en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

权日,男,1995年生,硕士研究生,专业方向:盆地分析与沉积学;E-mail: 925000180@qq.com。

通讯作者:

许淑梅,女,1970年生,博士,教授,长期从事盆地分析和沉积学的教学与科研工作;E-mail: xsm@ouc.edu.cn。

参考文献
操应长, 杜亮慧, 王艳忠, 葸克来, 王孝明, 张江华. 2015. 准噶尔盆地中部Ⅰ区块三工河组储层沉积成岩综合相及其测井识别. 天然气地球科学, 26(6): 1016~1027.
参考文献
冯庚, 谢利华, 刘继伟, 王军, 张卫平. 2022. 准噶尔盆地中部1区块三工河组基准面旋回划分. 天然气地球学, 33(11): 1798~1807.
参考文献
冯怀伟, 许淑梅, 王金铎, 张关龙, 曾治平. 2024. 浅水三角洲物源、砂体构型与储层特征研究——以准噶尔盆地永进—莫西庄地区侏罗系三工河组二段为例. 地质论评, 70(1): 330~345.
参考文献
洪有密. 2007. 测井原理与综合解释. 东营: 中国石油大学出版社: 165~195.
参考文献
厚刚福, 孙雄伟, 李昌, 刘群, 曾庆鲁, 熊冉, 曹全斌. 2012. 塔里木盆地西南部叶城凹陷下白垩统克孜勒苏群扇三角洲沉积特征及模式. 中国地质, 39(4): 947~953.
参考文献
厚刚福, 徐洋, 孙靖, 王力宝, 宋明星, 郭华军, 李亚哲, 陈扬. 2019. 三角洲前缘—湖盆深水区沉积模式及意义——以准噶尔盆地盆1井西凹陷三工河组二段一砂组为例. 石油学报, 40(10): 1223~1232.
参考文献
姜林, 宋岩, 查明, 曲江秀. 2008. 准噶尔盆地莫索湾地区超压与油气成藏. 大庆石油学院学报, 32(6): 24~28.
参考文献
孔家豪, 张关龙, 许淑梅, 王金铎, 曾治平, 王千军, 任新成, 武向峰, 舒鹏程, 马慧磊, 崔慧琪. 2022. 噶尔盆地侏罗纪车—莫古隆起的发育阶段及其对沉积体系的制约[OL]. 中国地质, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.
参考文献
李双文, 刘洛夫, 张有平, 姚卫江, 靳军, 赵建章, 孙东. 2006. 准噶尔盆地莫北凸起侏罗系三工河组沉积演化及微相构成. 沉积学报, 24(6): 819~828.
参考文献
林会喜, 王建伟, 曹建军, 任新成. 2019. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究. 地质学报, 93(12): 3259~3268.
参考文献
刘刚, 卫延召, 罗鸿成, 陈棡, 龚德瑜, 王峰, 孙靖, 贾开富. 2018. 准噶尔盆地陆西地区石南13井区侏罗系三工河组砂体结构及控藏作用. 石油学报, 39(9): 1006~1018.
参考文献
刘华, 蒋有录, 徐昊清, 张永丰. 2011. 冀中坳陷新近系油气成藏机理与成藏模式. 石油学报, 32(6): 928~936.
参考文献
柳妮, 陈玉一, 李疆, 于景维, 于美琪, 康晶, 康天祥, 王效俭. 2020. 准噶尔盆地阜康凹陷北部三工河组储层非均质性综合研究. 地质与勘探, 56(2): 451~464.
参考文献
路成. 2016. 准噶尔盆地中部1、3区块老井测井二次解释研究. 导师: 黄建华. 乌鲁木齐: 新疆大学硕士论文.
参考文献
母长河, 梁秀丽, 马利民. 2006. 萨北开发区油水同层测井解释方法. 大庆石油地质与开发, 25(6): 112~114.
参考文献
潘荣, 朱筱敏, 刘芬, 李勇, 马玉杰, 邸宏利, 张荣虎. 2013. 新疆库车坳陷克拉苏冲断带白垩系辫状河三角洲沉积特征及其与储集层发育的关系. 古地理学报, 15(5): 707~716.
参考文献
蒲仁海, 梅志超, 唐忠华. 1994. 准噶尔盆地东部侏罗系陆相层序地层学初探. 新疆石油地质, 15(4): 335~342.
参考文献
邱子刚, 戴雄军, 施小荣. 2010. 准噶尔盆地莫北凸起侏罗系三工河组沉积相. 石油天然气学报, 32(5): 183~186.
参考文献
孙靖, 吴爱成, 王然, 曾德龙, 王峰, 薛晶晶. 2017. 准噶尔盆地中央坳陷莫索湾地区侏罗系三工河组深层致密砂岩气储集层特征及成因. 古地理学报, 19(5): 907~918.
参考文献
孙靖, 薛晶晶, 厚刚福, 吴爱成, 宋明星, 朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式—以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858~869.
参考文献
唐勇, 孔玉华, 盛建红, 赵克斌, 斯春松, 史基安. 2009. 准噶尔盆地腹地缓坡型岩性地层油气藏成藏控制因素分析. 沉积学报, 27(3): 567~572.
参考文献
王金铎, 许淑梅, 张关龙, 任新成, 曾治平, 武向峰, 舒鹏程, 冯怀伟. 2022. 准噶尔盆地腹地下侏罗统三工河组储层物性—含油性特征及主控因素分析. 地质论评, 68(3): 1129~1144.
参考文献
吾尔妮萨罕·麦麦提敏, 李军, 赵靖舟, 吴涛, 徐泽阳, 杜治伟, 范佳怡, 许晨航. 2024. 准噶尔盆地莫索湾凸起侏罗系超压成因研究. 天然气地球科学, 35(9): 1590~1600.
参考文献
吴冲龙, 林忠民, 毛小平, 王连进. 2009. “油气成藏模式”的概念、研究现状和发展趋势. 石油与天然气地质, 30(6): 673~683.
参考文献
徐后伟, 王海明, 刘荣军, 许长福, 王晓光, 吕建荣. 2018. 砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例. 新疆石油地质, 39(2): 169~175.
参考文献
许淑梅, 李萌, 王金铎, 任新成, 池鑫琪, 舒鹏程, 王杰清, 刘弦. 2020. 准噶尔盆地腹地下侏罗统三工河组旋回样式及砂体叠置规律. 古地理学报, 22(2): 221~234.
参考文献
阎海龙, 孙卫. 2006. 水下分流河道砂体中夹层的识别及定量分析—以靖安油田盘古梁长6油层为例. 西北大学学报(自然科学版), 36(1): 133~136.
参考文献
张冬玲, 鲍志东, 王建伟, 杨文秀. 2005. 准噶尔盆地中部下侏罗统三工河组二段沉积相及储层特征. 古地理学报, 7(2): 185~196.
参考文献
张年富. 2000. 准噶尔盆地腹部莫索湾地区油气成藏条件与成藏模式. 石油勘探与开发, 27(3): 110~119.
参考文献
赵璐阳, 孙越, 赵自民, 黄胜, 周萌, 张润. 2018. 电阻率比值法在苏里格低电阻率气层测井解释中的应用. 测井技术, 42(6): 689~694.
参考文献
赵孟军, 宋岩, 柳少波, 杨海波, 刘得光. 2009. 准噶尔盆地天然气成藏体系和成藏过程分析. 地质论评, 55(2): 215~224.
参考文献
赵淑娟, 李三忠, 刘鑫, 楼达, 索艳慧, 戴黎明, 孙文军, 李涛, 王学斌, 杨朝. 2014. 准噶尔盆地东缘构造: 阿尔泰与北天山造山带交接转换的陆内过程. 中国科学: 地球科学, 44(10): 2130~2141.
参考文献
郑建东, 王晓莲, 高吉峰. 2013. 一种考虑邻近泥岩特征的油水层识别方法. 测井技术, 37(4): 397~400.
参考文献
周勇水, 邱楠生, 宋鑫颖, 曹环宇, 阙永泉. 2014. 准噶尔盆地腹地超压地层烃源岩热演化史研究. 地质科学, 49(3): 812~822.
参考文献
Cao Yingchang, Du Lianghui, Wang Yanzhong, Xi Kelai, Wang Xiaoming, Zhang Jianghua. 2015&. Reservoir sedimentary—diagenetic synthetic facies and its logging identification of Sangonghe Foramtion in block 1 of central Junggar Basin. Natural Gas Geoscience, 26(6): 1016~1027.
参考文献
Chen Dongxia, Pang Xiongqi, Kuang Jun, Kang Dejiang, Lei Lei, Deng Yougen. 2010. Control of Facies and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar Basin. Acta Geologica Sinica(English Edition), 84(5): 1256~1272.
参考文献
Feng Geng, Xie Lihua, Liu Jiwei, Wang Jun. Zhang Weiping. 2022&. Division of base cycle of Sangonghe Formation in block 1, central Junggar Basin. Natural Gas Geoscience, 33(11): 1798~1807.
参考文献
Feng Huaiwei, Xu Shumei, Wang Jinduo. Zhang Guanlong, Zeng Ziping. 2024&. Study on shallow water delta provenance, sandbody architecture and reservoir characteristics —A case of the 2nd Member of the Jurassic Sangonghe Formation in Yongjin—Moxizhuang region Junggar basin. Geological Review, 70(1): 330~345.
参考文献
Feng Youliang, Jiang Shu, Wang Chunfang. 2015. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 105: 85~103.
参考文献
Hong Youmi. 2007#. Well logging principles and comprehensive interpretation. Dongying: China University of Petroleum Press, 165~195.
参考文献
Hou Gangfu, Sun Xiongwei, Li Chang, Liu Qun, Zeng Qinglu, Xiong Ran, Cao Quanbin. 2012&. Depositional features of the fan delta from lower Cretaceous Kezilesu Group in Yecheng sag, southwestern Tarim Basin. Geology in China, 39(4): 947~953.
参考文献
Hou Gangfu, Xu Yang, Sun Jing, Wang Libao, Song Mingxing, Guo Huajun, Li Yazhe, Chen Yang. 2019&. Sedimentary model from delta front to deep water area and its significance: a case study of the first sand group of Member 2 of Sangonghe Formation in the Well Pen-1 West sag, Junggar Basin. Acta Petrolei Sinica, 40(10): 1223~1232.
参考文献
Jiang Lin, Song Yan, Zha Ming, Qu Jiangxiu. 2008&. Study on relationship between overpressure and hydrocarbon accumulation in Mosuowan area of Junggar basin. Journal of Daqing Petroleum Institute, 32(6): 24~28.
参考文献
Kong Jiahao, Zhang Guanlong, Xu Shumei, Wang Jinduo, Zeng Zhiping, Wang Qianjun, Ren Xinceng, Wu Xiangfeng, Shu Pengcheng, Ma Huilei, Chui Huiqi. 2022&. Development stage of Jurassic Che-Mo Paleouplift in the Junggar Basin and its constraints on sedimentary system[OL]. Geology in China, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.
参考文献
Li Shuangwen, Liu Luofu, Zhang Youping, Yao Weijiang, Jin Jun, Zhao Jianzhang, Shun Dong. 2006&. Sedimentary evolution and microfacies architecture of the Jurassic Sangong Formation in Mobei Arch, Junggar Basin. Acta Sedimentologica Sinica, 24(6): 819~828.
参考文献
Lin Huixi, Wang Jianjun, Cao Jianjun, Ren Xinceng. 2019&. Jurassic compression—torsion fault paterns of the central Junggar basin and their controlling role on reservoir. Acta Geologica Sinica, 93(12): 3259~3268.
参考文献
Liu Gang, Wei Yanzhao, Luo Hongcheng, Chen Geng, Gong Deyu, Wang Feng, Shun Jing, Jia Kaifu. 2018&. Sand-body structure and reservoir forming control of Jurassic Sangonghe Formation. Acta Petrolei Sinica, 39(9): 1006~1018.
参考文献
Liu Hua, Jiang Youlu, Xu Haoqing, Zhang Yongfeng. 2011&. Accumulation mechanisms and models of Neogene hydrocarbons in Jizhong Depression. Acta Petrolei Sinica, 32(6): 928~936.
参考文献
Liu Ni, Chen Yuyi, LIi Jiang, Yu Jingwei, Yu Meiqi, Kang Jing, Kang Tianxiang, Wang Xiaojian. 2020&. A comprehensive research on reservoir heterogeneity of the Sangonghe Formation in the north of the Fukang sag, Junggar Basin. Geology and Exploration, 56(2): 0451~0464.
参考文献
Lu Cheng. 2016#. Old well log in central of Junggar Basin reinterpreted. Tutor: Huang Jianhua. Urumqi: Master 's thesis of Xinjiang University.
参考文献
Mu Changhe, Liang Xiuli, Ma Limin. 2006&. Interpretation Method for Oil Water Same Layer Logging in Sabei Development Zone. Daqing Petroleum Geology and Development, 25(6): 112~114.
参考文献
Pan Rong, Zhu Xiaoming, Liu Fen, Li Yong, Ma Yujie, Di Hongli, Zhang Ronghu. 2013&. Sedimentary characteristics of braided delta and relationship to reservoirs in the Cretaceous of Kelasu tectonic zone in Kuqa Depression, Xinjiang. Journal of Palaeogeography, 15(5): 707~716.
参考文献
Peng B, Jin Z, Wang J, Jia H, Zhu X, Chang T, Yuan K. 2018. Sedimentology and sequence stratigraphy of a retrogradational fan-delta system within Lower Triassic in the Mabei area, Junggar Basin (northwestern China). Russian Geology and Geophysics, 59(6): 606~619.
参考文献
Pu Renhai, Mei Zhichao, Tang Zhonghua. 1994&. A preliminary discussion of Jurassic non-marine sequence stratigraphy, eastern Junggar basin. Xinjiang Petroleum Geology, 15(4): 335~342.
参考文献
Qiu Zigang, Dai Xiongjun, Shi Xiaorong. 2010&. Sedimentary facies of Jurassic Sangonghe Formation in Mobei Uplift, the Junggar Basin. Journal of Oil and GasTechnology, 32(5): 183~186.
参考文献
Sun Jing, Wu Aicheng, Wang Ran, Zeng Delong, Wang Feng, Xue Jingjing. 2017&. Characteristics and origin of deep tight sandstone gas reservoirs of the Jurassic Sangonghe Foramtion, Mosuowan area, Central Depression, Junggar Basin. Journal of Palaeogeography, 19(5): 907~918.
参考文献
Sun Jing, Xue Jingjing, Hou Gangfu, Wu Aiceng, Song Mingxing, Zhu Feng. 2019&. Sedimentary characteristics and model of sandy debris flow in deoression area of lacustrine basin: A case study of the Jurassic Sanghonghe Formation in the western Pen-1 sag, Junggar basin. Journal of China University of Mining & Technology, 48(4): 858~869.
参考文献
Tang Yong, Kong Yuhua, Sheng Jianhong, Zhao Kebin, Shi Jian. 2009&. Controlling factors of reservoir formation in ramp-type lthostratigraphic reservoir in hinterland of Junggar basin. Acta Sedimentologica Sinica, 27(3): 567~572.
参考文献
Wang Jinduo, Xu Shumei, Zhang Guanlong, Ren Xinceng, Zeng Zhiping, Wu Xiangfeng, Shu Pengcheng. 2022&. Analysis of reservoir physical property oil-bearing characteristics and main control factors of Sangonghe Formation of Lower Jurassic in the hinterland of the Junggar Basin. Geological Review, 68(3): 1129~1144.
参考文献
Wu Chonglong, Lin Zhongmin, Mao Xiaoping, Wang Lianjin. 2009&. Concept, research status and trend of “hydrocarbon pooling pattern”. Oil & Gas Geology, 30(6): 673~683.
参考文献
Wuernisahan Maimaitimin, Li Jun, Zhao Jingzhou, Wu Tao, Xu Zeyang, Du Zhiwei, Fan Jiayi, Xu Chenhang. 2024&. The study of Jurassic overpressure genesis in the Mosuowan Uplift of the Junggar Basin. Natural Gas Geoscience, 35(9): 1590~1600.
参考文献
Xu Houwei, Wang Haiming, Liu Rongjun, Xu Changfu, Wang Xiaoguang, Lu Jianrong. 2018&. Fine multiparameter evaluation for polymer flooding in conglomerate reservoirs and its application: A case study from Lower Karamay Formation in District Qiding-1, Karamay Oilfield. Xinjiang Petroleum Geology, 39(2): 169~175.
参考文献
Xu Shumei, Li Meng, Wang Jinduo, Ren Xincheng, Chi Xinqi, Shu Pengcheng, Wang Jieqing, Liu Xian. 2020&. Sedimentary cycle pattern and stacked style of sand-body of the Lower Jurassic Sangonghe Formation in belly of Junggar Basin. Journal of Palaeogeograpgy (Chinese Edition), 22(2): 221~234.
参考文献
Yan Hailong, Sun Wei. 2006&. Quantitative analysis of interlayer in underwater distributary channel: analyzing the interlayers of Chang 6 reservoir in Jing’an Oilfield. Journal of Northwest University (Natural Science Edition), 36(1): 133~136.
参考文献
Zhang Dongling, Bao Zhidong, Wang Jianwei, Yang Wenxiu. 2005&. Sedimentary facies and reservoir characters of the Member 2 of Sangonghe Formation of Lower Jurassic in Central Junggar Basin. Journal of Palaeogeography, 7(2): 185~196.
参考文献
Zhang Nianfu. 2000#. Fluid compartment and hydrocarbon accumulation in Mosuowan area in central part of Junggar basin. Petroleum Exploration and Development, 27(3): 110~119.
参考文献
Zhao Luyang, Sun Yue, Zhao Zimin, Huang Sheng, Zhou Meng, Zhang Run. 2018&. Application of resistivity ratio method in the evaluation of low resistivity gas layers in the Sulige Gas Field. Well Logging Technology, 42(6): 689~694.
参考文献
Zhao Mengjun, Song yan, Liu Shaobo, Yang Haibo, Liu Deguang. 2009&. Accumulation systems and filling process of natural gas in Junggar Basin. Geological Review, 55(2): 215~224.
参考文献
Zhao Shujuan, Li Sanzong, Liu Xin, Lou Da, Shu Yanhui, Dai Liming, Ssun Wenjun, Li Tao, Wang Xuebin, Yang Chao. 2014&. Structures of the eastern Junggar Basin: Intracontinental transition between the North Tianshan and the Altai Orogens (in Chinese). Scientia Sinica Terrae, 44(10): 2130~2141
参考文献
Zheng Jiandong, Wang Xiaolian, Gao Jifeng. 2013&. An oli water layer recognition method for consideration of adjacent mudstone characteristics. Well Logging Technology, 37(4): 397~400.
参考文献
Zhou Yongshui, Qiu Nansheng, Song Xinyin, Cao Huanyu, Que Yongquan. 2014&. Study of source rock thermal evolution in overpressure formations in the hinterland of Junggar Basin. Chinese Journal of Geology, 49(3): 812~822.
参考文献
Zou Zhiwen, Si ChunSong, Yang Mengyun, 2010. Origin and distribution of interbeds and the influence on oil—water layer: an example from mosuowan area in the hinterland of junggar basin. Lithologic Reservoirs, 22(3): 66~67.
目录contents

