-
青藏高原从北向南由松潘—甘孜地块、羌塘地块、拉萨地块等多个微地块拼贴构成(图1a、b; Yin An and Harrison,2000)。拉萨地块北侧以班公湖— 怒江缝合带(BNSZ)为界,南侧以雅鲁藏布江缝合带(YZSZ)为界( 图1b)。狮泉河—纳木错缝合带(SNMZ)和洛巴堆—米拉山断裂(LMF)将拉萨地块划分为北部、中部和南部拉萨地块( 图1b; Zhu Dicheng et al.,2011)。南部拉萨地块挟持于雅鲁藏布江缝合带( YZSZ)和洛巴堆—米拉山断裂(LMF)之间,位于青藏高原前缘,记录了新特提斯洋洋壳俯冲及印度—亚洲大陆碰撞造山过程,伴随着一系列大规模的构造、岩浆和成矿作用(图1a、b; 潘桂棠等,2006; 唐菊兴等,2012,2014; Lang Xinghai et al.,2014,2019a,2019b,2020),一直是基础地质和矿床学研究的热点区域(图1c; Wang Xuhui et al.,2019,2020,2022a,2022b; Li Liang et al.,2021; He Qing et al.,2021; Deng Yulin et al.,2021)。南部拉萨地块现已发现两期、多种类型的矿床,包括:①与中生代新特提斯洋壳俯冲相关的斑岩型矿床( 如雄村、鲁尔玛; Tang Juxing et al.,2015; Lang Xinghai et al.,2019a,2020; 刘洪等,2021); ②与新生代印度—欧亚大陆碰撞造山环境相关的斑岩型矿床(如甲玛、驱龙、吉如、努日、程巴等; Hou Zengqian et al.,2004,2015; 孙祥等,2013; Lang Xinghai et al.,2014; Yang Zhiming et al.,2016)。此外,也发现了独立金矿床的存在,如形成于印度—亚洲大陆后碰撞阶段的弄如日金矿(黄瀚霄等,2012)。
-
雄村矿集区位于南部拉萨地块中段南缘,是一个与中生代新特提斯洋壳俯冲相关的超大型斑岩 Cu—Au 矿集区,由 1、2、3 号矿体、洞嘎金矿及哑达、用贡巴、则琼矿化体构成,其铜金属量>2.5 Mt、伴生金>250 t、伴生银>1000 t(唐菊兴等,2014)。雄村矿集区的辉钼矿 Re-Os 同位素的测年结果表明该矿集区发生了两个独立的矿化事件,以 1 号矿体(161.5 ± 2.7 Ma)和 2 号矿体(172.6 ± 2.1 Ma)为代表(Lang Xinghai et al.,2014)。 1 号矿体含矿斑岩为中侏罗世石英闪长斑岩(161.7~167.2 Ma),赋矿围岩为雄村组火山—沉积岩,其矿质沉淀的主要机制是温度压力的快速降低导致流体沸腾作用(Lang Xinghai et al.,2014,2020)。 2 号矿体的赋矿围岩也是雄村组火山—沉积岩,含矿斑岩为早侏罗世角闪石英闪长斑岩(175.7~181.8 Ma),其黄铜矿的沉淀主要是由早期低盐度流体发生相分离导致,辉钼矿的沉淀主要是由于成矿流体降温冷却所引发(Lang Xinghai et al.,2014,2019a)。
-
上述研究主要针对雄村矿集区的斑岩型矿化,但对于雄村矿集区的洞嘎金矿研究较为薄弱。洞嘎金矿发现于 1989 年,仅有少量学者对洞嘎金矿的地质特征、成矿流体特征、成矿物质来源和矿床成因等方面进行了初步探讨(曲晓明等,2002; 张延杰等❶; 郎兴海,2007),认为洞嘎金矿形成于新特提斯洋洋壳北向俯冲的大洋岛弧环境,是雄村斑岩铜金成矿系统外围的热液脉型金矿床( 何青等,2023a,2023b)。但是,关于洞嘎金矿的找矿方向并不清晰,尚需开展进一步的研究,以支撑矿区的找矿勘查工作部署。本研究旨在系统总结洞嘎金矿的矿床地质特征的基础上,根据洞嘎金矿的地面高精度磁测、土壤地球化学测量数据,结合雄村矿集区已有的物化探成果,对洞嘎金矿找矿方向进行探讨,为该区今后的勘查工作部署提供参考,推动雄村矿集区的找矿取得新突破。
-
1 区域地质背景
-
南部拉萨地块以年轻地壳为特征( Hou Zengqian et al.,2015),其东段存在前寒武纪结晶基底(约 496 Ma; Dong Xin et al.,2010)。南部拉萨地块出露地层主要有前寒武系—石炭系林芝群(Є — C)( 董昕等,2009)、中三叠统—中侏罗统叶巴组(T2—J2y)(Deng Yulin et al.,2021)、下—中侏罗统雄村组( J1-2 x)( Lang Xinghai et al.,2019b)、下— 中侏罗统比马组(J1-2 b)(Lang Xinghai et al.,2020)及第四系(Q)等(图1c)。南部拉萨地块的岩浆活动频繁,岩浆活动主要包括:与拉萨地块从冈瓦纳大陆裂解相关的岩浆作用(晚泥盆世—早石炭世; Wang Xuhui et al.,2020); 与新特提斯洋壳北向俯冲消减相关的岩浆作用(晚三叠世—中侏罗世及晚白垩世; Wang Xuhui et al.,2022b); 与印度—欧亚大陆碰撞初期新特提斯洋板片回转或断离有关的岩浆作用(古新世—始新世; He Qing et al.,2021; Li Liang et al.,2021); 与后碰撞岩石圈拆沉有关的岩浆作用(渐新世—中新世; Zhao Zhidan et al.,2009)。
-
图1(a)、(b)青藏高原大地构造图(据 Zhu Dicheng et al.,2011 修改)和(c)南部拉萨地块地质简图(地图据 Wang Xuhui et al.,2022a; 矿床位置据杨志明和侯增谦,2009 修订)
-
