, Zhang Qiang, Lu Guoping. 2017. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Physics of the Earth and Planetary Interiors, 263: 12~22.

    • Ren Xiaofei, Li Peiyue, He Xiaodong, Su Fengmei, Elumalai V. 2021. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80(1): 74~91.

    • Rezaei A, Rezaeian M, Porkhial S. 2019. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics, 78: 9~27.

    • Song Chunlin, Sun Xiangyang, Wang Genxu. 2015&. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China. Resources and Environment in the Yangtze Basin, 24(11): 1860~1869.

    • Sui Shaoqiang. 2020&. Genetic analysis of karst thermal reservoir in Gaoyang geothermal field, Hebei Province, China. Journal of Chengdu University of Technology: Science & Technology Edition, 47(04): 492~497.

    • Wright P M, Ward S H, Ross H P, West R C. 1985. State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50(12): 2666~2696.

    • Wang Guiling, Zhang Wei, Ma Feng, Lin Wenjing, Liang Jiyun, Zhu Xi. 2018. Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2): 273~285.

    • Wang Guiling. 2018#. Geothermal records of China, Southwest Volume one. Beijing: Science Press.

    • Wang Chenguang, Zheng Mianping. 2019. Hydrochemical characteristics and evolution of hot fluids in the gudui geothermal field in Comei County, Himalayas. Geothermics, 81: 243~258.

    • Wang Guiling, Wang Wanli, Zhang Wei, Ma Feng, Liu Feng. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing—Tianjin—Hebei region in China. China Geology, 3(1): 173~181.

    • Wang Guojian, Ning Lirong, Li Guangzhi, Wu Chuanzhi, Zhu Huaiping, Hu Bin, Xiao Pengfei, Tang Junhong. 2021&. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system. Geological Review, 67(1): 117~128.

    • Wang Ying, Yuan Xingcheng, Zhang Yunhui, Zhang Xu, Xiao Yong, Duo Ji, Huang Xun, Sun Minglu, Lv Guosen. 2023. Hydrochemical, D—O—Sr isotopic and electromagnetic characteristics of geothermal waters from the Erdaoqiao area, SW China: Insights into genetic mechanism and scaling potential. Ore Geology Reviews, 158.

    • Yapp J, Crayton. 1982. A model for the relationships between precipitation D/H ratios and precipitation intensity. Journal of Geophysical Research Oceans, 87(C12): 9614~9620.

    • Yi Lei, Qi Jihong, Li Xiao, Xu Mo, Zhang Xiaoyu, Zhang Qiang, Tang, Yige. 2021. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau. Journal of Volcanology and Geothermal Research, 414: 107244.

    • Yu Jinsheng, Zhang Hongbin, Yu Fuji, Liu Deping. 1984. Oxygen and hydrogen isotopic compositions of meteoric waters in the eastern part of Xizang. Acta Geochimica, (2): 93~101.

    • Yu Jinsheng. 1997#. Research on isotope geochemistry in China. Beijing: Science Press.

    • Yuan Xingcheng, Zhang Yunhui, Wang Ying, Huang Xun, Sun Minglu, L Guosen. 2023&. Geothermal water chemical characteristics and scaling analysis of Xianshuihe fault zone. Sedimentary Geology and Tethyan Geology, 43(2): 357~372.

    • Zhang Xigen. 1988#. Application of isotope geochemistry in geothermal exploration. Hydrogeology and Engineering Geology, (6): 55~58.

    • Zhang Jian, Li Wuyang, Tang Xianchun, Tianjiao, Wang Yingchun, Guo Qi, Pang Zhonghe. 2017&. Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan. Scientia Sinica(Terrae), 47(8): 899~915.

    • Zhang Lin, Lei Wan, Hu Xu, Sun Dong, Li Dameng. 2018&. Application of high-density electrical method and audio magnetotelluric method in a geothermal exploration in Sichuan Province. Site Investigation Science and Technology, (6): 55~58.

    • Zhang Wei, Wang Guiling, Xing Linxiao, Li Tingxin, Zhao Jiayi. 2019a. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan. Energy Exploration& Exploitation, 37(2): 626~645.

    • Zhang Baojian, Zhao Tian, Li Yanyan, Xing Yifei, Wang Guiling, Gao Jun, Tang Xianchun, Yuan Wenzhen , Zhang Dailei. 2019b. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example. China Geology, 2(4): 512~521.

    • Zhang Yunhui, Dai Yongsheng, Wang Ying, Huang Xun, Xiao Yong, Pei Qiuming. 2021. Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China. Science of the Total Environment, 784: 147186.

    • Zhang Xialin, Deng Chengdong, Feng Tao, Zhang Yunhui. 2023. Geochemical investigations of the geothermal waters in the Kangding area, SW China: Constraints from hydrochemistry and D—O—T isotopy. Water, 15: 2761.

    • Zhang Xu, Zhang Wen, L Guosen, Yu Zhongyou, Dai Qian. 2023&. Geochemical, geophysical genesis of the Ranggu geothermal spring in Aba Prefecture, Western Sichuan: Evidence from hydrogeochemical and geophysical exploration. Sedimentary Geology and Tethyan Geology, 43(2): 388~403.

    • Zhou Peng, Sun Minglu, Zhang Yunhui, Rongfeng, Dawa, Wan Zhongyan, Liu Gongxi, Peng Qinghua, Hu Huashan, Dan Zeng, Liu Zhenfeng. 2023&. Hydrogeochemical characteristics and genetic mechanism of the Molu geothermal springs in the Longzi County, Southern Tibet. Sedimentary Geology and Tethyan Geology, 43(2): 322~339.