    摘要

    准噶尔盆地腹部不同区域三工河组储层因埋深的巨大差异使其岩电特征显著差异化,复杂的岩电关系导致无法建立全区统一的含油性测井解释标准。针对上述问题,对研究区内 22 口取芯井砂组等时性对比和沉积微相及沉积砂体叠置样式分析,利用录井资料确定各等时性砂组的含油性特征;通过沙窝地和征沙村地区油水层的差异化电性特征分析,筛选储层流体敏感测井参数,识别出油水界面,分区域建立油水解释标准,研究其油水分布规律。研究表明,沙窝地地区属于“常规低阻油藏”,征沙村地区属“低对比度油藏”,储层油水分布总体具有“上油下水”、“高油低水”、“上干下油”等特征;垂向上具体表现为 3 种特征样式:①油水同层—(差油层)—水层—干层;② 油水同层—干层差油层互层;③干层—高阻水层互层。油水层和油水界面的分布均表现出明显的相控及层控特征, 并受微地貌影响。沙窝地地区油水界面多分布在四砂组,征沙村地区油水界面多分布在五砂组。油层、油水同层发育在四、五砂组的河上坝叠置砂体和河道弱冲刷叠置砂体中,含油水层和差油层发育在三、六砂组的河上坝叠置砂体和河道弱冲刷砂体中,水层和干层主要分布在一、二砂组的河道强冲刷砂体中。分析研究区的油水关系特征有利于为该区域进一步的油气勘探部署提供理论依据,也给区分差异埋藏区、深埋藏区的油藏研究提供参考价值。

    Abstract

    Objectives: Due to the great difference in buried depth, the rock-electric characteristics of Sangonghe Formation reservoirs in different regions of Junggar Basin are significantly different. The complex rock-electric relationship makes it impossible to establish a unified oil-bearing logging interpretation standard in the whole region.

    Methods: In view of the above problems, the isochronous comparison of sand groups in 22 coring wells in the study area and the analysis of sedimentary microfacies and sedimentary sand body superposition patterns were carried out, and the oil-bearing characteristics of each isochronous sand group were determined by logging data. Through the analysis of the differential electrical characteristics of oil and water layers in Shawodi and Zhengshacun areas, the reservoir fluid sensitive logging parameters are screened, the oil—water interface is identified, the oil— water interpretation standard is established in different regions, and the oil—water distribution law is studied.

    Results: The research shows that the Shawodi area belongs to the ‘conventional low-resistance reservoir’, and the Zhengshacun area belongs to the ‘ low-contrast reservoir’. The oil—water distribution of the reservoir is generally characterized by ‘upper oil and lower water’, ‘high oil and low water’, and ‘upper dry and lower oil’. In the vertical direction, there are three characteristic patterns: ① Oil—water layer— ( poor oil layer ) —water layer—dry layer; ② Oil—water same layer—dry layer difference oil layer interbedded; ③ Dry layer—high resistance water layer interbedded. The distribution of oil—water layer and oil—water interface shows obvious phase-controlled and layer-controlled characteristics, and is affected by micro-geomorphology.

    Conclusions: The oil—water interface in Shawodi area is mostly distributed in the fourth sand group, and the oil—water interface in Zhengshacun area is mostly distributed in the fifth sand group. The oil layer and oil—water layer are developed in the Heshangba superimposed sand body and the channel weak erosion superimposed sand body of the fourth and fifth sand groups. The oil-bearing water layer and the poor oil layer are developed in the Heshangba superimposed sand body and the channel weak erosion sand body of the third and sixth sand groups. The water layer and the dry layer are mainly distributed in the channel strong erosion sand body of the first and second sand groups. Analyzing the characteristics of oil—water relationship in the study area is conducive to providing a theoretical basis for further oil and gas exploration and deployment in the region, and also provides reference value for reservoir research to distinguish differential burial areas and deep burial areas.