Fig.1 (a) , (b) Simplified regional geological map of the Himalayan—Xizang (Tibetan) orogeny (modified after Zhu Dicheng et al., 2011) , and (c) geological map of southern Lhasa Terrane, map modified from Wang Xuhui et al. (2022a) , deposit location modified from Yang Zhiming and Hou Zengqian (2009&)
-
位于南部拉萨地块中段南缘的雄村矿集区,构造复杂,岩浆活动频繁(图2a)。区出露两套地层单元:即下—中侏罗统雄村组火山—沉积岩(J1-2 x)和第四系( Q)洪积—冲积—崩积物( Lang Xinghai et al.,2019b)。雄村组出露在整个雄村矿集区,由砾岩、砂岩、粉砂岩、碳质页岩/ 板岩、泥质岩、火山角砾岩、凝灰岩和灰岩组成(图2a; 195~165 Ma; Lang Xinghai et al.,2019a)。侵入岩包括早侏罗世石英闪长斑岩(181~175 Ma)、早—中侏罗世石英闪长斑岩(174 Ma)、中侏罗世石英闪长岩(167~161 Ma)、辉绿岩岩脉(165 Ma)、晚侏罗世花岗闪长斑岩和始新世黑云花岗闪长岩、石英闪长岩、花岗质细晶岩岩脉和闪长岩岩脉(Lang Xinghai et al.,2014; 郎兴海等,2019)(图2a)。矿集区主要断裂( F1、F2)沿 1 号矿床的上盘和下盘发育,东西向背斜在矿集区南缘发育(图2a)。
-
图2 南拉萨地块雄村矿集区地质图(a; 修改自 Tang Juxing et al.,2015),洞嘎金矿地质简图(b)以及洞嘎金矿 91#线剖面图(c)
-
Fig.2 Geological map of the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane (a; modified from Tang Juxing et al., 2015) , geological map of the Dongga Au deposit (b) ; section map of the Dongga Au deposit along the line 91# (c)
-
2 矿床地质特征
-
洞嘎金矿已发现的金矿体均产于下—中侏罗统雄村组凝灰岩(图2b、c; 何青等,2023a,2023b)。受控于火山机构的 NW—SE 走向的裂隙系统(图2b),断裂倾向多为 NE,少数倾向为 SW,倾角陡( 多 >65°),向深部延伸较稳定(图2c)。特别是 NW—SE 与 NE 走向裂隙交叉部位,显示出较好的金矿化特征。矿体在雄村组凝灰岩中以彼此基本平行的脉状产出,整体倾向北东(倾角:56°~67°)(图2c),平均厚度约 10 m( 10~15 m),金平均品位 6.9 × 10-9(0.13×10-9~61.6×10-9),特高品位可大于 1000 × 10-9 ,金品位变化较大。洞嘎金矿已探获金金属量 9.55 t,接近中型规模(张延杰等❶)。
-
矿石结构主要有自形—半自形粒状结构、碎裂结构、共边结构,次为粒状结构、乳浊状结构(图3)。矿石构造以脉状构造为主,次为块状构造、浸染状构造、星点状构造(图3)。矿石中金属矿物主要为黄铁矿、黄铜矿,次为自然金,少量的闪锌矿、磁黄铁矿、磁铁矿(图3),其他金属矿物有少量的钛铁矿、赤铁矿; 非金属矿物以石英、绢云母为主,次为绿泥石、绿帘石、阳起石,少量碳酸盐矿物。洞嘎金矿围岩蚀变为黄铁绢英岩化,发育石英硫化物脉、绿泥石硫化物脉、黄铁矿脉、阳起石脉和晚期石英脉(图3a,c)。
-
3 土壤地球化学特征
-
笔者等在洞嘎金矿按 100 m×40 m 的测网进行 1 ∶ 10000 土壤地球化学测量,采集土壤样品 342 件。结合雄村矿集区已发表的土壤地球化学资料(郎兴海等,2012,2017),共获得 4889 件土壤样品数据,采样点见图4a,雄村矿集区土壤地球化学测量数据统计见表1。单元素等值线图应用 Surfer 软件绘制,离散数据网格化方法选取 Surfer 软件中的克立格插值法对数据做无偏估计,异常下限值为起始线,按 1、2、4 倍异常下限值分三带圈定异常范围,最后将网格化的数据做等值线图(图4)。各元素异常特征如下:
-
Au 元素:Au 异常强度高,出现多个浓集中心,主要在 2 号矿体、3 号矿体北东侧及洞嘎金矿构成的条带状区域富集,呈北西—南东走向,2 号矿体附近的异常与洞嘎金矿基本连成一片(图4b)。另外,在矿集区西侧也出现多个浓集中心。 Au 异常最小值 1.30×10-9,最大值 1814×10-9,平均含量为 26.68 × 10-9,变异系数较高( 3.83),富集系数较高(15.79),异常下限为 34.81×10-9。
-
Cu 元素:Cu 异常强度高,浓度分带明显,其浓集中心位于洞嘎金矿、2 号矿体和 3 号矿体附近,其异常范围与 Au 元素异常基本重合,构成一个近北西—南东向的 Cu 异常区(图4c)。 Cu 异常最小值 26.7×10-6,最大值 2016×10-6,其平均值为 221.7× 10-6,变异系数较高( 1.23),富集系数极高(147.8),异常下限为 373.3×10-6。
-