  • 早侏罗世,准噶尔盆地腹地因西北缘扎伊尔山、哈拉阿拉特山和东北缘克拉美丽山的充足供源,发育大规模辫状河三角洲沉积体系( Zhou Zhiwen et al.,2010; Chen Dongxia et al.,2010)。下侏罗统三工河组三角洲前缘砂体大面积连片分布并延展到盆地腹部,以辫状河三角洲的退积式正旋回沉积为特征,砂泥韵律性显著(王金铎等,2022),具良好的储集性,是岩性油气藏重要勘探区带( 厚刚福等,2012; 潘荣等,2013)。研究区包括西北部的沙窝地和南部征沙村两个区域,位于盆地腹地稍偏西,断层活动相对弱,构造圈闭不发育(图1)。征沙村和沙窝地地区尽管沉积体系和沉积微相构成相同,等时性砂层组亦可全区对比( 邱子刚等,2010; Peng et al.,2018; 许淑梅等,2020),但是存在着极大的埋深差异,储集砂体也因差异压实形成很强的非均质性特征(赵孟军等,2009)。两区域储层的电性差异较大,沙窝地为常压低阻油藏区,征沙村为超压高阻油藏区,无法建立统一的油水解释标准(Li Shunli et al.,2014; 操应长等,2015; 孙靖等,2019; 王杰青等,2021)。此外,三工河组砂体大面积发育的高阻水层、干层、差油层,这些流体的电性特征与油层很难区分开(Feng Youliang et al.,2015),用传统的测井解释进行油水识别准确度较低。随着勘探工作的深入,发现研究区主要存在以下两个关键问题:①区内等时沉积微相相同的砂组含油性不一致; 而含油性特征相同的同一类微相砂体其电性特征却大不相同,例如沙窝地地区含油层(三角洲前缘水下分流河道和河口坝砂体)深感应电阻率(RILD)在 6~10 Ω·m,征沙村主要含油层(三角洲前缘水下分流河道和河口坝砂体)的 RILD 在 10~80 Ω·m。 ②三工河组大面积发育的高阻水层的电性特征与油层相似,很难与油层区分,因此常造成测井解释结果与试油结论明显不符的状况。

  • 图1 准噶尔盆地区域地质背景及研究区位置(据徐学义等,2016 修改)

  • Fig.1 Regional geological background and location of research area in the Junggar Basin (modified from Xu Xueyi et al., 2016&)

  • 针对上述制约研究区油气藏勘探进展的关键问题,为提高利用测井参数进行储层评价的准确性,本研究利用准噶尔盆地腹地钻遇三工河组 22 口井的取芯、录井和测井资料(图1),基于团队前期对三工河沉积微相、砂体叠置样式、成岩作用及储层物性研究成果(许淑梅等,2020; 王杰青等,2021; 王金铎等,2022),分析储层流体的电测响应特征,优选合适的测井参数进行油水特征分析,分区域建立油水解释标准,区别不同地区的油水界面,探讨研究区油水分布差异。

  • 1 区域地质概况

  • 准噶尔盆地总体呈北窄南宽的三角形,东西长近 700 km 2,南北宽约 370 km 2,总面积超过 13×10 4 km 2(匡立春等,2013)。盆地周边主要由古生代弧盆系和裂谷系构成:南部为北天山震旦纪—二叠纪复杂弧盆—裂谷系; 东部为克拉美丽山早古生代— 中泥盆世缝合带; 西北部为扎伊尔山泥盆纪洋壳残片及石炭纪板内裂谷系; 西部为哈拉阿拉特山晚古生代岛弧和岩浆弧带(徐学义等,2016)。研究区位于准噶尔盆地腹地稍偏西的中央坳陷带,勘探面积约 3648 km 2,主体为盆 1 井西凹陷和昌吉凹陷北斜坡,东接莫北凸起和马桥凸起,西邻中拐凸起和达巴松凸起(图1)。喜马拉雅构造运动期,中天山北缘向北逆冲造成了研究区侏罗系北高南低之特征,导致侏罗系埋深在研究区南北部出现极大差异(赵文智等,2000; 孔家豪等,2022),北部沙窝地地区侏罗系现埋深约 3100 m,南部征沙村地区侏罗系现埋深则约为 5200 m。

  • 研究区侏罗系自上而下由西山窑组、三工河组和八道湾组组成。三工河组厚度 450~650 m,为盆地中生代的主要含油层段,与下伏下侏罗统八道湾组及上覆中侏罗统西山窑组间均呈整合接触,沉积厚度较大(130~560 m)。据其沉积旋回性和岩性组合特征,通常将三工河组划分为 3 段:下段(三工河组三段)以湖相灰色、深灰色泥岩为主,夹粉砂岩沉积; 中段(三工河组二段)发育一套辫状河三角洲体系砂岩和含砾砂岩; 上段(三工河组一段)以湖相深灰色泥岩为主夹薄层砂岩(厚刚福等,2019)。基于层序地层、沉积学、盆地周边山系的碎屑锆石 U-Pb 年龄和磷灰石裂变径迹年龄(郭召杰等,2006; 李忠和彭涛,2013; Peng et al.,2018; 冯庚等,2022)、盆地性质和盆地基底构造运动特点、湖平面变化规律,将三工河组划分为 4 个四级正旋回( 许淑梅等,2020),其中三工河组一段和三段分别为 1 个四级正旋回,三工河组二段划分出 2 个四级正旋回(图2)。根据测井和取芯资料数据对研究区小层进行了精细和对比,进一步将三工河组二段下亚段可划分出 4 个全区可对比的五级旋回,二段上亚段可划分出 3 个全区可对比的五级旋回。 7 个五级旋回分别对应于 7 个砂组,自下而上依此称为一砂组至七砂组。研究区三工河组二段 7 个等时性砂组可全区进行对比(许淑梅等,2020)。三工河组二段的 7 个砂组是最主要的含油气储层(刘刚等,2018),也是本研究的主要目的层段。

  • 2 基本岩电特征及油水关系分析中存在的问题

  • 沙窝地地区三工河组辫状河三角洲前缘砂体的埋深在 3100~3900 m 之间,砂岩经历的压实作用相对较弱。主要的储集空间为原生粒间孔,胶结作用以方解石胶结和高岭石胶结为主( 王杰青等,2021)。孔隙度主要分布在 20%~5%之间,总含量达 94. 05%,其中孔隙度为 15%~10%的低孔隙度储层占比 47.52%; 渗透率主要分布在(50~0.1)×10-3μm 2 之间,其中( 10~1)× 10-3 μm 2 区间占比为 58.42%,而大于 10 × 10-3 μm 2 的占比为 23.76%。因此,沙窝地地区为低孔特低渗储层(据中华人民共和国石油天然气行业标准《油气储层评价方法》(SY/ T6285—2011)含油砂岩储层孔隙度在 25%~15%为中孔隙度、15%~10%为低孔隙度、10%~5% 为特低孔隙度; 渗透率在(50~10)×10-3 μm 2 为低渗透、(10~1)× 10-3 μm 2 为特低渗透、( 1~0.1)× 10-3 μm 2 为超低渗透)。

  • 征沙村地区辫状河三角洲前缘砂体的埋深在 4300~5200 m 之间,遭受相对强烈的压实作用,抗压强度较高的石英、长石等刚性颗粒也会发生旋转、错动变形,而塑性岩屑则被压弯、压扁甚至假杂基化,碎屑颗粒间以线—凹凸—缝合接触为主,储集空间主要为次生溶蚀孔隙和微裂缝(王杰青等,2021; 王金铎等,2022)。孔隙度在 15%~0%之间,其中孔隙度为 10%~5%的特低孔隙度储层占比 56.3%; 渗透率主要分布在(0.1~10)×10-3 μm 2 之间,其中(1~0.1)×10-3 μm 2 区间占比为 44.94%,而 10×10-3~1 ×10-3 μm 2 区间占比为 43.67%,为特低孔特低、超低渗储层。

  • 两区域储层砂体因埋藏深度的显著差异导致其物性和电测响应,甚至是含油性均出现较大差异:沙窝地地区三工河组辫状河三角洲砂体处于正常压力带,主要含油层深侧向电阻率(RILD)在 6.8~10 Ω ·m 之间,整体水层电阻相对较低,水层 RILD 的范围在 1.8~4.6 Ω·m,具有“常规低阻油藏”特征,但也存在少量高阻水层,其 RILD 范围在 7~10 Ω·m(图3b); 征沙村地区三工河组砂体处于异常高压带(吾尔妮萨罕等,2024),油层电阻率呈现高值且分布区间开阔,多分布在 5~75 Ω·m 区间; 水层电阻也普遍高于沙窝地地区,其深侧向电阻率在 5~80 Ω·m 之间。该区水层和油层的电阻区分不明显,形成特色的“高阻油、高阻水” 的“低区分度油藏”(图3c)。

  • 3 沉积微相与含油性关系建立

  • 3.1 沉积微相类型识别

  • 研究区三工河组( J1s)发育辫状河三角洲前缘和前辫状河三角洲亚相。依据岩芯观察和自然伽马(GR)等测井参数特征,可从中识别出 6 类沉积微相:水下分流河道滞留沉积、分流河道心滩边滩、河口坝、远沙坝、席状砂和前三角洲泥等。

  • (1)水下分流河道滞留沉积:岩性以细砾岩主,砾石大小 2~50 mm,长轴略具定向排列,呈次棱角状—次圆状。颗粒间点接触,杂基—颗粒支撑。砾石成分复杂,有灰岩、白云岩、泥板岩、花岗岩、火山岩、石英岩岩屑及石英和长石等矿物碎屑,总体显示正粒序特征。其底部一般形成冲刷面。自然伽马(GR)曲线呈箱型。录井无油气显示,为水层或干层。主要分布在一、二和五砂组下部,且研究区的各井区相对均匀稳定分布,内部由多期河道叠加,反映多期水下分流河道砂体相互叠置切割的特征(图4)( 厚刚福等,2019; 许淑梅等,2020; 冯怀伟等,2024)。

  • 图2 准噶尔盆地腹部沙 1 井三工河组综合柱状图及旋回性和砂组划分

  • Fig.2 Comprehensive histogram, cyclicity and sand group division of the Sangonghe Formation in the Well Sha 1, central Junggar Basin

  • (2)水下分流河道冲刷充填:岩性以细砾岩、砾质砂岩为主。砾石呈薄层状分布,长轴略具定向排列,砂质部分具块状层理,总体上呈冲刷充填特征。 GR 曲线呈箱型,其值略低于河道滞留沉积。录井资料无油气显示,一般为水层。主要分布在一、二和五砂组下部(图4)。

  • (3)河口坝:岩性主要以灰色中粒—细粒砂岩为主。由河口坝近端至远端,依次发育小型斜层理、低角度交错层理、块状层理及沙纹—沙波状层理。颗粒分选、磨圆均好,录井资料显示油斑油浸,为含油性最好的砂层。 GR 曲线呈漏斗形。河口坝砂体分布于四、五砂组上部,在研究区大部分井可见,也有部分井区,如沙窝地地区沙 3 井、沙 4 井、准沙 5 井,征沙村地区的征 1 井、永 1 井、永 3 井、永 6 井等井区未见河口坝砂体。河口坝和远砂坝分布在接近前三角洲的位置,距离物源区较远,接近湖盆中心(图4)。

  • 图3 准噶尔盆地腹部征沙村—沙窝地各砂组 AC—GR—RILD 分布:(a)研究区全区 AC—RILD 关系特征;(b)沙窝地地区 GR—RILD 关系特征;(c)征沙村地区 GR—RILD 关系基本特征

  • Fig.3 Distribution of AC—GR—RILD in each sand group of Zhengshacun—Shawodi in the hinterland of the Junggar Basin: ( a) the characteristics of AC—RILD relationship in the whole study area; (b) GR—RILD relationship characteristics in Shawodi area; (c) the basic characteristics of GR—RILD relationship in Zhengsha village area

  • (4)远砂坝:岩性以细砂岩和粉砂岩为主,发育爬升沙纹层理、沙波层理,偶见油斑,无显示居多。 GR 曲线呈中低幅锯齿状。远砂坝微相常见于六、七砂组(图4)。

  • (5)席状砂:席状砂微相的泥质含量进一步增多,以泥质粉砂岩为主,常见砂泥薄互层,水平层理发育。因三角洲前缘区域为同沉积变形易发和风暴影响显著区,其中常见大量泥砾。席状砂微相见于六、七砂组,GR 曲线呈指状和齿状特征(图4)。

  • (6)前三角洲泥:前三角洲亚相主要由灰色、深灰色、灰黑色湖湘,包括浅湖和半深湖泥岩组成,含少量粉砂,形成“泥包沙”特征,具水平或块状层理,测井自然伽马曲线上表现为低平的齿形,位于泥岩基线位置,反映出水动力较弱的沉积环境。该微相在三工河组各段均发育,三工河组一段( J1s1)与三段(J1s3)分别发育半深湖、深湖三角洲前缘泥岩,二段(J1s2)发育滨浅湖三角洲前缘泥岩(图4)。

  • 3.2 各砂组不同沉积微相的录井油气显示

  • 在研究区三工河组可识别 4 种砂体叠置组合样式 : 河道强冲刷叠置砂体、河道弱冲刷河道叠置砂体、河上坝组合砂体、远砂坝 — 席状砂组合砂体( 图4)( 许淑梅等,2020; 冯怀伟等,2024)。本研究利用岩屑录井资料分析各砂层组的含油性特征如下( 表1)。

  • (1)河道强冲刷叠置砂体厚度大,分布广,连通性好; 垂向上 GR 测井曲线呈明显的箱状,叠置规律清晰; 岩性包括砂砾岩、中 — 粗砂岩和细砂岩,厚度多为 60~70 m,该类砂体组合见于一、二砂组,向上砂泥比从稳定不变到逐渐下降。三角洲退积过程中,因盆地基底隆升速率足够大,使得三角洲前缘水下分支河道冲刷非常显著,水下分流河道上部细粒沉积被新旋回中的水道冲刷而遭受侵蚀,导致多期分流河道砂体的直接叠置,微相类型单一,粒度较粗的分流河道滞留沉积和心滩、边滩微相常见,砂体全区连片稳定分布,除了偶见油斑,录井油气显示为不含油( 图2,图4,表1)。

  • (2)河上坝组合砂体岩性多为中 — 细砂岩及粉砂岩,厚度多为 30~50 m,自然伽马反旋回特征,是在湖平面上升,三角洲退积过程中形成。水下分流河道微相与河口坝微相之间通常可见退覆界面,界面之上粒度突然变细,形成退覆沉积。河上坝砂体组合见于四、五砂组。总体上岩性向上变细,砂体不太连续,砂泥比持续降低,录井含油气显示最为好含油层段( 图2,图4,表1)。

  • (3)河道弱冲刷叠置砂体岩性为砂砾岩、中 — 细砂岩等,厚度不超过 25 m,水下分流河道弱冲刷叠置见于二、三、五砂组。三角洲退积过程中,因盆地基底隆升速率不够大,使得三角洲前缘水下分支河道冲刷不显著,分流河道的天然堤和分流间湾的细粒沉积不被冲刷而得以保存,二元结构明显,单砂体厚度变薄,粒度变细,砂泥比稍降低,砂体全区连片稳定分布,见油斑、荧光和油迹等,具有较好的含油显示特征(图2,图4,表1)。

  • 图4 准噶尔盆地腹部三工河组二段7个砂组的等时性对比(剖面位置见图1)

  • Fig.4 Isochronous correlation of 7 sand groups in the second member of Sangonghe Formation in the hinterland of Junggar Basin( see Fig.1 for section location)

  • 图5 准噶尔盆地腹部沙窝地地区三工河组二段各砂组的油水区分

  • Fig.5 Oil—water discrimination of each sand group in the Second Member of the Sangonghe Formation in Shawodi area, central Junggar Basin

  • (4)远砂坝—席状砂组合砂体厚度极薄,单层不超过 5 m,GR 测井曲线呈低幅锯齿状; 岩性以粉砂岩或泥质粉砂岩为主,沉积物粒度较小。滩坝组合是垂向上不同期次的滩坝砂体叠置形成,一般形成于高湖平面期,沉积物多来自受波浪改造的前三角洲地区。砂体之间以厚层泥岩相隔。远砂坝—席状砂组合见于三工河组一段、三段和二段七砂组,形成于最大湖泛期,总体上为泥包砂,砂泥比最低,砂层薄,粒度细,砂体分布零星不连续。大部分井区该层段无油气显示,偶见油斑,不含油(图2,图4,表1)。

  • 研究区三工河组二段储层的录井油气显示结果表明,各等时性砂组的含油性受沉积微相和砂体叠置样式的的制约较为明显(图4,表1),这也是笔者等基于沉积微相分析其油水关系的依据所在。下文将依据实际井的测井及开发数据,分砂层组进行储层的岩性、电性和油水关系分析,探索解决研究区存在的高阻水层和油层难以识别的问题。

  • 3.3 各砂组储层岩电和含油气性分析

  • 沙窝地地区自一砂组至六砂组(七砂组为致密层,不含油和水)的 GRRILD 交汇结果对油水具有较好的识别效果(图5)。一砂组主要为正常的低阻水层; 二砂组除了低阻水层,还有高阻水层的出现; 三砂组不但有低阻水层和高阻水层,还开始出现与高阻水层电阻率相近的油层; 四砂组的含油性最好,包含有低阻水层、高阻油层、油水同层和含油水层,后三者电阻率分布比较接近; 五砂组的含油性也很好,有低阻水层、油水同层和高阻含油水层,表现出与四砂组相近的电性和含油性特征; 六砂组为油层(图5)。沙窝地地区一砂组至六砂组水层电阻相较低,油层和油水同层电阻稍高,总体上属于 “常规低阻油藏”。高阻水层只在二砂组和三砂组出现,使得其难以与电阻率相近的油层进行区分。从图5 还可以看出,分砂层组对一、二、四、五、六砂组的油水可以进行有效区分,但依然未能对三砂组中高阻水层和油层进行有效区分。

  • 表1 准噶尔盆地腹部三工河组二段七个砂组录井油气显示

  • Table1 Logging oil and gas shows of the seven sand groups in the Second Member of the Sangonghe Formation in the hinterland of the Junggar Basin

  • 征沙村地区储层的电阻率普遍高于沙窝地区,且油层和水层的电阻率范围基本一致,自一砂组至七砂组的 GRRILD 交汇结果对油水的识别作用有限。一砂组为电阻率变化范围大的水层; 二砂组除了电阻率变化范围大的水层,还发育了电阻率几乎与水层相近差油层; 三砂组与二砂组储层的油水特征相同,水层和差油层的电阻率几乎分布在同一开阔区间; 四砂组的含油性相较于一、二、三砂组显著变好,不但有电阻率几乎分布在同一开阔区间的水层和差油层,还开始出现电阻率范围同样广泛的油水同层; 五砂组的含油性进一步变好,除了包含有四砂组的所有流体形式,还出现了纯油层,只是纯油层的电阻率与油水同层和差油层的电阻率分布范围也基本一致; 六砂组为难以区分的水层、油水同层和差油层; 七砂组为水层和油水同层,含油性较四、五、六砂组变差(图6)。总体上,该地区一砂组到六砂组水层、油层、差油层、油水同层的电阻率范围相近,且普遍高于沙窝地地区的储层流体的电阻率,即使分砂层组难以有效进行区分,属于“低对比度油藏”。

  • 图6 准噶尔盆地腹部征沙村地区三工河组二段各砂组基于沉积微相的油水区分

  • Fig.6 Oil—water discrimination based on sedimentary microfacies for each sand group of the Second Member of the Sangonghe Formation in Zhengshacun area, central Junggar Basin

  • 4 储层油水关系测井解释参数优选

  • 针对上述情况,尝试用多参数对高阻水层和油层进行有效区分。利用储层临近泥岩深电阻率与冲洗带电阻率的比值特征,在定量评价识别难度较大的低电阻率油气层中已有所应用(郑建东等,2013; 赵璐阳等,2018)。在对研究区储层测井曲线的识别中发现,研究区内同时发育的沙窝地地区“常规低阻油藏” 特征和征沙村地区“低对比度油藏” 特征,使用此方法可以准确匹配试油结果。同时,也进一步拓展了此方法的适用范围,验证其识别复杂油气层的可行性。

  • 首先,笔者等利用感应电阻率进行含油性评价和油水关系检测,因储层电阻率对流体性质、含油饱和度、孔隙度的变化有显著影响。深感应电阻率(RILD)为原状地层电阻,中感应电阻(RILM)反映侵入带电阻率,八侧向电阻(RFOC)反映冲洗带电阻率特征,三者形成径向不同的探测深度电阻率组合,可达到有效评价油水层的目的( 洪有密等,2007)。联合使用深感应、中感应电阻率及八侧向电阻率值及其异常值,有助于进一步区分油层、含水油层、干层和水层。

  • 泥岩层段的电阻率最低,RILD/ RILM/ RFOC 值基本一致,RILD/ RILM/ RFOC 无异常。油水层段电阻率升高并出现电阻率幅度差,当 RILD>RILM 时,为正异常,视之为油层信号; 当 RILD<RILM,为负异常,视之为(高阻)水层信号。若有 RFOC 可供参考时,当 RILDRFOC 无异常,为油层信号; 当 RILD<RFOC,为负异常,视之为水层信号(图7,图8,图9)。

  • 当电阻异常波动幅度高、波动范围大,甚至高出 100 Ω·m 时,为干层(图8,图9)。其次,利用自然电位(SP)随砂岩储层中流体性质变化表现出明显波动的特征属性来识别油水界面( 洪有密等,2007)。泥岩层的 SP 曲线接近基线高值,呈低幅锯齿状波动; 渗透性砂层的 SP 曲线与泥岩相比,常为负异常,且含水砂岩的自然电位幅异常幅度高于含油砂岩,即从油层到水层出现一个 SP 由低异常向高异常显著变化的台阶,此台阶即为储层的油水界面,如沙 2 井 3432.8 m 处和征 1—斜 5 井 4859.5 m 处由低异常向高异常显著变化的台阶即为该井的一个显著油水界面(图8,图9)(洪有密等,2007)。因为有泥岩隔夹层出现,其中往往会出现多个油水界面。

  • 研究区各单井 SP 的绝对值有差别,笔者等用其变化幅值判断储层流体性质。另外,对于无取芯层段,依据研究区的油气测井勘探开发经验,笔者等利用自然伽马(GR)区分致密层和储层。 GR 为基线或接近基线的为泥页岩,即 GR>95 API 时属致密层; 90 API≤GR≤95 API 时为干层,GR<90 API 时为储层(图7,图8,图9)。

  • 表2 准噶尔盆地腹部沙窝地地区油水关系的测井参数识别标准

  • Table2 Identification criteria of logging parameters for oil—water relationship in Shawodi area, central Junggar Basin

  • 表3 准噶尔盆地腹部征沙村地区油水关系的测井参数识别标准

  • Table3 Identification criteria of logging parameters for oil—water relationship in Zhengshacun area, central Junggar Basin

  • 图7 准噶尔盆地腹部征沙村—沙窝地地区三工河组二段沙 2 井油水关系(水层—干层—油层)

  • Fig.7 Oil—water relationship ( water layer —dry layer —oil layer) of the Well Sha 2 in the Second Member of the Sangonghe Formation in Zhengshacun—Shawodi area, Junggar Basin

  • 图8 准噶尔盆地腹部征沙村—沙窝地地区三工河组二段征 2 井井油水关系(高阻水层干层互层)

  • Fig.8 Oil—water relationship of the Well Zheng 2 in the Second Member of the Sangonghe Formation in Zhengshacun— Shawodi area in the hinterland of the Junggar Basin ( interbedded dry layers of high resistivity water layer)