Ag 元素:Ag 异常分布区范围大,强度高,浓度分带较为明显,但浓集中心多分布于矿集区西侧,洞嘎金矿的 Ag 异常较弱( 图4d)。 Ag 异常最小值 0. 06× 10-6,最大值 1.42 × 10-6,平均含量( 0.13 ×10-6),变异系数为 0.61,富集系数为 2.54,异常下限为 0.19×10-6。
-
注:Au 含量单位为( ×10-9),其他元素含量为( ×10-6)。
-
图3 南拉萨地块雄村矿集区洞嘎金矿典型脉体及典型矿物特征:(a)石英硫化物脉被绿泥石硫化物脉切穿;(b)绿泥石硫化物脉被阳起石脉侵入;(c)石英脉切割黄铁矿脉及绿泥石硫化物脉;(d)石英硫化物脉中的石英;( e)石英硫化物脉中的黄铁矿、黄铜矿;(f)绿泥石硫化物脉,硫化物分布于脉体中心,石英充填于硫化物颗粒之间,边部可见大量绿泥石,少量绿帘石,可见后期的碳酸盐化;(g)自形粒状黄铁矿与它形黄铜矿共生;(h)黄铜矿与闪锌矿共生,闪锌矿中可见乳滴状黄铜矿;(i)磁黄铁矿与黄铁矿共生;(j)自然金充填于黄铁矿中及黄铜矿裂隙中;(k)硫化物脉中的磁铁矿沿黄铁矿边部与裂隙交代浸蚀;(l)石英脉中可见方解石细脉
-
Fig.3 Typical vein and mineral characteristics of the Dongga Au deposit in the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane: (a) chlorite sulfide veins cutting the quartz sulfide veins; (b) chlorite sulfide veins were invaded by actinolite veins; (c) quartz vein cutting pyrite vein and chlorite sulfide vein; (d) quartz in quartz sulfide veins; (e) pyrite and chalcopyrite in quartz sulfide veins; (f) chlorite sulfide veins, where sulfides are distributed in the center of the veins, and quartz is filled between sulfide particles, epidote and chlorite can be seen at the edge, and carbonation can be seen in the later stage; (g) idiomorph granular pyrite intergrown with chalcopyrite; (h) chalcopyrite and sphalerite coexist, and emulsion-dropped chalcopyrite can be seen in sphalerite; (i) pyrrhotite intergrown with pyrite; (j) natural gold is filled in pyrite chalcopyrite fractures; (k) pyrite veins: metasosomatic erosion of magnetite along pyrite edges and fissures; (l) calcite veins can be seen in quartz veins
-
Chl—绿泥石; Qz—石英; Ep—绿帘石; Ser—绢云母; Cab—碳酸盐; Act—阳起石; Cal—方解石; Sul—硫化物; Ccp—黄铜矿; Py—黄铁矿; Po—磁黄铁矿; Mg—磁铁矿; Sp—闪锌矿; Au—自然金
-
Chl—chlorite; Qz—quartz; Ep—epidote; Ser—sericite; Cab—carbonate; Act— actinolite; Cal—calcite; Sul—sulfide; Ccp—chalcopyrite; Py—pyrite; Po—pyrrhotite; Mg—magnetite; Sp—sphalerite; Au—natural gold
-
Fig.4 The diagrams of 1 ∶ 10000 soil geochemical anomaly in the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane (Some data are from Lang Xinghai et al., 2012&, 2017&)
-
Pb 元素:Pb 元素异常较强,其浓度分带较明显,浓集中心位于矿集区西侧(图4e)。洞嘎金矿的 Pb 异常整体分布于 Cu、Au 元素异常范围之外(图4)。 Pb 异常最小值 11.5 × 10-6,最大值 163.8 × 10-6,平均值为 29.67×10-6,变异系数为 0.35,富集系数为 4.56,异常下限为 33.24×10-6。
-
Zn 元素:Zn 元素异常分布区范围较大,强度较高,其浓度分带较明显,浓集中心位于矿集区 2 号矿体北东侧及北东至南西侧的条带状区域富集(图4f)。洞嘎金矿的 Zn 异常浓集中心位于洞嘎金矿西南侧,异常范围基本与 Pb 元素异常范围一致,整体分布于 Cu、Au 元素异常范围之外(图4)。 Zn 的最小值 17.20 × 10-6,最大值 2315 × 10-6,变异系数为 1.99,富集系数为 1.19,异常下限为 74.30×10-6 。
-