  • 以研究区 22 口井的 18 段试油结论作为含油性解释的可靠依据,首先通过深感应、中感应和八侧向电阻值及其异常值、自然电位异常程度、孔隙度、渗透率曲线来区分油、水、干层; 最后通过自然电位幅度变化判断油水界面,建立研究区油水层解释标准(表2,表3)。

  • 沙窝地地区三工河组砂岩孔隙相对发育,连通性较好,声波时差相对较高,电阻率较低。其油层电阻率较高,水层电阻率较低,形成常规低阻油藏。四、五砂组河上坝薄层中细砂岩为主要储层,电阻率小于 9 Ω·m,该类储层具有良好的充注条件,易形成高产高饱和度油气藏。一、二、三砂组普遍为水层,电阻率相比于油层更低(图7); 征沙村地区储层孔隙不发育连通性较差,孔隙度小,渗透率低,使得声波时差普遍较低,油层和水层的电阻率普遍高,形成低对比度油藏。四、五砂组河口坝和弱冲刷分流河道含砾砂岩为主要油层,下部一、二、三砂组为高阻水层,电阻率接近甚至高于油层(图8,图9)。

  • 图9 准噶尔盆地腹部征沙村—沙窝地地区三工河组二段征 1—斜 5 井油水关系(干层差油层互层—油水同层)

  • Fig.9 Oil—water relationship of the Well Zheng1-Xie5 in the Second Member of the Sangonghe Formation in Zhengshacun—Shawodi area, Junggar Basin ( dry layer difference oil layer interbedded—oil—water layer)

  • 5 油水分布规律

  • 结合研究区沉积微相和储层敏感测井参数分析,垂向上识别出三种油水分布样式:①油水同层—(差油层)—水层—干层(沙窝地全区、征沙村地区之征 1 井、征 3 井、征 1-1 井、征 1-2 井、征 1-4 井、征 1-6 井、征 11 井区)(图7); ②油水同层—干层—差油层互层(征沙村地区之征 1-斜 5 井和征 1-斜 3 井区)(图9); ③干层—高阻水层互层(征沙村地区之征 101 井和征 2 井区)(图8)。征沙村和沙窝地地区三工河组油水分布总体均呈现出“油高于水” 和 “上油下水”的特点。

  • (1)油水同层—(差油层)—水层—干层。具有该类油水关系单井的油层位于六砂组的席状砂—远砂坝叠置砂层中,一般位于单井的最上部; 五砂组河道弱冲刷叠置砂体储层物性良好,一般为含油水层或差油层; 四砂组为河上坝和河道弱冲刷叠置砂体,层物性最好,一般为油层或油水同层; 干层、高阻水层处于最下部的一砂组、二砂组、三砂组,这三个砂组属河道冲刷砂体叠置砂体,储层物性差。整个沙窝地地区、征沙村地区的征 1-1 井、征 3 井、征 1-2 征 1-4、征 1-6、征 11 井区属于这一类储层流体分布样式(图7)。

  • (2)干层—油水同层—差油层互层。具有该类油水关系单井的油水分布特征是干层位于单井最顶部的六砂组的席状砂—远砂坝叠置砂层中,其岩性一般为中砂岩,细砂岩,储层物性较差; 油水同层位于五砂组河道弱冲刷叠置砂层中,其岩性为中砂岩、含砾砂岩,储层物性最好; 差油层分布在一砂组河道强冲刷叠置砂体、二、三、四砂组河道弱冲刷叠置砂体中,总体储层物性差。这一类单井储层流体分布样式较少见,主要出现在征沙村地区的征 1-斜 5 井和征 1-斜 3 井区(图9)。

  • (3)干层—水层互层。具有该类油水关系单井岩性特征明显,主要发育河道强冲刷叠置砂体内,其储层物性差,以干层和水层的互层发育为特征。这类单井储层流体分布样式较少见,主要出现在征沙村地区的征 2 井和征 101 井区(图8)。

  • 从剖面上来看,沙窝地地区总体上表现出“上油下水、高油低水、上干下水”的特征(图10)。一些井区为高饱和度油层,一些井区为低饱和度油层。油水界面为一较厚过渡层,各井区厚度参差不一,并非一个完全统一的界面。油水界面具有一定的层控特征,多分布在四砂组,在二、三、五砂组也有出现。油水界面同时还受微地貌制约,微地貌高处油水界面高,微地貌地处油水界面低。该区油水分布表现出明显的相控和层控特征。油气多在四、五砂组的弱冲刷分流河道和河上坝叠置砂体中聚集,连片状分布。在三、六砂组的远砂坝和河道弱冲刷叠置砂体中小范围聚集,含油层呈带状分布。一、二、七砂组的河道强冲刷砂体、席状砂—远砂坝砂体中大面积发育干层和水层,呈片状分布。油水分布还受地貌制约,主要表现在:地貌低部位发育水层、干层,地貌高部位发育油层、油水同层和/ 或含油水层; 地貌低部位见油层位高,地貌高部位见油层位低; 台阶状地貌肩部(高部位)油层厚、数量多,台阶地貌低部位不发育油层(图10)。

  • 沙窝地有试油结果的井段一共有 8 个,包括 5 个单井,按照测井解释结论来看符合只有 1 个(表4)。根据本文油水分布规律对沙窝地的有试油结果的井段进行进一步的优化判别,符合试油水结果的划分有 8 个,也证明了其有效性。

  • 征沙村地区储层物性条件相对沙窝地地区较差,但因其经历了早期原油注入,改变了储层润湿性质(姜林,2008; 周勇水,2014),导致其含油性反而优于沙窝地地区。尽管如此,征沙村地区干层相对较厚,致密层也更为发育,高饱和度油层少,多为油水同层、差油层和干层。从剖面上来看,征沙村地区总体上也呈现“上油下水、高油低水、上干下油” 等特征。油水界面所在的层位相对于沙窝地地区升高,多分布在五砂组,在四、六砂组也偶有出现,油水界面的深度也变深。该区油水分布同样表现出明显的相控及层控特征。油水同层和差油层多分布在四、五砂组的弱冲刷分流河道和河上坝叠置砂体中,连片状分布。含油水层、差油层多在三砂组河道弱冲刷叠置砂体和六砂组远砂坝砂体内小范围聚集,呈带状分布。干层和水层多在一、二、七砂组的河道强冲刷砂体、席状砂—远砂坝砂体中大面积连片发育。油水层的分布还明显受微地貌制约,地貌高部位见油层位低,油水同层、差油层和干层相对发育; 地貌低部位见油层位高,油水同层和水层相对发育。台阶状地貌肩部和转折部位油层厚,数量多; 台阶地貌低部位水层较发育,不含油(图11)。

  • 图10 准噶尔盆地腹部征沙村地区三工河组二段油水分布剖面(剖面位置见图1)

  • Fig.10 Oil—water distribution profile of the Second Member of the Sangonghe Formation in Zhengshacun area, central Junggar Basin ( see Fig.1)

  • 图11 准噶尔盆地腹部征沙村地区三工河组二段油水分布剖面(剖面位置见图1)

  • Fig.11 Oil—water distribution profile of the Second Member of the Sangonghe Formation in Zhengshacun area, Junggar Basin ( see Fig.1)

  • 表4 准噶尔盆地腹部沙窝地和征沙村三工河组二段优化测井解释情况统计表

  • Table4 Statistical table of optimized logging interpretation of the Second Member of the Sangonghe Formation in Shawodi area, Ju nggar Basin

  • 征沙村有试油结果的井段一共有 11 个,包括 6 个单井,按照测井解释结论来看符合只有 4 个(表4)。根据本文油水分布规律对沙窝地的有试油结果的井段进行进一步的优化判别,符合试油水结果的划分有 10 个,也证明了其有效性。

  • 6 结论

  • (1)沙窝地—征沙村地区侏罗系三工河组(J1s)二段所发育的辨状河三角洲前缘亚相由 4 类储集砂体,即 4 种沉积微相组成:水下分流河道沉积、河口坝沉积、远砂坝—席状砂和滩坝沉积。可进一步识别出 4 种砂体组合类型:河道强冲刷叠置砂体、河道弱冲刷叠置砂体、河上坝组合砂体、远砂坝—席状砂组合砂体。其中,河上坝组合砂体物性最好,含油性好,其次是弱冲刷叠置砂体,河道强冲刷叠置砂体和远砂坝—席状砂组合砂体含油性最差。

  • (2)沙窝地地区水层电阻相较低,油层和油水同层电阻稍高,总体上属于“常规低阻油藏”。征沙村地区水层、油层、差油层、油水同层的电阻率分布范围相近,且普遍高于沙窝地地区储层流体的电阻率,属于“低对比度油藏”。三工河组油水分布总体呈现“上油下水”、“高油低水” 和“上干下油” 等特征,油层主要聚集在微幅高地貌区域和台阶状地貌肩部和转折部位的上部,地貌低部位发育水层、干层。

  • (3)研究区三工河组二段垂向上油水分布有 3 种特征样式,即:①油水同层—(差油层)—水层— 干层; ②油水同层—干层差油层互层; ③干层—高阻水层互层。油水分布具有明显的相控特征,油层、油水同层发育在四、五砂组的河上坝叠置砂体中; 含油水层、差油层多发育在三、六砂组的河上坝叠置砂体和河道弱冲刷砂体中; 水层和干层主要分布在一、二、七砂组的河道强冲刷砂体、席状砂—远砂坝砂体中。

  • 参考文献

    • 操应长, 杜亮慧, 王艳忠, 葸克来, 王孝明, 张江华. 2015. 准噶尔盆地中部Ⅰ区块三工河组储层沉积成岩综合相及其测井识别. 天然气地球科学, 26(6): 1016~1027.

    • 冯庚, 谢利华, 刘继伟, 王军, 张卫平. 2022. 准噶尔盆地中部1区块三工河组基准面旋回划分. 天然气地球学, 33(11): 1798~1807.

    • 冯怀伟, 许淑梅, 王金铎, 张关龙, 曾治平. 2024. 浅水三角洲物源、砂体构型与储层特征研究——以准噶尔盆地永进—莫西庄地区侏罗系三工河组二段为例. 地质论评, 70(1): 330~345.

    • 洪有密. 2007. 测井原理与综合解释. 东营: 中国石油大学出版社: 165~195.

    • 厚刚福, 孙雄伟, 李昌, 刘群, 曾庆鲁, 熊冉, 曹全斌. 2012. 塔里木盆地西南部叶城凹陷下白垩统克孜勒苏群扇三角洲沉积特征及模式. 中国地质, 39(4): 947~953.

    • 厚刚福, 徐洋, 孙靖, 王力宝, 宋明星, 郭华军, 李亚哲, 陈扬. 2019. 三角洲前缘—湖盆深水区沉积模式及意义——以准噶尔盆地盆1井西凹陷三工河组二段一砂组为例. 石油学报, 40(10): 1223~1232.

    • 姜林, 宋岩, 查明, 曲江秀. 2008. 准噶尔盆地莫索湾地区超压与油气成藏. 大庆石油学院学报, 32(6): 24~28.

    • 孔家豪, 张关龙, 许淑梅, 王金铎, 曾治平, 王千军, 任新成, 武向峰, 舒鹏程, 马慧磊, 崔慧琪. 2022. 噶尔盆地侏罗纪车—莫古隆起的发育阶段及其对沉积体系的制约[OL]. 中国地质, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.

    • 李双文, 刘洛夫, 张有平, 姚卫江, 靳军, 赵建章, 孙东. 2006. 准噶尔盆地莫北凸起侏罗系三工河组沉积演化及微相构成. 沉积学报, 24(6): 819~828.

    • 林会喜, 王建伟, 曹建军, 任新成. 2019. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究. 地质学报, 93(12): 3259~3268.

    • 刘刚, 卫延召, 罗鸿成, 陈棡, 龚德瑜, 王峰, 孙靖, 贾开富. 2018. 准噶尔盆地陆西地区石南13井区侏罗系三工河组砂体结构及控藏作用. 石油学报, 39(9): 1006~1018.

    • 刘华, 蒋有录, 徐昊清, 张永丰. 2011. 冀中坳陷新近系油气成藏机理与成藏模式. 石油学报, 32(6): 928~936.

    • 柳妮, 陈玉一, 李疆, 于景维, 于美琪, 康晶, 康天祥, 王效俭. 2020. 准噶尔盆地阜康凹陷北部三工河组储层非均质性综合研究. 地质与勘探, 56(2): 451~464.

    • 路成. 2016. 准噶尔盆地中部1、3区块老井测井二次解释研究. 导师: 黄建华. 乌鲁木齐: 新疆大学硕士论文.

    • 母长河, 梁秀丽, 马利民. 2006. 萨北开发区油水同层测井解释方法. 大庆石油地质与开发, 25(6): 112~114.

    • 潘荣, 朱筱敏, 刘芬, 李勇, 马玉杰, 邸宏利, 张荣虎. 2013. 新疆库车坳陷克拉苏冲断带白垩系辫状河三角洲沉积特征及其与储集层发育的关系. 古地理学报, 15(5): 707~716.

    • 蒲仁海, 梅志超, 唐忠华. 1994. 准噶尔盆地东部侏罗系陆相层序地层学初探. 新疆石油地质, 15(4): 335~342.

    • 邱子刚, 戴雄军, 施小荣. 2010. 准噶尔盆地莫北凸起侏罗系三工河组沉积相. 石油天然气学报, 32(5): 183~186.

    • 孙靖, 吴爱成, 王然, 曾德龙, 王峰, 薛晶晶. 2017. 准噶尔盆地中央坳陷莫索湾地区侏罗系三工河组深层致密砂岩气储集层特征及成因. 古地理学报, 19(5): 907~918.

    • 孙靖, 薛晶晶, 厚刚福, 吴爱成, 宋明星, 朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式—以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858~869.

    • 唐勇, 孔玉华, 盛建红, 赵克斌, 斯春松, 史基安. 2009. 准噶尔盆地腹地缓坡型岩性地层油气藏成藏控制因素分析. 沉积学报, 27(3): 567~572.

    • 王金铎, 许淑梅, 张关龙, 任新成, 曾治平, 武向峰, 舒鹏程, 冯怀伟. 2022. 准噶尔盆地腹地下侏罗统三工河组储层物性—含油性特征及主控因素分析. 地质论评, 68(3): 1129~1144.

    • 吾尔妮萨罕·麦麦提敏, 李军, 赵靖舟, 吴涛, 徐泽阳, 杜治伟, 范佳怡, 许晨航. 2024. 准噶尔盆地莫索湾凸起侏罗系超压成因研究. 天然气地球科学, 35(9): 1590~1600.

    • 吴冲龙, 林忠民, 毛小平, 王连进. 2009. “油气成藏模式”的概念、研究现状和发展趋势. 石油与天然气地质, 30(6): 673~683.

    • 徐后伟, 王海明, 刘荣军, 许长福, 王晓光, 吕建荣. 2018. 砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例. 新疆石油地质, 39(2): 169~175.

    • 许淑梅, 李萌, 王金铎, 任新成, 池鑫琪, 舒鹏程, 王杰清, 刘弦. 2020. 准噶尔盆地腹地下侏罗统三工河组旋回样式及砂体叠置规律. 古地理学报, 22(2): 221~234.

    • 阎海龙, 孙卫. 2006. 水下分流河道砂体中夹层的识别及定量分析—以靖安油田盘古梁长6油层为例. 西北大学学报(自然科学版), 36(1): 133~136.

    • 张冬玲, 鲍志东, 王建伟, 杨文秀. 2005. 准噶尔盆地中部下侏罗统三工河组二段沉积相及储层特征. 古地理学报, 7(2): 185~196.

    • 张年富. 2000. 准噶尔盆地腹部莫索湾地区油气成藏条件与成藏模式. 石油勘探与开发, 27(3): 110~119.

    • 赵璐阳, 孙越, 赵自民, 黄胜, 周萌, 张润. 2018. 电阻率比值法在苏里格低电阻率气层测井解释中的应用. 测井技术, 42(6): 689~694.

    • 赵孟军, 宋岩, 柳少波, 杨海波, 刘得光. 2009. 准噶尔盆地天然气成藏体系和成藏过程分析. 地质论评, 55(2): 215~224.

    • 赵淑娟, 李三忠, 刘鑫, 楼达, 索艳慧, 戴黎明, 孙文军, 李涛, 王学斌, 杨朝. 2014. 准噶尔盆地东缘构造: 阿尔泰与北天山造山带交接转换的陆内过程. 中国科学: 地球科学, 44(10): 2130~2141.

    • 郑建东, 王晓莲, 高吉峰. 2013. 一种考虑邻近泥岩特征的油水层识别方法. 测井技术, 37(4): 397~400.

    • 周勇水, 邱楠生, 宋鑫颖, 曹环宇, 阙永泉. 2014. 准噶尔盆地腹地超压地层烃源岩热演化史研究. 地质科学, 49(3): 812~822.

    • Cao Yingchang, Du Lianghui, Wang Yanzhong, Xi Kelai, Wang Xiaoming, Zhang Jianghua. 2015&. Reservoir sedimentary—diagenetic synthetic facies and its logging identification of Sangonghe Foramtion in block 1 of central Junggar Basin. Natural Gas Geoscience, 26(6): 1016~1027.

    • Chen Dongxia, Pang Xiongqi, Kuang Jun, Kang Dejiang, Lei Lei, Deng Yougen. 2010. Control of Facies and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar Basin. Acta Geologica Sinica(English Edition), 84(5): 1256~1272.

    • Feng Geng, Xie Lihua, Liu Jiwei, Wang Jun. Zhang Weiping. 2022&. Division of base cycle of Sangonghe Formation in block 1, central Junggar Basin. Natural Gas Geoscience, 33(11): 1798~1807.

    • Feng Huaiwei, Xu Shumei, Wang Jinduo. Zhang Guanlong, Zeng Ziping. 2024&. Study on shallow water delta provenance, sandbody architecture and reservoir characteristics —A case of the 2nd Member of the Jurassic Sangonghe Formation in Yongjin—Moxizhuang region Junggar basin. Geological Review, 70(1): 330~345.

    • Feng Youliang, Jiang Shu, Wang Chunfang. 2015. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 105: 85~103.

    • Hong Youmi. 2007#. Well logging principles and comprehensive interpretation. Dongying: China University of Petroleum Press, 165~195.

    • Hou Gangfu, Sun Xiongwei, Li Chang, Liu Qun, Zeng Qinglu, Xiong Ran, Cao Quanbin. 2012&. Depositional features of the fan delta from lower Cretaceous Kezilesu Group in Yecheng sag, southwestern Tarim Basin. Geology in China, 39(4): 947~953.

    • Hou Gangfu, Xu Yang, Sun Jing, Wang Libao, Song Mingxing, Guo Huajun, Li Yazhe, Chen Yang. 2019&. Sedimentary model from delta front to deep water area and its significance: a case study of the first sand group of Member 2 of Sangonghe Formation in the Well Pen-1 West sag, Junggar Basin. Acta Petrolei Sinica, 40(10): 1223~1232.

    • Jiang Lin, Song Yan, Zha Ming, Qu Jiangxiu. 2008&. Study on relationship between overpressure and hydrocarbon accumulation in Mosuowan area of Junggar basin. Journal of Daqing Petroleum Institute, 32(6): 24~28.

    • Kong Jiahao, Zhang Guanlong, Xu Shumei, Wang Jinduo, Zeng Zhiping, Wang Qianjun, Ren Xinceng, Wu Xiangfeng, Shu Pengcheng, Ma Huilei, Chui Huiqi. 2022&. Development stage of Jurassic Che-Mo Paleouplift in the Junggar Basin and its constraints on sedimentary system[OL]. Geology in China, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.

    • Li Shuangwen, Liu Luofu, Zhang Youping, Yao Weijiang, Jin Jun, Zhao Jianzhang, Shun Dong. 2006&. Sedimentary evolution and microfacies architecture of the Jurassic Sangong Formation in Mobei Arch, Junggar Basin. Acta Sedimentologica Sinica, 24(6): 819~828.

    • Lin Huixi, Wang Jianjun, Cao Jianjun, Ren Xinceng. 2019&. Jurassic compression—torsion fault paterns of the central Junggar basin and their controlling role on reservoir. Acta Geologica Sinica, 93(12): 3259~3268.

    • Liu Gang, Wei Yanzhao, Luo Hongcheng, Chen Geng, Gong Deyu, Wang Feng, Shun Jing, Jia Kaifu. 2018&. Sand-body structure and reservoir forming control of Jurassic Sangonghe Formation. Acta Petrolei Sinica, 39(9): 1006~1018.

    • Liu Hua, Jiang Youlu, Xu Haoqing, Zhang Yongfeng. 2011&. Accumulation mechanisms and models of Neogene hydrocarbons in Jizhong Depression. Acta Petrolei Sinica, 32(6): 928~936.

    • Liu Ni, Chen Yuyi, LIi Jiang, Yu Jingwei, Yu Meiqi, Kang Jing, Kang Tianxiang, Wang Xiaojian. 2020&. A comprehensive research on reservoir heterogeneity of the Sangonghe Formation in the north of the Fukang sag, Junggar Basin. Geology and Exploration, 56(2): 0451~0464.

    • Lu Cheng. 2016#. Old well log in central of Junggar Basin reinterpreted. Tutor: Huang Jianhua. Urumqi: Master 's thesis of Xinjiang University.

    • Mu Changhe, Liang Xiuli, Ma Limin. 2006&. Interpretation Method for Oil Water Same Layer Logging in Sabei Development Zone. Daqing Petroleum Geology and Development, 25(6): 112~114.

    • Pan Rong, Zhu Xiaoming, Liu Fen, Li Yong, Ma Yujie, Di Hongli, Zhang Ronghu. 2013&. Sedimentary characteristics of braided delta and relationship to reservoirs in the Cretaceous of Kelasu tectonic zone in Kuqa Depression, Xinjiang. Journal of Palaeogeography, 15(5): 707~716.

    • Peng B, Jin Z, Wang J, Jia H, Zhu X, Chang T, Yuan K. 2018. Sedimentology and sequence stratigraphy of a retrogradational fan-delta system within Lower Triassic in the Mabei area, Junggar Basin (northwestern China). Russian Geology and Geophysics, 59(6): 606~619.

    • Pu Renhai, Mei Zhichao, Tang Zhonghua. 1994&. A preliminary discussion of Jurassic non-marine sequence stratigraphy, eastern Junggar basin. Xinjiang Petroleum Geology, 15(4): 335~342.

    • Qiu Zigang, Dai Xiongjun, Shi Xiaorong. 2010&. Sedimentary facies of Jurassic Sangonghe Formation in Mobei Uplift, the Junggar Basin. Journal of Oil and GasTechnology, 32(5): 183~186.

    • Sun Jing, Wu Aicheng, Wang Ran, Zeng Delong, Wang Feng, Xue Jingjing. 2017&. Characteristics and origin of deep tight sandstone gas reservoirs of the Jurassic Sangonghe Foramtion, Mosuowan area, Central Depression, Junggar Basin. Journal of Palaeogeography, 19(5): 907~918.

    • Sun Jing, Xue Jingjing, Hou Gangfu, Wu Aiceng, Song Mingxing, Zhu Feng. 2019&. Sedimentary characteristics and model of sandy debris flow in deoression area of lacustrine basin: A case study of the Jurassic Sanghonghe Formation in the western Pen-1 sag, Junggar basin. Journal of China University of Mining & Technology, 48(4): 858~869.