在雄村矿集区 1 ∶ 10000 土壤地球化学异常图(图4)可以看出:①雄村矿集区主要以 Au、Cu 元素异常为主,伴有 Ag、Pb、Zn 元素异常,Au、Cu 元素异常分布于 2、3 号矿体及矿集区西侧,Ag、Pb、Zn 这 3 种元素异常主要分布在 1 号、2 号矿体周围; ②洞嘎金矿 Cu、Au 元素异常的走向与 1 号、2 号矿体的展布方向一致,在矿体上方有明显的异常; ③洞嘎金矿的 Ag、Pb、Zn 元素异常较弱,与 2 号矿体的 Ag、Pb、 Zn 元素异常类似; ④2 号矿体元素分带明显,矿体中心向外基本为 Cu—Au—Ag—Pb—Zn 异常,洞嘎金矿也有类似特征。
-
4 地球物理特征
-
笔者等在洞嘎金矿范围内按 50 m×20 m 的测网进行地面高精度磁测工作,共布设磁测测线 17 条。结合雄村矿集区已发表的地面高精度磁测资料(郎兴海等,2017),我们绘制了雄村矿集区地面磁测异常图(图5)。对雄村矿集区内不同岩性的地质体进行了磁性参数测定(表2),结果显示凝灰岩最高(平均值为 2703.99 × 10-6 SI),硅化凝灰岩次之(平均值为 1848.87×10 -6 SI); 早侏罗世石英闪长斑岩、粉砂岩、蚀变粉砂岩等岩性的磁化率值较小,小于 100×10-6 SI,一般在 18×10-6~94×10-6 SI 之间。凝灰岩、硅化凝灰岩表现为较高磁化特征; 早侏罗世石英闪长斑岩、粉砂岩、蚀变粉砂岩等岩性表现为低磁化特征,各种岩石类型的磁性特征区别较明显,因而在该区开展磁测工作,具有充分的地球物理前提。
-
从雄村矿集区地面磁测异常图可以看出,雄村矿集区出现明显的高值(>49200 nT)和低值磁异常区(<49200 nT)(图5)。雄村矿集区已发现的矿(化)体区域磁异常特征:①1 号矿体低磁异常区:呈北西—南东向带状分布,其范围基本与雄村 1 号矿体重合,磁异常值在 48960~49150 nT 之间; ②2 号矿体高磁异常区:高磁异常呈近南北向带状分布,磁异常值在 49450 nT 以上,位于 49550~50000 nT,四周磁异常值在 49200 nT 以下,位于 48950~49200 nT 之间(图5); ③洞嘎金矿高磁异常区:位于洞嘎金矿,与 2 号矿体的高磁异常连成一片,异常构成一个近北东向的带状分布,该区域的磁异常值为 49350~50000 nT(图5)。
-
图5 南拉萨地块雄村矿集区 1 ∶ 5000 地面磁测异常图
-
Fig.5 The anomaly of 1 ∶ 5000 ground magnetic survey in the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane
-
5 找矿方向
-
5.1 矿床地质特征对找矿方向的指示
-
洞嘎金矿位于雄村矿集区的中部,邻近 2 号矿体南侧,矿集区广泛分布中生代岩浆岩,断裂构造发育(图2a)。目前,雄村矿集区已发现了 1、2、3 号斑岩型铜金矿体和洞嘎热液脉型金矿及哑达、用贡巴及则琼铜金矿化体(金属量: Cu >2.5 Mt、Au >250 t、Ag >1000 t; 唐菊兴等,2014)是一个超大型的铜金矿集区。雄村矿集区已发现的矿体产于侏罗纪斑岩体及接触带附近的围岩(雄村组火山—沉积岩),多为浸染状、脉状产出。可见,矿集区成矿地质条件优越,成矿潜力巨大,侏罗纪岩体与雄村组接触带及深部斑岩体是主要的找矿方向。
-
洞嘎金矿岩浆活动频繁,构造发育,洞嘎金矿的成矿时间(180.4 Ma)与矿集区岩浆活动(195~162 Ma)一致( Lang Xinghai et al.,2014; 何青等,2023a,2023b)。金矿化赋存于雄村组凝灰岩( 图2c),赋矿凝灰岩不仅提供了金矿化的就位空间,也提供了含金热液的沉淀场所,同时也起盖层作用,避免矿床遭受剥蚀(何青等,2023a,2023b)。洞嘎金矿凝灰岩发育强烈的黄铁绢英岩化蚀变,绿泥石硫化物脉系含金脉体,该脉体也是雄村 2 矿体的主要含矿脉体之一(Lang Xinghai et al.,2019b)。同时,洞嘎金矿( 180.4~185.1 Ma)与雄村 2 号矿体(172.6~181.8 Ma)属于同一期成岩成矿作用(Lang Xinghai et al.,2014; 何青等,2023a,2023b)。洞嘎金矿的成矿地质背景、脉体特征、矿物组合、硫铅同位素特征都表明洞嘎金矿是斑岩型铜金成矿系统(2 号矿体)外围的热液脉型金矿体( 何青等,2023a,2023b)。此外,2 号矿体的三维地质模型显示铜金矿化主要发生于早侏罗世石英闪长斑岩内(图6a),三维蚀变模型显示 2 号矿体的中部为钾硅酸盐化蚀变及钠化—钙化蚀变,北侧向外围依次为绢云母—绿泥石化蚀变、黄铁绢英岩化蚀变及青磐岩化蚀变(图6b; Lang Xinghai et al.,2019a)。依据斑岩型矿床的蚀变分带特征(Sillitoe,2010),2 号矿体的蚀变带是残缺的,类似于美国的 San Manuel— Kalamazoo 斑岩铜矿床(Lowell,1968; Force et al.,1995),因此在 2 号矿体的南侧也应存在绢云母—绿泥石化蚀变、黄铁绢英岩化蚀变及青磐岩化蚀变(图7b)。另外,何青等(2023a)建立了洞嘎金矿成矿地质模型,表明 2 号矿体南侧(洞嘎金矿)发育绢云母—绿泥石化蚀变、黄铁绢英岩化蚀变及青磐岩化蚀变,这也符合上述地质模型的推断。综上所述,我们认为洞嘎金矿的深部可能有 2 号矿体南向延伸的斑岩型矿化(图7b),洞嘎金矿的深部找矿潜力巨大,通过进一步的勘查工作有望获得新的找矿突破。
-