    • Tang Yong, Kong Yuhua, Sheng Jianhong, Zhao Kebin, Shi Jian. 2009&. Controlling factors of reservoir formation in ramp-type lthostratigraphic reservoir in hinterland of Junggar basin. Acta Sedimentologica Sinica, 27(3): 567~572.

    • Wang Jinduo, Xu Shumei, Zhang Guanlong, Ren Xinceng, Zeng Zhiping, Wu Xiangfeng, Shu Pengcheng. 2022&. Analysis of reservoir physical property oil-bearing characteristics and main control factors of Sangonghe Formation of Lower Jurassic in the hinterland of the Junggar Basin. Geological Review, 68(3): 1129~1144.

    • Wu Chonglong, Lin Zhongmin, Mao Xiaoping, Wang Lianjin. 2009&. Concept, research status and trend of “hydrocarbon pooling pattern”. Oil & Gas Geology, 30(6): 673~683.

    • Wuernisahan Maimaitimin, Li Jun, Zhao Jingzhou, Wu Tao, Xu Zeyang, Du Zhiwei, Fan Jiayi, Xu Chenhang. 2024&. The study of Jurassic overpressure genesis in the Mosuowan Uplift of the Junggar Basin. Natural Gas Geoscience, 35(9): 1590~1600.

    • Xu Houwei, Wang Haiming, Liu Rongjun, Xu Changfu, Wang Xiaoguang, Lu Jianrong. 2018&. Fine multiparameter evaluation for polymer flooding in conglomerate reservoirs and its application: A case study from Lower Karamay Formation in District Qiding-1, Karamay Oilfield. Xinjiang Petroleum Geology, 39(2): 169~175.

    • Xu Shumei, Li Meng, Wang Jinduo, Ren Xincheng, Chi Xinqi, Shu Pengcheng, Wang Jieqing, Liu Xian. 2020&. Sedimentary cycle pattern and stacked style of sand-body of the Lower Jurassic Sangonghe Formation in belly of Junggar Basin. Journal of Palaeogeograpgy (Chinese Edition), 22(2): 221~234.

    • Yan Hailong, Sun Wei. 2006&. Quantitative analysis of interlayer in underwater distributary channel: analyzing the interlayers of Chang 6 reservoir in Jing’an Oilfield. Journal of Northwest University (Natural Science Edition), 36(1): 133~136.

    • Zhang Dongling, Bao Zhidong, Wang Jianwei, Yang Wenxiu. 2005&. Sedimentary facies and reservoir characters of the Member 2 of Sangonghe Formation of Lower Jurassic in Central Junggar Basin. Journal of Palaeogeography, 7(2): 185~196.

    • Zhang Nianfu. 2000#. Fluid compartment and hydrocarbon accumulation in Mosuowan area in central part of Junggar basin. Petroleum Exploration and Development, 27(3): 110~119.

    • Zhao Luyang, Sun Yue, Zhao Zimin, Huang Sheng, Zhou Meng, Zhang Run. 2018&. Application of resistivity ratio method in the evaluation of low resistivity gas layers in the Sulige Gas Field. Well Logging Technology, 42(6): 689~694.

    • Zhao Mengjun, Song yan, Liu Shaobo, Yang Haibo, Liu Deguang. 2009&. Accumulation systems and filling process of natural gas in Junggar Basin. Geological Review, 55(2): 215~224.

    • Zhao Shujuan, Li Sanzong, Liu Xin, Lou Da, Shu Yanhui, Dai Liming, Ssun Wenjun, Li Tao, Wang Xuebin, Yang Chao. 2014&. Structures of the eastern Junggar Basin: Intracontinental transition between the North Tianshan and the Altai Orogens (in Chinese). Scientia Sinica Terrae, 44(10): 2130~2141

    • Zheng Jiandong, Wang Xiaolian, Gao Jifeng. 2013&. An oli water layer recognition method for consideration of adjacent mudstone characteristics. Well Logging Technology, 37(4): 397~400.

    • Zhou Yongshui, Qiu Nansheng, Song Xinyin, Cao Huanyu, Que Yongquan. 2014&. Study of source rock thermal evolution in overpressure formations in the hinterland of Junggar Basin. Chinese Journal of Geology, 49(3): 812~822.

    • Zou Zhiwen, Si ChunSong, Yang Mengyun, 2010. Origin and distribution of interbeds and the influence on oil—water layer: an example from mosuowan area in the hinterland of junggar basin. Lithologic Reservoirs, 22(3): 66~67.

  • 参考文献

    • 操应长, 杜亮慧, 王艳忠, 葸克来, 王孝明, 张江华. 2015. 准噶尔盆地中部Ⅰ区块三工河组储层沉积成岩综合相及其测井识别. 天然气地球科学, 26(6): 1016~1027.

    • 冯庚, 谢利华, 刘继伟, 王军, 张卫平. 2022. 准噶尔盆地中部1区块三工河组基准面旋回划分. 天然气地球学, 33(11): 1798~1807.

    • 冯怀伟, 许淑梅, 王金铎, 张关龙, 曾治平. 2024. 浅水三角洲物源、砂体构型与储层特征研究——以准噶尔盆地永进—莫西庄地区侏罗系三工河组二段为例. 地质论评, 70(1): 330~345.

    • 洪有密. 2007. 测井原理与综合解释. 东营: 中国石油大学出版社: 165~195.

    • 厚刚福, 孙雄伟, 李昌, 刘群, 曾庆鲁, 熊冉, 曹全斌. 2012. 塔里木盆地西南部叶城凹陷下白垩统克孜勒苏群扇三角洲沉积特征及模式. 中国地质, 39(4): 947~953.

    • 厚刚福, 徐洋, 孙靖, 王力宝, 宋明星, 郭华军, 李亚哲, 陈扬. 2019. 三角洲前缘—湖盆深水区沉积模式及意义——以准噶尔盆地盆1井西凹陷三工河组二段一砂组为例. 石油学报, 40(10): 1223~1232.

    • 姜林, 宋岩, 查明, 曲江秀. 2008. 准噶尔盆地莫索湾地区超压与油气成藏. 大庆石油学院学报, 32(6): 24~28.

    • 孔家豪, 张关龙, 许淑梅, 王金铎, 曾治平, 王千军, 任新成, 武向峰, 舒鹏程, 马慧磊, 崔慧琪. 2022. 噶尔盆地侏罗纪车—莫古隆起的发育阶段及其对沉积体系的制约[OL]. 中国地质, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.

    • 李双文, 刘洛夫, 张有平, 姚卫江, 靳军, 赵建章, 孙东. 2006. 准噶尔盆地莫北凸起侏罗系三工河组沉积演化及微相构成. 沉积学报, 24(6): 819~828.

    • 林会喜, 王建伟, 曹建军, 任新成. 2019. 准噶尔盆地中部地区侏罗系压扭断裂体系样式及其控藏作用研究. 地质学报, 93(12): 3259~3268.

    • 刘刚, 卫延召, 罗鸿成, 陈棡, 龚德瑜, 王峰, 孙靖, 贾开富. 2018. 准噶尔盆地陆西地区石南13井区侏罗系三工河组砂体结构及控藏作用. 石油学报, 39(9): 1006~1018.

    • 刘华, 蒋有录, 徐昊清, 张永丰. 2011. 冀中坳陷新近系油气成藏机理与成藏模式. 石油学报, 32(6): 928~936.

    • 柳妮, 陈玉一, 李疆, 于景维, 于美琪, 康晶, 康天祥, 王效俭. 2020. 准噶尔盆地阜康凹陷北部三工河组储层非均质性综合研究. 地质与勘探, 56(2): 451~464.

    • 路成. 2016. 准噶尔盆地中部1、3区块老井测井二次解释研究. 导师: 黄建华. 乌鲁木齐: 新疆大学硕士论文.

    • 母长河, 梁秀丽, 马利民. 2006. 萨北开发区油水同层测井解释方法. 大庆石油地质与开发, 25(6): 112~114.

    • 潘荣, 朱筱敏, 刘芬, 李勇, 马玉杰, 邸宏利, 张荣虎. 2013. 新疆库车坳陷克拉苏冲断带白垩系辫状河三角洲沉积特征及其与储集层发育的关系. 古地理学报, 15(5): 707~716.

    • 蒲仁海, 梅志超, 唐忠华. 1994. 准噶尔盆地东部侏罗系陆相层序地层学初探. 新疆石油地质, 15(4): 335~342.

    • 邱子刚, 戴雄军, 施小荣. 2010. 准噶尔盆地莫北凸起侏罗系三工河组沉积相. 石油天然气学报, 32(5): 183~186.

    • 孙靖, 吴爱成, 王然, 曾德龙, 王峰, 薛晶晶. 2017. 准噶尔盆地中央坳陷莫索湾地区侏罗系三工河组深层致密砂岩气储集层特征及成因. 古地理学报, 19(5): 907~918.

    • 孙靖, 薛晶晶, 厚刚福, 吴爱成, 宋明星, 朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式—以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858~869.

    • 唐勇, 孔玉华, 盛建红, 赵克斌, 斯春松, 史基安. 2009. 准噶尔盆地腹地缓坡型岩性地层油气藏成藏控制因素分析. 沉积学报, 27(3): 567~572.

    • 王金铎, 许淑梅, 张关龙, 任新成, 曾治平, 武向峰, 舒鹏程, 冯怀伟. 2022. 准噶尔盆地腹地下侏罗统三工河组储层物性—含油性特征及主控因素分析. 地质论评, 68(3): 1129~1144.

    • 吾尔妮萨罕·麦麦提敏, 李军, 赵靖舟, 吴涛, 徐泽阳, 杜治伟, 范佳怡, 许晨航. 2024. 准噶尔盆地莫索湾凸起侏罗系超压成因研究. 天然气地球科学, 35(9): 1590~1600.

    • 吴冲龙, 林忠民, 毛小平, 王连进. 2009. “油气成藏模式”的概念、研究现状和发展趋势. 石油与天然气地质, 30(6): 673~683.

    • 徐后伟, 王海明, 刘荣军, 许长福, 王晓光, 吕建荣. 2018. 砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例. 新疆石油地质, 39(2): 169~175.

    • 许淑梅, 李萌, 王金铎, 任新成, 池鑫琪, 舒鹏程, 王杰清, 刘弦. 2020. 准噶尔盆地腹地下侏罗统三工河组旋回样式及砂体叠置规律. 古地理学报, 22(2): 221~234.

    • 阎海龙, 孙卫. 2006. 水下分流河道砂体中夹层的识别及定量分析—以靖安油田盘古梁长6油层为例. 西北大学学报(自然科学版), 36(1): 133~136.

    • 张冬玲, 鲍志东, 王建伟, 杨文秀. 2005. 准噶尔盆地中部下侏罗统三工河组二段沉积相及储层特征. 古地理学报, 7(2): 185~196.

    • 张年富. 2000. 准噶尔盆地腹部莫索湾地区油气成藏条件与成藏模式. 石油勘探与开发, 27(3): 110~119.

    • 赵璐阳, 孙越, 赵自民, 黄胜, 周萌, 张润. 2018. 电阻率比值法在苏里格低电阻率气层测井解释中的应用. 测井技术, 42(6): 689~694.

    • 赵孟军, 宋岩, 柳少波, 杨海波, 刘得光. 2009. 准噶尔盆地天然气成藏体系和成藏过程分析. 地质论评, 55(2): 215~224.

    • 赵淑娟, 李三忠, 刘鑫, 楼达, 索艳慧, 戴黎明, 孙文军, 李涛, 王学斌, 杨朝. 2014. 准噶尔盆地东缘构造: 阿尔泰与北天山造山带交接转换的陆内过程. 中国科学: 地球科学, 44(10): 2130~2141.

    • 郑建东, 王晓莲, 高吉峰. 2013. 一种考虑邻近泥岩特征的油水层识别方法. 测井技术, 37(4): 397~400.

    • 周勇水, 邱楠生, 宋鑫颖, 曹环宇, 阙永泉. 2014. 准噶尔盆地腹地超压地层烃源岩热演化史研究. 地质科学, 49(3): 812~822.

    • Cao Yingchang, Du Lianghui, Wang Yanzhong, Xi Kelai, Wang Xiaoming, Zhang Jianghua. 2015&. Reservoir sedimentary—diagenetic synthetic facies and its logging identification of Sangonghe Foramtion in block 1 of central Junggar Basin. Natural Gas Geoscience, 26(6): 1016~1027.

    • Chen Dongxia, Pang Xiongqi, Kuang Jun, Kang Dejiang, Lei Lei, Deng Yougen. 2010. Control of Facies and Potential on Jurassic Hydrocarbon Accumulation and Prediction of Favorable Targets in the Hinterland Region of the Junggar Basin. Acta Geologica Sinica(English Edition), 84(5): 1256~1272.

    • Feng Geng, Xie Lihua, Liu Jiwei, Wang Jun. Zhang Weiping. 2022&. Division of base cycle of Sangonghe Formation in block 1, central Junggar Basin. Natural Gas Geoscience, 33(11): 1798~1807.

    • Feng Huaiwei, Xu Shumei, Wang Jinduo. Zhang Guanlong, Zeng Ziping. 2024&. Study on shallow water delta provenance, sandbody architecture and reservoir characteristics —A case of the 2nd Member of the Jurassic Sangonghe Formation in Yongjin—Moxizhuang region Junggar basin. Geological Review, 70(1): 330~345.

    • Feng Youliang, Jiang Shu, Wang Chunfang. 2015. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 105: 85~103.

    • Hong Youmi. 2007#. Well logging principles and comprehensive interpretation. Dongying: China University of Petroleum Press, 165~195.

    • Hou Gangfu, Sun Xiongwei, Li Chang, Liu Qun, Zeng Qinglu, Xiong Ran, Cao Quanbin. 2012&. Depositional features of the fan delta from lower Cretaceous Kezilesu Group in Yecheng sag, southwestern Tarim Basin. Geology in China, 39(4): 947~953.

    • Hou Gangfu, Xu Yang, Sun Jing, Wang Libao, Song Mingxing, Guo Huajun, Li Yazhe, Chen Yang. 2019&. Sedimentary model from delta front to deep water area and its significance: a case study of the first sand group of Member 2 of Sangonghe Formation in the Well Pen-1 West sag, Junggar Basin. Acta Petrolei Sinica, 40(10): 1223~1232.

    • Jiang Lin, Song Yan, Zha Ming, Qu Jiangxiu. 2008&. Study on relationship between overpressure and hydrocarbon accumulation in Mosuowan area of Junggar basin. Journal of Daqing Petroleum Institute, 32(6): 24~28.

    • Kong Jiahao, Zhang Guanlong, Xu Shumei, Wang Jinduo, Zeng Zhiping, Wang Qianjun, Ren Xinceng, Wu Xiangfeng, Shu Pengcheng, Ma Huilei, Chui Huiqi. 2022&. Development stage of Jurassic Che-Mo Paleouplift in the Junggar Basin and its constraints on sedimentary system[OL]. Geology in China, [2022-01-23]http: //kns. cnki. net/kcms/detail/11. 1167. P. 20220621. 1150. 010. html.

    • Li Shuangwen, Liu Luofu, Zhang Youping, Yao Weijiang, Jin Jun, Zhao Jianzhang, Shun Dong. 2006&. Sedimentary evolution and microfacies architecture of the Jurassic Sangong Formation in Mobei Arch, Junggar Basin. Acta Sedimentologica Sinica, 24(6): 819~828.

    • Lin Huixi, Wang Jianjun, Cao Jianjun, Ren Xinceng. 2019&. Jurassic compression—torsion fault paterns of the central Junggar basin and their controlling role on reservoir. Acta Geologica Sinica, 93(12): 3259~3268.

    • Liu Gang, Wei Yanzhao, Luo Hongcheng, Chen Geng, Gong Deyu, Wang Feng, Shun Jing, Jia Kaifu. 2018&. Sand-body structure and reservoir forming control of Jurassic Sangonghe Formation. Acta Petrolei Sinica, 39(9): 1006~1018.

    • Liu Hua, Jiang Youlu, Xu Haoqing, Zhang Yongfeng. 2011&. Accumulation mechanisms and models of Neogene hydrocarbons in Jizhong Depression. Acta Petrolei Sinica, 32(6): 928~936.

    • Liu Ni, Chen Yuyi, LIi Jiang, Yu Jingwei, Yu Meiqi, Kang Jing, Kang Tianxiang, Wang Xiaojian. 2020&. A comprehensive research on reservoir heterogeneity of the Sangonghe Formation in the north of the Fukang sag, Junggar Basin. Geology and Exploration, 56(2): 0451~0464.

    • Lu Cheng. 2016#. Old well log in central of Junggar Basin reinterpreted. Tutor: Huang Jianhua. Urumqi: Master 's thesis of Xinjiang University.

    • Mu Changhe, Liang Xiuli, Ma Limin. 2006&. Interpretation Method for Oil Water Same Layer Logging in Sabei Development Zone. Daqing Petroleum Geology and Development, 25(6): 112~114.

    • Pan Rong, Zhu Xiaoming, Liu Fen, Li Yong, Ma Yujie, Di Hongli, Zhang Ronghu. 2013&. Sedimentary characteristics of braided delta and relationship to reservoirs in the Cretaceous of Kelasu tectonic zone in Kuqa Depression, Xinjiang. Journal of Palaeogeography, 15(5): 707~716.

    • Peng B, Jin Z, Wang J, Jia H, Zhu X, Chang T, Yuan K. 2018. Sedimentology and sequence stratigraphy of a retrogradational fan-delta system within Lower Triassic in the Mabei area, Junggar Basin (northwestern China). Russian Geology and Geophysics, 59(6): 606~619.

    • Pu Renhai, Mei Zhichao, Tang Zhonghua. 1994&. A preliminary discussion of Jurassic non-marine sequence stratigraphy, eastern Junggar basin. Xinjiang Petroleum Geology, 15(4): 335~342.

    • Qiu Zigang, Dai Xiongjun, Shi Xiaorong. 2010&. Sedimentary facies of Jurassic Sangonghe Formation in Mobei Uplift, the Junggar Basin. Journal of Oil and GasTechnology, 32(5): 183~186.

    • Sun Jing, Wu Aicheng, Wang Ran, Zeng Delong, Wang Feng, Xue Jingjing. 2017&. Characteristics and origin of deep tight sandstone gas reservoirs of the Jurassic Sangonghe Foramtion, Mosuowan area, Central Depression, Junggar Basin. Journal of Palaeogeography, 19(5): 907~918.

    • Sun Jing, Xue Jingjing, Hou Gangfu, Wu Aiceng, Song Mingxing, Zhu Feng. 2019&. Sedimentary characteristics and model of sandy debris flow in deoression area of lacustrine basin: A case study of the Jurassic Sanghonghe Formation in the western Pen-1 sag, Junggar basin. Journal of China University of Mining & Technology, 48(4): 858~869.

    • Tang Yong, Kong Yuhua, Sheng Jianhong, Zhao Kebin, Shi Jian. 2009&. Controlling factors of reservoir formation in ramp-type lthostratigraphic reservoir in hinterland of Junggar basin. Acta Sedimentologica Sinica, 27(3): 567~572.

    • Wang Jinduo, Xu Shumei, Zhang Guanlong, Ren Xinceng, Zeng Zhiping, Wu Xiangfeng, Shu Pengcheng. 2022&. Analysis of reservoir physical property oil-bearing characteristics and main control factors of Sangonghe Formation of Lower Jurassic in the hinterland of the Junggar Basin. Geological Review, 68(3): 1129~1144.

    • Wu Chonglong, Lin Zhongmin, Mao Xiaoping, Wang Lianjin. 2009&. Concept, research status and trend of “hydrocarbon pooling pattern”. Oil & Gas Geology, 30(6): 673~683.

    • Wuernisahan Maimaitimin, Li Jun, Zhao Jingzhou, Wu Tao, Xu Zeyang, Du Zhiwei, Fan Jiayi, Xu Chenhang. 2024&. The study of Jurassic overpressure genesis in the Mosuowan Uplift of the Junggar Basin. Natural Gas Geoscience, 35(9): 1590~1600.

    • Xu Houwei, Wang Haiming, Liu Rongjun, Xu Changfu, Wang Xiaoguang, Lu Jianrong. 2018&. Fine multiparameter evaluation for polymer flooding in conglomerate reservoirs and its application: A case study from Lower Karamay Formation in District Qiding-1, Karamay Oilfield. Xinjiang Petroleum Geology, 39(2): 169~175.

    • Xu Shumei, Li Meng, Wang Jinduo, Ren Xincheng, Chi Xinqi, Shu Pengcheng, Wang Jieqing, Liu Xian. 2020&. Sedimentary cycle pattern and stacked style of sand-body of the Lower Jurassic Sangonghe Formation in belly of Junggar Basin. Journal of Palaeogeograpgy (Chinese Edition), 22(2): 221~234.

    • Yan Hailong, Sun Wei. 2006&. Quantitative analysis of interlayer in underwater distributary channel: analyzing the interlayers of Chang 6 reservoir in Jing’an Oilfield. Journal of Northwest University (Natural Science Edition), 36(1): 133~136.

    • Zhang Dongling, Bao Zhidong, Wang Jianwei, Yang Wenxiu. 2005&. Sedimentary facies and reservoir characters of the Member 2 of Sangonghe Formation of Lower Jurassic in Central Junggar Basin. Journal of Palaeogeography, 7(2): 185~196.

    • Zhang Nianfu. 2000#. Fluid compartment and hydrocarbon accumulation in Mosuowan area in central part of Junggar basin. Petroleum Exploration and Development, 27(3): 110~119.

    • Zhao Luyang, Sun Yue, Zhao Zimin, Huang Sheng, Zhou Meng, Zhang Run. 2018&. Application of resistivity ratio method in the evaluation of low resistivity gas layers in the Sulige Gas Field. Well Logging Technology, 42(6): 689~694.

    • Zhao Mengjun, Song yan, Liu Shaobo, Yang Haibo, Liu Deguang. 2009&. Accumulation systems and filling process of natural gas in Junggar Basin. Geological Review, 55(2): 215~224.

    • Zhao Shujuan, Li Sanzong, Liu Xin, Lou Da, Shu Yanhui, Dai Liming, Ssun Wenjun, Li Tao, Wang Xuebin, Yang Chao. 2014&. Structures of the eastern Junggar Basin: Intracontinental transition between the North Tianshan and the Altai Orogens (in Chinese). Scientia Sinica Terrae, 44(10): 2130~2141

    • Zheng Jiandong, Wang Xiaolian, Gao Jifeng. 2013&. An oli water layer recognition method for consideration of adjacent mudstone characteristics. Well Logging Technology, 37(4): 397~400.

    • Zhou Yongshui, Qiu Nansheng, Song Xinyin, Cao Huanyu, Que Yongquan. 2014&. Study of source rock thermal evolution in overpressure formations in the hinterland of Junggar Basin. Chinese Journal of Geology, 49(3): 812~822.

    • Zou Zhiwen, Si ChunSong, Yang Mengyun, 2010. Origin and distribution of interbeds and the influence on oil—water layer: an example from mosuowan area in the hinterland of junggar basin. Lithologic Reservoirs, 22(3): 66~67.