5.2 物化探异常对找矿方向的指示
-
雄村矿集区的元素异常分布以高强度的 Cu、Au 异常为主,伴随 Ag、Pb、Zn 元素异常,洞嘎金矿的Cu—Au 元素异常与 2 号矿体基本连成一片分布为特征(图4)。洞嘎金矿的元素异常与 2 号矿体的土壤元素异常及其相似,这可能暗示了洞嘎金矿深部可能有 2 号矿体向南延伸的斑岩型矿化体。
-
图6 南拉萨地块雄村矿集区雄村 2 号矿体三维地质模型(a)和蚀变模型(b)(C—D 位置见图2a)
-
Fig.6 3D geological model (a) and alteration model (b) (location of C—D see in Fig.2a) of the Xiongcun No.2 deposit, the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane
-
洞嘎金矿的高精度地面磁测也表明了其深部找矿潜力巨大。雄村矿集区 1 号矿体位于低磁异常区,2 号矿体位于高磁异常区,暗示造成雄村矿集区磁异常可能与深部是否含有磁性矿物有关。通过雄村矿集区已验证的 1 号及 2 号矿体,雄村矿集区的高磁异常系深部的磁铁矿所引起的( 郎兴海等,2014)。 2 号矿体的钻探结果表明其深部都发育黑云母—磁铁矿蚀变(磁铁矿含量高),2 号矿体高磁异常是因为深部的磁铁矿含量高引起的(郎兴海等,2017)。而 1 号矿体的磁异常值低于 2 号矿体可能是由于 1 号矿体的磁铁矿含量低于 2 号矿体(郎兴海等,2017)。洞嘎金矿也表现出与 2 号矿体类似的高磁异常(图5),暗示了洞嘎金矿深部也具有与 2 号矿体类似的黑云母—磁铁矿蚀变,磁铁矿含量较高。同时在雄村矿集区地面磁测异常图上,洞嘎金矿的高磁异常与 2 号矿体的高磁异常连成一片,表现为由 2 号矿体向洞嘎金矿延伸,磁异常逐渐减弱。故洞嘎金矿的高磁异常暗示其深部可能存在隐伏岩体,且埋深较大,可能为 2 号矿体含矿斑岩体向 SW 的深部延伸,暗示其深部找矿潜力巨大。
-
6 结论
-
(1)雄村矿集区的土壤地球化学异常以高强度的 Cu、Au 异常为主,伴随 Ag、Pb、Zn 元素异常,而洞嘎金矿 Cu—Au 元素异常与 2 号矿体基本连成一片分布为特征。洞嘎金矿的地球物理特征表现为高磁异常,洞嘎金矿也表现出与 2 号矿体类似的高磁异常,洞嘎金矿的高磁异常与 2 号矿体的高磁异常连成一片。
-
(2)洞嘎金矿化赋存于雄村组凝灰岩,发育强烈的黄铁绢英岩化蚀变,绿泥石硫化物脉系含金脉体,其成矿时间与雄村矿集区岩浆活动一致。 2 号矿体的南侧蚀变带是残缺的,洞嘎金矿成矿地质模型表明洞嘎金矿的深部可能有 2 号矿体南向延伸的斑岩型矿化,洞嘎金矿的深部找矿潜力巨大。
-
(3)雄村 2 号矿体的地球化学、地球物理异常往南部延伸至洞嘎金矿的特征,暗示洞嘎金矿深部可能有 2 号矿体南向延伸的斑岩型矿化体,表明洞嘎金矿的深部找矿潜力巨大,通过进一步的勘查工作有望获得新的找矿突破。
-
图7 南拉萨地块雄村矿集区洞嘎金矿赋矿凝灰岩构造背景模式图(a)(引自何青等,2023b)和洞嘎金矿床成矿地质模型(b)(引自 Lang Xinghai et al.,2024)
-
Fig.7 Cartoon showing tectonic setting of the ore-bearing tuff ( a) ( after He Qing et al., 2023b&) , and oreforming geological model (b) (from Lang Xinghai et al., 2024) of the Dongga gold deposit in the Xiongcun Ore Deposit Cluster, southern Lhasa Terrane
-
注释 / Note
-
❶ 张延杰,苏保华,王润.2006. 西藏自治区谢通门县洞嘎金矿矿产资源储量核实报告. 拉萨:西藏地质六队.
-
❶ Zhang Yanjie, Su Baohua, Wang Run.2006 #. Mineral resource reserve verification report of Dongga Gold Deposit in Xetongmen County, Tibet Autonomous Region. Lhasa: Xizang Geology Team 6.
-
参考文献
-
董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学与锆石U-Pb年代学. 岩石学报, 25(7): 1678~1694.
-
何青, 解鸿儒, 郎兴海, 王旭辉, 邓煜霖, 谢富伟, 王涌滔, 杜良艺, 吴伟哲, 王勇, 刘洲基, 姜楷, 詹宏宇. 2023b. 西藏谢通门雄村地区洞嘎金矿赋矿凝灰岩的年代学和地球化学特征. 地质论评, 69(5): 1694~1718.
-
何青, 郎兴海, 王旭辉, 邓煜霖, 王涌涛, 吴伟哲, 谢鸿儒, 詹宏宇, 刘洲基, 姜楷. 2023a. 西藏洞嘎金矿床地质特征、原位硫同位素组成及成因探讨. 地球学报, 44(6): 1000~1016.
-
黄瀚霄, 李光明, 董随亮, 石洪召, 刘波, 张智林. 2012. 西藏弄如日金矿床蚀变绢云母40Ar-39Ar 年龄及其地质意义. 大地构造与成矿学, 36(4): 607~612.
-
郎兴海. 2007. 西藏雄村铜金矿床与洞嘎金矿床对比研究. 导师: 唐菊兴. 成都: 成都理工大学硕士学位论文.
-
郎兴海, 唐菊兴, 李志军, 黄勇, 丁枫, 王成辉, 张丽, 周云. 2012. 西藏雄村斑岩型铜金矿集区Ⅰ号矿体的硫、铅同位素特征及其对成矿物质来源的指示. 地球学报, 33(4): 459~470.
-
郎兴海, 唐菊兴, 谢富伟, 黄勇. 2014. 西藏雄村矿区地面磁测异常特征及其对找矿方向的指示. 地质与勘探, 50(3): 411~418.
-
郎兴海, 崔志伟, 王旭辉, 邓煜霖, 谢富伟, 韩鹏, 杨宗耀, 张忠, 黄勇, 李志军, 尹青, 张金树, 丁枫, 董树义, 王子正, 张丽. 2017. 西藏谢通门县雄村矿集区综合信息找矿模型及靶区预测. 地球学报, (5): 790~802.
-
郎兴海, 郭文铂, 王旭辉, 邓煜霖, 杨宗耀, 谢富伟, 李壮, 张忠, 姜楷. 2019. 西藏雄村矿集区含矿斑岩成因及构造意义: 来自年代学及地球化学的约束. 岩石学报, 35(7): 2105~2123.
-
刘洪, 黄瀚霄, 张林奎, 李光明, 欧阳渊, 黄勇, 吕梦鸿, 兰双双. 2021. 西藏冈底斯成矿带西段鲁尔玛晚三叠世斑岩型铜(金)矿点的地质特征及发现意义. 沉积与特提斯地质, 41(4): 599~611.
-
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.
-
曲晓明, 侯增谦, 李佑国. 2002. S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示. 地质通报, 21(11): 768~776.
-
孙祥, 郑有业, 吴松, 游智敏, 伍旭, 李淼, 周天成, 董俊. 2013. 冈底斯明则—程巴斑岩—夕卡岩型Mo—Cu 矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392~1406.
-
唐菊兴, 多吉, 刘鸿飞, 郎兴海, 张金树, 郑文宝, 应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究. 地球学报, 33(4): 393~410.
-
唐菊兴, 王勤, 杨超, 丁帅, 郎兴海, 刘鸿飞, 黄勇, 郑文宝, 王立强, 高一鸣, 冯军, 段吉琳, 宋杨, 王艺云, 林彬, 方向, 张志, 杨欢欢. 2014. 青藏高原两个斑岩—浅成低温热液矿床成矿亚系列及其“缺位找矿"之实践. 矿床地质, 33(6): 1151~1170.
-
杨志明, 侯增谦. 2009. 初论碰撞造山环境斑岩铜矿成矿模型. 矿床地质, 28(5): 515~538.
-
Deng Yulin, Lang Xinghai Wang Xuhui, Santosh M, He Qing, Yin Qing. 2021. Early Mesozoic arc-back-arc system in the leading edge of the Tibetan Plateau. Lithos, 406: 106530.
-
Dong Xin, Zhang Zeming, Wang Jinli, Zhao Guochun, Liu Feng, Wang Wei, Yu Fei. 2009&. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 25(7): 1678~1694.
-
Dong Xin, Zhang Zeming, Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri group, southern Lhasa terrane, Tibetan Plateau: implications for grenvillian and Pan-African provenance and Mesozoic—Cenozoic metamorphism. The Journal of Geology, 118(6): 677~690.
-
Force E R, Dickinson W R, Hagstrum J T. 1995. Tilting history of the San Manuel—Kalamazoo porphyry system, southeastern Arizona. Economic Geology, 90(1): 67~80.
-
He Qing, LangXinghai, Li Liang, Chen Cuihua, Wang Xuhui. , Deng Yulin, Yin Qing, Xie Fuwei, Zongyao, Zhang Zhong, Jiang Kai. 2021. U-Pb zircon age and geochemistry of the Cuocun gabbro in the southern Lhasa Terrane: Implications for Early Cretaceous rollback of the Neo-Tethyan oceanic slab. Geological Journal, 56(3): 1424~1444.
-
He Qing, Lang Xinghai, Wang Xuhui, Deng Yulin, Wang Yongtao, Wu Weizhe, Xie Hongru, Zhan Hongyu, Liu Zhouji, Jiang Kai. 2023a&. Geological Characteristics, in Situ Sulfur Isotope Composition and Genesis of the Dongga Gold Deposit in Xiongcun Area, Tibet. Acta Geoscientica Sinica, 44(6): 1000~1016.
-
He Qing, Xie Hongru, Lang Xinghai, Wang Xuhui, Deng Yulin, Xie Fuwei, Wang Yongtao, Du Liangyi, Wu Weizhe, Wang Yong, Liu Zhouji, Jiang Kai, Zhan Hongyu. 2023b&. Geochronological and geochemical characteristics of the ore-bearing tuff of Dongga gold deposit in the Xiongcun area, Tibet. Geological Review, 69(5): 1694~1718.
-
Hou Zengqian, Duan Lianfeng, Lu Yongjun, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan—Tibetan Orogen. Economic Geology, 110(6): 1541~1575.
-
Hou Zengqian, Gao Yongfu, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east—west extension in southern Tibet. Earth Planet. Earth and Planetary Science Letters, 220(1~2): 139~155.
-
Huang Hanxiao, Li Guangming, Dong Suiliang, Shi Hongzhao, Liu Bo, Zhang Zhilin. 2012&. 40Ar-39Ar dating of sericite in the Nongruri gold deposit of Tibet and its geological significance. Geotectonica et Metallogenia, 36(4): 607~612.
-
Lang Xinghai. 2007&. Contrast study between Xiongcun copper—gold deposit and the Dongga gold deposit, Tibet. Dutor: Tang Juxing. Chengdu: Chengdu University of Technology Master Dissertation.
-
Lang Xinghai, Tang Juxing, Li Zhijun, Huang Yong, Ding Feng, Wang Chenghui, Zhang Li, Zhou Yun. 2012&. Sulfur and Lead Isotope Characteristics of No. Ⅰ Ore Body in the Xiongcun Porphyry Copper—Gold Ore Concentration Area of Tibet: Implications for the Source of Metals in the Ore Deposit. Acta Geoscientica Sinica, 33(4): 459~470.
-
Lang Xinghai, Tang Juxing, Li Zhijun, Huang Yong, Ding Feng, Yang Huanhuan, Xie Fuwei, Zhang Li, Wang Qin, Zhou Yun. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608~622.
-
Lang Xinghai, Tang Juxing, Xie Fuwei, Huang Yong. 2014&. Characteristics of ground, magnetic anomalies and their significance for ore prospecting in the Xiongcun district of Tibet. Geology and Exploration (in Chinese), 50(3): 411~418.
-
Lang Xinghai, Cui Zhiwei, Wang Xuhui, Deng Yulin, Xie Fuwei, Han Peng, Yang Zongyao, Zhang Zhong, Huang Yong, Li Zhijun, Yin Qing, Zhang Jinshu, Ding Feng, Dong Shuyi, Wang Zizheng, Zhang Li. 2017&. Comprehensive information prospecting model and target prediction for the Xiongcun Area, Xietongmen County, Tibet. Acta Geoscientica Sinica, (5): 790~802.
-
Lang Xinghai, Guo Wenbo, Wang Xuhui, Deng Yulin, Yang Zongyao, Xie Fuwei, Li Zhuang, Zhang Zhong, Jiang Kai. 2019&. Petrogenesis and tectonic implications of the ore-bearing porphyries in the Xiongcun district: Constraints from the geochronology and geochemistry. Acta Petrologica Sinica, 35(7): 2105~2123.
-
Lang Xinghai, Wang Xuhui, Deng Yulin, Tang Juxing, Xie Fuwei, Yang Zongyao, Yin Qing, Jiang Kai. 2019a. Hydrothermal evolution and ore precipitation of the No. 2 porphyry Cu—Au deposit in the Xiongcun district, Tibet: Evidence from cathodoluminescence, fluid inclusions, and isotopes. Ore Geology Reviews, 114: 103141.
-
Lang Xinghai, Wang Xuhui, Deng Yulin, Tang Juxing, Xie Fuwei, Zhou You, Huang Yong, Li Zhuang, Yin Qing, Jiang Kai. 2019b. Early Jurassic volcanic rocks in the Xiongcun district, southern Lhasa subterrane, Tibet: implications for the tectono—magmatic events associated with the early evolution of the Neo-Tethys Ocean. Lithos, 340: 166~180.
-
Lang Xinghai, Deng Yulin, Wang Xuhui, Tang Juxing, Yin Qing, Xie Fuwei, Yang Zongyao, Li Zhuang, He Qing, Li Liang, Zhang Zhong, Jiang Kai. 2020. Geochronology and geochemistry of volcanic rocks of the Bima Formation, southern Lhasa subterrane, Tibet: Implications for early neo-Tethyan subduction. Gondwana Research, 80: 335~349.
-
Lang Xinghai, Deng Yulin, He Qing, Wang Xuhui, Harris C, Zhan Hongyu, Wu Weizhe, Wu Changyi, Jiang Kai. 2024. Origin of the Dongga Au deposit in the giant Xiongcun porphyry Cu-Au district, Tibet, China: Constraints from multiple isotopes (Re, Os, He, Ar, H, O, S, Pb) and fluid inclusions, Ore Geology Reviews, 171: 106173.
-
Li Liang, Xie Hui, Lang Xinghai, Wang Xuhui, He Qing, Deng Yulin, Xie Fuwei. 2022. Petrogenesis of Early—Middle Jurassic gabbros in southern Tibet with implications for crustal growth in the southern Lhasa subterrane. International Geology Review, 4(12): 1755~1780.
-
Liu Hong, HuangHanxiao, Zhang Linkui, Li Guangming, Ouyang Yuan, Huang Yong, Lu Menghong, Lan Shuangshuang. 2021&. Luerma, a newly discovered Late Triassic porphyry copper—gold ore-spot in the western Gangdise metallogenic belt, Tibet. Sedimentary Geology and Tethyan Geology, 41(4): 599~611.
-
Lowell J D. 1968. Geology of the Kalamazoo orebody, San Manuel district, Arizona. Economic Geology, 63(6): 645~654.
-
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006&. Spatial temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533.
-
Qu Xiaoming, Hou Zengqian, Li Youguo. 2002&. Implications of S and Pb isotopic compositions of the Gangdise porphyry copper belt for the ore-forming material source and material recycling within the orogenic belt. Geological Bulletin of China, 21(11): 768~776.
-
Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105(1): 3~41.
-
Sun Xiang, Zheng Youye, Wu Song, You Zhimin, Wu Xu, Li Miao, Zhou Tiancheng, Dong Jun. 2013&. Mineralization age and petrogenesis of associated intrusions in the Mingze—Chengba porphyry—skarn Mo—Cu deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392~140.
-
Tang Juxing, Lang Xinghai, Xie Fuwei, Gao Yiming, Li Zhijun, Huang Yong, Ding Feng, Yang Huanhuan, Zhang Li, Wang Qin, Zhou Yun. 2015. Geological characteristics and genesis of the Jurassic No. I porphyry Cu—Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet. Ore Geology Reviews, 70: 438~456.
-
Tang Juxing, Duoji, Liu Hongfei, Lang Xinghai, Zhang Jinshu, Zheng Wenbao, Ying Lijuan. 2012&. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt. Acta Geoscientica Sinica, 33(4): 393~410.
-
Tang Juxing, Wang Qin, Yang Chao, Ding Shuai, Lang Xinghai, Liu Hongfei, Huang Yong, Zheng Wenbao, Wang Liqiang, Gao Yiming, Feng Jun, Duan Jilin, Song Yang, Wang Yiyun, Lin Bin, Xiang Xiang, Zhang Zhi, Yang Huanhuan. 2014&. Two porphyry—epithermal deposit metallogenic subseries in Tibetan Plateau: Practice of" absence prospecting" deposit metallogenic series. Mineral deposits, 33(6): 1151~1170.
-
Wang Xuhui, Lang Xinghai, Deng Yulin, Tang Juxing, He Qing, Xie Fuwei, Yin Qing. 2022b. Early Mesozoic magmatism records the tectonic evolution from syn- to post-collisional setting in the Central Lhasa subterrane, Tibet. Lithos, 416: 106642.
-
Wang Xuhui, Lang Xinghai, Klemd R, Deng Yulin, Tang Juxing. 2022a. Subduction initiation of the Neo-Tethys oceanic lithosphere by collision-induced subduction transference. Gondwana Research, 104: 54~69.
-
Wang Xuhui, Lang Xinghai, Tang Juxing, Deng Yulin, Cui Zhiwei. 2019. Early—Middle Jurassic (182~170 Ma) Ruocuo adakitic porphyries, southern margin of the Lhasa terrane, Tibet: implications for geodynamic setting and porphyry Cu—Au mineralization. Journal of Asian Earth Sciences, 173: 336~351.
-
Wang Xuhui, Lang Xinghai, Tang Juxing, Deng Yulin, He Qing, Xie Fuwei, Li Liang, Yin Qing, Li Zhijun, Li Zhuang, Yang Zongyao, Dong Shuyi, Ding Feng, Wang Zizheng, Huang Yong. 2020. Early Carboniferous back-arc rifting-related magmatism in southern Tibet: Implications for the history of the Lhasa terrane separation from Gondwana. Tectonics, 39(10): e2020TC006237.
-
Yang Zhiming, Hou Zengqian, Chang Zhaoshan, Li Qiuyun, Liu Yunfei, Qu Huanchun, Sun Maoyu, Xu Bo. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245(3): 243~257.
-
Yang Zhiming, Hou Zengqian. 2009&. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model. Mineral Deposits, 28(5): 515~538.
-
Yin Aan, Harrison T M. 2000. Geologic evolution of the Himalayan—Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
-
Zhao Zhidan, Mo Xuanxue, Dilek Y, Niu Yaoling, DePaolo D J, Robinson P, Zhu Dicheng, Sun Chenguang, Dong Guochen, Zhou Su, Luo Zhaohua, Hou Zengqian. 2009. Geochemical and Sr—Nd—Pb—O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1~2): 190~212.
-
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1~2): 241~255.
-
摘要
洞嘎金矿位于南部拉萨地块中段南缘的雄村矿集区,是西藏较早发现的金矿。但前人的研究主要针对雄村矿集区的斑岩矿床,对洞嘎金矿的研究程度不高,尤其是缺乏对洞嘎金矿找矿方向的综合研究。为此,笔者等在系统总结洞嘎金矿的矿床地质特征基础上,综合土壤地球化学测量和地面高精度磁测成果,探讨洞嘎金矿的找矿方向。洞嘎金矿已发现的金矿体赋存于雄村组凝灰岩中,发育强烈的黄铁绢英岩化,属斑岩型铜金成矿系统外围的热液脉型金矿体。洞嘎金矿的物探、化探异常特征极其类似于雄村 2 号矿体,并且在空间上连为一体。综合矿床地质特征以及土壤地球化学和地球物理异常,笔者等认为洞嘎金矿的深部可能有 2 号矿体南向延伸的斑岩型矿化, 其深部寻找斑岩型矿体的潜力巨大。笔者等研究对于洞嘎金矿的今后勘查工作部署具有重要指导意义。
Abstract
The Dongga Au deposit is located in the Xiongcun Ore Deposit Cluster, at the southern edge of the central part of the southern Lhasa Terrane, and is an early discovered gold deposit in Xizang(Tibet). However, previous studies have mainly focused on the porphyry deposits in the Xiongcun Ore Deposit Cluster, and the extent of research on the Dongga Au deposit is not enough, especially is lack of a comprehensive study on the ore prospecting direction of the Dongga Au deposit. In this paper, based on a systematic summary of the geological characteristics of the Dongga Au deposit, the results of soil geochemical measurements and ground-based highprecision magnetic measurements are integrated to explore the direction of the Dongga Au deposit. The gold ore bodies found in the Dongga Au deposit are hosted in tuffs of the Xiongcun Formation, which are strongly pyritic sericitized, and belongs to the hydrothermal vein type gold orebodies in the periphery of porphyry copper—gold metallogenic system. The mineral and chemical anomalies of the Dongga Au deposit are very similar to the No. 2 deposit found in the Xiongcun Ore Deposit Cluster and are spatially coherent. Combining the geological characteristics of the deposit with soil geochemical and geophysical anomalies, this paper suggests that the No. 2 deposit contains mineralized porphyry extending southwards to the deeper part of the Dongga Au deposit, and that there is great potential for finding porphyry-type ore bodies at the deeper part of the Dongga Au deposit. This thesis is an important guide for the future exploration of the Dongga Au deposit.